
MONITORING OF CERN’S DATA INTERCHANGE PROTOCOL (DIP)
SYSTEM

B. Copy, E. Mandilara, I. Prieto Barreiro, F. Varela Rodriguez

CERN, Geneva, Switzerland

Abstract
CERN's Data Interchange Protocol (DIP) [1] is a

publish-subscribe middleware infrastructure developed at

CERN to allow lightweight communications between

distinct industrial control systems (such as detector

control systems or gas control systems).

DIP is a rudimentary data exchange protocol with a

very flat and short learning curve and a stable

specification. It also lacks support for access control,

smoothing or data archiving.

This paper presents a mechanism which has been

implemented to keep track of every single publisher or

subscriber node active in the DIP infrastructure, along

with the DIP name servers supporting it. Since DIP

supports more than 55,000 publications, regrouping

hundreds of industrial control processes, keeping track of

the system activity requires advanced visualization

mechanisms (e.g. connectivity maps, live historical

charts) and a scalable web-based interface to render this

information is essential.

DATA INTERCHANGE PROTOCOL (DIP)
DIP [1] is a communication system which allows

relatively small amounts of soft real-time data to be

exchanged between very loosely coupled heterogeneous

systems. These systems do not need very low latency. The

data is assumed to be mostly summarised data rather than

low-level parameters from the individual systems, i.e.

cooling plant status rather than the opening level of a

particular valve.

DIP publications contain :

· a key-value map supporting standard basic data types

(such as string, integer etc..) or their array-based

variants (string array, integer array etc..),

· a publication timestamp indicating when the

publication data was issued,

· a quality flag indicating over two logical bits the

confidence the data publisher places in the issued

publication update

· an optional quality string, giving further details about

the reason for a lack of confidence in the issued

publication update (e.g. sensor out of range).

DIP is a peer-based data exchange protocol : peers

(publisher and subscriber) locate each other via a naming

directory (hereby referred to as a DIP Name Server, or

DIPNS), then establish a direct TCP communication

based on the DIM protocol [2].

DIP publisher and subscriber processes locate each

other on the network via a so-called DIP Name Server

(DIPNS), which acts as a directory and prevents

publication naming collisions. Among many usages, DIP

is employed for essential, non-critical communication

such as the Large Hadron Collider (LHC) Handshake

sequence that allows the LHC machine and LHC

experiments (via the JCOP framework) to initiate data

acquisition sequences.

This paper presents the last two web-based DIP

services recently introduced at CERN: the DIP Contract

Monitoring System and the DIP Web Tools.

DIP CONTRACT MONITORING SYSTEM
DIP is an open and permissive data exchange protocol:

it does not provide any access control on data, allows data

to be pushed at any supported rate without support for

smoothing or filtering, and does not provide any history

of its participants' activity. Such a permissive approach to

data exchanges requires however a good understanding of

the current state of the entire system: DIP data providers

must be able to know which other computers and

processes are currently consuming their data; DIP data

consumers must be able to understand simply why the

data they are relying on might be missing from the

infrastructure, and for how long it has gone missing; all

DIP users must be able to see the level of availability of

the DIP name servers.

The DIP Contract Monitoring (DIPCM) is an

application that fulfils two main objectives:

· to provide a widely accessible interface to DIP

publications,

· and to help specify and enforce quality constraints on

DIP publications for monitoring purposes.

Quality constraints placed on DIP publications are

gathered into a DIP contract.

In order to implement these objectives, it was decided

to adopt the CERN Monitoring Data Entry System for

Technical Infrastructure (MoDESTI) [3] as the system to

gather the quality constraint specifications from end-

users, and run said specifications through an approval and

signature workflow, thereby ensuring that all involved

parties are in agreement over the contract.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA162

Software Technology Evolution
THPHA162

1797

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1 : DIP Contract registration workflow.

Another important part of the system is the CERN

Control and Monitoring Platform (C2MON) [4] engine.

