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How can a renormalization group fixed point be scale invariant without being conformal? Polchin-

ski (1988) showed that this may happen if the theory contains a virial current – a non-conserved

vector operator of dimension exactly (d − 1), whose divergence expresses the trace of the stress

tensor. We point out that this scenario can be probed via lattice Monte Carlo simulations, using

the critical 3d Ising model as an example. Our results put a lower bound ∆V > 5.0 on the

scaling dimension of the lowest virial current candidate V , well above 2 expected for the true

virial current. This implies that the critical 3d Ising model has no virial current, providing a

structural explanation for the conformal invariance of the model.
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1. Introduction

It is believed that the critical point of the 3d ferromagnetic Ising model is conformally invariant.

One strong piece of evidence is the excellent agreement between the critical exponents extracted

from experiments and Monte Carlo simulations and from the conformal bootstrap [1,2]. Conformal

invariance has been also checked directly on the lattice, by verifying functional constraints that

it imposes on the shape of some correlation functions [3].1 In this paper we will provide another

1We would also like to point out related checks of conformal invariance in 3d self-avoiding walk [4] and 3d

percolation [5].
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lattice test of this property, which is qualitatively different and in a sense more robust.

Any field theory coming from a local action, and in particular the 3d Ising model close to or

at the critical temperature, has a local stress tensor operator Tµν which is conserved: ∂µTµν = 0.

The structural property of conformally invariant local theories is that this local stress tensor

operator is traceless:

Tµ
µ = 0 . (1.1)

Our new test will probe this structural property, unlike previous lattice studies which tested its

consequences.

The key question is: could the critical 3d Ising model be scale invariant (as befits any critical

theory, being a fixed point of a renormalization group flow), but not fully conformally invari-

ant? As was lucidly explained by Polchinski [6],2 a theory will be scale invariant without being

conformal if Tµν is not traceless but its trace is a total divergence:

Tµ
µ = ∂νWν , (1.2)

where Wµ is a vector operator, called the virial current, which is (a) not conserved and (b) not

itself a total derivative.3 Precisely this mechanism is responsible for scale without conformal

invariance of the theory of elasticity, perhaps the simplest physically relevant example of this

phenomenon [9].4

It’s then natural to inquire if Eq. (1.2) can hold in the critical 3d Ising model, and we will

show that it cannot. Our argument is based on the following simple observation: any operator

Wµ which is a candidate to appear in the r.h.s. of (1.2) must have two additional properties.

First of all, it should, just as Tµν itself, be invariant under the internal symmetry of the model,

Z2 in the case of Ising. In addition, since Tµν has canonical scaling dimension d, operator Wµ

should have dimension d− 1 = 2.

For the subsequent discussion, let us define Vµ as the lowest Z2-even vector operator Vµ, which

is not a total derivative. If we manage to show that ∆V > 2, this will imply that the model has

no virial current candidates of appropriate dimension, and thus must be conformal.

Extending the discussion from d = 3 to the whole family of Z2-invariant Wilson-Fisher fixed

points for 2 6 d 6 4, the dimension of V can be determined exactly in d = 2 and d = 4 (see

appendix A). Namely, we have:

∆V = 14 (2d Ising),

2See also [7] for a review. Concerning the 3d Ising model, see especially section 4.2 of [8].

3If Wµ is a total derivative, the stress tensor can be “improved” to be traceless, so that Eq. (1.1) is satisfied for

the improved Tµν .

4It should be noted that this mechanism may be realized with a quirk in gauge theories. Namely it may happen

that Eq. (1.2) holds but that the virial current is not a gauge invariant operator (and so is not a physical local

operator). For example, this is how the 3d Maxwell theory avoids conformal invariance [10].
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∆V = 11 (4d free massless scalar). (1.3)

It also follows from the ε-expansion that the dimension of V in 4−ε dimensions will be 11±O(ε).5

Eqs. (1.3) correct some incorrect statements in the first version of this paper [11] and in [12–14].

For example, Ref. [11] stated that ∆V = 7 in 4d, having in mind the candidate

Vcand = φ∂µφ(∂νφ)2 . (1.4)

As pointed out in [13], this particular operator is actually total derivative, as we have the relation

Vcand = ∂ν [φ2∂µφ∂νφ]− 1

2
∂µ[φ2(∂νφ)2] (1.5)

(modulo terms vanishing by the equations of motion). However, their own dimension 7 candidate

for V is also incorrect, being a redundant operator (see note 13).

Based on Eqs. (1.3), one can expect that the dimension of Vµ in critical 3d Ising model should

be significantly larger than 2. In this paper we will show, using lattice Monte Carlo simulations,

that this expectation is correct. Namely, our analysis will imply a numerical lower bound on ∆V :

∆V > 5.0 (3d Ising) . (1.6)

In particular, this proves that ∆V > 2, and shows that the 3d Ising model has no candidates

for Wµ. This rules out the scale without conformal invariance scenario based on (1.2), and thus

provides a new test of conformal invariance.

The paper is structured as follows. In section 2, we set up the lattice Monte Carlo simulation

to measure a one-point function in a cubic lattice with peculiar boundary conditions (motivated

in appendices D and E). Section 3 contains our numerical results that lead to (1.6). We conclude

with a short discussion of the implications of our result. In appendix A, we compute ∆V in the 2d

Ising model and in the theory of a free massless scalar in d = 4. In appendix C, we summarize the

general procedure for matching lattice operators with local operators of the critical field theory.

This is well known among the practitioners but we do not know any good pedagogical summary

in the literature.

2. Lattice setup

We simulate the nearest-neighbor ferromagnetic 3d Ising model on the cubic lattice at the critical

temperature. The Hamiltonian is

H = −β
∑
〈xy〉

s(x)s(y) , s(x) = ±1.

We use the known critical temperature β = βc ≈ 0.2216546 [15,16].

5The coefficient of the O(ε) correction term could be computed, but we don’t need it.
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2.1. Boundary conditions

Our lattice has spatial extent L×L×L sites. We set lattice spacing a = 1. Due to the difficulties

of measuring a rather high scaling dimension ∆V , we will only be able to go up to volumes L = 16.

We impose periodic boundary conditions in directions x1, x2, while at x3 = 0 and x3 = L− 1 we

impose a mixture of fixed and free boundary conditions. Namely, for x3 = 0 we impose the fixed

s = +1 boundary condition for points with L/4 6 x1 < 3L/4, while at x3 = L−1 we do the same

for points with L/2 6 x1 < L. The rest of the boundaries at x3 = 0 and x3 = L − 1 has free

boundary conditions (see Fig. 1). The reasons for such a bizarre choice of boundary conditions

will be explained shortly.

periodic

periodic

free

s = +1

s = +1

free

free

x1x2

x3 0 L � 1

Fig. 1: The boundary conditions used in our simulation. The x3 = 0 and x3 = L− 1 faces have a

combination of free (white) and fixed s = +1 (gray) boundary conditions. On the other faces the

periodic boundary conditions are imposed. This drawing uses the Byzantine perspective only to

improve visibility; the actual geometry is an L× L× L cube with parallel sides. The red dashed

line is one possible location of the integrated observable (2.3).

2.2. Lattice operator

We will work with the lattice operator

Olat
µ = s(x)∇µs(x)

3∑
ν=1

[∇νs(x)]2 , (2.1)

where x is a lattice point and

∇νs(x) = s(x+ êν)− s(x− êν)

is the symmetric lattice derivative in the ν direction.
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Actually the precise form of the operator is unimportant, the only important thing is that

Olat
µ is not a total lattice derivative. See Appendix B for a discussion and the proof of the latter

fact.

