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Measurements of t t̄ differential cross-sections of
highly boosted top quarks decaying to all-hadronic
final states in pp collisions at

√
s = 13 TeV using

the ATLAS detector

The ATLAS Collaboration

Measurements are made of differential cross-sections of highly boosted pair-produced top
quarks as a function of top-quark and tt̄ system kinematic observables using proton–proton
collisions at a center-of-mass energy of

√
s = 13 TeV. The data set corresponds to an in-

tegrated luminosity of 36.1 fb−1, recorded in 2015 and 2016 with the ATLAS detector at
the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one
with transverse momentum pT > 500 GeV and a second with pT > 350 GeV, are used for
the measurement. The top-quark candidates are separated from the multijet background us-
ing jet substructure information and association with a b-tagged jet. The measured spectra
are corrected for detector effects to a particle-level fiducial phase space and a parton-level
limited phase space, and are compared to several Monte Carlo simulations by means of cal-
culated χ2 values. The cross-section for tt̄ production in the fiducial phase-space region is
292 ± 7 (stat) ± 76(syst) fb, to be compared to the theoretical prediction of 384 ± 36 fb.

c© 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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1 Introduction

The large top-quark pair-production cross-section at the Large Hadron Collider (LHC) allows detailed
studies of the characteristics of the production of top–antitop (tt̄) quark pairs, providing an opportunity to
further test the Standard Model (SM). Focusing on highly boosted final states probes the QCD tt̄ produc-
tion processes in the TeV scale range, a kinematic region where theoretical calculations based on the SM
still present large uncertainties [1–3]. High-precision measurements, especially in kinematic regions that
have not been explored extensively, are necessary to better constrain the models currently in use. Further-
more, effects beyond the SM can appear as modifications of tt̄ differential distributions with respect to the
SM predictions [4–6] that may not be detected with an inclusive cross-section measurement.

In the SM, the top quark decays almost exclusively to a W boson and a b-quark. The signature of a tt̄ final
state is therefore determined by the W boson decay modes. The ATLAS [7–14] and CMS [15–19] Col-
laborations have published measurements of the tt̄ differential cross-sections at center-of-mass energies
of
√

s = 7 TeV,
√

s = 8 TeV and
√

s = 13 TeV in pp collisions using final states containing leptons. The
analysis presented here makes use of the all-hadronic tt̄ decay mode, where only top-quark candidates
with high transverse momentum (pT) are selected. This highly boosted topology is easier to reconstruct
than other final-state configurations as the top-quark decay products are collimated into a large-radius jet
by the Lorentz boost of the top quarks. This analysis is performed on events with the leading top-quark
jet having p t,1

T > 500 GeV and the second-leading top-quark jet having p t,2
T > 350 GeV. These jets are

reconstructed from calorimeter energy deposits and tagged as top-quark candidates to separate the tt̄ final
state from background sources. The event selection and background estimation follows the approach used
in Ref. [20], but with updated tagging methods and data-driven multijet background estimates.

These measurements are based on data collected by the ATLAS detector in 2015 and 2016 from pp col-
lisions at

√
s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. Measurements are made

of the tt̄ differential cross-sections by unfolding the detector-level distributions to a particle-level fiducial
phase-space region. The goal of unfolding to a particle-level fiducial phase space and of using variables
directly related to detector observables is to allow precision tests of QCD by avoiding model-dependent
extrapolation of the measurements to a phase-space region outside the detector acceptance. Measure-
ments of parton-level differential cross-sections are also presented, where the detector-level distributions
are unfolded to the top quark at the parton-level in a limited phase-space region. These allow comparisons
to the higher-order calculations that are currently restricted to stable top quarks [1–3].

These differential cross-sections are similar to those studied in dijet measurements at large jet transverse
momentum [21, 22] and are sensitive to effects of initial- and final-state radiation (ISR and FSR), to differ-
ent parton distribution functions (PDF) and to different schemes for matching matrix-element calculations
to parton shower models.

Measurements are made of the differential cross-sections for the leading and second-leading top quarks
as a function of p t,1

T and p t,2
T , as well as the rapidities of the top quarks. The rapidities of the leading and

second-leading top quarks in the laboratory frame are denoted by y t,1 and y t,2, respectively, while their
rapidities in the tt̄ center-of-mass frame are y? = 1/2

(
y t,1 − y t,2

)
and −y?. These allow the construction

of the variable χtt̄ = exp 2|y?|, which is of particular interest as many processes not included in the
Standard Model are predicted to peak at low values of χtt̄ [23]. The longitudinal motion of the tt̄ system
in the laboratory frame is described by the rapidity boost ytt̄

B = 1/2
(
y t,1 + y t,2

)
and is sensitive to PDFs.

Measurements are also made of the differential cross-sections as a function of the invariant mass, pT and
rapidity of the tt̄ system; the absolute value of the azimuthal angle between the two top quarks, ∆φtt̄; the
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absolute value of the out-of-plane momentum,
∣∣∣ptt̄

out

∣∣∣ (i.e., the projection of the three-momentum of one of
the top-quark jets onto the direction perpendicular to a plane defined by the other top quark and the beam
axis (z) in the laboratory frame [22]); the cosine of the production angle in the Collins–Soper1 reference
frame, cos θ?; and the scalar sum of the transverse momenta of the two top quarks, Htt̄

T [24, 25]. Some
of the variables (e.g. ∆φtt̄ and

∣∣∣ptt̄
out

∣∣∣) are more sensitive to additional radiation in the main scattering
process, and thus are more sensitive to effects beyond leading order (LO) in the matrix elements. All of
these variables are sensitive to the kinematics of the tt̄ production process.

The paper is organized as follows. Section 2 briefly describes the ATLAS detector, while Sec. 3 describes
the data and simulation samples used in the measurements. The reconstruction of physics objects and the
event selection is explained in Sec. 4 and the background estimates are discussed in Sec. 5. The procedure
for unfolding to particle level and parton level are described in Sec. 6. The systematic uncertainties
affecting the measurements are summarized in Sec. 7. The results of the measurements are presented in
Sec. 8 and comparisons of these results with theoretical predictions are made in Sec. 9. A summary is
presented in Sec. 10.

2 ATLAS detector

The ATLAS experiment [26] at the LHC uses a multi-purpose detector with a forward-backward sym-
metric cylindrical geometry and near 4π coverage in solid angle.2 It consists of an inner tracking detector
surrounded by a superconducting solenoid magnet creating a 2 T axial magnetic field, electromagnetic
and hadronic calorimeters, and a muon spectrometer.

The inner tracking detector covers the pseudorapidity range |η| < 2.5. Consisting of silicon pixel, silicon
microstrip and transition radiation tracking detectors, the inner tracking detector allows highly efficient
reconstruction of the trajectories of the charged particles produced in the pp interactions. An additional
silicon pixel layer, the insertable B-layer, was added between 3 and 4 cm from the beam line to improve
b-hadron tagging [27]. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) en-
ergy measurements with high granularity and shower-depth segmentation. A hadronic (steel/scintillator-
tile) calorimeter covers the central pseudorapidity range (|η| < 1.7). The endcap and forward regions
are instrumented with LAr calorimeters for EM and hadronic energy measurements up to |η| = 4.9. The
muon spectrometer is located outside of the calorimeter systems and is based on three large air-core toroid
superconducting magnets with eight coils each. It includes a system of precision tracking chambers and
detectors with sufficient timing resolution to enable triggering of events.

A two-level trigger system is used to select events [28]. The first-level hardware-based trigger uses a
subset of the detector information to reduce the rate of accepted events to a design maximum of 100 kHz.
This is followed by a software-based trigger with a maximum average accepted event rate of 1 kHz.

1 The Collins–Soper frame is the rest frame of the tt̄ pair, wherein the two top quarks have equal and opposite momenta; thus,
each makes the same angle θ? with the beam direction.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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3 Data sets and Monte Carlo event generation

The data used for this analysis were recorded with the ATLAS detector at a center-of-mass energy of
13 TeV in 2015 and 2016 and correspond to an integrated luminosity of 36.1 fb−1. Only the data-taking
periods in which all the subdetectors were operational are considered.

The events for this analysis were collected using an inclusive anti-kt jet trigger with radius parameter
R = 1.0 and nominal pT thresholds of 360 GeV and 420 GeV for the 2015 and 2016 data-taking periods,
respectively. These triggers were fully efficient for jets with pT > 480 GeV [28].

