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Introduction to the ATLAS
Electron and Photon Trigger



The ATLAS detector
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Inner detector

Pixel detector

SemiConductor tracker

Transition Radiation Tracker (TRT)
provides electron / hadron separation
by detection of transition radiation
photons

Calorimeter

Finely segmented calorimeter system

Liquid Argon EM Calorimeter

Liquid Argon Hadronic Calorimeter

Tile Hadronic Calorimeter

Trigger system

Reduces event rate to 1 kHz (around 20% allocated to e/γ) from beam crossing
rate of 40 MHz

Based on Region-of-Interest (ROI) concept

Software based High-Level-Trigger is seeded by hardware based Level 1 (L1) trigger
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e/γ triggers are essential at ATLAS

SM measurements / backgrounds, diphoton, W → eν, Z → ee, ...

σ =
Nobs − Nbackground

L · ε·BR

New physics, SUSY, Z ′ → ee, GKK → γγ, ...

Day in 2017
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LHC Stable Beams
-1 s-2 cm33 10×Peak Lumi: 16.8 

initial calibration

Higher than ever instantaneous
luminosity

Run 1 peak lumi:
7.73× 1033cm2s−1

Run 2 peak lumi:
16.8× 1033cm2s−1 > 2× larger!

Want to keep as much physics as
possible

25 ns bunch spacing → 40 MHz
bunch crossing rate

Only ∼ 1 kHz can be recorded

Need to keep the rates under
control
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Fig. 1: (left) The L1 calorimeter cluster for electron and photon triggers. (right) The HLT
trigger algorithm sequence for electron triggers.

ergy clusters with no requirement on a matching track and electrons as energy clusters matched
to reconstructed charged particle tracks with a transverse momentum above 1 GeV and having
a minimum number of hits in the inner Silicon tracking devices.

Several changes were introduced at the HLT. The algorithm sequence is shown on the right
of Figure 1 for electron triggers. As calorimeter reconstruction is less resource intensive it
precedes the tracking step. Photon triggers operate in a similar fashion but are simpler as only
calorimeter reconstruction and selection is applied. The previously two-level HLT reconstruction
is merged to run on a single computer farm and have now a common data preparation for the
fast and precision online reconstruction steps. The initial fast reconstruction helps to reduce
the event rate early. In Run 2, the fast calorimeter reconstruction and selection can be skipped,
but fast track reconstruction is always run for electron triggers and seeds precision tracking.
The final online precision reconstruction is improved and uses offline-like algorithms as much
as possible. In particular a new electron and photon energy calibration and a new electron
identification are introduced online, both based on multivariate analysis techniques.

3 Trigger performance

3.1 Energy resolution

Cluster energy calibration corrects the measured energy for losses upstream of the calorimeter
as well as for lateral and longitudinal energy leakage outside the calorimeter cluster. The online
reconstruction uses a simplified version of the offline method relying on boosted decision trees
to determine the correction factors. Separate calibration is used for electrons and photons,
however photons are not separated to converted and unconverted categories at the HLT which

Level 1 (L1) Trigger

e/γ L1 trigger decisions start from
calorimeter input (L1Calo)

Based on trigger towers in η − φ plane
with granularity 0.1× 0.1

η-dependent ET thesholds take into
account energy loss in detector
material

Sliding-window algorithm (2×2 trigger
towers) identifies local energy maxima
for reconstruction of EM clusters

Jet rejection using energy sum in
hadronic isolation ring and core

Run 2 Upgrades

New Multi Chip Module (nMCM) in Pre-Processor → improved energy resolution

Firware upgrade of Cluster Processor Module (CPM): ET-dependent EM / hadronic
core isolation cuts with a precision of ∆ET ∼ 0.5 GeV.

New Extended Common Merger Module (CMX) → doubles number of ET

thresholds
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Fig. 1: (left) The L1 calorimeter cluster for electron and photon triggers. (right) The HLT
trigger algorithm sequence for electron triggers.

ergy clusters with no requirement on a matching track and electrons as energy clusters matched
to reconstructed charged particle tracks with a transverse momentum above 1 GeV and having
a minimum number of hits in the inner Silicon tracking devices.