2.3. Matching of the lattice operator with critical point operators

Close to the critical point, the lattice operator Olat
µ can be expanded into a basis of local operators

of the critical theory with well-defined scaling dimensions (see appendix C for a review):

Olat
µ =

∑
i

ciOi,µ , (2.2)

where Oi is the critical theory operator which has a scaling dimension ∆i, and ci are some lattice-

dependent constants. Barring accidental cancellations, any lattice measurement related to Olat
µ

will be dominated by operators of lowest scaling dimensions appearing in the r.h.s. of (2.2). This

is because the contribution of an operator of dimension ∆i will be suppressed by 1/R∆i where R

is a large distance scale (clearly we have to go to large distances to explore the critical point).

Notice that operators in the r.h.s. will have to be vectors, but they don’t have to be primaries.

So, the total derivative terms involving derivatives of various Z2-even scalar operators which exist

in the 3d Ising model (see Table 2 in [2]) are expected to appear in the r.h.s. of (2.2). The lowest

of these are ∂µε and ∂µε
′, where ε, ε′ are the lowest-dimension Z2-even scalars, of dimension

∆ε ≈ 1.41, ∆ε′ ≈ 3.83. These derivative operators (especially ∂µε) have rather low dimension.

Below we will introduce a trick which will allow us to project them out and focus on more

interesting terms.

Crucially for us, since Olat
µ is not a total derivative, the operator Vµ we are interested in will

appear in this expansion:

V lat
µ ⊃ CVµ + . . . .

The constant C = O(1) is an unknown, non-universal, lattice quantity, and we will assume C 6= 0

since there is no reason to expect otherwise. The . . . include various terms which we are not

interested in, and we should make sure that those terms do not mask the contribution of Vµ.

Some of these terms involve operators of higher scaling dimension than V . The presence of those

terms is harmless since their effect will be subleading in the large volume limit. More annoying

are the total derivative terms involving derivatives of various Z2-even scalar operators which exist

in the 3d Ising model (see Table 2 in [2]). Some of these have a rather low dimension and would

mask Vµ unless special care is taken. For example, we expect ∂µε to appear in the r.h.s. of (2.2),

where ε is the lowest-dimension Z2-even scalar, of dimension ∆ε ≈ 1.41.

Another class of total derivative operators which we expect to appear are ∂νT
′
µν , divergences of

non-conserved spin-2 Z2-even operators. Assuming conformal invariance, the lowest such operator

has dimension ∆T ′ ≈ 5.51 [2]. Divergences of higher spin operators are also expected in principle

but will not play a role because of their even higher dimension.
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In our study we will be able to filter out the contributions of derivatives of scalars (like ∂µε)

through the following trick, rendered possible by the periodic boundary conditions. We consider

the average value of the x1-component of V lat
µ integrated along a periodic circle in this direction:

I(x2, x3) =
1

L

L−1∑
x1=0

V lat
1 (x1, x2, x3) (2.3)

Integration kills off the derivatives taken in the direction of integration. As a result this integrated

observable in the continuum limit does not couple to derivatives of scalars like ∂µε. On the other

hand divergences of spin-2 operators survive this projection, and their integral will contribute to

I along with the integral of Vµ.6

We will measure the one-point (1pt) function of I. In infinite volume vector operators would

have zero 1pt functions, but in finite volume with appropriate boundary conditions they can be

nonzero. In our case we will have

〈I(x2, x3)〉 ≡ Obs(x3) =
1

L∆I
f
( x3

L− 1

)
+ . . . , (2.4)

with no dependence on x2 due to the translation invariance in that direction. The scaling of this

observable with L will be determined by the smaller of the two dimensions ∆V ,∆∂T ′ = ∆T ′ + 1:

∆I = min(∆V ,∆T ′ + 1). (2.5)

In this work we will only measure ∆I , but we will not be able to determine which of the two

operators V or ∂T ′ dominates the scaling.

Another way to determine ∆I would be to impose periodic boundary conditions also in the

x3 direction and to study finite size scaling for the 2pt function of I at separation L/2. This

observable would scale as 1/L2∆I . We tried this strategy and found the signal completely swamped

by noise, due to large ∆I . Using the 1pt function improves the signal-to-noise ratio by a factor

L∆I and will allow us to perform the measurement.

The . . . terms in (2.4) decay with a higher power of L. They originate from the higher-

dimension operators contributing to V lat
µ as well as from corrections to scaling arising from the

fact that in finite volume the theory is not exactly at the critical point but is still flowing to it

in the renormalization group sense. Because of limited statistics, we will unfortunately be forced

to simply neglect both of these corrections in our analysis.

The function f(t), 0 < t < 1, parametrizes the observable (2.4) in the infinite-volume limit.

This function will be measured in our simulation. To have nonzero f(t), the boundary conditions

at x3 = 0, L− 1 should break the flip symmetry in the x1 direction:

x1 → L− x1 ,

6To kill all possible total derivatives, one could consider periodic conditions in all directions and to integrate over

the whole volume. We do not currently have a concrete proposal implementing this idea. The main difficulty is that

the one-point function of a vector operator vanishes on the 3-dimensional torus with periodic boundary conditions.
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under which I changes sign. This is the case for our boundary conditions in Fig. 1. On the other

hand, our boundary condition preserves the above x1 flip accompanied by the x3 flip:

x3 → L− x3 ,

and a periodic shift of the x1 direction by L/4. As a consequence, our function f(t) will be odd

with respect to t = 1/2, and in particular f(1/2) = 0.

We have experimented with several other flip-breaking boundary conditions, and settled for

the one in Fig. 1 because it gives rise to a particularly sizable f(t), thus further improving signal-

to-noise. See appendix D for a list of other possible boundary conditions, and appendix E for a

heuristic procedure to quickly evaluate which boundary condition is expected to work best.

While it is not directly related to our computation, we would like to mention here one other

instance where boundary conditions were used in lattice field theory to make a 1pt function of a

tensor operator nonzero. Namely, in 4d lattice gauge theory, the 1pt function of the off-diagonal

stress tensor component T0x was measured imposing the “shifted” boundary conditions, when the

fields are made periodic in the spatial directions, and periodic up to a coordinate shift in the

Euclidean time direction [17]. This boundary condition is a particular case of the gluing boundary

condition discussed in appendix D.

2.4. Choice of Monte Carlo algorithm

We perform Monte Carlo simulations using the single-spin-flip Metropolis algorithm. The choice

of Monte Carlo algorithms plays a crucial role in the efficiency of the simulations. It is well

known that the Wolff algorithm [18] is more efficient than the Metropolis algorithm at the critical

temperature due to the scaling of the computational effort with the system size. However, even

though the smaller critical slowdown exponent favors the Wolff algorithm for large systems, for

small ones and for some statistical observables, the Metropolis algorithm may be more efficient.

This is what happened in our case.

To be more concrete, the standard measure of the simulation efficiency is based on the product

of the algorithm execution time (τCPU ) and the integrated autocorrelation time (τc). One reason

to prefer the Metropolis algorithm is that in our case it led to very small integrated autocorrelation

time of the vector operator sampling (this time scale depends on the statistical observable we are

trying to measure).

