
A MODEL-DRIVEN GENERATOR TO AUTOMATE THE CREATION OF
HMIS FOR THE CERN GAS CONTROL SYSTEMS

T.Bato, G.Thomas, F.Varela CERN, Geneva, Switzerland

Abstract
A total of 33 gas control applications are currently in

production in the LHC Experiments and the CERN
accelerator complex. Each application contains around
fifty synoptic views and hundreds of plots. In this paper,
the entirely model-driven approach followed to generate all
these HMIs is presented. The procedure implemented
simplifies the creation of these graphical interfaces;
allowing the propagation of changes to all visualizations at
once in a coherent manner, thus reducing the long-term
maintenance effort. The generation tool enables the
creation of files of similar content based on templates,
specific logic (rules) and variables written in simple user-
defined XML files. This paper also presents the software
design and the major evolution challenges currently faced,
how the functions performed by the tool, as well as the
technologies used in its implementation, have evolved
while ensuring compatibility with the existing models.

INTRODUCTION
The gas systems are essential for the LHC Experiments

and accelerator complex, as they have to provide their
corresponding chambers with the appropriate proportion
and correct gas mixture, hence a software control layer is
mandatory for their monitoring and control. Since 2005 the
requests for new gas systems and upgrades of existing ones
are increasing.

Thanks to the model driven approach [1] and common
standards adopted in 2005, the development, support and
maintenance of the software control layers can be achieved
with minimal manpower and costs.

These gas control systems are independent application
instances, which consist of a supervision layer based on a
SCADA System (SIEMENS WinCC Open Architecture
(OA) [2]), a process control layer (based on Schneider and
SIEMENS PLCs) and standard middleware protocols.
Although both layers are built following the same
approach, only the supervision layer is addressed in this
paper. The supervision layer provides the gas expert central
team and Experiment end-users with a homogeneous look
& feel and standard control for the monitoring and
operation of their gas systems. Each of these supervision
instances are based on the UNICOS [3] and JCOP [4]
frameworks and are composed of several user interfaces,
means for navigation between views and trending plots,
which are all generated automatically.

The next sections describe the methodology behind the
adopted model driven approach, the limitations that the
current generation tool reached with time and the
challenges of the design of a new tool to achieve the same
functionalities and beyond.

HOW THE MODEL DRIVEN
APPROACH WORKS

All layers of the gas control systems were designed with
a modelling approach and use standard and homogenous
building blocks. The architecture of the LHC's gas systems
is modular. Every element that can be inserted into the gas
control system is previously modelled. Models, templates
and generation tools are created to build the systems.

A gas control system is hierarchically organized, as
shown in Figure 1. A plant is always made of gas systems
(i.e. sub-detector of an Experiment) which are in turn made
of gas modules like Mixers, Pumps, Purifiers, etc. .

Figure 1 ALICE gas systems hierarchy.

A gas module is composed, in turn, of graphical objects
or devices, which may or may not be present in the gas
system. All gas control applications are organized
following this model. The specificity (such as the required
gas modules, and the optional elements) of each gas control
system is then captured in so-called variable files, as shown
in Figures 2 and 3, and described in the next section.

The gas systems are described with system templates.
These templates specify the architecture of the plants, the
modules used, the building blocks used and their
configuration. The templates can refer to variables and use
their values to configure the resulting generated gas
system, as will be described in the next sections.

Specifying the Diversity, the Variables
This paragraph will introduce the concept of variables,

and how these variables can define the architecture of the
systems and the modules used.

All gas systems (sub-detectors) have a variable file,
which specifies all the modules a plant is composed of. The

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA163

Software Technology Evolution
THPHA163

1801

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

next figures show a part of the variables of the ATLAS
experiment in a graphical representation.

The ATLAS experiment has seven sub-detectors. In
Figure 2, they are displayed as seven columns in the table.
Each row represents the variables specified within the files.
The "has_" lines specify if a module is part of the system
or not. All installed modules within a sub-detector, have in
turn, another variable file. In this example, the gas systems
of five sub-detectors contain a mixer module. Each of these
five sub-detectors has a variable file for their mixer module
with the values of the variables specifying the composition
of the mixer itself, as shown in Figure 3.

The XML Format
The tools, like the HMI generator, used to generate and

maintain the plants use an XML file format to describe the
variables.

The root of the variable file is a ns2:variable tag. It can
contain multiple description tags with the name, type,
value and comment information. One description tag
describes one variable. An example of such a file is shown
below:

<ns2:variable>
 <description>
 <name>has_Mixer</name>
 <type>Integer</type>
 <value>1</value>
 <comment>standard module optional

(option valid? 1=yes, 0=no)</comment>
 </description>
</ns2:variable>

THE HMI GENERATOR TOOL
The HMI of each gas control system instance consists of

panels (views), trending pages and explorer trees for
navigation between views and trending pages.

Figure 4: Generated Panel, Window and Trend trees.

The HMI of the 30 LHC gas control instances are

generated by an application that was developed at CERN
in early 2005. This generator processes the variables,
system and panel templates to generate the output files. The
generated application is defined by the system template
files, which contain the generation rules. The generator
uses these rules and previously created XML panel
templates to generate the desired HMIs. In the
Functionality of the tool section these rules will be
described.