Several changes were introduced at the HLT. The algorithm sequence is shown on the right
of Figure 1 for electron triggers. As calorimeter reconstruction is less resource intensive it
precedes the tracking step. Photon triggers operate in a similar fashion but are simpler as only
calorimeter reconstruction and selection is applied. The previously two-level HLT reconstruction
is merged to run on a single computer farm and have now a common data preparation for the
fast and precision online reconstruction steps. The initial fast reconstruction helps to reduce
the event rate early. In Run 2, the fast calorimeter reconstruction and selection can be skipped,
but fast track reconstruction is always run for electron triggers and seeds precision tracking.
The final online precision reconstruction is improved and uses offline-like algorithms as much
as possible. In particular a new electron and photon energy calibration and a new electron
identification are introduced online, both based on multivariate analysis techniques.

3 Trigger performance

3.1 Energy resolution

Cluster energy calibration corrects the measured energy for losses upstream of the calorimeter
as well as for lateral and longitudinal energy leakage outside the calorimeter cluster. The online
reconstruction uses a simplified version of the offline method relying on boosted decision trees
to determine the correction factors. Separate calibration is used for electrons and photons,
however photons are not separated to converted and unconverted categories at the HLT which

High Level Trigger (HLT)

Full detector granularity used at HLT in ROIs

Photons identified with EM cluster with no
matching track requirement

Electrons identified with EM clusters with
matching charged track and minimum number of
hits in inner Silicon tracking devices

Run 2 Upgrades

Two-level HLT in Run 1 composed of Level 2 (L2)
and Event Filter (EF)

Now merged to run on a single computer farm

Common data preparation for fast and precision
online reconstruction

Final online precision improved

New electron and photon energy calibrations

New electron identification based on Likelihood of
relevant variables

Based on MVA techniques
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Calibration and
Identification



Energy Resolution
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 > 24 GeV
T

Electron E

Cluster energy calibration

Corrects for energy loss / leakage upstream and
outside of calorimeter

Simplified version of offline reconstruction

BDT used to determine correction factors

Separate calibrations for electrons and photons

No separation between unconverted / converted
photons → major source of difference wrt. offline
reconstruction

Energy resolution

Excellent resolution in most regions

Suffers in the crack region (1.37 < |η| < 1.52)
between the barrel and endcap EM calorimeter (as
expected)



e/γ Discriminating Variables

Samuel Jones (University of Sussex) The ATLAS Electron and Photon Trigger ACAT, Seattle, August 21, 2017 9 / 22

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
lyGraphical illustration

• For explicit definitions see Appendix A of Phys. Rev. D83, 052005 (2011). The strip layer variables are 
computed from an array of cells that spans one or two rows in ϕ depending on the position in ϕ of the cluster 
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Common set of discriminating variables used for photon and electron ID

Likelihood-based MVA method for electron ID

Cut-based selection for photon ID



Electron Identification
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Electron ID

Likelihood (LH) based ID

MVA technique to construct signal /
background PDFs from electron
discriminating variables
Combined into discriminant dL

dL =
LS

LS − LB

, LS(B)(~x) =
n∏

i=1

PS(B),i (xi )

20% lower rate for same efficiency as
cut-based selection used in Run 1
LH default for electrons at HLT in Run 2

Three ID operating points (OPs) defined for
electron ID

Referred to as loose, medium, tight
Each uses the same variables to define the
LH discriminant
Different selection on the LH discriminant
for each OP
Sample selected by each OP are subsets of
one another



e/γ Trigger Rates
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ν e→W 
Multijet
Uncertainty

Trigger rates depend heavily on
ET threshold

Single electron dominated by
W → eν

Sample purity is affected by
trigger threshold

In Run 2 HLT threshold kept at
Run 1 level (24 GeV for single
electron trigger) for as long as
possible

Tightening the ID level at HLT
can significantly reduce the rate
eg. lhmedium → lhtight gives
around 45% rate reduction
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Rates are dependent on instantaneous
luminosity / pileup conditions

Linear correlation (as expected)

As these increase, it becomes
necessary to tighten trigger
selections to manage rates

L1 progression:

Non-isolated → isolated
ET threshold 18→ 22→ 24
GeV

HLT progression:

Isolated, likelihood (LH)
based electrons default in
Run 2
ET threshold 24→ 26→ 28
medium → tight