Another important factor for this choice was the role of the boundary conditions. The use of

fixed boundary conditions requires the imposition of an acceptance probability to flip the clusters

touching the boundary (see appendix D). On the other hand, if we replace the fixed b.c. by

the βbdry = ∞ conditions (see appendix E) each time a cluster touches the boundary the full

boundary will be flipped with a clear increase of τCPU and without any gain in τc. These reasons

led us to opt for the Metropolis algorithm. Our tests showed that for a system size of L = 16,
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the Metropolis algorithm was able to produce results with error bars comparable to the Wolff

algorithm, being faster by a factor of 10.

3. Results

We performed Monte Carlo simulations in the setup described in the previous section, with L =

8, 12, 16. The nature of our boundary conditions, with the shift by L/4, requires to increase L in

steps of 4.

Our simulations were organized as follows. To generate the next sufficiently decorrelated spin

configuration we performed N = L3/4 steps of the Metropolis algorithm on spins with randomly

chosen positions. The measurement of the observable Obs(x3) in (2.4) was then performed (av-

eraging over x2). Since our lattice operator (2.1) has range 3, we only did the measurement for

1 6 x3 6 L− 2.

The total number of such decorrelated spin configurations that we generated was 2.4 × 1012

(resp. 3.5 × 1013) for L = 12 (resp. L = 16). A much smaller number sufficed for L = 8. For

N = L3/4 spin flips between the two measurements, the integrated autocorrelation time between

the subsequent measurements of Obs(x3) was close to 1 for every x3.

Our simulations were parallelized on a cluster and took a total of about 300 CPU-years.

The numerical results of these measurements are given in table 1, and are shown in plots

below as a function of t = x3/(L − 1).7 In these plots we show the data multiplied by (L/12)∆

for various values of ∆. According to (2.4), the curves for different L are supposed to collapse

if ∆ = ∆I . At least this is supposed to happen for sufficiently large L, when contributions from

the subleading terms . . . in (2.4) become unimportant.

In Fig. 2 we take ∆ = 2, the value needed for a virial current candidate. Clearly the curves

show no collapse, ruling out the existence of the virial current.

A side remark: as mentioned in the previous section, the function f(t) should be odd with

respect to t = 1/2 for our choice of the boundary conditions. This antisymmetry is indeed satisfied

within error bars, as can be seen in the figures.8

In Fig. 3 we show what the same plot looks like if we choose ∆ = 6. In fact this value is

our best estimate for ∆I . The curves show collapse within the error bars for 0.2 6 t 6 0.8. We

consider that the t values closer to the x3 = 0, L − 1 boundaries are dominated by boundary

effects and exclude them from the analysis.

7The raw data in text form can be found inside the tex file of the arxiv submission.

8The way our measurement is organized, all points for the same L, and in particular the symmetric data points,

are correlated with an unknown correlation. Thus once the measurement is finished, we cannot easily take advantage

of this antisymmetry to reduce the errors by averaging over the symmetric datapoints. However, that the measured

function does come out antisymmetric is a check of our procedure.
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Obs(x3) in units of 10−6

x3 L = 8 L = 12 L = 16

1 41.9(7) 9.33(17) 3.11(9)

2 12.5(7) 3.12(19) 1.08(9)

3 1.7(7) 0.87(19) 0.49(10)

4 −3.5(7) 0.74(20) 0.27(10)

5 −10.7(7) −0.24(20) 0.12(10)

6 −41.7(7) 0.16(20) −0.03(10)

7 −0.39(20) 0.06(10)

8 −1.02(19) −0.13(10)

9 −3.18(19) −0.08(10)

10 −9.07(17) −0.07(10)

11 −0.25(10)

12 −0.51(10)

13 −1.07(10)

14 −3.13(10)

Table 1: Results of Monte Carlo measurements with statistical errors.

To assign an error to our determination of ∆I , we propose the following heuristic procedure.

We vary ∆ around 6 and see when the curves clearly deviate from the collapsing behavior in the

interval 0.2 6 t 6 0.8, judging by the eye. One way to quickly perform this analysis is to use the

Manipulate function of Mathematica. This way we arrive at our confidence interval:

∆I = 6± 1. (3.1)

See Fig. 4 for what the collapse plots look like at the extreme ends of the confidence interval.9

While the “judging by the eye” procedure may seem subjective and ad hoc, we don’t believe a

much better statistical procedure can be advocated given our limited amount of data.

We have cross-checked our determination of ∆I by focussing on the three points x3 = 2

(L = 8), x3 = 3 (L = 12) and x3 = 4 (L = 16), which correspond to three close values of

t = x3/(L − 1). Neglecting the difference in t, the values of the observable at these three points

should scale as const./L∆I . That this is indeed roughly the case can be seen in the log-log plot

in figure 5. Performing the fit using these three points and their mirror images under t→ 1− t,
we get the same answer ∆I = 6± 1.

9If we omit the L = 8 datapoints from our analysis (e.g. if one is worried that these points are still significantly

affected by the subleading . . . corrections in (2.4)), then we get ∆I = 5.5± 1.5 using the same procedure. We quote

this number only for comparison, as we do not feel that completely discarding the L = 8 points is justified.
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L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0

-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Fig. 2: In this plot ∆ = 2, testing (and ruling out) the virial current existence hypothesis.

4. Discussion and conclusions

One goal of this paper was to emphasize that there is a simple and robust way to check the

conformal invariance of any critical lattice model, which requires the measurement of the lowest

non-derivative vector operator V which is a singlet under all global symmetries. This operator

can play the role of the virial current, and potentially cause scale without conformal invariance,

but only if its dimension is exactly d− 1.

In this paper we considered this strategy in the critical 3d Ising model. Since the dimension

of V appears to be large, to carry out our measurement we had to introduce several tricks in-

creasing the efficiency of Monte Carlo simulations. In particular, we had to consider an integrated

lattice operator to decouple some uninteresting total derivative terms, and to optimize boundary

conditions to maximize the (integrated) 1pt function of V , which was our Monte Carlo target.

Further boundary condition optimization is likely possible (see appendix E) and might allow to

reduce the error bars in future studies.

The main limitation of our approach to measuring ∆V is that while it decouples total deriva-

tives of scalars, it does not do so for divergences of spin-2 operators. As a result we measure not

∆V but ∆I = min(∆V ,∆T ′ + 1), where T ′ is the lowest non-conserved Z2 even spin-2. So, our

result ∆I = 6 ± 1 only implies a lower bound ∆V > 5.0 on the dimension of V . Still, the virial

current value ∆V = 2 is soundly ruled out by this lower bound. This confirms that the 3d Ising

model is conformally invariant.

Now assuming conformal invariance, we know from the conformal bootstrap that ∆T ′ ≈ 5.51

[2]. This suggests that our measurement of ∆I was dominated by ∆T ′ + 1, while V itself may be

much higher. This scenario appears likely also in light of extremely high values of ∆V in d = 2, 4

reported in the Introduction.
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L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0

-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Fig. 3: In this plot ∆ = 6, which is our central value for ∆V .

L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0
-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0
-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Fig. 4: Determining a confidence interval for ∆I . Left: ∆ = 5. Right: ∆ = 7.

In this paper we have not carried out any correction-to-scaling analysis. It would be interesting

to repeat the simulation in the Blume-Capel model which is in the same universality class as the

Ising model but has a free parameter allowing to drastically reduce corrections to scaling [16].

It would be also interesting to determine or bound the dimension of V for the O(N) and other

models.

Finally, we would like to comment on the determination of ∆V using the conformal bootstrap.

