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Abstract

For gauge theory, the matrix element for any physical process is independent of the gauge used. However, 
since this is a formal statement, it does not guarantee this gauge independence in every case. An example 
is given here where, for a physical process in the standard model, the matrix elements calculated with 
two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is 
accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have 
a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two 
operations are carried out in one order, while in the other gauge these same two operations are carried out 
in the opposite order. Because of this result, a series of question are raised such that the answers to these 
question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and 
the standard model in particular.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since the standard model of Glashow, Weinberg, and Salam [1] is a Yang–Mills non-Abelian 
gauge theory [2], the matrix element in the standard model for any physical process is expected 
to be independent of the gauge chosen.
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It is the purpose of the present paper to investigate the validity of this gauge independence, by 
studying a specific example through explicit calculation.

For the standard model, there are two gauges that are commonly used: the Rξ gauge and the 
unitary gauge [3]. Formally, these two gauge are closely related: the unitary gauge is the limit, as 
the parameter ξ goes to infinity, of the Rξ gauge. Therefore, for the present investigation, these 
two gauges are chosen for comparison.

Which matrix element should be selected to compare the results for these two gauges? First, 
the physical process should be of relatively low order; otherwise it may be too difficult to compare 
these two gauges. Since, for tree diagrams, there is no difference between these two gauges, or 
any other gauge, the matrix element to be studied should be from a one-loop Feynman diagram 
or diagrams.

Secondly, the diagrams under consideration must contain, as internal lines, one or more W
or Z propagators. Such propagators take different forms for these two gauges. Specifically, the 
W propagator is

1

p2 − m2
[−gμν + pμpν

m2
] (1)

in the unitary gauge, and

1

p2 − m2
[−gμν + (1 − ξ)pμpν

p2 − ξm2
] (2)

in the Rξ gauge. In both (1) and (2), m is the mass of the W boson, and an overall factor of i has 
been omitted.

Thirdly, it is desirable to choose a physical process that is important experimentally and theo-
retically. Four years ago, the ATLAS Collaboration [4] and the CMS Collaboration [5] discovered 
the Higgs particle [6]. In this discovery, the most important decay mode was

H → γ γ. (3)

Since the photon is massless, there is no direct coupling of the Higgs particle to the photon. This 
means that the decay (3) proceeds predominantly through one-loop diagrams. Since the coupling 
of the Higgs particle H to a fundamental particle is largest for the heaviest particles, the dominant 
contributions to the decay (3) are through a top loop and a W loop. The contribution from the 
top loop was calculated by Rizzo [7] thirty six years ago; there is no gauge dependence in this 
calculation. Since, as seen from (1) and (2), the W propagator depends on the choice of the 
gauge, the contribution from the W loop can potentially depend on the gauge used.

With these consideration, the physical process to be studied in this paper is the Higgs decay 
(3) through one W loop. This matrix element is to be calculated both in the Rξ gauge and the 
unitary gauge, and the results are to be compared.

There is actually another reason to study this particular problem: there has been some con-
troversy as to how this matrix element should be calculated in the standard model. The consid-
erations in this paper is not going to solve this controversy, but may shed some light on it. In 
particular, a number of important question are to be raised later in Section 8, and hopefully the 
answer to some of these questions will teach us how this calculation, and a number of other 
calculations in the standard model, should be carried out.
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2. Method of comparison

The comparison of the matrix element for the Rξ gauge and that for the unitary gauge is 
to be carried out in the most straightforward manner, namely, by subtracting these two matrix 
elements.

The first step is to rewrite the W propagator (1) in the unitary gauge as follows

1

p2 − m2
[−gμν + (1 − ξ)pμpν

p2 − ξm2
] + 1

p2 − ξm2

pμpν

m2
, (4)

where the first term is the W propagator (2) in the Rξ gauge. The following nomenclature is to 
be used: we shall call

(a) the first term of (4) the W propagator in the unitary gauge, and
(b) the second term of (4) the φ propagator in the unitary gauge.

Therefore, in this nomenclature for the unitary gauge, the W propagator is no longer given by (1); 
instead it is the same as W propagator in the Rξ gauge. In contrast, the ϕ propagator is different 
in the Rξ gauge and the unitary gauge.

With the original W propagator (1), there are only three Feynman diagrams, in the unitary 
gauge, for the decay process (3) through one W loop. That the number of diagram is so small 
is the major advantage of the unitary gauge. When this W propagator (1) is split into two terms 
via (4), then the number of diagrams in the unitary gauge increase to fourteen; this is to be 
compared with the twenty six diagrams in the Rξ gauge.

In calculating the difference between the Rξ gauge and the unitary gauge, it is essential to deal 
with the integrands of the Feynman diagrams instead of their integrals, because the integrals are 
all divergent. Let the integrands from the Rξ gauge be denoted by I , while those from the unitary 
gauge by J . Thus there are twenty-six non-zero I ’s and fourteen non-zero J ’s. These forty I ’s
and J ’s are to be written down explicitly in the next section.

The notation is as follows: the four-momenta of the decay products two photons are called k1
and k2, and their polarization indices μ and ν respectively. Therefore

k2
1 = k2

2 = 0, (k1 + k2)
2 = m2

H

and

k1μ = k2ν = 0. (5)

where mH is the mass of the Higgs particle H .
Let k be the loop four-momentum to be integrated over. It is convenient to use the following 

notation:

p1 = k + k1 + k2

2

p2 = k + −k1 + k2

2

p′
2 = k + k1 − k2

2
and

p3 = k − k1 + k2

2
. (6)
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Fig. 1. Feynman diagrams whose integrands are (a) I1 and J1; (b) Ī1 and J̄1.