The signal and several background processes are modeled using Monte Carlo (MC) event generators.
Multiple overlaid proton–proton collisions (pileup) are simulated with the soft QCD processes of Pythia 8.186
[29] using a set of tuned parameters called the A2 tune [30] and the MSTW2008LO [31] PDF set. The
detector response is simulated using the Geant4 framework [32, 33]. The data and MC events are recon-
structed with the same software algorithms.

Several next-to-leading-order (NLO) MC calculations of the tt̄ process are used in the analysis, and to
compare with the measured differential cross-sections. The Powheg-Box v2 [34], MadGraph5_aMC@NLO
[35] and Sherpa [36] Monte Carlo event generators encode different approaches to the matrix element
calculation and different matching schemes between the NLO QCD matrix-element calculation and the
parton shower algorithm. A more detailed explanation of the differences among these event generators
can be found in Ref. [37].

The nominal sample uses the Powheg-Box v2 [34] event generator employing the NNPDF30 PDF set in-
terfaced with the Pythia8 parton shower and hadronization model (hereafter also referred to as PWG+PY8).
The Powheg hdamp parameter, which controls the pT of the first additional emission beyond the Born con-
figuration, is set to 1.5 times the top-quark mass [38]. The main effect of this is to regulate the high-pT
emission against which the tt̄ system recoils. To enhance the production of top quarks in the high-pT
region, the Powheg parameter bornsuppfact is set to pT,supp = 500 GeV [34, 39]. The Pythia8 param-
eters are chosen for good agreement with ATLAS Run-1 data by employing the A14 tune [40] with the
NNPDF23LO PDF set [41].

Two alternative Powheg+Pythia8 samples with systematic variations of the Powheg and Pythia8 parame-
ters probe the effects of the experimental tuning of the MC event generators. One sample, which primarily
increases the amount of initial- and final-state radiation, uses hdamp = 3mtop, the factorization and renor-
malization scale reduced by a factor of 2 and the A14 Var3c Up tune variation [40]. The second sample,
which decreases the amount of initial- and final-state radiation, uses hdamp = 1.5mtop, the factorization
and renormalization scale increased by a factor of 2 and the A14 Var3c Down tune variation [40].

An alternative matrix element calculation and matching with the parton shower is realized with the Mad-
Graph5_aMC@NLO event generator (hereafter referred to as MG5_aMC@NLO) [35] interfaced with
the Pythia8 parton shower and hadronization model using the same tune as the nominal sample. This
sample requires the leading top quark in each event to have pT > 300 GeV to ensure that the high-pT
region is adequately populated. The effects of using alternative parton shower and hadronization models
is probed by interfacing the nominal Powheg setup with the Herwig7 parton shower and hadronization
model [42] employing the H7UE tune (hereafter also referred to as PWG+H7). Another calculation using
the Sherpa v2.2.1 event generator [36] with the default Sherpa parton shower and hadronization model
merges the NLO tt̄ matrix element with matrix element calculations including up to four additional jets
using the MEPS@NLO setup [43].
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The Wt single-top-quark processes are modeled using the Powheg-Box v2 event generator with the
CT10 PDF set [44]. For the single-top-quark process, the top quarks are decayed using MadSpin [45].
The parton shower, fragmentation and the underlying event for these processes are simulated using the
Pythia 6.428 event generator [46] with the CTEQ6L1 PDF sets and the corresponding Perugia 2012 tune
(P2012) [47]. Electroweak t- and s-channel single-top-quark events are not explicitly modeled because of
the small cross-section of these processes and the low jet multiplicity in the final state. Their contribution
is accounted for in the data-driven background estimate.

The associated production of tt̄ pairs with W, Z and Higgs bosons is modeled using the MG5_aMC@NLO
event generator [35] coupled to the Pythia8 parton shower and hadronization model using the same PDF
sets and tunes as the tt̄ sample.

The top-quark mass is set to mtop = 172.5 GeV for all samples and the renormalization and factorization

scales are set to µR/F =

√
m2

top + 1
2 (pT(t)2 + pT(t̄)2) for all tt̄ samples except where explicity noted above.

The EvtGen v1.2.0 program [48] is used for modeling the properties of the bottom and charm hadron
decays for all event generator setups other than for the Sherpa sample.

The tt̄ samples are normalized using the next-to-next-to-leading-order cross-section plus next-to-next-
to-leading-logarithm corrections (NNLO+NNLL) σtt̄ = 832+46

−51 pb [49], where the uncertainties reflect
the effect of scale and PDF variations. The single-top-quark cross-section is normalized to the NLO
predictions [50]. The associated production of tt̄ pairs with W, Z and Higgs bosons are normalized to
0.603 pb, 0.586 pb and 0.231 pb, respectively, as predicted by the MG5_aMC@NLO event generator.

4 Event reconstruction and selection

This analysis makes use of jets, electrons and muons as well as event-based measures formed from their
combinations. The event reconstruction and selection are summarized in the following subsections.

4.1 Event reconstruction

Electron candidates are identified from high-quality inner detector tracks matched to calorimeter deposits
consistent with an electromagnetic shower. The calorimeter deposits have to form a cluster with ET >

25 GeV, |η| < 2.47 and be outside the transition region 1.37 ≤ |η| ≤ 1.52 between the barrel and endcap
calorimeters. A likelihood-based requirement is used to suppress misidentified jets (hereafter referred to
as fakes), and calorimeter- and track-based isolation requirements are imposed [51, 52]. Overall, these
criteria result in electron identification efficiencies of ∼ 90% for electrons with pT > 25 GeV and 96%
for electrons with pT > 60 GeV.

Muon candidates are reconstructed using high-quality inner detector tracks combined with tracks recon-
structed in the muon spectrometer. Only muon candidates with pT > 25 GeV and |η| < 2.5 are considered.
Isolation criteria similar to those used for electrons are used [53]. To reduce the impact of non-prompt
leptons, muons within ∆R =

√
(∆η)2 + (∆φ)2 = 0.4 of a jet are removed.

The anti-kt algorithm implemented in the FastJet package [54, 55] is used to define two types of jets for
this analysis: small-R jets with a radius parameter of R = 0.4 and large-R jets with R = 1.0. These
are reconstructed independently of each other from topological clusters in the calorimeter. The clusters
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used as input to the large-R jet reconstruction are calibrated using the local calibration method described
in Ref. [56]. The small-R jet energy scale is obtained by using an energy- and η-dependent calibration
scheme resulting from simulation and in situ corrections based on data [57–60]. Only small-R jets that
have |η| < 2.5 and pT > 25 GeV are considered. To reduce pileup effects, an algorithm that determines
whether the primary vertex is the origin of the charged-particle tracks associated with a jet candidate
is used to reject jets coming from other interactions [61]. This is done only for jet candidates with
pT < 50 GeV and |η| < 2.4. The small-R jet closest to an electron candidate is removed if they are
separated by no more than ∆R = 0.2. Small-R jets containing b-hadrons are identified (b-tagged) using
a multivariate discriminant that combines information about secondary vertices and impact parameters.
The small-R jets are considered b-tagged if the value of the discriminant is larger than a threshold that
provides 70% efficiency. The corresponding rejection factors for gluon/light-quark jets and charm-quark
jets are approximately 125 and 4.5, respectively [62, 63].

The large-R jet energy scale is derived by using energy- and η-dependent calibration factors derived
from simulation and in situ measurements [57, 58, 64]. The large-R jet candidates are required to have
|η| < 2.0 and pT > 300 GeV. A trimming algorithm [65] with parameters Rsub = 0.2 and fcut = 0.05
is applied to suppress gluon radiation and further mitigate pileup effects. A top-tagging algorithm [66]
is applied that consists of pT-dependent requirements on two variables: the jet mass mJ , measured from
clusters in the calorimeter, and the N-subjettiness ratio τ32 [67, 68]. The N-subjettiness variable τN

expresses how well a jet can be described as containing N or fewer subjets. The ratio τ32 = τ3/τ2 allows
discrimination between jets containing a three-prong structure and jets containing a two-prong structure.
The pT-dependent requirements provide a 50% top-quark tagging efficiency independent of pT, with a
light-quark and gluon jet rejection factor of ∼ 17 at pT = 500 GeV and decreasing with increasing pT to
∼ 10 at pT = 1 TeV. This combination of variables used with trimmed large-R jets provides the necessary
rejection for this analysis, and is insensitive to the effects of pileup.