The numerical conformal bootstrap has determined scaling dimensions of about 100 operators of

the critical 3d Ising model [2]. The operators which have been determined appear in the operator

product expansions (OPEs) of σ × σ, ε × ε and σ × ε, where σ and ε are the lowest dimension

Z2-odd and Z2-even scalars. The OPEs σ× σ and ε× ε, being OPEs of identical scalars, contain

only operators of even spin. The OPE σ × ε contain only Z2-odd operators. The operator V ,

being a Z2-even vector, does not appear in these OPEs, and therefore it has not been so far
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8 10 12 14 16
L1.×10-7

5.×10-7

1.×10-6

5.×10-6

1.×10-5

Obs

Fig. 5: Observable for x3 = 2 (L = 8), x3 = 3 (L = 12) and x3 = 4 (L = 16) and for the three

mirror points (with a minus sign). The dashed line is the best fit c/L∆ which gives ∆ = 6.03 as

the central value.

probed by the conformal bootstrap. In the future, the OPEs σ×σ′ and ε×ε′, where σ′ and ε′ are

the subleading Z2-odd and Z2-even scalars, will hopefully be included in the bootstrap analysis.

These OPEs contain V and can be used to determine its dimension.

Of course, determination of ∆V using the conformal bootstrap already presupposes that the

model is conformally invariant. This has to be distinguished from the lower bound on V obtained

in our paper, which is valid independently of conformal invariance, and so allowed us to test this

property.

Note added. In the first arXiv version of this paper [11] the reader will find an appendix

criticizing the argument in [12] for conformal invariance of the critical 3d Ising model. We consider

the objections raised there still valid, and the rebuttal [13] unsatisfactory. However, we removed

the appendix to keep the focus on the positive results obtained in our own work.
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A. Theoretical expectations for the dimension of V

In this appendix, we determine the lowest dimension of a vector primary operator at the Wilson-

Fisher fixed point in spacetime dimension d = 2 and d = 4. These exactly solvable cases provide

an indication for what to expect in d = 3.

A.1. Four dimensions

The Wilson-Fisher fixed point in d = 4 describes a free massless scalar field φ satisfying the

equation of motion ∂2φ = 0. The operator content of this free CFT can be encoded in the

partition function

Z(q, x, y) =
∑
O
q∆Ox2jOy2j̄O , (A.1)

where the sum runs over all local operators. The quantum numbers (∆, j, j̄) are the eigenvalues

of the dilatation generator D and two commuting rotation generators J3 and J̄3. The latter

correspond to the decomposition SO(4) = SU(2) × SU(2) of the rotation group. The partition

function can be easily computed using the Fock space structure [20]. We start by introducing the

partition function zφ of local operators with a single field φ and arbitrary number of derivatives,

zφ(q, x, y) = χ1,0,0(q, x, y)− χ3,0,0(q, x, y) (A.2)

where

χ∆,`,¯̀(q, x, y) =
q∆

(1− qxy)(1− qy/x)(1− qx/y)(1− q/(xy))

∑̀
j=−`

x2j

¯̀∑
j̄=−¯̀

x2j̄ (A.3)

is the long character of a conformal multiplet with primary of dimension ∆ and spin (`, ¯̀). The

full partition function can then be written as

Z(q, x, y) = exp

[ ∞∑
k=1

1

k
zφ

(
qk, xk, yk

)]
. (A.4)

Moreover, the partition function restricted to Z2 even/odd operators is given by

Z±(q, x, y) =
1

2
exp

[ ∞∑
k=1

1

k
zφ

(
qk, xk, yk

)]
± 1

2
exp

[ ∞∑
k=1

(−1)k

k
zφ

(
qk, xk, yk

)]
. (A.5)

We are interested in the character decomposition of the Z2 even partition function. Expanding

the given expression and matching the powers of q and dependence on x, y order by order, we

arrive at the following expression:

Z+ = 1 +
4∑

n=1

χshort2+2n,n,n + χ2,0,0 + χ4,0,0 + χ6,0,0 + χ6,1,1 + χ7, 3
2
, 3
2

(A.6)

+ 2χ8,0,0 + χ8,0,2 + 2χ8,1,1 + χ8,2,0 + 2χ8,2,2
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+ χ9, 1
2
, 3
2

+ χ9, 1
2
, 5
2

+ χ9, 3
2
, 1
2

+ χ9, 3
2
, 3
2

+ χ9, 3
2
, 5
2

+ χ9, 5
2
, 1
2

+ χ9, 5
2
, 3
2

+ χ9, 5
2
, 5
2

+ 3χ10,0,0 + χ10,0,2 + 4χ10,1,1 + χ10,1,2 + 2χ10,1,3 + χ10,2,0 + χ10,2,1

+ 4χ10,2,2 + χ10,2,3 + 2χ10,3,1 + χ10,3,2 + 3χ10,3,3

+ χ11, 1
2
, 1
2

+ 2χ11, 1
2
, 3
2

+ 2χ11, 1
2
, 5
2

+ χ11, 1
2
, 7
2

+ 2χ11, 3
2
, 1
2

+ 4χ11, 3
2
, 3
2

+ 3χ11, 3
2
, 5
2

+ 2χ11, 3
2
, 7
2

+ 2χ11, 5
2
, 1
2

+ 3χ11, 5
2
, 3
2

+ 3χ11, 5
2
, 5
2

+ 2χ11, 5
2
, 7
2

+ χ11, 7
2
, 1
2

+ 2χ11, 7
2
, 3
2

+ 2χ11, 7
2
, 5
2

+ 2χ11, 7
2
, 7
2

+O(q12),

where

χshort2+2n,n,n = χ2+2n,n,n − χ3+2n,n− 1
2
,n− 1

2
(A.7)

is the character associated with a conserved current of spin 2n. This shows that the vector

primary with lowest scaling dimension has ∆ = 11 (blue character).

As a consistency check, we have determined ∆V = 11 using an alternative method. We

performed the conformal block decomposition of the four-point function 10

〈φ2(x1)φ4(x2)φ2(x3)φ4(x4)〉 =
1

x4
13x

8
24

+
6

x4
12x

4
34x

4
24

+
6

x4
14x

4
23x

4
24

+
8

x2
13x

2
12x

2
34x

6
24

+
8

x2
13x

2
14x

2
23x

6
24

+
24

x4
14x

2
12x

2
34x

4
23x

4
24

. (A.8)

In the (12) channel, the conformal block decomposition reads 11

6G2,0 + 32G4,0 + 15G6,0 +
96

5
G6,2 + 8G7,3 +

128

7
G8,2 +

384

35
G8,4 +

16

5
G9,3 +

64

11
G9,5 (A.9)

+
2

5
G10,0 +

12

7
G10,2 +

464

33
G10,4 +

15872

3003
G10,6 +

8

25
G11,1 +G11,3 +

384

91
G11,5 +

192

65
G11,7 + . . .

where G∆,s stands for the conformal block of dimension ∆ and spin s (corresponding to the SO(4)

irreducible representation ( s2 ,
s
2)). Again we find the first vector primary at dimension 11.

One can also see that the vector primary operator we identified is parity-even. This follows

immediately because parity odd vector primary operators cannot appear in the OPE of two

scalars (like φ2 and φ4) in a parity symmetric theory. In addition, it is easy to see that the

vector operator contains 6 fields φ and 5 derivatives. 12 We also studied the conformal character

10We normalized the operators φ2 and φ4 to have unit two-point function.

