002304387 001__ 2304387
002304387 003__ SzGeCERN
002304387 005__ 20220307153714.0
002304387 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-LINAC2016-THOP09
002304387 0248_ $$aoai:inspirehep.net:1633261$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002304387 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1633261$$d2018-02-12T13:25:55Z$$h2018-02-13T05:00:06Z$$mmarcxml
002304387 035__ $$9Inspire$$a1633261
002304387 041__ $$aeng
002304387 088__ $$aCERN-ACC-2017-349
002304387 100__ $$aKoubek, [email protected]$$uCERN
002304387 245__ $$9JACoW$$aTuning of the CERN 750 MHz RFQ for medical applications
002304387 260__ $$c2017
002304387 300__ $$a4 p
002304387 520__ $$9JACoW$$aCERN has built a compact 750 MHz RFQ as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The RFQ length corresponds to 5λ which is considered to be close to the limit for simple field adjustment using tuners. Nevertheless the high frequency results in a sensitive structure and requires careful tuning by means of the alignment of the pumping ports and fixed tuners. This paper gives an overview of the tuning procedure and bead pull measurements of the RFQ.
002304387 540__ $$9JACoW$$aCC-BY-3.0$$uhttp://creativecommons.org/licenses/by/3.0/
002304387 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002304387 6531_ $$2JACoW$$arfq
002304387 6531_ $$2JACoW$$alinac
002304387 6531_ $$2JACoW$$aquadrupole
002304387 6531_ $$2JACoW$$aoperation
002304387 6531_ $$2JACoW$$atarget
002304387 690C_ $$aCERN
002304387 700__ $$aCuvet, [email protected]$$uCERN
002304387 700__ $$aGrudiev, [email protected]$$uCERN
002304387 700__ $$aRossi, [email protected]$$uCERN
002304387 700__ $$aTimmins, [email protected]$$uCERN
002304387 773__ $$cTHOP09$$qLINAC2016$$wC16-09-25.3$$y2017
002304387 8564_ $$81384800$$s761539$$uhttp://cds.cern.ch/record/2304387/files/thop09.pdf
002304387 960__ $$a13
002304387 962__ $$b2304151$$kTHOP09$$neastlansing20160925
002304387 980__ $$aARTICLE
002304387 980__ $$aConferencePaper
002304387 999C6 $$a0-0-0-1-0-0-1$$t2017-11-09 12:44:53$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;1
002304387 999C5 $$mLIGHT Product-overview$$o1$$uhttp://www.avoplc.com/Our-LIGHT-system/
002304387 999C5 $$hM. Vretenar, A. Dallocchio, V.A. Dimov, M. Garlasché, A. Grudiev, A.M. Lombardi, S. Mathot, E. Montesinos, and M. Timmins$$min Proc. LINAC’14, Geneva, Switzerland, paper THPP040$$o2$$tA Compact High-Frequency RFQ for Medical Applications$$uhttp://jacow.org$$y2014
002304387 999C5 $$hA.M. Lombardi, V.A. Dimov, M. Garlasché, A. Grudiev, S. Mathot, E. Montesinos, S. Myers, M. Timmins, and M. Vretenar$$mIPAC’15, Richmond, USA, paper WEYB2$$o3$$tBeam Dynamics in a High Frequency RFQ$$uhttp://jacow.org$$y2015
002304387 999C5 $$hC. Rossi, P. Bourquin, J.B. Lallement, A.M. Lombardi, S. Mathot, D. Pugnat, M. Timmins, G. Vandoni, M. Vretenar, M. Desmons, A. France, Y. Le Noa, G. Novo, and O. Piquet$$min Proc. LINAC’10, Tsukuba, Japan, paper TUP042$$o4$$tProgress in the Fabrication of the RFQ Accelerator for the CERN LINAC4$$uhttp://jacow.org$$y2010
002304387 999C5 $$0782208$$9CURATOR$$hThomas P. Wangler$$i978-3-95450-169-4$$mVerlag GmbH & Co. KGaA, Weinheim .$$o5$$pWiley-VCH$$tRF linear accelerators$$y2008