C2MON specialises in acquiring data from industrial

control systems present at CERN, including DIP, and, in

addition to repropagating this data in a robust and scalable

manner, also maintains availability and data quality

statistics, which are at the heart of our DIP contract

monitor.

User Interface & Functionality

The DIP Contract Monitoring system presents itself to

end users as a web application. It offers two basic

functionalities:

· The registration of a new publication contract.

· The consultation and modification of all active

publication contracts.

By definition, a contract is a list of publications a

service provider pledge to publish. An example is LHC

experiments subscribing to publications provided by the

CERN accelerator infrastructure can be captured in a

contract. As illustrated in figure 1, in order to register a

new contract, a CERN user has to go through a three step

workflow (the OBSOLETE phase being only used by

administrators to retire the contract), where they are asked

to submit the essential information and metadata of their

contract, i.e. :

· name and description,

· starting and expiry date of the contract,

· the list of desired publications to subscribe to as well

as their complete data type specification.

Upon successful completion of the wizard, when all

fields and user selections are valid, the contract to be

registered is pushed to MoDESTI. From this point on,

MoDESTI's workflow engine (based on the open—source

business process management engine Activiti [5]) takes

care of the authorization and propagation of the contract

registration.

To view all contracts which a given user or groups of

users has created and update one, a second user interface

is provided, which displays all contracts in a table,

containing meta-data such as the name of the creator, the

date of its creation, its publishers and subscribers and its

status. Any modification to the contract will invoke the

DIP Contract Monitoring System workflow, notifying

contract stakeholders that their approval is once again

requested.

Backend Architecture

DIP Contract Monitoring System is a Spring Boot [6]

application. It is based on the concept of a simple

workflow that backs the application's front-end user

interface through the same aforementioned three basic

stages: registration, approval, and insertion into a

C2MON configuration database.

The first stage is the preparation of a contract, which is

done as evoked earlier by visiting the DIP Contract

Monitoring System web application and filling all the

required fields of the wizard. At the end of this procedure,

the second stage, approval, is triggered.

At the beginning of this approval step, a notification is

dispatched to the stakeholders that are responsible for the

individual publications included to a contract. These

stakeholders are invited to review the contract details in

MoDESTI and approve or reject the requested contract. If

the contract is rejected, its creator needs to edit the

information they provided as per the approver's

comments. If the request is approved, it progresses in the

workflow to the final stage, which is the configuration of

the contract into C2MON [4], which will allow it to be

actively monitored.

Implementation in MoDESTI and C2MON

To address different use cases, MoDESTI supports

modular plug-ins. Each MoDESTI plug-in contains a

schema describing the data domain and its constraints,

and also provides a Business Process Model and Notation

(BPMN) workflow specification.

In the case of DIPCM, a dedicated plug-in was created

in order to cover the application's workflow as described

earlier.

C2MON has a persistent storage mechanism

implemented with Elasticsearch, that is used to store

alarms or other data that are wanted to be monitored,

under the interface of a data tag. The data tag is a

C2MON Tag coming from an external data source, while

a C2MON Tag is an object destined to be updated,

logged, published to clients and used in data views. It

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA162

THPHA162
1798

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

corresponds to a single external data point, represented by

a Java primitive type (String, Float, Integer, etc.). Every

data tag has to provide a so-called "hardware address",

which contains the information needed for subscribing to

this data point. After this subscription, and with the

necessary Data Acquisition (DAQ) module in function,

updates about data changes can be coming in and stored

into Elasticsearch.

DIP WEB TOOLS
Since DIP enables the real-time communication

between heterogeneous systems, it is being widely used

and the demand for more data exchange is continuously

growing. At the same time, the state and flow of

information is often ignored while they are not negligible.

Information exchanges therefore need to be monitored so

that, for instance, invalid publications can be detected,

invalid name formats can be reported upon and in general,

to keep track of what information is being published.