HMI
GENERATOR

PANEL
XML

Window
Tree

Trend
Tree

Template
XML

Variable
XML

Panel
Template

XML

reference

use

Figure 5: Inputs and outputs of the generator.

Today, almost 400 input files (208 variable files, 33
system templates and 146 WinCC OA template) are used
to develop and maintain the HMIs of the 30 LHC gas
control systems. These files include system templates with
generation rules, variables to define the different system
specificities and pre-created panel templates with control
scripts.

For instance, the HMI of a medium-size gas control
system of an experiment is composed of a total of ~500
files, whereas large systems, like ATLAS, are composed of
more than 700 files.

Figure 2 Variables of the ATLAS experiment.

Figure 3 Variable values for a Mixer module.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA163

THPHA163
1802

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

PROJECT GOALS
During more than ten years of usage, the HMI generator

became more and more complex. Although the extensions
done to the generators serve the current needs well, its
current implementation became an obstacle for the
integration of some very specific projects into the model
driven approach and could not be covered by the tool.
Moreover, some generator implementations were too
function and view specific with hardcoded elements and
variables.

For these reasons, it was necessary to re-engineer the
HMI generator tool. The focus was to eliminate these
barriers in order to have a more generic tool that could be
used for other WinCC OA control based applications with
a similar device hierarchy.

The project aimed at re-engineering the generator tool
while keeping compatibility with the generation templates
and avoiding application specific developments. Given the
large number of existing templates, compatibility was of
prior importance. Even small modifications to the
templates would require many working hours.

 TECHNICAL SPECIFICATION
The new tool is written in Java 1.8 whereas the previous

application was implemented in C#. The reason for the
change was to achieve platform independency and to
rationalize the number of programming languages used by
the Industrial Controls and Safety (ICS) group.

To make the generation process traceable, the new tool
uses SLF4J (Simple Logging Facade for Java) [5] with the
Log4J2 [6] logging framework with different logger
managers for the generators. In this way, the logging levels
are easily adjustable depending on the needs while the
solution is independent of the logging framework, such that
in the future, it would be easily replaceable. The output
logs can be written to a file or to the console, depending on
the log messages and the configuration of the framework.
The detailed log messages can help to debug errors during
the generation process and assist developers to
troubleshoot the templates or variable files.

Another angle of the re-engineering was the possibility
to test new releases of the tool easily. The tool is tested
using JUnit [7] tests. In case of code changes, the tests can
highlight the impact on the generation process. If the
output of the modified generator is different from the
expected one, the tests will fail.

FUNCTIONALITY OF THE TOOL
Besides the operational panels of the gas control system,

the HMI generator is also used to create the corresponding
trends and arrange them in a navigation tree, as well as the
so-called window tree that allows navigation among the
different operational views.

To ensure the independency of the tool on the different
control domains, all application specific parts of the code
were moved to the template files; both the panel and system
templates. This required to introduce new rules and to

modify the panel templates. The new generator
implementation processes the information received from
the template and injects it into the prepared user interface
templates. The tool itself has no knowledge about the
resulting plant and it makes no assumptions.

For example, Figure 6 shows a panel generation template
where the coordinates of the elements are calculated by the
rules and not hardcoded in the tool like in the precedent
version. Wherever this solution was not possible, the panel
templates were modified to add control scripts that
dynamically attach the graphical elements to the view.

WinCC OA user interfaces are defined in XML format.
This format is readable and modifiable using the
generation tool. The trend tree and window tree outputs are
exported to text files in the custom format of the UNICOS
WinCC OA Tree component. These tree files can be
imported into the gas control application without any
further transformation or modification.

For large gas systems where the number of plots to be
created is large, the import of the trend tree into the gas
control application can take a long time; in some cases,
more than an hour. Hence for upgrade purposes it was
decided to implement a new functionality to handle partial
trend tree generation. The partially generated trend tree can
then be imported into a given position on the application's
trend tree.

Concept of the Tool
This paragraph introduces the basic concept of the

generation process, i.e. how the processing of the input
elements happens to create the output files.

The generation process contains three major steps. The
first one is a preprocessing step where all input files are
interpreted. In the second stage, the HMI and files used by
other tools are created. In the final step, the trends, and
trend and window tree files are generated in the format of
the UNICOS framework.

The generation process requires two input files. One is a
system template file, which describes the generation rules,
the other is an instance file, which contains the main
system variables.

The template file can contain "generate" tags. In this
case, a new generation process is started. The template
structure can have infinite generation levels and a tree-like
structure. Each branch of the tree is processed in turn. At
each level of the branch the processing can also read one
new variable file. The newly read variables are available to
all sub-tree below but its scope is limited to this sub-tree,
i.e. does not cause variables with the same name used in
upper levels to be overwritten.

