Vector Boson Production with Heavy Flavours

Philip Ilten on behalf of the ATLAS, CMS, and LHCb collaborations

UNIVERSITY^{OF}BIRMINGHAM

December 13, 2017

LHC ELECTROWEAK WORKING GROUP

Signatures

PDF Kinematics

$$\sigma = \int x f x(f_1, x_1, Q^2) x f x(f_2, x_2, Q^2) \hat{\sigma} \, \mathrm{d}x_1 \mathrm{d}x_2, \quad Q^2(x) = e^{\pm 2y} x^2 s$$

*

Intrinsic Heavy Flavour

• *extrinsic* heavy-flavor content from soft gluon splitting

$$xfx(c, x, Q^2) \approx (1 - x)xfx(g, x, Q^2)$$

- *intrinsic* content also possible, bound to valence quarks
 - see AHEP 2015 (2015)
 - percent-level charm content possibly seen in DIS
 - $Q \approx 1 10$ GeV, high-x
 - excluded from some global PDF fits

Intrinsic Charm <u>PDFs</u>

- consider two models from CT14 (PRD 93 (2016))
 - BHPS: valence-like via the light-cone picture of nucleon structure
 - SEA: sea-like assuming IC $\propto [\bar{u}(x, Q_0) + \bar{d}(x, Q_0)]$ for $Q_0 < m_c$
- two normalization points, $\langle x \rangle_{\rm IC} \equiv \int_0^1 x {\rm IC}(x, m_c) dx$
 - 1: $\langle x \rangle_{\rm IC} = 0.6\%$
 - 2: $\langle x \rangle_{\rm IC} \approx 2\%$ (maximally allowed from global fit)

Measurements

	experiment	final state	year	$\sqrt{s}~{\rm TeV}$	reference
		$\gamma + c/b$	2017	8	arXiv:1710.09560
	ATLAS	Z + b(b)	2014	7	JHEP 10 (2014) 141
		W + c	2014	7	JHEP 05 (2014) 068
		W + b	2013	7	JHEP 06 (2013) 084
		W + b	2011	7	PLB 707 (2012) 418
		Z + b	2011	7	PLB 706 (2012) 295
	CMS	Z + c	2017	8	arXiv:1711.02143
		Z + b(b)	2016	8	EPJC 77 (2017) 751
		W + bb	2016	8	EPJC 77 (2017) 92
		Z + b(b)	2014	7	JHEP 06 (2014) 120
		W + bb	2013	7	PLB 735 (2014) 204
		W + c	2013	7	JHEP 02 (2014) 013
-		Z + b	2013	7	JHEP 12 (2013) 039
		Z + b	2012	7	JHEP 06 (2012) 126
	LHCb	tt, W + cc/bb	2016	8	PLB 767 (2017) 110
		W + c/b/j	2015	7/8	PRD 92 (2015) 052
		Z + b	2014	7	JHEP 01 (2015) 064
		Z + D	2014	7	JHEP 04 (2014) 091

*

ATLAS $\gamma + c/b$

arXiv:1710.09560

*

Signal Determination

- measured differentially in $E_{\rm T}(\gamma)$ and $\eta(\gamma)$
- central: $|\eta(\gamma)| < 1.37$, forward: $1.56 < |\eta(\gamma)| < 2.37$
- photon signal determined from sidebands
- flavour determined from discriminator fit

Systematics

$\gamma + b$					
	$\operatorname{central}$	forward	ratio		
MC statistical	1.9 - 6.4	3.1 - 14	3.6 - 17		
b-tagging	2.4 - 17	2.5 - 15	0.1 - 0.6		
c-tagging	5.7 - 18	5.3 - 11	2.3 - 6.9		
light-tagging	4.9 - 15	6.1 - 31	1.6 - 8.3		
	$\gamma + c$				
	$\operatorname{central}$	forward	ratio		
MC statistical	2.5 - 24	6.0 - 33	6.1 - 39		
b-tagging	0.4 - 12	0.5 - 8.3	0.2 - 2.3		
c-tagging	6.0 - 18	6.4 - 18	0.4 - 2.7		
light-tagging	12 - 46	21 - 57	8.4 - 28		

• tagging efficiencies dominate uncertainties

$\gamma + b$ Results

$\gamma + c$ Results

Ratios

CMS Z + c

arXiv:1711.02143

CM

Signal Determination

- three tagging methods are used
 - semi-leptonic decay associated with a secondary vertex
 - an exclusive $D^+ \to K^- \pi^+ \pi^+$ secondary vertex
 - an exclusive $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ secondary vertex
- measured differentially in $p_{\rm T}(Z)$ and $p_{\rm T}(j)$
- flavour determination from corrected mass and jet probability

CMS

Systematics

- modeling of c-fragmentation and decays and b-jet correction from top dominant systematics

Ilten

15 / 25

CMS

Results

CN

Ratios

LHCb tt, W + cc/bb

PLB 767 (2017) 110

LHCb

Signal Determination

- tag jets with secondary vertex
- limited statistics allow only integrated cross-sections
- processes determined from four-variable fit

Results

- dominate uncertainty from tagging efficiencies at 5 - 10%

*

Future Intrinsic Charm

- phenomenology study in PRD 93 (2016)
- LHCb sensitive to valence $\langle x \rangle_{\rm IC} > 0.3\%$ and sea $\langle x \rangle_{\rm IC} > 1\%$
- ATLAS/CMS sensitivity dependent on tagging uncertainties

Strange Asymmetries

- proton strangeness higher than expected, $\approx 1\%$
- precision inclusive W and Z measurements primary constraint
- W + c asymmetry can constrain strange asymmetry
- four scenarios from CTEQ fit, JHEP 0704 (2007)

Charm Yukawa

- recent $V + H(c\bar{c}$ result from ATLAS (ATLAS-CONF-2017-078) and LHCb (LHCb-CONF-2016-006)
- highlight V + Q(Q) importance for calibration and background

- recent developments in heavy flavour tagging
- in many cases statistics still a limiting factor
- tagging efficiency and c/b separation will remain as dominant systematics
- need for updated measurements, energy ratios, etc. clear

Thank you!