4.2 Event selection

The event selection identifies fully hadronic tt̄ events where both top quarks have high pT. Each event
is required to have a primary vertex with five or more associated tracks with pT > 0.4 GeV. In order to
reject top-quark events where a top quark has decayed semileptonically, the events are required to contain
no reconstructed electron or muon candidate. To identify the fully hadronic decay topology, events must
have at least two large-R jets with pT > 350 GeV, |η| < 2.0 and |mJ −mtop| < 50 GeV, where the top-quark
mass mtop is set to 172.5 GeV. The leading jet is required to have pT > 500 GeV and the event must
contain at least two small-R jets with pT > 25 GeV and |η| < 2.5. This preselection results in an event
sample of 22.7 million events.

To reject multijet background events, the two highest pT large-R jets must satisfy the top-tagging criteria
described in Sec. 4.1. Furthermore, both top-tagged large-R jets are required to have an associated small-
R b-tagged jet. This association, hence referred to as b-matching, is made by requiring ∆R < 1.0 between
the small-R and large-R jets. These two highest pT large-R jets are the leading and second-leading top-
quark candidate jets (or “top-quark jets” in what follows). The candidate tt̄ final state is defined as the
sum of the four-momenta of the two large-R top-quark jets.

This selection defines the signal region, which has 3541 events.
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5 Background estimation

There are two categories of background sources: those involving one or more top quarks in the final
state and those sources where no top quark is involved. The background processes involving top quarks
are estimated using MC calculations. The largest background source is events where the two leading
jets both arise from gluons or u, d, s, c, or b quarks (which are referred to as “multijet” events). Monte
Carlo predictions of multijet events have large uncertainties coming from the relatively poorly understood
higher-order contributions that produce a pair of massive jets [69, 70]. To avoid these large uncertainties
the multijet background is determined using a data-driven technique. A similar method was used in
previous work [20].

A Powheg+Pythia8 tt̄ sample is used to estimate the number of tt̄ events in the sample that arise from
at least one top quark decaying semileptonically. This includes contributions from decays resulting in
τ leptons, as no attempt is made to identify τ lepton candidates and reject them. The rate is estimated
to be only ∼ 4% in the signal region, primarily due to the top-tagging requirements. However, this
category of tt̄ events contributes to control and validation regions where the top-tagging and/or b-tagging
requirements are relaxed. Thus, this MC prediction is used to estimate this contamination. Single-top-
quark production in the Wt-channel makes a small contribution to the signal sample, which is estimated
using the MC predictions described earlier. The t-channel single-top-quark process is not included, but is
partially accounted for in the multijet background estimate.

The data-driven multijet background estimate is performed using a set of control regions. Sixteen separate
regions are defined by classifying each event in the preselection sample according to whether the leading
and second-leading jets are top-tagged or b-tagged. Table 1 shows the 16 regions that are defined in
this way, and illustrates the proportion of expected tt̄ events in each region relative to the observed rate.
Region S is the signal region, while the regions with no b-tags (A, C, E and F) and the regions with one
b-tag and no top-tags (B and I) are dominated by multijet backgrounds.

After subtracting the estimated contributions of the tt̄ signal and of the other background sources to each
of the control regions, the number of events in region J divided by the number of events in region A gives

Table 1: Region labels and expected proportion of tt̄ events used for the data-driven background prediction of mul-
tijet events. A top-quark tagged jet is defined by the tagging algorithm described in the text, and denoted “1t” in
the table, while a jet that is not top-tagged is labeled “0t”. A b-match is defined as ∆R(J, b) < 1.0, where J rep-
resents a large-R jet and “b” represents a b-tagged jet. The labels “1b” and “0b” represent large-R jets that either
have or not have a b-match. Regions K, L, N and M have an expected contribution from sources involving one or
more top quarks of at least 15% of the observed yield. In other regions, the expected contribution from signal and
backgrounds involving top quarks is less than 15% of the observed event rate.

2n
d

la
rg

e-
R

je
t 1t1b J (7.6%) K (21%) L (42%) S

0t1b B (2.2%) D (5.8%) H (13%) N (47%)

1t0b E (0.7%) F (2.4%) G (6.4%) M (30%)

0t0b A (0.2%) C (0.8%) I (2.2%) O (11%)

0t0b 1t0b 0t1b 1t1b

Leading large-R jet
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an estimate of the ratio of the number of multijet events in region S to the number of multijet events in
region O.

Thus one can use these relationships to estimate the multijet background rate in region S, i.e. S = O×J/A,
where O, J and A are the number of observed events in each region, while S is the estimate of the multijet
background in region S.

This “ABCD” estimate assumes that the mistagging rate of the leading jet does not depend on how the
second-leading jet is tagged. This assumption is avoided by measuring the correlations in background-
dominated regions, e.g. comparing the ratio of the numbers of events in regions F and E (giving the
leading jet top-tagging rate when the second-leading jet is top-tagged) with the ratios of events in regions
C and A (giving the leading jet top-tagging rate when the second leading jet is not top-tagged). This
results in a refined data-driven estimate of the size of the multijet background given by

S =
J × O

A
·

D × A
B ×C

·
G × A
E × I

·
F × A
E ×C

·
H × A
B × I

,

=
J × O × H × F × D ×G × A3

(B × E ×C × I)2 , (1)

where the region name is the number of observed events in that region. The measured correlations in the
tagging of background jets result in an increase of (12 ± 3)% in the background estimate compared with
the estimate assuming that the tagging rates are independent. This estimate is also valid when a variable
characterizing the kinematics of the events in all the regions is further restricted to range between specific
values. This provides a bin-by-bin data-driven background estimate with uncertainties that come from
the number of events in the regions used in Eq. (1).

Regions L and N are estimated to consist of approximately equal numbers of tt̄ signal events and multijet
background events. They are used as validation regions to verify that the signal and background estimates
are robust. In these cases, the multijet background is estimated using different combinations of control
regions, namely N = H × D/B and L = H ×G/I.

The number of multijet events in the signal region is calculated by applying Eq. (1) to the number of
events in the control regions. This results in an estimate of 810 ± 50 multijet events in the signal region,
where the uncertainty takes into account the statistical uncertainties as well as the systematic uncertainties
in the tt̄ signal subtraction.

There is good agreement in the validation regions between the predicted and observed event yields, as well
as in the shape of distributions that are sensitive to the proportion of tt̄ signal and multijet background.
This is illustrated in Fig. 1, which compares the large-R jet mass distributions and the highest-pT subjet
mass distribution of the leading jets. A shift between the measured and predicted jet mass distributions,
shown in Figs. 1(a) and 1(b), is consistent with the uncertainties arising from the calibration for large-R
jets [71]. The distributions for the leading and second-leading jet pT and rapidity in regions N and L are
shown in Fig. 2, and can be compared with the signal region distributions in Fig. 3.

The level of agreement between the observed and predicted distributions in the signal region can be seen
in Fig. 3, which shows the distributions of the leading top-quark pT and absolute value of rapidity, as well
as the same distributions for the second-leading jet.

The event yields are summarized in Table 2 for the simulated signal, the background sources and the data
sample.
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Figure 1: Kinematic distributions of top-quark candidate jets in the signal region S and in the two validation regions
N and L. The leading large-R jet mass distributions for the events in the validation region N and the signal region
S are shown in (a) and (b), respectively. The mass distribution of the leading small-R subjet in the leading large-
R jet for events in the validation region L and in the signal region are shown in (c) and (d), respectively. The
signal prediction (open histogram) is based on the Powheg+Pythia8 event generator normalized to the NNLO+NLL
cross-section. The background is the sum of the data-driven multijet estimate (dark histogram) and the MC-based
expectation for the contributions of non-all-hadronic tt̄ and single-top-quark processes. Events beyond the x-axis
range are included in the last bin. The gray area indicates the combined statistical and systematic uncertainties,
including tt̄ modeling uncertainties.
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Figure 2: Kinematic distributions of top-quark candidate jets in the two validation regions N and L: (a) transverse
momentum and (b) absolute value of the rapidity of the leading large-R jet, (c) transverse momentum and (d)
absolute value of the rapidity of the second-leading large-R jet. The signal prediction (open histogram) is based on
the Powheg+Pythia8 event generator normalized to the NNLO+NLL cross-section. The background is the sum of
the data-driven multijet estimate (dark histogram) and the MC-based expectation for the contributions of non-all-
hadronic tt̄ and single-top-quark processes. Events beyond the x-axis range are included in the last bin. The gray
area indicates the combined statistical and systematic uncertainties, including tt̄ modeling uncertainties.