Without improvement, tighter
selections can harm the physics
goals of the experiment



L1 Isolation Reoptimisation
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Table 1: Level-1 trigger e�ciency loss and rate reduction applying the new medium isolation on the electromagnetic
(EM) clusters with ET > 22 GeV and ET > 24 GeV with respect to the default isolation used in 2016 data taking.
Medium (default) isolation is applied for EM clusters with ET < 50 GeV, where the transverse energy in an
annulus of calorimeter towers around the EM candidate relative to the EM cluster ET is required to be less than
max{2 GeV,ET/8�1.8 GeV} (max{1 GeV,ET/8�2.0 GeV}). The e�ciency is measured with respect to the o✏ine
reconstructed electron candidates satisfying a likelihood-based tight identification and with ET at least 5 GeV above
the Level-1 trigger threshold. The e�ciencies are measured with a tag-and-probe method using Z ! ee decays in
data using trigger reprocessings. The rate predictions are obtained with a trigger reprocessing of enhanced bias data
extrapolated to a luminosity of 2 ⇥ 1034 cm�2s�1. New Level-1 EM medium isolation cuts have been implemented
to reduce the rate of the lowest unprescaled Level-1 triggers while keeping the e�ciency loss as low as possible, to
cope with the increasing luminosity in 2017, and are compared with the default isolation cuts used for 2016 data
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Upgrade to fast calorimeter
preselection step

Alternative approach to
cut-based methods

Neural network classifier
performs particle ID targeting
high efficiency of the
complete trigger chain with
significant reduction on the
number of calls to tracking
(usually much heavier in
terms of computing)

Explores conic geometry,
building rings in layers of the
calorimeter

Sum of energy in a ring over
sum of energy in all rings
provides a vector of
discriminating variables
(generalise shower shapes)
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e/γ Trigger Performance in
2016 and 2017
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Electron trigger performance for full 2016
dataset

Efficiency measured using Tag and Probe
method with Z → ee

At high ET track isolation losses become
important

Lowest unprescaled electron trigger ORed
with non-isolated high-threshold triggers

Excellent data / MC agreement
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Electron trigger performance for full 2016
dataset

lhvloose trigger used for di-electron
triggers

Efficiency measured for single leg
e17 lhvloose nod0

Excellent data / MC agreement
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A first look at 2017 data

Good trigger performance, excellent data / MC agreement

Robust against pileup

Tighter identification more pileup dependent (as expected)
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Good trigger performance, excellent data / MC agreement

Robust against pileup
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Improved L1

Run 2 upgrades improve resolution and granularity

New working point gives significant rate reduction

Improved HLT

Run 2 likelihood IDs improve cut-based ID used in Run 1

Further improvements from ringer algorithm at L2 (fast calorimeter step)

Electron and photon triggers performing well in Run 2

Consistent performance for 2015-2017 data taking
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Backup
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Methodology

The Tag and Probe Method:

Use Z → ee characteristic decays

Apply strict selection criteria to one of the decay
electrons, the tag

The second decay electron, the probe, is identified
with the tag by mee within Z mass window

probe electrons are used for efficiency
measurements

trigger efficiency = probes passing trigger
total number of probes

Implemented using common (trigger+offline)
TagAndProbeFrame framework (trunk version)

Scale Factors:

Deviations between MC and Data arise from eg.
mis-modelling of tracking properties, shower
shapes in the calorimeters

Correct for this in physics analysis by applying
scale factors (SF), calculated from the ratio
εData/εMC

Z

e

e
Tag

Probe

~M
Z 
,OS 

Samuel Jones on behalf of the trigger e/gamma group (University of Sussex)Electron Trigger Performance November 7, 2016 3 / 18

Need a clean, unbiased sample of
electrons for efficiency measurement

Use Z → ee / J/ψ → ee /
W → eν characteristic decays

Apply strict selection criteria to
one of the decay electrons, the tag

For W T&P, trigger in Emiss
T

The second decay electron, the
probe is identified with the tag by
mee within the mass window

Probe electrons are used for the
efficiency measurement
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Type Description Name

Hadronic leakage Ratio of ET in the first layer of the hadronic calorimeter to ET of the EM cluster Rhad1

(used over the range |η| < 0.8 or |η| > 1.37)

Ratio of ET in the hadronic calorimeter to ET of the EM cluster Rhad

(used over the range 0.8 < |η| < 1.37)

Back layer of Ratio of the energy in the back layer to the total energy in the EM accordion f3

EM calorimeter calorimeter. This variable is only used below 100 GeV because it is known to

be inefficient at high energies.