11We use the standard conformal block as defined in [21,22].

12The φ content of each primary can be obtained by studying the partition function

Z(r, q, x, y) = exp

[
∞∑
k=1

rk

k
zφ
(
qk, xk, yk

)]
, (A.10)

where r is a fugacity for the number of φ’s in each local operator.
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decomposition of the free massless scalar in d = 3. The lightest vector primary still contains 6

fields φ and 5 derivatives, which leads to ∆V = 8 in d = 3.

The conclusion that the lowest Z2 even vector primary has dimension 11 was reached inde-

pendently by Marco Meineri [23]. He used a different approach, which also provides an explicit

expression for this primary in terms of φ and its derivatives. In d = 4 − ε, this vector primary

operator will get an O(ε) anomalous dimension, computable starting from an explicit expression

in [23]; this will not be done here.

One potential worry could be the recombination of this multiplet with a short multiplet when

ε > 0. However, it is well known (see e.g. [24] for a discussion) that the only multiplets that

recombine are the multiplet of φ with the one of φ3 and the multiplets χshort2+2n,n,n (conserved

currents of spin 2n) with χ3+2n,n− 1
2
,n− 1

2
for n = 2, 3, . . . . So the vector primary of dimension 11

will survive as a vector primary of dimension 11 +O(ε) in 4− ε dimensions.

Notice that in all the above discussion we set ∂2φ = 0 in 4d, eliminating operators involving

the letter “∂2φ” from consideration. When we go to (4− ε) dimensions, we will have the equation

of motion ∂2φ ∝ φ3. So when classifying the local operators in (4 − ε) dimensions, it would be

double counting to consider operators involving ∂2φ. Operators proportional to the equations of

motion are known as “redundant operators” [25]. While such “operators” are useful in formal

treatments of renormalized perturbation theory [26], they have correlation functions which are

zero except at coincident points, and their dimensions do not correspond to critical exponents

measurable e.g. in lattice simulations. So redundant operators do not count as local operators of

the critical theory.13

A.1.1. Evanescent operators

Here we will discuss, and exclude, the possibility, that the lowest primary vector in 4−ε dimension

is not the vector primary of dimension 11 +O(ε) discussed above, but a still lower vector primary

which is an evanescent operator. Recall that the evanescent operators are those which do not

exist in d = 4 but only in d = 4 − ε, see [27] for a discussion. The evanescent operators arise

because of antisymmetrization of indices, which kills an operator in d = 4. Thus, they have to

involve a contraction with

δµ1[ν1δ|µ2|ν2 . . . δ|µ5|ν5] (A.11)

which in integer dimensions becomes

εµ1µ2...µ5εν1ν2...ν5 . (A.12)

Any operator involving this contraction will vanish identically in d = 4, because the index µ runs

only over 4 values.

13As a side remark, we note that the “exact critical exponents” discussed in Ref. [14] correspond in fact to redundant

operators, making the discussion of that paper of little relevance to the physics of the Ising critical point.
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The lowest vector operator which vanishes in d = 4 but not in d = 4− ε is [27]

δµ1[ν1δ|µ2|ν2 . . . δ|µ5|ν5]∂µ1φ∂µ2∂ν2φ . . . ∂µ5∂ν5φ, (A.13)

of dimension 14 + O(ε). This operator is not a primary [27], so the lowest evanescent vector

primary is still somewhere higher. We conclude that the evanescent operators cannot compete

with the 11 +O(ε) primary that we found above.

A.2. Two dimensions

Here we discuss spectrum of the 2d Ising model in the Z2-even sector. The Ising model contains

2 Z2-even Virasoro primaries, 1 with h = h̄ = 0 and ε with h = h̄ = 1
2 . Their Virasoro characters

are given by

χ1(q, q̄) = χ0(q)χ0(q̄), χε(q, q̄) = χ 1
2
(q)χ 1

2
(q̄) . (A.14)

The characters χ0 and χ 1
2

are given by [28]

χ0(q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 5q9 + 7q10 + 8q11 + 11q12 + . . . (A.15)

χ 1
2
(q) = q

1
2 (1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 5q8 + 6q9 + 8q10 + 9q11 + 12q12 + . . .)

These Virasoro characteres can de decomposed into characters

Xh(q) =
qh

1− q , (A.16)

of the global conformal algebra. This gives

χ0 = 1 +X2 +X4 +X6 + 2X8 + . . . (A.17)

χ 1
2

= X 1
2

+X 9
2

+X 13
2

+X 15
2

+X 17
2

+ . . . (A.18)

The first vector quasiprimary is obtained by combining Xh with Xh̄ with h− h̄ = 1. We see

that the minimal choice is h = 15
2 , h̄ = 13

2 , corresponding to the scaling dimension ∆ = h+ h̄ = 14.

It is also interesting to find a dimension of the first non-conserved spin-2 quasiprimary, for which

we need h− h̄ = 2. This is possible for h = 4, h̄ = 2, which gives ∆ = 6.

The vector quasiprimaries can also be found by studying the (global) conformal block decom-

position of a four-point function involving two different scalar operators. In 2d Ising, the simplest

choice is ε (with ∆ = 1) and T T̄ (with ∆ = 4). Such correlation functions can be easily computed

using the conformal Ward identities. In particular, we obtained

A(z, z̄) = lim
w→∞

|w|8〈ε(0, 0)T T̄ (z, z̄) ε(1, 1)T T̄ (w, w̄)〉 =
1

16

∣∣∣∣1 +
(1− 2z)2

z2(1− z)2

∣∣∣∣2 . (A.19)

The conformal block expansion in the z, z̄ → 0 channel is given by

A =
1

16
G1,0 +G5,4 +

4

5
G7,6 +

32

429
G8,7 +

1

16
G9,0 +

16

35
G9,8 +

16

221
G10,9 +

1

20
G11,2 +

640

2907
G11,10
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+
2

429
G12,3 +

512

11305
G12,11 +

1

400
G13,0 +

1

35
G13,4 +

3200

33649
G13,12 (A.20)

+
1

4290
G14,1 +

1

221
G14,5 +

512

22287
G14,13 + . . .

in terms of conformal blocks [21]

G∆,s(z, z̄) =
k∆+s(z)k∆−s(z̄) + k∆−s(z)k∆+s(z̄)

2s (1 + δs,0)
, kβ(z) = (−z)β−9

2 2F1

(
β + 3

2
,
β − 3

2
, β, z

)
(shifts in the familiar exponents w.r.t. β/2 due to unequal dimensions of external scalars). This

confirms that ∆V = 14 in the 2d Ising CFT.

B. Why Olat
µ is not a total lattice derivative

By definition, a lattice operator A is a total lattice derivative (TLD) if it can be written as the

difference of a lattice operator and its translation by some fixed lattice distance, or more generally

a linear combination theoreof:

A(x) =
∑
i

[Bi(x)−Bi(x+ yi)] (B.1)

where Bi’s are some lattice operators, and yi are some lattice vectors. A multi-component opera-

tor, like Olat
µ , is a TLD, if each of its components is a TLD (where Bi and yi will depend on the

component).

An obvious example of a TLD operator is ∇νs(x). A less obvious example is s(x)∇νs(x),

since it can be written as

s(x)∇νs(x) = s(x)s(x+ êν)− s(x− êν)s(x) = Bν(x)−Bν(x− êν), (B.2)

where Bν(x) = s(x)s(x+ êν).