10



 [GeV]t,1
T

p

500 600 700 800 900 1000 1100 1200

E
ve

nt
s 

/ G
eV

0

10

20

30

40

50

ATLAS
-1 = 13 TeV, 36.1 fbs

Signal region

Data 2015+2016
 (all-had)tt
 (non all-had)tt

Single top
+W/Z/Htt

Multijet
Stat. Unc.

 Det. Syst. Unc.⊕Stat. 
 Tot. Syst. Unc.⊕Stat. 

 [GeV]t,1

T
p

500 600 700 800 900 1000 1100 1200P
re

di
ct

io
n

D
at

a

0.5
1

1.5

(a)

|t,1|y

0 0.5 1 1.5 2

|
t,1

E
ve

nt
s 

/ u
ni

t o
f |

y

0

1000

2000

3000

4000

5000

6000

7000 ATLAS
-1 = 13 TeV, 36.1 fbs

Signal region

 (all-had)tt Data 2015+2016
 (non all-had)tt Stat. Unc.

Single top  Det. Syst. Unc.⊕Stat. 
+W/Z/Htt  Tot. Syst. Unc.⊕Stat. 

Multijet

|
t,1

|y

0 0.5 1 1.5 2P
re

di
ct

io
n

D
at

a
0.5

1
1.5

(b)

 [GeV]t,2
T

p

400 600 800 1000 1200

E
ve

nt
s 

/ G
eV

0

5

10

15

20

25

30 ATLAS
-1 = 13 TeV, 36.1 fbs

Signal region

Data 2015+2016
 (all-had)tt
 (non all-had)tt

Single top
+W/Z/Htt

Multijet
Stat. Unc.

 Det. Syst. Unc.⊕Stat. 
 Tot. Syst. Unc.⊕Stat. 

 [GeV]t,2

T
p

400 600 800 1000 1200P
re

di
ct

io
n

D
at

a

0.5
1

1.5

(c)

|t,2|y

0 0.5 1 1.5 2

|
t,2

E
ve

nt
s 

/ u
ni

t o
f |

y

0

1000

2000

3000

4000

5000

6000

7000
ATLAS

-1 = 13 TeV, 36.1 fbs
Signal region

 (all-had)tt Data 2015+2016
 (non all-had)tt Stat. Unc.

Single top  Det. Syst. Unc.⊕Stat. 
+W/Z/Htt  Tot. Syst. Unc.⊕Stat. 

Multijet

|
t,2

|y

0 0.5 1 1.5 2P
re

di
ct

io
n

D
at

a

0.5
1

1.5

(d)

Figure 3: Kinematic distributions of top-quark candidate jets in the signal region S: (a) transverse momentum
and (b) absolute value of the rapidity of the leading top-quark jet, (c) transverse momentum and (d) absolute
value of the rapidity of the second-leading top-quark jet. The signal prediction (open histogram) is based on the
Powheg+Pythia8 simulation normalized to the NNLO+NLL cross-section. The background is the sum of the data-
driven multijet estimate (dark histogram) and the MC-based expectation for the contributions of non-all-hadronic tt̄
and single-top-quark processes. Events beyond the x-axis range are included in the last bin. The gray area indicates
the combined statistical and systematic uncertainties in the total prediction, including tt̄ modeling uncertainties.
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Table 2: Event yields in the signal region for the expected tt̄ signal process and the background processes. The sum
of these are compared to the observed yield. The uncertainties represent the sum in quadrature of the statistical
and systematic uncertainties in each subsample. Neither modeling uncertainties nor uncertainties in the inclusive
tt̄ cross-section are included in the systematic uncertainties. The single-top-quark background does not include the
t-channel process.

tt̄ (all-hadronic) 3250 ± 470
tt̄ (non-all-hadronic) 200 ± 40
Single-top-quark 24 ± 12
tt̄+W/Z/H 33 ± 10
Multijet events 810 ± 50

Prediction 4320 ± 530
Data (36.1 fb−1) 3541

6 Unfolding procedure

The differential cross-sections are obtained from the data using an unfolding technique that corrects for
detector effects such as efficiency, acceptance and resolution. This correction is made to the particle level
using a fiducial phase space that is defined to match the experimental acceptance and hence avoid large
MC extrapolations. The parton-level differential cross-sections are obtained using a similar procedure,
but in this case the correction is made to the top-quark parton after final-state radiation effects have
been included in the generation process using a limited phase-space region matched to the kinematic
acceptance of the analysis.

In the following subsections, the particle-level fiducial phase space and the parton-level phase space are
defined and the algorithm used for the unfolding is described.

6.1 Particle-level fiducial phase-space and parton-level phase-space regions

The particle-level fiducial phase-space definition models the kinematic requirements used to select the tt̄
process.

In the MC signal sample, electrons and muons that do not originate from hadron decays are combined
or “dressed” with any photons found in a cone of size ∆R = 0.1 around the lepton direction. The four-
momentum of each photon in the cone is added to the four-momentum of the lepton to produce the dressed
lepton.

Jets are clustered using all stable particles except those used in the definition of dressed electrons and
muons and neutrinos not from hadron decays, using the anti-kt algorithm with a radius parameter R = 0.4
and R = 1.0 for small-R and large-R jets, respectively. The decay products of hadronically decaying τ
leptons are included. These jets do not include particles from pileup events but do include those from
the underlying event. Large-R jets are required to have pT > 350 GeV and a mass within 50 GeV of the
top-quark mass.
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The following requirements on particle-level electrons, muons and jets in the all-hadronic tt̄ MC events
define the particle-level fiducial phase space:

• no dressed electrons or muons with pT > 25 GeV and |η| < 2.5 be in the event,

• at least two anti-kt R = 1.0 jets with pT > 350 GeV and |η| < 2.0,

• at least one anti-kt R = 1.0 jet with pT > 500 GeV and |η| < 2.0,

• the masses of the two large-R jets be within 50 GeV of the top-quark mass of 172.5 GeV,

• at least two anti-kt R = 0.4 jets with pT > 25 GeV and |η| < 2.5 and

• the two leading R = 1.0 jets be matched to a b-hadron in the final state using a ghost-matching
technique as described in Ref. [72] (called top-quark particle jets).

The parton-level phase space is defined by requiring that the leading top quark have pT > 500 GeV and
the second-leading top quark have pT > 350 GeV. No rapidity or other kinematic requirements are made.
This definition avoids a large extrapolation in the unfolding procedure that results in large systematic
uncertainties.

6.2 Unfolding algorithm

The iterative Bayesian method [73] as implemented in RooUnfold [74] is used to correct the detector-
level event distributions to their corresponding particle- and parton-level differential cross-sections. The
unfolding starts from the detector-level event distributions after subtraction of the estimated backgrounds.
An acceptance correction facc is applied that accounts for events that are generated outside the fiducial or
parton phase space but pass the detector-level selection.

In order to properly account for resolution and any combinatorial effects, the detector-level and particle-
level (parton-level) objects in MC events are required to be well-matched using the angular difference ∆R.
At particle (parton) level, each top-quark particle-level jet (top quark) is matched to the closest detector-
level jet within ∆R < 1.0, a requirement that ensures high matching efficiency. The resulting acceptance
corrections f j

acc are illustrated in Fig. 4.

The unfolding step uses a migration matrix (M) derived from simulated tt̄ events with matching detector-
level jets by binning these events in the particle-level and parton-level phase spaces. The probability for
particle-level (parton-level) events to remain in the same bin is therefore represented by the elements on
the diagonal, and the off-diagonal elements describe the fraction of particle-level (parton-level) events
that migrate into other bins. Therefore, the elements of each row add up to unity (within rounding) as
shown in Fig. 5. The efficiency corrections εeff correct for events that are in the fiducial particle-level
(parton-level) phase space but are not reconstructed at the detector level, and are illustrated in Fig. 4. The
overall efficiency is largely determined by the working points of the b-tagging (70%) and top-tagging
(50%) algorithms. The reduction in efficiency at higher top-quark candidate pT arises primarily from the
b-tagging requirements. Examples of the migration matrices for several variables are shown in Fig. 5.

The unfolding procedure for an observable X at both particle and parton level is summarized by the
expression

dσfid

dXi ≡
1∫

L dt · ∆Xi
·

1
εi

eff

·
∑

j

M−1
i j · f j

acc ·
(
N j

reco − N j
bg

)
,
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where Nreco and Nbg refer to the number of reconstructed signal and background events, respectively; the
index j runs over bins of X at detector level while the index i labels bins at particle and parton level;
∆Xi is the bin width while

∫
L dt is the integrated luminosity. The Bayesian unfolding is symbolized by

M−1
i j .