To create a complex system without unnecessary
duplication of tags, the template can contain "for" loops,
"if" expressions, and allows defining local "variable"-s.
The generator processes these kinds of instructions first.
The generation itself happens on the resulting template,
which only contains the element generation rules (user
interfaces, windows tree, trend tree, trends) and IO
operations (merge, delete file).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA163

Software Technology Evolution
THPHA163

1803

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Example of a Panel Template

Figure 6 shows an example of a panel generation
template. It shows a complex rule structure used to
generate the user interface illustrated in Figure 4. The
following subsections describe the generation rules with
the help of this example.

Rule Abilities

The strength of the generator tool lays in the flexibility
of the template rules. The new tool can process complex
logical expressions. Figure 6 shows how the generation
rules look like in the template. This example demonstrates
that two kinds of if expression can be used. A basic
implementation, which is based on a value check, and a
complex expression interpreter, like

<if expr="(!(!test3 == !Y) == Y) or

(test2 == N) and test1 == ICALEPCS">.

The tool can process complex boolean expressions. The
"variable operator value" type expressions is processed
according to the variable. For example, on strings only the
equality (==) and inequality (!=) operators can be used,
while on integers a wide range of operators (<, >, <=, >=,
==, !=) are possible.

 Operators, such as 'and', 'or' and '!' can be used in
expressions. During the evaluation of the expression, the
operator precedence is mathematically handled.

It is possible to create subexpressions with brackets,
which are evaluated and their result is substituted into the

parent expression. The nesting level of the expressions is
not limited, i.e. a subexpression can be inserted into any
other expression.

Variable Substitution
To generate the HMIs it is necessary to inject variables

into the generation templates. The HMI generator has two
sources of variables. The variable files described above and
variable tags within the templates. The variables are
accessed by their names. The variable names inserted into
curly brackets, shown in Figure 6, are replaced in the
template with the value of the variable. It is also possible
to use multiple embedded variable substitutions in the
templates.

Variable Expressions
It is possible to use expressions as value of a variable.

The next example shows the assignment of a new value to
a variable.

<variable name="xPos"> {xPos}+420 </variable>

In the example above, the value of the variable is not a
number, but an expression (the current value of the variable
itself increased by 420). The tool interprets all the basic
numeric operations and keeps the operator precedence in
variable expressions too.

Implementation
After the preprocessing step, the for and if expressions

are executed. The remaining elements are then processed.
The generator reads through the resulting XML DOM.
Every child of the generate tag is processed by a new
generator instance. The tool reads the tag, gets the
registered generator to handle the generation and hands the
element over to the generator.

The tool is designed to be easily extendible. All
generators implement the same EntityGenerator abstract
class and overload the generate function. This abstract
class implements every step to process a tag except the
generation process itself, which must be overwritten in the
specific implementation, i.e. in the derived class.

The multiple instances of the generator used to process a
file, are loaded into a map. This map stores the constructor
of the generators as a functional interface to the name of
the element to be generated.

PERFORMANCE IN APPLICATION
UPGRADE AND CREATION

The model driven approach is currently used to produce
the supervision layer of the four main Experiments of the
LHC. Over the years, many gas systems have been
upgraded (i.e. new gas modules have been added to
existing gas systems), new gas systems have been
integrated into Experiment plants and new versions of
WinCC OA have been introduced.

These change requests are easily managed with the
model driven solution presented here. A modification of a

Figure 6: Panel generation in rules.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA163

THPHA163
1804

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

template or a variable file is a onetime process, and the time
required to re-generate all HMIs of a large experiment is
half a minute.

CONCLUSION
The experience confirmed that the effort required for the

maintenance of this model driven design and generation
system is much lower than a manual approach. The
modification and update processes are easier and faster,
and less error prone than systems maintained by human
intervention. The possibility of human error is low, due to
the minimal amount of interaction required and to the
easily reproducible output results.

The maintenance and support of the new tool take less
effort, thanks to the commonly used technologies and high
level of Java knowledge of the ICS group.

 Beyond that, the new tool is Experiment independent, as
it does not contain experiment or any user interface specific
code. Its flexibility allows to integrate and create any
WinCC OA based application following a model based
approach.

In the context of the gas control system; other plants are
planned to be integrated into the model-generated
approach, and the generator tool is now ready to support
this process.

REFERENCES

[1] G. Thomas et al., “LHC GCS: A Model-driven
approach for automatic plc and scada code generation,”
ICALEPCS, 2005.

[2] “WinCC OA,” [Online]. Available:
http://www.etm.at/index_e.asp [Accessed 19 09 2017].

[3] “UNICOS FW,” CERN, [Online]. Available:
http://unicos.web.cern.ch [Accessed 19 09 2017].

[4] “The Joint Control Project,” [Online]. Available:
http://itco.web.cern.ch/itco/Projects-Services/JCOP/.
[Accessed 19 09 2017].

[5] “SLF4J,” [Online]. Available: https://www.slf4j.org
[Accessed 19 09 2017].

[6] “Log4j2,” Appache, [Online]. Available:
https://logging.apache.org/log4j/2.x/. [Accessed 19 09
2017].

[7] “Junit,” [Online]. Available: http://junit.org [Accessed
19 09 2017].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA163

Software Technology Evolution
THPHA163

1805

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