Consider now our operator Olat
µ , focussing for definiteness on its component µ = 1. Using the

fact that s(x)2 = 1 for the Ising spins, it’s easy to see that

Olat
1 (x) = −2A(1)(x) +A(2)(x) (B.3)

where

A(1)(x) = s(x)[s(x+ ê1)− s(x− ê1)][s(x+ ê2)s(x− ê2) + s(x+ ê3)s(x− ê3)] (B.4)

and A(2)(x) = 8s(x)∇1s(x) is a TLD operator.

We claim that A(1) is NOT a TLD operator. To prove this, consider the following configuration
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of spins:

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 −1 1 1 1

1 1 1 −1 −1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

(B.5)

where we show only a slice of the 3D configuration in the (x1, x2) plane. It is assumed that the

spins are constant in x3 direction, and that the lattice is periodic in all directions (we consider

periodic lattice just for this proof, Monte Carlo simulations are done with different boundary

conditions). Computing A(1) operator in this configuration, we find:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0

0 0 −4 4 0 4 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(B.6)

The crucial feature about this answer is that it does not sum to zero when summed over all lattice

points. On the other hand, for any TLD operator such a computation would give something which

sums up to zero. Hence, A(1) is not a TLD operator.

One may be puzzled that Olat
µ is not a TLD operator, while its “naive continuum limit”

operator given in (1.4) is a total derivative. In fact there is no contraction. If an operator is

TLD, its naive continuum limit will be a total derivative, but the inverse implication does not

have to hold. For a very simple example, consider lattice operator

s(x)s(x+ ê1)∇1s(x) (B.7)

Naive continuum limit φ2∂1φ = 1
3∂1φ

3 is a total derivative, but it’s easy to check that the lattice

operator is not TLD.

C. Comments on operator matching

Here we collect some well known facts about operator matching between UV theory and its IR

fixed point. UV theory may be a lattice spin model, a field theory with cutoff, or a continuum
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limit field theory.

C.1. Matching in the lattice spin model

We consider first the lattice spin model case, and will explain the necessary modifications to UV

field theory case later on. For definiteness let us think about the d = 3 Ising model, on a cubic

lattice of spacing a (we could specialize to a = 1 without loss of generality). We tune the lattice

coupling (temperature for the Ising model) to the second-order phase transition. The lattice

theory with so finetuned couplings flows, in the RG sense, at large distances to the IR fixed point

(IRFP), which we also call “critical theory”. The critical theory has full O(3) invariance, while

the lattice theory itself has rotational invariance broken to the cubic subgroup. The critical theory

has local operators Oi(x) which have well-defined scaling dimensions ∆i and transform in O(3)

representations. The lattice theory has lattice operators which form multiplets under the lattice

symmetry group (cubic group). The critical theory is sometimes called CFT, but here we will

avoid using this terminology since we don’t want to assume conformal symmetry from the start.

The important point is that critical theory correlators are defined at all distances 0 < r < ∞,

while correlators of the lattice theory are defined at discrete distances r > a.

How to recover parameters of the critical theory in a lattice simulation? Two issues complicate

this extraction. The first issue is that operators of the lattice theory, naturally given in terms

of lattice variables, do not have well-defined scaling dimension, but should be thought of as linear

combinations of such operators. The second issue is that the lattice theory, even with couplings

finetuned to the second-order phase transition, does not sit precisely at the fixed point, but only

flows to it at large distances. Let us consider in turn how these issues manifest themselves.

Consider the simplest lattice operator, spin Slat(x). We should expand it in critical theory

operators. The appearing terms will have to be, as Slat(x), Z2-odd cubic group singlets. The

expansion (sometimes referred to as matching) will have the form:

Slat(x) = A1σ(x) +A2∂
2σ(x) +A3σ

′(x) +A4∂µRµ + dµνλσ(A5∂µ∂ν∂λ∂σσ +A6Rµνλσ) + . . . (C.1)

There are infinitely many terms but we only wrote the first few representative ones. σ and σ′

are the first two Z2-odd scalars of the critical theory (of dimension ∆σ ≈ 0.518, ∆′σ ≈ 5.29).

Derivatives of these operators with indices contracted so that they are scalars can also appear

(∂2σ being shown as a representative case). In addition scalar derivatives of tensor Z2 operators

are also expected to appear, the representative case being the divergence of some Z2 odd vector

Rµ (dimension of the lowest such vector in the critical Ising theory is unknown). All the above

terms are O(3) scalars, hence cubic singlets. However, since rotational invariance is broken by

the lattice, some tensor operators may appear as long as they are multiplied by tensors which are

invariant under the cubic group but not the full O(3). The first such tensor is the rank-4 tensor

with nonzero components d1111 = d2222 = d3333 = 1, and we show two terms involving this tensor,

multiplied by A5,6.

19



On a lattice with spacing a, all coefficients Ai in this expansion will be given by Ai = Ãia
∆i ,

with Ãi a dimensionless number and ∆i the dimension of the critical operator multiplied by the

corresponding coefficient. On a lattice of unit spacing they will be simply O(1) numbers.

With the expansion (C.1), correlators of Slat(x) in the lattice theory, can be matched with

sums of correlators of operators in the critical theory. For example, for the 2pt function we have:

〈Slat(x)Slat(y)〉lattice = A2
1〈σ(x)σ(y)〉+A1A2 (∂2

x + ∂2
y)〈σ(x)σ(y)〉+A2

2 ∂
2
x∂

2
y〈σ(x)σ(y)〉

+A2
3 〈σ′(x)σ′(y)〉+A2

4 ∂
x
µ∂

y
ν 〈Rµ(x)Rν(y)〉+ . . . (C.2)

Here the correlator in the l.h.s. can be measured in a lattice simulation, and by this equation it

should be equal to a sum of critical correlators in the r.h.s. Consider for example correlators in

infinite volume. The critical theory correlators are expressed in terms of scaling dimensions of

the fields. For scalars:

〈Oi(x)Oi(y)〉 =
1

|x− y|2∆i
, (C.3)

where 1 is just a normalization. For a vector operator we would have

〈Rµ(x)Rν(y)〉 =
δµν + α(x− y)µ(x− y)ν/|x− y|2

|x− y|2∆R
(C.4)

Here the constant α equals −2 in a CFT with Rµ a vector primary, but in a scale invariant theory

but non-conformal theory it could be different. Also in a non-conformal theory there could be

nonzero 2pt functions between operators of unequal scaling dimension which then have to be

added to the r.h.s. of (C.2). In any case, according to this discussion, and taking into account

the expected size of coefficients Ai, the r.h.s. of (C.2) contains a series of terms decaying with the

distance as const.(a/r)pi where the powers pi are simply related to scaling dimensions of operators

appearing in the r.h.s. of (C.1). We see that only dimensionless ratios of distances enter into

this expression. If we go to distances r � a, then the lowest power p1 = 2∆σ will dominate and

the first correction will be suppressed by two more powers of the distance. The terms involving

dµνλσ tensor will have nontrivial angular dependence, a sign of rotational symmetry breaking.

The leading such term will appear from the crossterm 〈σ∂µ∂ν∂λ∂σσ〉 and will be tiny, suppressed

by 4 powers of the distance.