The inclusive cross-section for tt̄ pairs in the fiducial (parton) phase space, obtained by integrating the
absolute differential cross-section, is used to determine the normalized differential cross-section 1/σfid ·

dσfid/dXi. This cross-section is not corrected for the all-hadronic tt̄ branching fraction of 0.457 [75].

Tests are performed at both particle and parton level to verify that the unfolding procedure is able to
recover the generator-level distributions for input distributions that vary from the observed distributions
or nominal predictions. These closure tests show that the unfolding procedure results are unbiased so long
as the features of the input distributions are consistent with the measurement resolution of the variable.
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Figure 4: Acceptance and efficiency corrections as a function of pT and |y| of the leading top-quark jet for the
particle-level phase space in (a) and (c) and for the parton-level phase space in (b) and (d). The Powheg+Pythia8
event generator is used as the nominal prediction to correct for detector effects. The blue and red areas represent
statistical uncertainties.
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Figure 5: Migration matrices for pT and |y| of the leading top-quark jet in the particle-level fiducial phase space in
(a) and (b) and parton-level phase space in (c) and (d). Each row is normalized to 100. The Powheg+Pythia8 event
generator is used as the nominal prediction.
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7 Systematic uncertainties

Systematic uncertainties resulting from electron, muon and jet reconstruction and calibration, MC event
generator modeling and background estimation, are described below. The propagation of systematic
uncertainties through the unfolding procedure is described in Sec. 7.2.

7.1 Estimation of systematic uncertainties

The systematic uncertainties in the measured distributions are estimated using MC data sets and the data
satisfying the final selection requirements.

Estimates of large-R jet uncertainties [71] are derived by studying tracking and calorimeter-based mea-
surements and comparing these in data and MC simulations. These uncertainties also include the energy,
mass and substructure response. The uncertainty in the large-R jet mass resolution is incorporated by
measuring the effect that an additional resolution degradation of 20% has on the observables [64, 76].
The total uncertainty affecting the cross-section arising from jet calibration and reconstruction ranges
from 11% to 30% for jet pT over the range 350 to 900 GeV.

The small-R jet energy scale uncertainty is derived using a combination of simulations, test-beam data
and in situ measurements [57–59, 77]. Additional uncertainty contributions from the jet flavor compo-
sition, calorimeter response to different jet flavors and pileup are taken into account. Uncertainties in
the jet energy resolution are obtained with an in situ measurement of the jet response asymmetry in dijet
events [78]. These small-R jet uncertainties are typically below 1% for all distributions.

Uncertainties associated with pileup, the effect of additional interactions and the selection requirements
used to mitigate them are estimated using comparisons of data and MC samples and are approximately
1%. The efficiency to tag jets containing b-hadrons is corrected in simulated events by applying b-tagging
scale factors, extracted in tt̄ and dijet samples, in order to account for the residual difference between data
and simulation. The associated systematic uncertainties, computed by varying the b-tagging scale factors
within their uncertainties [62, 63], are found to range from ±8% to ±17% for large-R jet pT increasing
from 500 to 900 GeV. The uncertainties arising from lepton energy scale and resolution [52, 53, 79] are
< 1%.

Systematic uncertainties affecting the multijet background estimates come from the subtraction of other
background processes in the control regions and from the uncertainties in the measured tagging correla-
tions (which are statistical in nature). The uncertainty in the subtraction of the all-hadronic tt̄ events in the
control regions arises from the uncertainties in the tt̄ cross-section and b-matching algorithm. Together,
these result in background uncertainties ranging from ±2 to ±5% for large-R jet pT ranging from 350 to
900 GeV, respectively. The uncertainty in the single-top-quark background rates comes from the uncer-
tainties in the Wt production cross-section, the integrated luminosity, detection efficiency and the relative
contribution of t-channel and Wt production, which is assigned an uncertainty of ±50%.

Other MC event generators are employed to assess modeling systematic uncertainties. In these cases, the
difference between the unfolded distribution of an alternative model and its own particle-level or parton-
level distribution is used as the estimate of the corresponding systematic uncertainty in the unfolded
differential cross-section.
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To assess the uncertainty related to the matrix element calculation and matching to the parton shower,
MG5_aMC@NLO+Pythia8 events are unfolded using the migration matrix and correction factors de-
rived from the Powheg+Pythia8 sample. This uncertainty is found to be in the range ±10–15%, depend-
ing on the variable, increasing to ±20–30% at large pt

T, mtt̄, ptt̄
T and

∣∣∣ytt̄
∣∣∣ where there are fewer data events.

To assess the uncertainty associated with the choice of parton shower and hadronization model, a com-
parison is made of the unfolded and particle-level distributions of simulated events created with Powheg
interfaced to the Herwig7 parton shower and hadronization model using the nominal Powheg+Pythia8
corrections and unfolding matrices. The resulting systematic uncertainties, taken as the symmetrized
difference, are found to be ±5–15%. The uncertainty related to the modeling of initial- and final-state
radiation is determined using two alternative Powheg+Pythia8 tt̄ MC samples described in Sec. 3. This
uncertainty is found to be in the range ±10–15%, depending on the variable considered. The uncer-
tainty arising from the size of the nominal MC sample is approximately 1%, scaling with the statistical
uncertainty of the data as a function of the measured variables.

The uncertainty arising from parton distribution functions is assessed using the Powheg+Pythia8 tt̄ sam-
ple. An envelope of spectra is determined by reweighting the central prediction of the PDF4LHC PDF set
[80] and applying the relative variation to the nominal distributions. This uncertainty is found to be less
than 1%.

The uncertainty in the integrated luminosity is ±2.1%. It is derived, following a methodology similar to
that detailed in Ref. [81], from a calibration of the luminosity scale using x–y beam-separation scans
performed in August 2015 and May 2016.

Other sources of systematic uncertainty (e.g., the top-quark mass) are less than 1%.

7.2 Propagation of systematic uncertainties and treatment of correlations

The statistical and systematic uncertainties are propagated and combined in the same way for both the
particle-level and parton-level results using pseudoexperiments created from the nominal and alternative
MC samples.

The effect of the data statistical uncertainty is incorporated by creating pseudoexperiments in which in-
dependent Poisson fluctuations in each data bin are made. The statistical uncertainty due to the size of
the signal MC samples used to correct the data is incorporated into the pseudoexperiments by adding
independent Poisson fluctuations for a bin corresponding to the MC population in the bin.

To evaluate the impact of each uncertainty after the unfolding, the simulated distribution is varied, then un-
folded using corrections obtained with the nominal Powheg+Pythia8 sample. The unfolded varied distri-
bution is compared to the corresponding particle- or parton-level distribution. For each systematic uncer-
tainty, the correlation between the signal and background distributions is taken into account. All detector-
and background-related systematic uncertainties are estimated using the nominal Powheg+Pythia8 sam-
ple. Alternative hard-scattering, parton shower and hadronization, ISR/FSR and PDF uncertainties are
estimated by a comparison between the unfolded cross-section and the corresponding particle- or parton-
level distribution produced using the corresponding alternative Monte Carlo event generator.

The systematic uncertainties for the particle-level fiducial phase-space total cross-section measurement
described below are listed in Table 3.

18



Table 3: Summary of the largest systematic and statistical relative uncertainties for the absolute particle-level fidu-
cial phase-space cross-section measurement in percent. Most of the uncertainties that are less than 1% are not
listed.

Source Percentage
Large-R jet energy scale 5.9
Large-R jet mass calibration 1.4
Large-R jet top-tagging 12
Small-R jets 0.3
Pileup 0.6
Flavor tagging 8.3
Background 0.9
Luminosity 2.0
Monte Carlo statistical uncertainty 0.9
Alternative hard-scattering model 11
Alternative parton-shower model 14
ISR/FSR + scale 1.1
Total systematic uncertainty 24
Data statistical uncertainty 2.3
Total uncertainty 24

Figure 6 shows a summary of the relative size of the systematic uncertainties for the leading top-quark jet
transverse momentum and rapidity at particle level and parton level.
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Figure 6: Relative uncertainties in the normalized differential cross-sections as a function of the leading top-quark
jet transverse momentum and rapidity at particle level and parton level. The light and dark blue areas represent
the total and statistical uncertainty, respectively. The Powheg+Pythia8 event generator is used as the nominal
prediction to correct for detector effects.