3. Feynman diagrams for the decay H → γ γ

In this section, the twenty eight Feynman diagrams for H → γ γ due to one W loop are given 
explicitly. From these twenty eight diagrams, there are twenty six non-zero integrands in the Rξ

gauge and fourteen in the unitary gauge, as discussed in the preceding section.
The twenty eight diagrams are paired by reversing the charge of the W loop. There are thirteen 

such pairs together with two that are invariant under this reversal of the charge, leading to fifteen 
figures to be numbered from Fig. 1 to Fig. 15.

The first pair of Feynman diagram are shown in Fig. 1. The integrands for these two diagrams 
are

I1 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

]

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ]
[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ]

(7)

J1 = I1, (8)

Ī1 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

] 1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

]

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ]
[(p1 + k2)σ gγ ν + (p′

2 − k2)γ gνσ + (−p1 − p′
2)νgσγ ]

(9)

and

J̄1 = Ī1. (10)

In writing down these integrands (7)–(10), an overall factor of ie2g has been omitted.
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Fig. 2. Feynman diagrams whose integrands are (a) I2 and J2; (b) Ī2 and J̄2.

The second pair of diagrams are obtained from the first pair of Fig. 1 by replacing the vertical 
W line by one for the Higgs ghost ϕ; they are shown in Fig. 2. The four integrands for the second 
pair are given by

I2 = 1

p2
1 − m2

[− gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]m(mgβμ)(mgγν),

(11)

J2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

p
ρ
2 pσ

2

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ]
[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],

(12)

Ī2 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

] 1

p′2
2 − ξm2

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]m(mgβμ)(mgγν),

(13)

and

J̄2 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

] 1

p′2
2 − ξm2

p
′ρ
2 p′σ

2

m2

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ]
[(p1 + k2)σ gγ ν + (p′

2 − k2)γ gνσ + (−p1 − p′
2)νgσγ ].

(14)
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Fig. 3. Feynman diagrams whose integrands are (a) I3 and J3; (b) Ī3 and J̄3.

The integrands for the diagrams of Fig. 3 are given by

I3 = 1

p2
1 − ξm2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

]

1

p2
3 − m2

[−gαγ + (1 − ξ)pα
3 p

γ

3

p2
3 − ξm2

]
1

2
(p1 + k1 + k2)α(mgρμ)

[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],

(15)

J3 = 1

p2
1 − ξm2

pα
1 p

β

1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

]

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ]
[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ]

(16)

Ī3 = 1

p2
3 − ξm2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

]

1

p2
1 − m2

[−gαγ + (1 − ξ)pα
1 p

γ

1

p2
1 − ξm2

]
1

2
(p3 − k1 − k2)α(mgρμ)

[(p1 + k2)σ gγ ν + (p′
2 − k2)γ gνσ + (−p1 − p′

2)νgσγ ],

(17)

and

J̄3 = 1

p2
3 − ξm2

pα
3 p

β

3

m2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

]

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ]
[(p + k ) g + (p′ − k ) g + (−p − p′ ) g ].

(18)
1 2 σ γ ν 2 2 γ νσ 1 2 ν σγ
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Fig. 4. Feynman diagrams whose integrands are (a) I4 and J4; (b) Ī4 and J̄4.

Very similarly, the integrands for the diagrams of Fig. 4 are given by

I4 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

]

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

[−1

2
(−p3 + k1 + k2)α]

[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ](mgσν),

(19)

J4 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

]

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ]
[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],

(20)

Ī4 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

]

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

[−1

2
(−p1 − k1 − k2)α]

[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ](mgσν),

(21)

and

J̄4 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

]

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − m2

p1αp
γ

1

m2

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ]
[(p1 + k2)σ gγ ν + (p′

2 − k2)γ gνσ + (−p1 − p′
2)νgσγ ].

(22)
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Fig. 5. Feynman diagrams whose integrands are (a) I5 and J5; (b) Ī5 and J̄5.

Consider next the three cases where there are one W and two ϕ’s in the triangle. The inte-
grands for the diagrams of Fig. 5 are give by

I5 = 1

p2
1 − ξm2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

]

1

p2
3 − ξm2

[−1

2

m2
H

m
](mgρμ)(mgσν),

(23)

J5 = 1

p2
1 − ξm2

pα
1 p

β

1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ]
[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],

(24)

Ī5 = 1

p2
3 − ξm2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

]

1

p2
1 − ξm2

[−1

2

m2
H

m
](mgρμ)(mgσν),

(25)

and

J̄5 = 1

p2
3 − ξm2

pα
3 p

β

3

m2

1

p′
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

p1αp
γ

1

m2

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgρβ ]
[(p1 + k2)σ gγ ν + (p′

2 − k2)γ gνσ + (−p1 − p′
2)νgσγ ].

(26)

Note that the mass mH of the Higgs particle appears explicitly in I5 and Ī5, but not in J5 or J̄5.
Consider next the two diagrams of Fig. 6. This is the first case, as indicated in the figure cap-

tion, where there are only two non-vanishing integrand instead of four. These two integrands are

I6 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

p2
3 − ξm2

[−1

2
(−p3 + k1 + k2)α](mgβμ)(p2 + p3)ν

(27)
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Fig. 6. Feynman diagrams whose integrands are (a) I6 and J6 = 0; (b) Ī6 and J̄6 = 0.