Middle layer of Lateral shower width,
√

(ΣEiη2i )/(ΣEi)− ((ΣEiηi)/(ΣEi))2, where Ei is the wη2

EM calorimeter energy and ηi is the pseudorapidity of cell i and the sum is calculated within

a window of 3× 5 cells

Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the Rφ

electron cluster position

Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the Rη

electron cluster position

Strip layer of Shower width,
√

(ΣEi(i− imax)2)/(ΣEi), where i runs over all strips in a window wstot

EM calorimeter of ∆η ×∆φ ≈ 0.0625× 0.2, corresponding typically to 20 strips in η, and

imax is the index of the highest-energy strip

Ratio of the energy difference between the largest and second largest energy Eratio

deposits in the cluster over the sum of these energies

Ratio of the energy in the strip layer to the total energy in the EM accordion f1

calorimeter

Track conditions Number of hits in the innermost pixel layer; discriminates against nBlayer

photon conversions

Number of hits in the pixel detector nPixel

Number of total hits in the pixel and SCT detectors nSi

Transverse impact parameter with respect to the beam-line d0

Significance of transverse impact parameter defined as the ratio of d0 d0/σd0
and its uncertainty

Momentum lost by the track between the perigee and the last ∆p/p

measurement point divided by the original momentum

TRT Likelihood probability based on transition radiation in the TRT eProbabilityHT

Track-cluster ∆η between the cluster position in the strip layer and the extrapolated track ∆η1

matching ∆φ between the cluster position in the middle layer and the track extrapolated ∆φ2

from the perigee

Defined as ∆φ2, but the track momentum is rescaled to the cluster energy ∆φres

before extrapolating the track from the perigee to the middle layer of the calorimeter

Ratio of the cluster energy to the track momentum E/p
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• from ATL-PHYS-PUB-2011-007. See also explicit formulae in Appendix A of Phys. Rev. D83, 052005 
(2011). The strip layer variables are computed from an array of cells that spans one or two rows in ϕ 
depending on the position in ϕ of the cluster barycenter.

Category Description Name Loose Tight
Acceptance |⌘| < 2.37, 1.37 < |⌘| < 1.52 excluded – X
Hadronic leakage Ratio of ET in the first sampling of the hadronic

calorimeter to ET of the EM cluster (used over the
range |⌘| < 0.8 and |⌘| > 1.37)

Rhad1 X X

Ratio of ET in all the hadronic calorimeter to ET of
the EM cluster (used over the range 0.8 < |⌘| < 1.37)

Rhad X X

EM Middle layer Ratio in ⌘ of cell energies in 3 ⇥ 7 versus 7 ⇥ 7 cells R⌘ X X
Lateral width of the shower w2 X X
Ratio in � of cell energies in 3⇥3 and 3⇥7 cells R� X

EM Strip layer Shower width for three strips around maximum strip ws 3 X
Total lateral shower width ws tot X
Fraction of energy outside core of three central strips
but within seven strips

Fside X

Di↵erence between the energy associated with the
second maximum in the strip layer, and the energy re-
constructed in the strip with the minimal value found
between the first and second maxima

�E X

Ratio of the energy di↵erence associated with the
largest and second largest energy deposits over the
sum of these energies

Eratio X

Table 5: Variables used for loose and tight photon identification cuts.

10
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 selectionTight

Pileup Dependence

Shower shape variables are dependent on
level of pileup in the event

Increased instantaneous luminosity
+ higher

√
s → greatest pileup for

2017 data taking
Cut on discriminant is loosened as a
function of the number of primary
vertices to maintain efficiency at
high pileup

Isolation

Isolation requirement provides further
discrimination against electrons
originating from converted photons
and hadronic activity

Track isolation used at HLT

Definied as pT sum of non electron
associated tracks in a cone surrounding
the electron candidate