A covariance matrix is constructed for each differential cross-section to include the effect of all uncer-
tainties to allow quantitative comparisons with theoretical predictions. This covariance matrix is derived
by summing two covariance matrices following the same approach used in Refs. [10, 14].

The first covariance matrix incorporates statistical uncertainties and systematic uncertainties from de-
tector effects and background estimation by using pseudoexperiments to convolve the sources. In each
pseudoexperiment, the detector-level data distribution is varied following a Poisson distribution. For
each systematic uncertainty effect, Gaussian-distributed shifts are coherently included by scaling each
Poisson-fluctuated bin content with its expected relative variation from the associated systematic un-
certainty. Differential cross-sections are obtained by unfolding the varied distribution with the nominal
corrections, and the distribution of the resulting changes in the unfolded distributions are used to compute
this first covariance matrix.

The second covariance matrix is obtained by summing four separate covariance matrices corresponding
to the effects of the tt̄ event generator, parton shower and hadronization, ISR/FSR and PDF uncertainties.
The bin-to-bin correlation values are set to unity for all these matrices.

The comparison between the measured differential cross-sections and a variety of MC predictions is
quantified by calculating χ2 values employing the covariance matrix and by calculating the corresponding
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p-values (probabilities that the χ2 is larger than or equal to the observed value assuming that the measured
and predicted distributions are statistically equivalent) from the χ2 and the number of degrees of freedom
(NDF). The χ2 values are obtained using

χ2 = VT
Nb
· Cov−1

Nb
· VNb ,

where VNb is the vector of differences between measured differential cross-section values and predictions,
and Cov−1

Nb
is the inverse of the covariance matrix.

The normalization constraint used to derive the normalized differential cross-sections lowers the NDF to
one less that the rank of the Nb × Nb covariance matrix, where Nb is the number of bins in the unfolded
distribution. The χ2 for the normalized differential cross-sections is

χ2 = VT
Nb−1 · Cov−1

Nb−1 · VNb−1 ,

where VNb−1 is the vector of differences between measurement and prediction obtained by discarding one
of the Nb elements and CovNb−1 is the (Nb − 1) × (Nb − 1) sub-matrix derived from the covariance matrix
by discarding the corresponding row and column.

8 Measurement of the differential cross-sections

The differential cross-sections are obtained from the data using the unfolding technique described above.
In the following subsections, the resulting particle-level and parton-level differential cross-sections are
presented.

8.1 Particle-level fiducial phase-space differential cross-section

The unfolded differential cross-sections, normalized to the total cross-section for the fiducial phase space,
are shown in Fig. 7 for the pT and rapidity of the leading and second-leading top-quark jets, and in
Fig. 8 for the pT, mass and rapidity of the tt̄ system. The unfolded differential cross-sections are shown
in Figs. 9–11 for the tt̄ production angle in the Collins–Soper reference frame, the scalar sum of the
transverse momenta of the two top quarks, Htt̄

T , the longitudinal boost, ytt̄
B, the azimuthal angle between

the two top-quark jets, ∆φtt̄, the variable related to the rapidity difference between the two top-quark jets,
χtt̄, and the absolute value of the out-of-plane momentum, ptt̄

out. These are compared with SM predictions
obtained using the NLO MC event generators described in Sec. 3.

This analysis is sensitive to top-quark jets produced with pT up to approximately 1 TeV and to a rapidity
|yt| < 2.0. The differential cross-section falls by two orders of magnitude as a function of top-quark jet
transverse momentum over a pT range from 500 GeV to 1 TeV. The production cross-section decreases as
a function of top-quark jet rapidity by approximately 30% from yt = 0 to yt = ±1. The differential cross-
section as a function of pT for the second-leading top-quark jet reflects the effect of the pT requirement
on the leading top-quark jet and the strong correlation in pT of the two top-quark jets arising from the
pair-production process.

The tt̄ system is centrally produced with a transverse momentum typically below 200 GeV, an invariant
mass below 1.5 TeV and a rapidity |yt| < 1.5. In particular, the mtt̄ distribution falls smoothly, with a
sensitivity that extends up to ∼ 2 TeV.
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Figure 7: Normalized particle-level fiducial phase-space differential cross-sections as a function of (a) transverse
momentum of the leading top-quark jet, (b) transverse momentum of the second-leading top-quark jet, (c) absolute
value of the rapidity of the leading top-quark jet and (d) absolute value of the rapidity of the second-leading top-
quark jet. The gray bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the
statistical uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal
prediction. Data points are placed at the center of each bin.
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Figure 8: Normalized particle-level fiducial phase-space differential cross-sections as a function of (a) transverse
momentum, (b) invariant mass and (c) absolute value of the rapidity of the tt̄ system. The gray bands indicate the
total uncertainty in the data in each bin. The vertical bars indicate the statistical uncertainties in the theoretical
models. The Powheg+Pythia8 event generator is used as the nominal prediction. Data points are placed at the
center of each bin.
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Figure 9: Normalized particle-level fiducial phase-space differential cross-sections as a function of (a) the scalar
sum of the transverse momenta of the two top-quark jets and (b) the longitudinal boost ytt̄

B. The gray bands indicate
the total uncertainty in the data in each bin. The vertical bars indicate the statistical uncertainties in the theoretical
models. The Powheg+Pythia8 event generator is used as the nominal prediction. Data points are placed at the
center of each bin.
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Figure 10: Normalized particle-level fiducial phase-space differential cross-sections as a function of (a) the az-
imuthal angle between the two top-quark jets ∆φtt̄ and (b) the absolute value of the out-of-plane momentum ptt̄

out.
The gray bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the statistical un-
certainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal prediction. Data
points are placed at the center of each bin.
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Figure 11: Normalized particle-level fiducial phase-space differential cross-sections as a function of (a) the pro-
duction angle in the Collins–Soper reference frame and (b) the variable χtt̄. The gray bands indicate the total
uncertainty in the data in each bin. The vertical bars indicate the statistical uncertainties in the theoretical models.
The Powheg+Pythia8 event generator is used as the nominal prediction. Data points are placed at the center of
each bin.
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8.2 Parton-level phase-space differential cross-sections

The unfolded parton-level phase-space differential cross-sections are shown in Figs.12–16 for the kine-
matical variables describing the top quark, leading top quark, second-leading top quark and the tt̄ sys-
tem.

To measure the average top-quark pT distribution that can be compared with NNLO+NNLL calculations
[1–3], the data are unfolded by randomly selecting one of the two top-quark candidates at the detector
level for each event. The normalized average top-quark pT and rapidity differential cross-sections are
shown in Fig. 12(a) and Fig. 12(b), respectively.
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Figure 12: The normalized parton-level differential cross-sections as a function of (a) the transverse momentum and
(b) the rapidity of the top quark. The orange bands indicate the total uncertainty in the data in each bin. The vertical
bars indicate the statistical uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as
the nominal prediction to correct for detector effects, parton showering and hadronization. Data points are placed
at the center of each bin. The unfolding has required the leading top-quark pT > 500 GeV and the second-leading
top-quark pT > 350 GeV.

26



]
 -

1 
 [G

eV
t,1 T

 / 
d 

p
ttσ

 d
 

⋅ ttσ
1/

5−10

4−10

3−10

2−10

1−10

Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

 [GeV]t,1

T
p

500 600 700 800 900 1000 1100 1200

D
at

a
P

re
di

ct
io

n

0.5

1

1.5

(a)

]
 -

1 
 [G

eV
t,2 T

 / 
d 

p
ttσ

 d
 

⋅ ttσ
1/

5−10

4−10

3−10

2−10

1−10
Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

 [GeV]t,2

T
p

400 600 800 1000 1200
D

at
a

P
re

di
ct

io
n

0.5

1

1.5

(b)

|
t,1

 / 
d 

|y
ttσ

 d
 

⋅ ttσ
1/

0

0.2

0.4

0.6

0.8

1

1.2
Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

|
t,1

|y

0 0.5 1 1.5 2

D
at

a
P

re
di

ct
io

n

0.8
1

1.2

(c)

|
t,2

 / 
d 

|y
ttσ

 d
 

⋅ ttσ
1/

0

0.2

0.4

0.6

0.8

1

1.2

Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

|
t,2

|y

0 0.5 1 1.5 2

D
at

a
P

re
di

ct
io

n

0.8
1

1.2

(d)