Fig. 7. Feynman diagrams whose integrands are (a) I7 and J7 = 0; (b) Ī7 and J̄7 = 0.

and

Ī6 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

] 1

p′2
2 − ξm2

1

p2
1 − ξm2

[−1

2
(−p1 − k1 − k2)α](mgβμ)(p1 + p′

2)ν .

(28)

Similarly, those of Fig. 7 lead to the following two non-varnishing integrands:

I7 = 1

p2
1 − ξm2

1

p2
2 − ξm2

1

p2
3 − ξm2

[−gαγ + (1 − ξ)pα
3 p

γ

3

p2
3 − ξm2

]

[1

2
(p1 + k1 + k2)α](p1 + p2)μ(mgγν)

(29)

and

Ī7 = 1

p2
3 − ξm2

1

p′2
2 − m2

1

p2
1 − m2

[−gαγ + (1 − ξ)pα
1 p

γ

1

p2
1 − ξm2

]

[1

2
(p3 − k1 − k2)α](p′

2 + p3)μ(mgγν).

(30)

For the eighth pair of diagrams as shown in Fig. 8, all three propagators in the loop are of the 
Higgs ghost ϕ. The two non-varnishing integrands are

I8 = 1

p2
1 − ξm2

1

p2
2 − ξm2

1

p2
3 − ξm2

[−1 m2
H ](p1 + p2)μ(p2 + p3)ν

(31)
2 m
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Fig. 8. Feynman diagrams whose integrands are (a) I8 and J8 = 0; (b) Ī8 and J̄8 = 0.

Fig. 9. Feynman diagrams whose integrands are (a) I9 and J9 = 0; (b) Ī9 and J̄9 = 0. Here η is a Faddeev–Popov ghost.

Fig. 10. Feynman diagrams whose integrands are (a) I10 and J10 = 0; (b) Ī10 and J̄10 = 0.

and

Ī8 = 1

p2
3 − ξm2

1

p′2
2 − ξm2

1

p2
1 − ξm2

[−1

2

m2
H

m
](p′

2 + p3)μ(p1 + p′
2)ν

(32)

In each of the sixteen Feynman diagrams considered so far as shown in Figs. 1–8, the loop 
takes the form of a triangle, i.e., there are three propagators in the loop. Furthermore, each of 
these three propagators is that of a W+ or ϕ+. There are four more Feynman diagrams with a 
triangular loop, the remaining eight having instead only two propagators in the loop. In these 
four more Feynman diagrams, the triangular loop is that of a Faddeev–Popov ghost [8]. Since 
there is no Faddeev–Popov ghost in the unitary gauge, these four diagrams cannot lead to any 
non-zero J ’s. These four diagrams with a Faddeev–Popov loop are shown in Fig. 9 and Fig. 10. 
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Fig. 11. Feynman diagrams whose integrand is I11 = J11.

Fig. 12. Feynman diagrams whose integrands are I12 and J12.

These four integrands are given by

I9 = − 1

p2
1 − ξm2

1

p2
2 − ξm2

1

p2
3 − ξm2

(−1

2
ξm)(−p2μ)(−p3ν),

(33)

Ī9 = − 1

p2
1 − ξm2

1

p2
2 − ξm2

1

p2
3 − ξm2

(−1

2
ξm)(−p′

2μ)(−p1ν),

(34)

I10 = I9, (35)

and

Ī10 = Ī9. (36)

In the twenty Feynman diagrams studied so far, there are only three vertices but no four vertex. 
In the remaining eight Feynman diagrams, there is a four vertex each. Because of the presence 
of this four vertex, there are only two propagators in each these eight diagrams.

The first of these eight diagrams to be studied is the one shown in Fig. 11. Its integrand is

I11 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m[2gμνgβγ − gμβgνγ − gμγ gνβ ],
(37)

with

J11 = I11. (38)

If both of the W propagators in the diagram of Fig. 11 are replaced by ϕ propagators, then the 
resulting diagram is that of Fig. 12, whose integrands are
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Fig. 13. Feynman diagrams whose integrands are (a) I13 and J13 = 0; (b) Ī13 and J̄13 = 0.

Fig. 14. Feynman diagrams whose integrands are (a) I14 and J14 = 0; (b) Ī14 and J̄14 = 0.

I12 = 1

p2
1 − ξm2

1

p2
3 − ξm2

[−1

2

m2
H

m
](−2gμν) (39)

and

J12 = 1

p2
1 − ξm2

pα
1 p

β

1

m2

1

p2
3 − ξm2

p3αp
γ

3

m2

m[2gμνgβγ − gμβgνγ − gμγ gνγ ].
(40)

The next four diagrams are shown in Fig. 13 and Fig. 14. These four diagrams again do not 
lead to any non-zero J for the unitary gauge; the four I ’s for the Rξ gauge are given by

I13 = − 1

p2
2 − ξm2

1

p2
3 − m2

[−gαγ + (1 − ξ)pα
3 p

γ

3

p2
3 − ξm2

](1

2
gαμ)(mgγν) (41)

Ī13 = − 1

p′2
2 − ξm2

1

p2
1 − m2

[−gαγ + (1 − ξ)pα
1 p

γ

1

p2
1 − ξm2

](1

2
gαμ)(mgγν) (42)

I14 = − 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

(
1

2
gαν)(mgβμ) (43)

and

Ī14 = − 1

p2 − m2
[−gαβ + (1 − ξ)pα

3 p
β

3

p2 − ξm2
] 1

p′2 − ξm2
(
1

2
gαν)(mgβμ) (44)
3 3 2
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Fig. 15. Feynman diagrams whose integrands are (a) I15 = 0 and J15; (b) Ī15 = 0 and J̄15.