To complete the just given discussion, we need to address the above-mentioned second issue,

taken into account by perturbing the action of the critical theory by irrelevant operators. More

precisely, we can describe the system by the action

IIRFP +

∫
ddx

[
g1ε
′(x) + g2ε

′′(x) + g3dµνλσLµνλσ(x) + . . .
]

(C.5)

where all Z2-even irrelevant operators, invariant under the cubic symmetry of the lattice, are

present generically. By dimensional analysis, the couplings are given by gj = g̃ja
∆j−d where g̃j

are dimensionless numbers. The expansion (C.2) is still true, but correlators in the r.h.s. should
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be evaluated in the perturbed theory. Specializing again to the 2pt function, the presence of

perturbations will lead to the following effect. In addition to the powers pi occurring in the

scale-invariant case there will occur powers p′i = pi + ωj where ωj = ∆j − d are all possible

correction-to-scaling exponents, with ∆j dimensions of irrelevant Z2-even operators. The smallest

such exponent is ω1 = ∆ε′ − 3 ≈ 0.83.14 Some of these power law corrections will come with

nontrivial angular dependence. This is to be expected, since the lattice theory breaks rotation

invariance. The smallest rotational invariance breaking exponent ω3 ≈ 2.02 is related to the

dimension of the lowest Z2-even cubic group singlet that is not an O(3) scalar. In the case of 3d

Ising, this is the lowest Z2-even spin-4 operator Lµνλσ contracted with the dµνλσ tensor (while

Rµνλσ in (C.1) was Z2-odd).

Matching can also be done for lattice operators transforming in nontrivial representations of

the lattice symmetry group, vector being our main case of interest. The (d = 3)-dimensional

vector representation is irreducible both under O(3) and under the cubic group. For a generic

Z2-even lattice vector operator Olat
µ , some representative terms in its expansion will be:15

Olat
µ = A1Vµ +A2∂µε+A3∂µT

′
µν +A4dµνλσRνλσ + . . . (C.6)

This indicates that the r.h.s. can contain vector critical operators (Vµ), derivatives of scalars (∂µε)

and divergences of tensors (∂µT
′
µν , excluding the stress tensor Tµν as it is conserved), as well as

rotation-invariance breaking terms involving higher-rank tensors contracted with special tensors

like dµνλσ, to get objects which transform correctly under the cubic group.

In the generic case we expect all Ai = O(a∆i) as for Slat(x). In the special case of Olat
µ (x)

being a total lattice derivative,16 we will have A1 = A4 = 0 and only the terms like A2, A3 could

contribute.

We emphasize that all we know of the coefficients Ai on general grounds is that they are

O(a∆i) numbers. There is no simple theoretical way to determine these numbers apart from

a lattice simulation. All operators which are allowed by lattice and internal symmetries (and

total lattice derivative constraints) will appear in the r.h.s. The problem of determining these

coefficients is a “long distance” problem: it has to do with how the microscopic theory approaches

the IR fixed point at long distances.

14The idea of improved lattice actions is to use models that allow to tune to zero the couplings of the first few

leading irrelevant operators in (C.5). For example, the Blume-Capel model used in [16] allows to set g1 = 0 thus

removing the leading corrections to scaling due to ε′.

15The coefficients Ai are of course not the same as for Slat(x).

16Total lattice derivatives are local operators that when summed over a region of the lattice, reduce to operators

at the boundary of that region. For example, ∇µφ(x) = [φ(x + aeµ) − φ(x − aeµ)]/(2a) is a lattice derivative. See

Appendix B.
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C.2. Matching in the lattice field theory

It is instructive to consider what changes when we replace the spin model by the latticized φ4

field theory, defined by the lattice action

a3
∑
x

1

2

3∑
µ=1

(∇µφ(x))2 +m2φ(x)2 + λφ(x)4

 . (C.7)

where ∇µφ(x) = [φ(x + aeµ) − φ(x − aeµ)]/(2a) is the lattice derivative. For each value of the

quartic coupling λ > 0 we can find a value of the mass parameter corresponding to a second-order

phase transition. For this value m2
∗(λ) the theory flows at large distances to the critical theory,

which does not depend on λ and is actually the same as for the Ising spin model. The operators

of the UV theory can be then expanded in critical theory operators. For example, we can write

an expansion for φ(x) of the same form (C.1) as for the spin operator Slat(x). The symmetry

reasoning which led to this expansion remains the same, and the same operators will appear in

the r.h.s. However, the discussion of the size of coefficients Ai has to be slightly modified.

We say that the φ4 theory is strongly coupled at the lattice scale if the quartic coupling λ is

not small. The appropriate dimensionless condition in 3d is λa & 1.17 The effects of such largish

quartic coupling are strongly felt already at the lattice scale (and a fortiori at all longer distance

scales). Because of this, the RG flow will converge to the IR fixed point at distances r not much

higher than a. The matching coefficients in the strongly coupled latticized φ4 theory will thus be

of the same generic size as for the spin Ising model, i.e. Ai = O(a∆i).

If on the other hand the quartic satisfies λa � 1, the starting point of RG flow finds itself

not far from the gaussian UV fixed point (UVFP). The RG trajectory can then be divided into

two parts (see Fig. 6). In this case we say that the UV lattice theory is ‘weakly coupled’. The

first part of the RG flow happens in the neighbourhood of the UVFP. It corresponds to distances

`� `0, where `0 = 1/λ� a. The second part starts at distances ` ∼ `0 where the flow transitions

from the neighbourhood of free UVFP to the strongly interacting IRFP.

In the first part of the flow we can approximate the action of the flowing theory expanding

around the UVFP action in perturbations parametrized by normalized operators of the gaussian

theory:

I = IUV FP +

∫
d3x

[
u1 : φ2(x) : +u2 : φ4(x) : +u3dµνρσ : φ∂µ∂ν∂ρ∂σφ(x) : + . . .

]
(C.8)

where ui = ũia
∆UV FP
i −3 with ũi dimensionless. Generically, we expect all ũi = O(1). However,

for weakly coupled flows we have ũ2 ∼ λa ∼ a/`0 � 1. Furthermore, because we tuned the mass

17Notice that the lattice field φ(x) has dimension 1/2 like a free scalar field in 3d. This implies that the quartic

coupling λ has mass dimension 1.
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IRFP

�a = 0 �a ⌧ 1 �a = O(1)

UVFP

Rotational invariant theories

Fig. 6: Various RG flows on the critical surface of the latticized φ4 field theory. All flows with

λ > 0 end up in the IRFP because we tuned the mass to its critical value. However, flows that

start with λa � 1 will first be attracted to the UVFP and from there move to the IRFP. More

precisely, if the quartic coupling is parametrically small at the UV scale a, the RG flow will

be controlled by the UVFP until the scale `0 = 1/λ. At this scale, the flow transitions to the

neighborhood of the IRFP. The flow with λ = 0 corresponds to a quadratic theory which ends in

the UVFP once the rotation invariance breaking terms have decayed.

term to its critical value we also have ũ1 � 1. The first term breaking rotational invariance has

u3 = ũ3a
2 with ũ3 = O(1).18

The second part of the flow starts at the scale `0 = 1/λ� a. Therefore, the scale `0 plays the

role of UV cutoff for the second part of the flow. It is then useful to write ui = ūi`
∆UV FP
i −3

0 to

define dimensionless couplings ūi with respect to the UV cutoff for the second part of the flow.

This gives ū2 = O(1) for the quartic coupling and ū3 ∼ (a/`0)2 � 1 for the leading irrelevant

coupling that breaks rotational symmetry. The second part of the flow can then be described

using the action (C.5) with dimensionless couplings g̃i defined by gi = g̃i`
∆IRFP
i −3

0 . We expect

g̃1 ∼ g̃2 ∼ O(1) and g̃3 ∼ ū3 ∼ (a/`0)2 � 1.