Figure 13: The normalized parton-level differential cross-sections as a function of (a) the transverse momentum
of the leading top quark, (b) the transverse momentum of the second-leading top quark, (c) the absolute value of
the rapidity of the leading top quark and (d) the absolute value of the rapidity of the second-leading top quark.
The orange bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the statistical
uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal prediction to
correct for detector effects, parton showering and hadronization. Data points are placed at the center of each bin.
The unfolding has required the leading top-quark pT > 500 GeV and the second-leading top-quark pT > 350 GeV.
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Figure 14: The normalized parton-level differential cross-sections as a function of (a) the tt̄ pT, (b) the tt̄ invariant
mass and (c) the absolute value of tt̄ rapidity. The orange bands indicate the total uncertainty in the data in each
bin. The vertical bars indicate the statistical uncertainties in the theoretical models. The Powheg+Pythia8 event
generator is used as the nominal prediction to correct for detector effects, parton showering and hadronization. Data
points are placed at the center of each bin. The unfolding has required the leading top-quark pT > 500 GeV and
the second-leading top-quark pT > 350 GeV.
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Figure 15: The normalized parton-level differential cross-sections as a function of (a) Htt̄ and (b) ytt̄
B. The orange

bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the statistical uncertainties
in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal prediction to correct for
detector effects, parton showering and hadronization. Data points are placed at the center of each bin. The unfolding
has required the leading top-quark pT > 500 GeV and the second-leading top-quark pT > 350 GeV.
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Figure 16: The normalized parton-level differential cross-sections as a function of (a) ∆φ(t1, t2) and (b)
∣∣∣ptt̄

out

∣∣∣.
The orange bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the statistical
uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal prediction to
correct for detector effects, parton showering and hadronization. Data points are placed at the center of each bin.
The unfolding has required the leading top-quark pT > 500 GeV and the second-leading top-quark pT > 350 GeV.

29



|* θ
 / 

d 
|c

os
ttσ

 d
 

⋅ ttσ
1/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

|
*

θ|cos
0 0.2 0.4 0.6 0.8 1

D
at

a
P

re
di

ct
io

n

0.8
1

1.2

(a)
tt χ

 / 
d 

ttσ
 d

 
⋅ ttσ

1/

3−10

2−10

1−10

1

10
Data
PWG+Py8
PWG+H7
MG5_aMC@NLO+Py8
Sherpa 2.2.1
Stat. Unc.

 Syst. Unc.⊕Stat. 

ATLAS
-1 = 13 TeV, 36.1 fbs

Parton level
 > 350 GeV

T

t,2 > 500 GeV, p
T

t,1p

ttχ
1 2 3 4 5 6 7 8 9 10

D
at

a
P

re
di

ct
io

n

0.8
1

1.2

(b)

Figure 17: The normalized parton-level differential cross-sections as a function of (a) cos θ∗ and (b) χtt̄. The orange
bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the statistical uncertainties
in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal prediction to correct for
detector effects, parton showering and hadronization. Data points are placed at the center of each bin. The unfolding
has required the leading top-quark pT > 500 GeV and the second-leading top-quark pT > 350 GeV.

8.3 Fiducial phase-space inclusive cross-section

The cross-section of tt̄ production in the fiducial phase space defined in this analysis is determined using
the same methodology employed to obtain the unfolded differential cross-sections at particle level, with
the exception that all events are grouped into a single bin. The inclusive fiducial cross-section is:

σfid = 292 ± 7 (stat) ± 76 (syst) fb.

The systematic uncertainties in this measurement, which are dominated by tagging and modeling uncer-
tainties, are summarized in Table 3.

The resulting inclusive fiducial cross-section measurement is shown in Fig. 18 and compared with various
MC predictions. The measured value is below all of the predictions, and in particular is below the Powheg
+Pythia8 prediction of 384 ± 36 fb. The uncertainty in this MC prediction is the sum in quadrature
of statistical, scale and PDF uncertainties, including the uncertainty in the NNLO+NNLL total cross-
section prediction. The scale uncertainty is estimated by determining the envelope of predictions when the
factorization µF and renormalization µR scales are varied by factors of 0.5 and 2.0. The PDF uncertainty
is obtained using the PDF4LHC prescription with 30 eigenvectors. All of the predictions are normalized
to the NNLO+NNLL total tt̄ cross-section.
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Figure 18: Particle-level fiducial phase-space cross-section. The shaded (blue) bands indicate the statistical, detec-
tor and modeling uncertainties in the measurement. The Powheg+Pythia8 event generator is used as the nominal
prediction to correct for detector effects. The uncertainty associated with the Powheg+Pythia8 signal model is the
sum in quadrature of statistical, scale and PDF uncertainties as well as the uncertainty in the inclusive cross-section
prediction. Other predictions show only the statistical uncertainty of the MC sample.
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9 Comparisons with Standard Model predictions

The particle-level fiducial phase-space differential cross-sections and the parton-level differential cross-
sections are compared with several Standard Model calculations.

The predicted total particle-level cross-section for top-quark pair production in the fiducial phase-space
region is larger than the one observed. However, the effect is not statistically significant due to the large
systematic uncertainties. A better agreement is found for Powheg+Herwig7 and to a lesser extent for the
predictions of Powheg+Pythia8 with more initial- and final-state radiation.

The information provided by the shapes of the observed differential cross-section measurements is com-
pared to the predictions using the χ2 test described in Sec. 7.2, which takes into account the correlations
between the measured quantities. The largest correlations at the detector-level arise from sources of un-
certainty that affect all bins equally, so that the most effective comparison is made using the normalized
differential cross-sections where many of the common detector-level uncertainties largely cancel. The
χ2 values and associated p-values that quantify the level of agreement between the measurements and
the predictions are shown in Table 4 for the normalized particle-level fiducial phase-space differential
cross-sections and in Table 5 for the normalized parton-level differential cross-sections.

The particle-level differential cross-sections are generally well-described by the Powheg+Pythia8, Powheg
+Herwig7, MG5_aMC@NLO+Pythia8 and Sherpa event generator predictions. The tt̄ differential cross-
section as a function of the absolute value of the leading top-quark rapidity (Fig. 7(c)) is broader in the
data than the predictions of all Monte Carlo event generators. A similar effect is observed in the tt̄ system
rapidity differential cross-section (Fig. 8(c)). However, the p-values arising from the χ2 comparisons are
mostly within 0.15 to 0.55, reflecting the overall reasonable agreement of the predictions with the mea-
sured differential cross-sections. There are modest differences in the distributions of the production angle
cos θ∗ (Fig. 11(a)) and the variable χtt̄ (Fig. 11(b)), both showing p-values that are generally below 0.2.

The most significant deviations are in the MG5_aMC@NLO particle-level fiducial phase-space differ-
ential cross-sections as a function of ptt̄

T (Fig. 8(a)), ∆φtt̄ (Fig. 10(a)) and
∣∣∣ptt̄

out

∣∣∣ (Fig. 10(b)) for which
the MG5_aMC@NLO+Pythia8 MC event generator predicts a harder ptt̄

T spectrum, a broader azimuthal
opening angle differential cross-section than what is measured and a slower decline than observed as a
function of

∣∣∣ptt̄
out

∣∣∣.
There is similar good agreement between the parton-level differential cross-sections and the Powheg+Pythia8,
Powheg+Herwig7, MG5_aMC@NLO +Pythia8 and Sherpa predictions, confirming the results of the
fiducial phase-space measurements, but with larger uncertainties. As shown in Fig. 14(a), the Powheg+Pythia8
and Powheg+Herwig7 event generators predict a softer pT spectrum of the tt̄ system, while the MG5_aMC@NLO
+ Pythia8 event generator predicts a harder spectrum. The Sherpa event generator offers a good descrip-
tion of the differential cross-section behavior for ptt̄

T in the range 100 to 500 GeV but predicts a steeper
distribution for lower momenta and a higher rate for ptt̄

T > 500 GeV than observed.

The modeling uncertainties generally play a dominant role in determining the significance of the differ-
ence between the measurements and the nominal Powheg+Pythia8 prediction. It suggests that future
work should seek the sources for this potential discrepancy, considering variations in parton shower and
hadronization models as well as the matching of higher-order matrix elements with the parton shower
model.
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Table 4: Comparison between the measured normalized particle-level fiducial phase-space differential cross-
sections and the predictions from several SM event generators. For each variable and prediction, a χ2 and a p-value
are calculated using the covariance matrix described in the text, which includes all sources of uncertainty. The
number of degrees of freedom (NDF) is equal to Nb − 1, where Nb is the number of bins in the distribution.