The last two of the twenty eight Feynman diagrams are shown in Fig. 15. There are only two 
diagrams that give non-zero J15 and J̄15 for the unitary gauge, but no non-zero integrands for 
the Rξ gauge. The reason is that there is no Wϕγγ four-vertex in the Rξ gauge for the standard 
model [1]. The integrands J15 and J̄15 from the diagrams of Fig. 15 are given by

J15 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m[2gμνgβγ − gμβgνγ − gμγ gνβ ]
(45)

and

J̄15 = 1

p2
1 − ξm2

pα
1 p

β

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m[2gμνgβγ − gμβgνγ − gμγ gνβ ].
(46)

4. Cancellation of the most divergent terms

It is interesting to consider the large-k behavior of the forty quantities give by (7) to (46)
of Sec. 3. All twenty six I ’s behave as (k2)−2 for large k with k1 and k2 fixed. Thus each of 
these twenty six I ’s leads to a logarithmically divergent integral or a convergent integral when 
integrated with respect to the four-momentum k.

This behavior is also true for J1, J̄1, and J11, which are equal to I1, Ī1, and I11 respectively. 
But the behavior is different for the other eleven J ’s. More precisely, for large k with k1 and k2
fixed,

J2, J̄2, J3, J̄3, J4, J̄4, J15, and J̄15 (47)

behave as (k2)−1, while

J5, J̄5, and J12 (48)

behave as (k2)0. In other words, when integrated with respect to the four-momentum k, each 
of the J ’s listed in (47) leads to a quadratically divergent integral, while each listed in (48) a 
quatically divergent integral. In this sense, the three J ’s in (48) are conveniently referred to as 
the “most divergent terms”.

In the sum of these three terms, the (k2)0 pieces must cancel each other. In this Sec. 4, this 
cancellation is to be carried out explicitly. Thus this sum behaves like (k2)−1, which is to be 
added to the eight J ’s listed in (47). This sum of the eleven J ’s of (47) and (48) is to be studied 
in the next section.
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The cancellation of the (k2)0 terms is to be described in some detail here, because the way for 
this cancellation to occur will also play an important role in the next section. With (5) and (6), 
rewrite the J5 and J̄5 of (24) and (26) as

J5 = 1

p2
1 − ξm2

pα
1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m(p2
2gμρ − p2μp2ρ)

[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ]

(49)

and

J̄5 = 1

p2
3 − ξm2

pα
3

m2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

p1αp
γ

1

m2

m(p′2
2 gμρ − p′

2μp′
2ρ)

[(p1 + k2)σ gγ ν + (p′
2 − k2)γ gνσ + (−p1 − p′

2)νgσγ ].

(50)

Let J5 be split into the sum of three terms as follows

p2
2gμρ − p2μp2ρ = [(p2

2 − m2)gμρ + 1 − ξ

ξ
p2μp2ρ] + m2gμρ − 1

ξ
p2μp2ρ, (51)

then

J5 = J
(1)
5 + J

(2)
5 + J

(3)
5 , (52)

where

J
(1)
5 = 1

p2
1 − ξm2

pα
1

m2

1

p2
3 − ξm2

p3αp
γ

3

m2
m(−gσ

μ)

[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],
(53)

J
(2)
5 = 1

p2
1 − ξm2

pα
1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m(m2gμρ)[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ],
(54)

and

J
(3)
5 = 1

p2
1 − ξm2

pα
1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3αp
γ

3

m2

m(−1

ξ
p2μp2ρ)[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ].

(55)

It is immediately seen using Eqs. (5) and (6) that

J
(3)
5 = 0. (56)

Similarly,

J̄5 = J̄
(1)
5 + J̄

(2)
5 , (57)

where
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J̄
(1)
5 = 1

p2
3 − ξm2

pα
3

m2

1

p2
1 − ξm2

p1αp
γ

1

m2
m(−gσ

μ)

[(p1 + k2)σ gγ ν + (p′
2 − k2)γ gνσ + (−p1 − p′

2)νgσγ ]
(58)

and

J̄
(2)
5 = 1

p2
3 − ξm2

pα
3

m2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

p1αp
γ

1

m2

m(m2gμρ)[(p1 + k2)σ gγ ν + (p′
2 − k2)γ gνσ + (−p1 − p′

2)νgσγ ].
(59)

These splittings of J5 and J̄5 accomplish the following:
First, again using Eqs. (6), it is seen that

J
(1)
5 + J̄

(1)
5 + J12 = 0, (60)

where J12 is given by Eq. (40). It therefore follows that

J5 + J̄5 + J12 = J
(2)
5 + J̄

(2)
5 . (61)

Secondly, as given by Eqs. (54) and (59) respectively, both J (2)
5 and J̄ (2)

5 behave as (k2)−1 for 
large k. In other words, Eq. (61) gives explicitly the cancellation of the (k2)0 terms between the 
J5, J̄5, and J12 of (48).