For this reason, four web-based tools were

implemented:

· DIP Web Browser

· DIP Publishers Monitor

· Connectivity Maps

· DIPNS Monitor

DIP Web Browser

The DIP Web Browser simplifies the access to DIP data

from anywhere (inside the CERN network); through a

high-performance rendering tree featuring all the existing

DIP publications, users can select the publications they

are interested in, and display the online data as well as

their quality status and last update timestamp.

DIP Publishers Monitor

The DIP Publishers Monitor is a tool that aggregates

information about publishers in DIP (publisher name,

process id, current state, host, total number of services &

DIM version), and also visualizes all the connections of

each publisher as well as its availability history.

Connectivity Maps

The Connectivity Maps provide a visualization of all

ongoing connections in a subset of DIP publishers and

subscribers. They also provide detailed information about

each of these publishers (publisher name, process id,

current state, host, total number of services & DIM

version), as well as the publisher’s availability history.

DIPNS Monitor

The DIP Central Name Server (DIPNS) Monitor

provides visualizations about the CPU and memory usage,

the number of publications, clients and servers of DIP

Central Name Server.

Common Implementation Details

The front ends of all these tools were created making

use of Polymer Web Components [7], which allows to

create reusable widgets or components, and very simply

reuse them in multiple web pages. Components for the

data exchange (for the LHC broadcast [8] and AJAX

requests), as well as the connectivity maps, charts etc.

were encapsulated throughout all the tools, while they

interoperate via standard JavaScript DOM events.

Powerful JavaScript libraries were also used for the

implementation of the components: Data-Driven

Documents (D3.js) [9], Highcharts, jQuery, Packery, and

the Atmosphere framework [10].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA162

Software Technology Evolution
THPHA162

1799

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2 : Connectivity map and dynamic data table web componentexamples.

Figure 2 presents examples of a D3 connectivity map

visualization, as well as a dynamic data table.

WebSockets and WebRTC enable the distribution of

industrial controls data (such as coming from devices or

SCADA software) in a scalable and event-based manner.

REFERENCES

[1] W. Salter et al., “DIP Description” LDIWG

(2004), https://cern.ch/dip/.

[2] C. Gaspar et al., “DIM, a portable, light weight

package for information publishing, data transfer and

inter-process communication”, Computer Physics

Communications 140 1+2 102-9, 2001.

[3] R. Martini et al., “Tools and Procedures for High

Quality Technical Infrastructure Monitoring reference

Data at CERN”, WEPGF141, Oct 2015 ,

ICALECPS’15, Melbourne, Australia.

[4] M. Braeger et al., “High availability monitoring and

big data : using Java clustering and caching

technologies to meet complex monitoring scenarios”,

MOPPC140, Oct 2013, ICALEPCS’13, San

Francisco, USA.

[5] T. Rademakers, “Introducing the activiti framework”,

in Activiti in action, Shelter Island, NY, USA,

Manning publications, 2012.

[6] C. Walls, “Deploying Spring Boot applications”, in

Spring Boot in action, Shelter Island, NY, USA,

Manning publications, 2015.

[7] D. Glazkov and H. Ito, “Introduction to

Webcomponents”, 24 July 2014,

http://www.w3.org/TR/components-intro/

[8] B. Copy et al., “Scalable web broadcasrting for

historical industrial controls data”, WEPGF042, Oct

2015, ICALECPS’15, Melbourne, Australia.

[9] S. Murray, “Introducing D3”, in Interactive Data

Visualizations for the web, Sebastopol, CA, O'Reilly

Media, 2017.

[10] I. Hickson, “The WebSocket API”, W3C

Consortium, 20 September 2012,

http://www.w3.org/TR/2012/CR-websockets-

20120920.

A web component that encapsulates the LHC broadcast

mechanism [8] was implemented with objective to

connect to a broadcasting server and by subscribing to the

interesting publications to receive real-time updates and

direct them to the frontend.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA162

THPHA162
1800

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