Observable PWG+PY8 aMC@NLO +PY8 PWG+H7
PWG+PY8
(more IFSR)

PWG+PY8
(less IFSR) Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

pt,1
T 7.7/7 0.36 8.2/7 0.32 8.0/7 0.33 9.1/7 0.24 8.7/7 0.27 9.3/7 0.23
|yt,1| 7.5/5 0.18 12.2/5 0.03 6.8/5 0.24 8.8/5 0.12 8.1/5 0.15 4.0/5 0.55
pt,2

T 8.6/6 0.20 2.6/6 0.86 9.9/6 0.13 12.2/6 0.06 5.0/6 0.54 5.0/6 0.55
|yt,2| 3.7/5 0.59 4.6/5 0.46 3.1/5 0.68 3.5/5 0.63 3.2/5 0.67 2.9/5 0.72
mtt̄ 4.5/9 0.88 4.7/9 0.86 4.0/9 0.91 5.3/9 0.81 5.2/9 0.82 10.0/9 0.35
ptt̄

T 7.8/5 0.17 20.9/5 <0.01 12.6/5 0.03 15.0/5 0.01 1.9/5 0.86 1.9/5 0.87
|ytt̄ | 1.1/5 0.95 2.2/5 0.83 0.9/5 0.97 0.8/5 0.98 1.8/5 0.88 1.7/5 0.89
χtt̄ 14.2/6 0.03 12.7/6 0.05 13.6/6 0.03 16.9/6 <0.01 10.1/6 0.12 18.5/6 <0.01
ytt̄

B 2.5/6 0.87 3.3/6 0.77 2.2/6 0.90 2.6/6 0.86 2.8/6 0.84 3.0/6 0.81∣∣∣ptt̄
out

∣∣∣ 1.9/6 0.93 53.1/6 <0.01 3.1/6 0.80 4.2/6 0.64 4.8/6 0.57 5.9/6 0.44
∆φtt̄ 0.9/3 0.84 16.3/3 <0.01 2.0/3 0.58 3.0/3 0.40 0.6/3 0.89 3.4/3 0.33
Htt̄

T 4.8/6 0.57 5.2/6 0.52 4.5/6 0.61 5.0/6 0.54 5.0/6 0.55 3.1/6 0.80
cos θ? 9.9/5 0.08 10.5/5 0.06 9.3/5 0.10 12.8/5 0.03 6.5/5 0.26 18.7/5 <0.01

Table 5: Comparison between the measured normalized parton-level differential cross-sections and the predictions
from several MC event generators. For each variable and prediction, a χ2 and a p-value are calculated using the
covariance matrix described in the text, which includes all sources of uncertainty. The number of degrees of freedom
(NDF) is equal to Nb − 1, where Nb is the number of bins in the distribution.

Observable PWG+PY8 aMC@NLO +PY8 PWG+H7
PWG+PY8
(more IFSR)

PWG+PY8
(less IFSR) Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

pt
T 3.7/6 0.72 4.5/6 0.61 4.0/6 0.67 3.9/6 0.69 4.0/6 0.68 4.3/6 0.64
|yt | 4.3/7 0.75 4.1/7 0.77 4.0/7 0.78 4.4/7 0.73 4.3/7 0.74 5.3/7 0.62
pt,1

T 5.9/7 0.55 7.0/7 0.43 5.9/7 0.55 6.4/7 0.50 6.2/7 0.52 7.6/7 0.37
|yt,1| 5.5/7 0.60 8.3/7 0.31 5.1/7 0.65 5.9/7 0.55 5.5/7 0.60 4.7/7 0.70
pt,2

T 5.7/6 0.46 2.8/6 0.83 6.1/6 0.41 4.6/6 0.60 7.4/6 0.29 7.0/6 0.32
|yt,2| 4.4/7 0.73 5.1/7 0.65 4.2/7 0.76 4.4/7 0.73 4.3/7 0.74 5.9/7 0.55
mtt̄ 4.0/9 0.91 3.7/9 0.93 3.9/9 0.92 3.9/9 0.92 4.3/9 0.89 4.6/9 0.86
ptt̄

T 5.1/7 0.65 7.0/7 0.42 6.2/7 0.52 3.7/7 0.81 6.8/7 0.45 30.1/7 <0.01
ytt̄ 1.8/7 0.97 2.9/7 0.90 2.0/7 0.96 2.0/7 0.96 1.9/7 0.97 4.2/7 0.76
χtt̄ 7.9/6 0.24 5.0/6 0.55 7.3/6 0.29 6.4/6 0.38 9.0/6 0.17 7.6/6 0.27
ytt̄

B 1.0/6 0.99 1.4/6 0.96 1.0/6 0.98 1.1/6 0.98 1.0/6 0.99 1.0/6 0.99∣∣∣ptt̄
out

∣∣∣ 1.7/6 0.94 16.9/6 <0.01 1.2/6 0.98 1.9/6 0.93 2.7/6 0.84 3.9/6 0.69
∆φtt̄ 0.5/3 0.93 13.1/3 <0.01 0.7/3 0.87 0.1/3 1.00 1.1/3 0.78 0.2/3 0.98
Htt̄

T 5.2/9 0.81 5.7/9 0.77 7.4/9 0.60 6.9/9 0.64 5.6/9 0.78 5.9/9 0.75
cos θ? 5.5/5 0.35 3.2/5 0.66 5.3/5 0.38 5.0/5 0.42 6.2/5 0.29 7.8/5 0.17

These results are in agreement with earlier differential cross-section measurements in the tt̄ final states
involving at least one lepton [7–14, 16–19]. Those studies observed a “softer” pT spectrum for the top-
quark final states, although the statistical and systematic uncertainties for top quarks with pT > 500 GeV
are larger than the measurements reported here. Together, the previous measurements and these results
provide a coherent picture that the current NLO Monte Carlo models for tt̄ production and decay overes-
timate the production of highly boosted top quarks.

10 Conclusion

Measurements of differential cross-sections of highly boosted pair-produced top quarks in 13 TeV pp
collisions are presented in a data sample of 36.1 fb−1 collected by the ATLAS detector at the LHC. The
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top-quark pairs are observed in their all-hadronic decay modes. With a combination of top-tagging and
b-tagging techniques, an event sample with a tt̄ signal-to-background ratio of approximately 3-to-1 is se-
lected. Because most of the decay products of the top quarks are observed in a large-R jet, the kinematics
of the top quarks and the tt̄ system are well-measured compared with final states involving energetic neu-
trinos. The measurements are corrected to a fiducial phase space and normalized to the total cross-section
for events with leading top quarks with pT > 500 GeV and second-leading top quarks with pT > 350 GeV.
Parton-level differential cross-sections are also determined.

The leading and second-leading top-quark pT differential cross-sections fall by two orders of magnitude
over the pT range from 500 GeV to 1 TeV. The top-quark rapidity distributions show a plateau out to
|yt| ∼ 0.6 and then fall rapidly, reflecting the central production of these top-quark pairs. The measure-
ments show that the tt̄ system is produced centrally with limited transverse momentum, though events are
observed up to a ptt̄

T of 500 GeV.

The normalized differential cross-sections are compared with several Standard Model predictions for
highly boosted pair-produced top quarks, and there is generally good agreement of the predictions with the
particle-level and parton-level differential results. In particular, the Powheg+Pythia8, Powheg+Herwig7
and Sherpa predictions are consistent with the observed differential cross-sections at particle level and
parton level. The most significant discrepancy is in the aMC@NLO+Pythia8 predictions for the kine-
matics of the tt̄ system. Qualitatively, both particle- and parton-level rapidity distributions of the leading
top quark and of the tt̄ system are broader in the data compared with the Monte Carlo generator predic-
tions. Also, there are more modest differences between predicted and observed differential cross-sections
as a function of the production angle cos θ∗ and the variable χtt̄.

The cross-section for tt̄ production in the particle-level fiducial phase space is 292±7 (stat)±76 (syst) fb,
which can be compared with the Powheg+Pythia8 prediction of 384±36 fb, where the total cross-section
has been calculated up to NNLO+NNLL corrections. Improvements in this measurement will come from
a better understanding of the models of tt̄ production that are the source of the modelling uncertainties.

This analysis shows that studies of boosted top-quark jets can be done with good efficiency and signal-
to-background ratios in the all-hadronic channel. This creates opportunities for more detailed studies of
high-pT Standard Model processes, and provides data to test and improve models of tt̄ production.
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