5. Cancellation of the next most divergent terms

From (47) and (61), it is seen that, for large k with k1, and k2 fixed,

J2, J̄2, J3, J̄3, J4, J̄4, J15, J̄15, J
(2)
5 , and J̄

(2)
5 (62)

behave as (k2)−1. In other words, when integrated with respect to the variable k, each of these 
ten J ’s leads to a quadratically divergent integral. The present section describes the way these 
(k2)−1 pieces cancel each other.

Similar to (49) and (50), these ten J ’s, except J15 and J̄15, can be rewritten as follows; they 
are respectively from (12), (14), (16), (18), (20), (22), (54), and (59):

J2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m(p2
1gβμ − p1βp1μ)(p2

3gγν − p3γ p3ν)

(63)

J̄2 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

] 1

p′2
2 − ξm2

1

m2

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]

m(p2g − p p )(p2g − p p )

(64)
3 βμ 3β 3μ 1 γ ν 1γ 1ν
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J3 = 1

p2
1 − ξm2

pα
1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

]

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

]

m(p2
2gμρ − p2μp2ρ)

[(p3 − k2)σ gγ ν + (p2 + k2)γ gνσ + (−p2 − p3)νgσγ ]

(65)

J̄3 = 1

p2
3 − ξm2

pα
3

m2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

]

1

p2
1 − m2

[−gγ
α + (1 − ξ)p1αp

γ

1

p2
1 − ξm2

]

m(p′2
2 gμρ − p′

2μp′
2ρ)

[(p1 + k2)σ gγ ν + (p′
2 − k2)γ gνσ + (−p1 − p′

2)νgσγ ]

(66)

J4 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

]

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3α

m2

m[(p1 + k1)ρgβμ + (p2 − k1)βgμρ + (−p1 − p2)μgρβ ](p2
2gνσ − p2νp2σ )

(67)

J̄4 = 1

p2
3 − m2

[−gαβ + (1 − ξ)pα
3 p

β

3

p2
3 − ξm2

]

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

p1α

m2

m[(p3 − k1)ρgβμ + (p′
2 + k1)βgμρ + (−p′

2 − p3)μgμβ ](p′2
2 gνσ − p′

2νp
′
2σ )

(68)

J
(2)
5 = 1

p2
1 − ξm2

pα
1

m2

1

p2
2 − m2

[−gρσ + (1 − ξ)p
ρ
2 pσ

2

p2
2 − ξm2

] 1

p2
3 − ξm2

p3α

m2

m(m2gμρ)(p2
2gνσ − p2νp2σ )

(69)

and

J̄
(2)
5 = 1

p2
3 − ξm2

pα
3

m2

1

p′2
2 − m2

[−gρσ + (1 − ξ)p
′ρ
2 p′σ

2

p′2
2 − ξm2

] 1

p2
1 − ξm2

p1α

m2

m(m2gμρ)(p′2
2 gνσ − p′

2νp
′
2σ ).

(70)

On the right-hand sides of these eight Eqs. (63)–(70), the combination p2gαβ −pαpβ appears 
with various p, α, and β , indeed twice each for J2 and J̄2 while once in the other six cases. 
Therefore the splitting (51), which has played a central role in the preceding section, can again 
be used for these eight right-hand sides of Eq. (63)–(70).

Consider first the J2 of Eq. (63); since this combination p2gαβ − pαpβ appears twice on the 
right-hand side with p1 and p3, Eq. (51) should be used twice leading to nine terms
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J2 = J
(11)
2 + J

(12)
2 + J

(13)
2 + J

(21)
2 + J

(22)
2 + J

(23)
2

+ J
(31)
2 + J

(32)
2 + J

(33)
2 ,

(71)

where

J
(11)
2 = 1

p2
2 − ξm2

1

m2
m(−gα

μ) (−gαν) (72)

J
(12)
2 = 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(−gα
μ) m2gγν (73)

J
(13)
2 = 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(−gα
μ) (−1

ξ
p3γ p3ν) (74)

J
(21)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2
m(m2gβμ) (−gαν) (75)

J
(22)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(m2gβμ) m2gγν

(76)

J
(23)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(m2gβμ) (−1

ξ
p3γ p3ν)

(77)

J
(31)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

m(−1

ξ
p1βp1μ) (−gαν)

(78)

J
(32)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(−1

ξ
p1βp1μ) m2gγν

(79)

and

J
(33)
2 = 1

p2
1 − m2

[−gαβ + (1 − ξ)pα
1 p

β

1

p2
1 − ξm2

] 1

p2
2 − ξm2

1

m2

1

p2
3 − m2

[−gγ
α + (1 − ξ)p3αp

γ

3

p2
3 − ξm2

] m(−1

ξ
p1βp1μ) (−1

ξ
p3γ p3ν).

(80)

In this way, the ten J ’s of (62) are split up into 2 × 9 + 6 × 3 + 2 = 38 terms. Among these 
38 terms, there are cancellations similar to Eq. (60) of the preceding section.