We thus see that the second part of RG flow starts with some irrelevant operators in the

action having dimensionless couplings much smaller than the other ones. This effect was absent

in the spin lattice model case, where all irrelevant operators were expected to be present at the

cutoff scale with O(1) coefficients in lattice units. As a consequence, rotation breaking in the

IR, already small in the spin model case, will be even further suppressed in the weakly coupled

lattice field theory case.

Now let us discuss matching of operators, which also happens in two stages. First we expand

lattice field theory operators into operators of the UVFP. E.g. we will have

φlat = A1φ+A2 : φ3 : + . . . (C.9)

Coefficients of this expansion have a power series expansion in λ. For example we expect A1 =

18The couplings of irrelevant operators that involve more than two powers of φ are also suppressed by the small

parameter λa because at λ = 0 the lattice path integral is exactly gaussian.
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1 + O(λa), while A2 = O(λa2). Then we have to expand UVFP operators in IRFP operators.

This matching is done at the scale `0. E.g. we have:

(`0)∆φφ = B1(`0)∆σσ +B2(`0)∆σ′σ′ + . . . (C.10)

Since this matching is done at the scale where the flow is strongly coupled, the coefficients Bi

cannot be easily predicted and are expected to be O(1). Combining the two matchings, we will

get expressions for lattice field theory operators in terms of IRFP operators.

D. Possible boundary conditions

One can imagine modifying our setup described in the main text, by changing the boundary

conditions at x3 = 0, L− 1. The purpose would be to find boundary conditions which lead to an

even larger f(t) and thus improve the signal-to-noise ratio. It makes sense to keep translation

invariance in the x2 direction, so that 〈I(x2, x3)〉 is x2 independent and can be averaged in this

direction.

As discussed in the main text, we have to break the x1 flip symmetry. One way to do this

is to choose different boundary conditions for different parts of the x3 = 0, L − 1 boundaries,

depending on x1.

In addition to the free and fixed boundary conditions (b.c.) described in the main text, there

are two other imaginable types of b.c. worth discussing.

D.1. Gluing b.c.

The gluing b.c. changes topology of our manifold, by gluing one part of the boundary to another.

For example, one can imagine gluing the gray parts of the x3 = 0, L − 1 boundaries in Fig. 1,

instead of imposing the fixed b.c. there. In practice, gluing is achieved by identifying points

pairwise or, equivalently in the large L limit, by creating links joining the points being glued. In

the just mentioned example, we would be identifying points

(x1, x2, x3 = L− 1) with (x1 + L/4, x2, x3 = 0) (0 6 x1 < L/2, 0 6 x2 < L)

Gluing does not have to preserve order, for example we could have instead chosen to glue the

gray parts of the boundaries while simultaneously flipping the x1 coordinate. Such a reversed

gluing would be a different boundary condition.

One can even glue parts of the same boundary, e.g. the lower and upper white parts of the

x3 = 0 boundary in Fig. 1 (again, in the direct or the reversed x1 order).
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D.2. Changing the strength of boundary interactions

We may change the strength of interaction among spins belonging to some part of the boundary

to βbdry 6= βc. Two particularly interesting values of βbdry are as follows.

• βbdry = βsp ≈ 0.33302. This fixes βbdry to the value corresponding to the “special” bound-

ary phase transition. Recall that the special transition separates the “ordinary” boundary

behavior for which the boundary remains disordered at the critical temperature, from the

“extraordinary” one when the boundary is ordered at the critical temperature. The ordinary

(extraordinary) behavior is realized at βbdry < βsp (βbdry > βsp). The βsp for the 3d Ising

model given above was determined in [29]. Since the boundary points have fewer neighbors

than the bulk points, βbdry = βc belongs to the “ordinary” phase, and this explains why

βsp > βc.

• βbdry = ∞. This enforces that all spins are equal along a part of the boundary, which is

the maximally efficient way to enforce the “extraordinary” boundary behavior. Notice that

unlike the fixed boundary condition, the spins can still fluctuate between ±1, but only all

at once. This difference may seem minor, but it has the following practical consequence.

The fixed b.c. can be used if the simulations are performed using the Metropolis algorithm,

as in the main text. On the other hand, if the simulations are performed using cluster

algorithms, it leads to lowering the acceptance rate since clusters which touch the boundary

cannot be flipped. The βbdry =∞ boundary condition does not have this difficulty.

There are many imaginable combinations of the four boundary condition types which break sym-

metries of the lattice in a way which makes f(t) nonzero. It is tedious to simulate one by one all

possible combinations for the Ising model and see which one gives the largest f(t). It would be

nice to have a way to guess a good boundary condition. A heuristic method is described in the

next appendix.

E. Heuristic optimization of boundary conditions

Consider the free massless scalar theory on the cubic lattice, described by the action:

H =
∑
〈xy〉

(φ(x)− φ(y))2 , φ(x) ∈ R .

We consider in this theory a lattice operator V lat
µ given by the same equation (2.1) with φ(x)

instead of s(x). We make a heuristic hypothesis that one can get an idea about the size of 〈I〉
in the critical Ising model by measuring the same quantity in the free scalar theory on the same

cubic lattice. One motivation for this hypothesis is that in d = 4 the two theories are actually

identical. We won’t attempt to justify this hypothesis any further. It’s amusing that empirically
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it seems to work. Once the b.c. is so heuristically guessed, the actual hard computation will be

an honest Monte Carlo simulation in the 3d Ising.

To use the heuristic, we have to establish a correspondence between boundary conditions for

the two models. This correspondence is as follows:

1. The free b.c. in the Ising corresponds to the Dirichlet b.c. for the free scalar. Indeed, the

free b.c. in Ising leads to the “ordinary” boundary behavior, where the order parameter is

effectively zero on the boundary [30].

2. The gluing b.c. in Ising clearly corresponds to the same gluing for the free scalar.

3. βbdry =∞ for the Ising corresponds to imposing that φ(x) remains constant on this part of

the boundary for the scalar.

4. βbdry = βsp for the Ising corresponds to the Neumann (i.e. free) boundary condition for the

scalar [30].

5. The fixed 3d Ising boundary condition can be modeled by adding a constant magnetic field

(linear in φ(x) term) on the boundary, pushing the free scalar in the needed direction.

We won’t give full details on how one actually performs the calculation for the free scalar.

This calculation is inexpensive since one is computing a gaussian path integral. One constructs

the lattice action, evaluates the Green’s function, and finally evaluates the observable. The

computation is done numerically and takes only a few seconds for a given boundary condition.

The most expensive step is the Green’s function evaluation which requires to invert an L3 × L3

matrix.

After playing with the free scalar, we concluded that the boundary condition in Fig. 1 is

particularly promising. Notice that since we have the same fixed b.c. on two parts of the boundary,

and since we measure a Z2-even observable, for the purpose of the heuristic computation we could

replace the fixed boundary condition with βbdry =∞.

Before we discovered the heuristic optimization trick, we tried other boundary conditions in

the 3d Ising, but they led to a smaller f(t).

We could have just postulated the boundary condition in Fig. 1, but we prefer to play in the

open. This is because we have not performed exhaustive optimization. Even better b.c. likely

exist, and our heuristic may be helpful to search for them.
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mana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Paw lowski, L. Pollet, T. Pr-
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