What is found is that all these “quadratically divergent” terms cancel each other, and therefore, 
in the sum of the fourteen J ’s, the asymptotic behavior is (k2)−2 for large k with k1 and k2 fixed. 
This asymptotic behavior is the same as the sum of the twenty six I ’s in the Rξ gauge.
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6. Difference between the Rξ gauge and the unitary gauge

In terms of the integrands of the Feynman diagrams, the difference between the Rξ gauge and 
the unitary gauge is given by

δμν = sum of the fourteen non-zero J ’s

– sum of the twenty six non-zero I ’s,
(81)

where the forty I ’s and J ’s are given explicitly by the forty equations of Sec. 3. Because of the 
cancellations shown in the preceding two sections, this δμν behaves as (k2)−2 for large k with k1
and k2 fixed.

Although somewhat lengthy, it is completely straightforward to simplify this expression (81)
for the difference δμν , and the resulting formula is:

δμν = − 1

m
[( 1

p2
1 − ξm2

+ 1

p2
3 − ξm2

− 1

p2
2 − ξm2

− 1

p′2
2 − ξm2

)gμν

+ 1

p2
1 − ξm2

1

p2
2 − ξm2

p2μk1ν

− 1

p2
2 − ξm2

1

p2
3 − ξm2

k2μp2ν

− 1

p′2
2 − ξm2

1

p2
3 − ξm2

p′
2μk1ν

+ 1

p2
1 − ξm2

1

p′2
2 − ξm2

k2μp′
2ν].

(82)

As expected, the right-hand side of this Eq. (82) has a great deal of symmetry. Specifically, it has 
the following properties:

(a) Consider the first term; by Eqs. (6), there are the following relations:

1

p′2
2 − ξm2

= 1

p2
1 − ξm2

∣∣∣∣∣
k→k−k2

,

1

p2
3 − ξm2

= 1

p2
2 − ξm2

∣∣∣∣∣
k→k−k2

,

1

p′2
2 − ξm2

= 1

p2
3 − ξm2

∣∣∣∣∣
k→k+k1

,

and

1

p2
1 − ξm2

= 1

p2
2 − ξm2

∣∣∣∣∣
k→k+k1

. (83)

From these four Eqs. (83), it follows immediately that

1

p′2
2 − ξm2

− 1

p2
3 − ξm2

= [ 1

p2
1 − ξm2

− 1

p2
2 − ξm2

]
k→k−k2

(84)

and



T.T. Wu, S.L. Wu / Nuclear Physics B 914 (2017) 421–445 439
1

p′2
2 − ξm2

− 1

p2
1 − ξm2

= [ 1

p2
3 − ξm2

− 1

p2
2 − ξm2

]
k→k+k1

(85)

The advantage of rewriting Eqs. (83) as Eq. (84) and Eq. (85) is that, when integrated over 
the four-momentum k, both expressions are linearly divergent instead of being quadratically 
divergent. Since shifting the variable of integration for a linearly divergent integral leads to an 
additional term that is finite, it follows Eq. (84) that∫

d4k[( 1

p2
1 − ξm2

− 1

p2
2 − ξm2

) − (
1

p′2
2 − ξm2

− 1

p2
3 − ξm2

)] = Aα
1 k2α, (86)

where Aα
1 is a non-zero, finite four-vector. Similarly, it follows from Eq. (85) that

∫
d4k[( 1

p2
3 − ξm2

− 1

p2
2 − ξm2

) − (
1

p′2
2 − ξm2

− 1

p2
1 − ξm2

)] = Aα
2 k1α, (87)

where Aα
2 is another non-zero, finite four-vector.

But the left-hand side of Eq. (87) is the same as the left-hand side of Eq. (86). It therefore 
follows from Eqs. (86) and (87) that∫

d4k[ 1

p2
1 − ξm2

+ 1

p2
3 − ξm2

− 1

p2
2 − ξm2

− 1

p′2
2 − ξm2

] = A0(k1.k2), (88)

where A0 is merely a non-zero, finite number. Note that this number A0 must be independent 
of ξ .

(b) The other four terms on the right-hand side of Eq. (82) can be treated in an entirely similar 
matter. In fact, due to the appearance of either k1ν or k2μ in each of these four terms, the necessary 
considerations are simpler.

Similar to Eqs. (83), it again follows from Eqs. (6) that

1

p′2
2 − ξm2

1

p2
3 − ξm2

p′
2μk1ν = 1

p2
1 − ξm2

1

p2
2 − ξm2

p2μk1ν

∣∣∣∣∣
k→k−k2

(89)

and

1

p2
1 − ξm2

1

p′2
2 − ξm2

k2μp′
2ν = 1

p2
2 − ξm2

1

p2
3 − ξm2

k2μp2ν

∣∣∣∣∣
k→k+k1

. (90)

This time, when integrated over the four-momentum k, both expressions in Eq. (89) and Eq. (90)
are already linearly divergent. Therefore, similar to Eq. (86) and Eq. (87), these Eq. (89) and 
Eq. (90) lead to, respectively∫

d4k[ 1

p2
1 − ξm2

1

p2
2 − ξm2

p2μk1ν − 1

p′2
2 − ξm2

1

p2
3 − ξm2

p′
2μk1ν] = A3k2μk1ν (91)

and ∫
d4k[ 1

p2
2 − ξm2

1

p2
3 − ξm2

k2μp2ν − 1

p2
1 − ξm2

1

p′2
2 − ξm2

k2μp′
2ν] = A4k2μk1ν, (92)

where A3 and A4 are again merely non-zero, finite numbers, which are independent of ξ .
(c) Because of the above results (88), (91), and (92), we are now in a position to study the 

difference between the matrix elements, calculated in the Rξ gauge and the unitary gauge, for 
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the Higgs decay process H → γ γ through one W loop. Leaving out an overall factor of ie2g, 
this difference between these two matrix elements is given by

μν = 1

(2π)4

∫
d4kδμν, (93)

where δμν is given explicitly by Eq. (82).
Since this μν satisfies

μνk
μ
1 = μνk

ν
2 = 0, (94)

it must take the form

μν = C[(k1.k2)gμν − k1νk2μ]. (95)

Furthermore, it follows from Eqs. (82) and (88) that the C here is a non-zero, finite constant 
independent of ξ .

This Eq. (95) is the main result of the present paper.
In the remainder of this Section 6, some aspects of this main result are to be discussed in more 

detail.
(d) Since this main result Eq. (95) gives a finite difference between the matrix element calcu-

lated for the Rξ gauge and that with the unitary gauge, there is neither necessity nor justification 
to alter the physical space–time dimension of 3 +1. This is fortunate because it is always difficult 
to show that any particular matrix element is a continuous function of the dimension.

(e) The present result as given by Eq. (82) has been obtained by a fairly lengthy although 
elementary calculation. What does this calculation really accomplish?

Because of the Feynman rules for the Rξ gauge and the unitary gauge together with Eq. (94), 
the right-hand side of Eq. (81) must necessarily take this form. For example, arguments can be 
given that the first term there, the one proportional to gμν , must be this particular combination 
of four terms, each with just one denominator. Indeed, this particular combination of four terms 
has been seen much before the present considerations have been carried out. Once this first term 
is obtained, the others follow from Eq. (94).

What the present calculation has really accomplished is to show that this right-hand side of 
Eq. (82) is not zero, a result that does not follow from any simple argument.

(f) Historically, the calculation of the Higgs decay H → γ γ was first carried out by Ellis, 
Gaillard, and Nanopoulis forty years ago using the Rξ gauge [9]. Their result was reproduced 
and generalized shortly thereafter.

The corresponding calculation in the unitary gauge was carried out much later by Gastmans, 
Wu, and Wu [10]. This result with the unitary gauge was later verified by Christova and Todorov 
using an unsubtracted dispassion relation [11]. It has been puzzling why these two results, one 
with the Rξ gauge and the other with the unitary gauge, do not agree with other; the main result 
Eq. (95) of the present paper shows, through a detailed analysis, why they should not agree.

(g) It is interesting, and important, to delve into the underlying reason in more detail why, as 
found here and contrary to expectation, the Rξ gauge and the unitary gauge do not give the same 
answer for this Higgs decay H → γ γ through one W loop.

As already pointed out in the Introduction, the unitary gauge is the formal limit, as ξ → ∞, 
of the Rξ gauge. How does this formal property manifest itself in the quantities δμν and μν of 
Eqs. (81) and (93)?

It follows immediately from Eq. (82) that

lim δμν = 0 (96)

ξ→∞
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for every values of k, k1 and k2. The important point here is that this limiting formula (96) is not 
uniform in k. This non-uniformity has the following consequence.

While it follows from (96) that

1

(2π)4

∫
d4k lim

ξ→∞ δμν = 0, (97)

reversing the integration over k and the limiting process ξ → ∞ gives instead, from Eq. (95),

lim
ξ→∞

1

(2π)4

∫
d4kδμν = C[(k1.k2)gμν − k1νk2μ] (98)

with C �= 0. This shows explicitly that

1

(2π)4

∫
d4k lim

ξ→∞ δμν �= lim
ξ→∞

1

(2π)4

∫
d4kδμν. (99)

This means that the two operations

lim
ξ→∞ (100)

and

1

(2π)4

∫
d4k (101)

do not commute.
What we have shown here is that the underlying reason for the disagreement between the Rξ

gauge and the unitary gauge is very subtle for the present case. It is due to the failure of the two 
operations (100) and (101), one a limiting process to go from the Rξ gauge to the unitary gauge 
and the other the integration over the loop momentum, to commute.

(h) The matrix element for the decay H → γ γ through one W loop is given by

− e2g

8π2m
[k2μk1ν − gμν(k1.k2)][3τ−1 + 3(2τ−1 − τ−2)f (τ )] (102)

when the unitary gauge is used, and by

− e2g

8π2m
[k2μk1ν − gμν(k1.k2)][2 + 3τ−1 + 3(2τ−1 − τ−2)f (τ )] (103)

when the Rξ gauge is used [10]. In (102) and (103), the quantity τ is

τ = m2
H

4m2
(104)

and

f (τ) =
⎧⎨
⎩

[sin−1 √
τ ]2 for τ ≤ 1,

− 1
4 [ln 1+

√
1−τ−1

1−
√

1−τ−1
− iπ]2 for τ > 1.

(105)

The difference between (102) and (103) is just due to the μν as given by Eq. (95).
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Fig. 16. A possible additional Feynman diagram for the decay (106) of H → Zγ . In the standard model, the matrix 
element for this diagram is zero.

7. Higgs decay H → Zγ

For the Higgs particle, there is another decay process that is similar to that of (3), namely,

H → Zγ (106)

through one W loop.
The Feynman diagrams for this decay (106) are identical to those shown in Fig. 1 to Fig. 15

provided that one of the outgoing photons, say the one with the four-momentum k1, is replaced 
by the Z. With this replacement, the number of diagrams for the Rξ gauge remains twenty six, 
but the corresponding number of diagrams in the unitary gauge increases by two, from fourteen 
to sixteen, because J7 and J̄7 of Fig. 7 are no longer zero.

The matrix element for this decay (106) through one W loop depends on the mass mZ of the 
Z boson. In the standard model [1], the value of this mZ is an independent parameter. For both 
the Rξ gauge and the unitary gauge, the Feynman rule for any vertex involving this Z boson, 
in the limit of mZ → 0, agrees with that for the same vertex with the Z replaced by a photon. 
Therefore, except for an overall constant,

matrix element for the decay (106) |mZ→0

= corresponding matrix element for the decay (3).
(107)

In writing down this Eq. (107), it should be noted that the matrix element for the diagram of 
Fig. 16 is zero.

As seen from the explicit calculation carried out in the present paper, the matrix elements for 
the decay , as obtained for the Rξ gauge and the unitary gauge, do not agree with each other, and 
in fact differ by a non-zero constant as given by Eq. (95). It therefore follows rigorously from 
Eq. (107) that

matrix element for the decay (106) in the Rξ gauge

�= matrix element for the decay ( 106) in the unitary gauge.
(108)

It is in principle possible that there is a specific value of mZ for which these matrix elements 
from the Rξ gauge and the unitary gauge agree. This is however not the case for the one W loop 
diagrams.

There are therefore two known cases, the Higgs decays (3) and (106), where the Rξ gauge 
and the unitary gauge lead to different values for the matrix element.
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8. Discussions and conclusion

It has been shown that in the standard model, for the decay of the Higgs particle into two 
photons through one W loop, the resulting matrix element is different depending on whether the 
Rξ gauge or the unitary gauge is used. The difference in these two matrix element is calculated 
directly, and this calculation is lengthy but completely elementary.

Since this rate of the Higgs particle decay into two photons is well defined experimentally, 
there cannot be two different correct predictions from the same standard model [1]. Thus there 
are the following two distinct possibilities:

the prediction using the unitary gauge is correct but the one using the Rξ gauge is wrong; or
the prediction using the Rξ is correct but the one using the unitary gauge is wrong.
[It is in principle possible that both of these predictions are wrong for the standard model, but 

this seems unlikely.]
In order to ascertain which one of these two possibilities is the right one, it is necessary to 

gain a much deeper understanding of the standard model. Such a deeper understanding does not 
exist yet; instead, we raise a number of questions, listed below, to be answered before such a 
deeper understanding can be achieved.

(a) In view of the explicit verification that the operations of taking a limit (100) and integration 
over the internal momentum (101) do not commute, the most important question to be answered 
is the following.

Question 1: How can the development of quantum field theory be carried out without any 
implicit assumption that various operations commute?

In the context of the standard model, this question is to be raised for the derivation of the 
Feynman rules for the Rξ gauge as well as those for the unitary gauge.

(b) Numerous aspects of quantum field theories need to be re-evaluated; here is one of many 
examples. In the usual derivation of the Feynman rules for the Rξ gauge, the first step is to add a 
gauge–fixing term to the Lagrangian density.

Question 2: Is the addition of such a gauge-fixing term justified?
It was over eighty years ago when Fermi [12] used the addition of such a gauge-fixing term in 

the case of quantum electrodynamics. What Fermi did was completely justified, but, to the best 
knowledge of the authors, such a justification has never been successfully extended to the case of 
the Yang–Mills non-Abelian gauge theory [2]. It would be a most important step forward to find 
out whether the addition of such a gauge-fixing term is correct or not in the case of the standard 
model.

(c) For a number of years, the Higgs decay H → γ γ was the only known process where the 
matrix element is different when calculated in the Rξ gauge and the unitary gauge. There are now 
two known cases, as give by (3) and (106), where there is a difference in the matrix elements as 
calculated these two ways, namely,

i) H → γ γ through one W loop, and

ii) H → Zγ through one W loop.

In spite of the similarity between these two processes, there are major differences in the calcula-
tions.

Question 3: How can the considerations in the present paper be generalized from the process 
of i) to that of ii)?
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Let the reader be assured that this generalization is far from being straightforward.
The process of ii) serves another useful purpose: whenever an argument is proposed in favor 

of either the unitary gauge or the Rξ gauge for the process H → γ γ of i), it is essential to check 
whether this argument makes equally good sense for the process H → Zγ of ii).

(d) As already emphasized in the Introduction, the important feature of the diagrams that can 
lead to different results for the Rξ gauge and the unitary gauge is the presence of internal W
and/or Z lines, the reason being the qualitative difference between these propagators in the two 
gauges as given by (1) and (2). The presence or absence of any external line for the Higgs particle 
does not seem to play any important role; nevertheless, the two known cases (3) and (106) are 
both for the decay of the Higgs particle.

Question 4: What are the other processes beyond Higgs decay where their matrix elements 
are different when calculated in the unitary gauge and the Rξ gauge?

Question 5: How can such processes be characterized where their matrix elements are different 
when calculated in the unitary gauge and the Rξ gauge?

(e) All the considerations have been limited to one-loop diagrams so far. This limitation should 
of course be removed.

Question 6: How can the above considerations, including the five questions listed above, be 
generalized first to the case of two loops and eventually more loops?

This question is of course very difficult to answer even partially, and is therefore not for the 
immediate future.

Yang–Mills non-Abelian gauge theory in general and the standard model in particular are 
much more subtle than what has been generally realized.
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