
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

The DAQ system for the AEḡIS experiment
To cite this article: F Prelz et al 2017 J. Phys.: Conf. Ser. 898 032014

View the article online for updates and enhancements.

Related content
The NOvA DAQ Monitor System
Michael Baird, Deepika Grover, Susan
Kasahara et al.

-

Development and test of a DRS4-based
DAQ system for the PADME experiment at
the DANE BTF
E Leonardi, M Raggi and P Valente

-

Video streaming technologies using
ActiveX and LabVIEW
M Panoiu, C L Rat and C Panoiu

-

This content was downloaded from IP address 188.184.3.52 on 19/12/2017 at 14:42

https://doi.org/10.1088/1742-6596/898/3/032014
http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082020
http://iopscience.iop.org/article/10.1088/1742-6596/898/3/032024
http://iopscience.iop.org/article/10.1088/1742-6596/898/3/032024
http://iopscience.iop.org/article/10.1088/1742-6596/898/3/032024
http://iopscience.iop.org/article/10.1088/1757-899X/85/1/012023
http://iopscience.iop.org/article/10.1088/1757-899X/85/1/012023

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

The DAQ system for the AEḡIS experiment

F Prelz1, S Aghion1,2, C Amsler3,4, T Ariga3, G Bonomi5,6,
R S Brusa7, M Caccia1,8, R Caravita9,10, F Castelli1,11, G Cerchiari12,
D Comparat13, G Consolati1,2, A Demetrio14, L Di Noto9,10,
M Doser15, A Ereditato3, C Evans1,2, R Ferragut1,2, J Fesel15,
A Fontana6, S Gerber15, M Giammarchi1, A Gligorova16, F Guatieri7,
S Haider15, A Hinterberger15, H Holmestad17, A Kellerbauer12,
D Krasnický9,10, V Lagomarsino9,10, P Lansonneur18, P Lebrun18,
C Malbrunot4,15, S Mariazzi4, V Matveev19, Z Mazzotta1,11,
S R Müller14, G Nebbia20, P Nedelec18, M Oberthaler14, N Pacifico16,
D Pagano5,6, L Penasa7, V Petracek21, M Prevedelli22, L Ravelli7,
B Rienaecker15, J Robert13, O M Røhne17, A Rotondi6,23,
M Sacerdoti1,11, H Sandaker17, R Santoro1,8, P Scampoli3,24,
M Simon4, L Smestad15,25, F Sorrentino9,10, G Testera10, I C Tietje15,
E Widmann4, P Yzombard13, C Zimmer12,14,15, J Zmeskal4, N Zurlo6,26

1 INFN Milano, via Celoria 16, 20133, Milano, Italy
2 Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
3 Laboratory for High Energy Physics, Albert Einstein Center for Fundamental Physics,
University of Bern, 3012 Bern, Switzerland
4 Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences,
Boltzmanngasse 3, 1090 Vienna, Austria
5 Dept. of Mech. and Industrial Eng., Univ. of Brescia, via Branze 38, 25123 Brescia, Italy
6 INFN Pavia, via Bassi 6, 27100 Pavia, Italy
7 Department of Physics, University of Trento and TIFPA/INFN Trento, via Sommarive 14,
38123 Povo, Trento, Italy
8 Department of Science, University of Insubria, Via Valleggio 11, 22100 Como, Italy
9 Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
10 INFN Genova, via Dodecaneso 33, 16146 Genova, Italy
11 Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy
12 Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
13 Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université
Paris-Saclay, 91405 Orsay Cedex, France
14 Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
15 Physics Department, CERN, 1211 Geneva 23, Switzerland
16 Inst. of Physics and Technology, Univ. of Bergen, Allégaten 55, 5007 Bergen, Norway
17 Department of Physics, University of Oslo, Sem Sælandsvei 24, 0371 Oslo, Norway
18 Inst. of Nuclear Physics, CNRS/IN2p3, Univ. of Lyon 1, 69622 Villeurbanne, France
19 Institute for Nuclear Research of the Russian Academy of Science, Moscow 117312, Russia
and Joint Institute for Nuclear Research, 141980 Dubna, Russia
20 INFN Padova, via Marzolo 8, 35131 Padova, Italy
21 Czech Technical University, Prague, Břehovà 7, 11519 Prague 1, Czech Republic
22 University of Bologna, Viale Berti Pichat 6/2, 40126 Bologna, Italy
23 Department of Physics, Univ. of Pavia, via Bassi 6, 27100 Pavia, Italy
24 Department of Physics “Ettore Pancini”, University of Napoli Federico II, Complesso
Universitario di Monte S. Angelo, 80126, Napoli, Italy
25 The Research Council of Norway, P.O. Box 564, NO-1327 Lysaker, Norway

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

26 Department of Civil Engineering, University of Brescia, via Branze 43, 25123 Brescia, Italy

E-mail: francesco.prelz@mi.infn.it

Abstract. In the sociology of small- to mid-sized (O(100) collaborators) experiments the issue
of data collection and storage is sometimes felt as a residual problem for which well-established
solutions are known. Still, the DAQ system can be one of the few forces that drive towards the
integration of otherwise loosely coupled detector systems. As such it may be hard to complete
with off-the-shelf components only.

LabVIEW and ROOT are the (only) two software systems that were assumed to be familiar
enough to all collaborators of the AEḡIS (AD6) experiment at CERN: working out of the
GXML representation of LabVIEW Data types, a semantically equivalent representation as
ROOT TTrees was developed for permanent storage and analysis. All data in the experiment
is cast into this common format and can be produced and consumed on both systems and
transferred over TCP and/or multicast over UDP for immediate sharing over the experiment
LAN. We describe the setup that has been able to cater to all run data logging and long term
monitoring needs of the AEḡIS experiment so far.

1. Introduction
The AEḡIS (AD6) experiment is set up at the Antiproton Decelerator (AD) Facility at CERN
with the purpose of directly studying the free fall of antimatter in the Earth’s gravitational field
[1]. The physics process employed to produce and steer the excited antihydrogen atoms needed
for the gravity measurement is briefly illustrated in Figure 1. One can see that the process calls
for the interaction of various, diverse fields of expertise from various collaborating groups.

Figure 1. Process used in the AEḡIS experiment for the creation of excited H̄ atoms by
resonant charge exchange with excited positronium [1]. The produced H̄ is then accelerated
towards a classical Moiré interferometer for direct gravity measurement [2]. Twenty groups
bring to the collaboration the needed expertise in the specialised fields of laser technology,
positronium production, atomic beam interferometry, plasma steering, etc.

Turning to the computing side of the experiment, the main challenge is not in the size or
rate of data to be acquired1, but rather in the lack of common technology familiar to the entire

1 As detectors and other components were added to the experimental setup the raw data stored in each active
108-second beam cycle increased from an average of 4 MB compressed in 2012 (400k data atoms as defined
in Section 2, or 3.7k atoms/s with average uncompressed payload size of 8.2 bytes) to an average of 29 MB
compressed 2016 (1.3M data atoms, 12k atoms/s with average uncompressed data payload size of 71.0 bytes) in
2016. The compressed size of the full 2016 raw dataset is 534 GB.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

collaboration: groups accustomed to running small test-stands tend to run various versions of
LabVIEW�, saving data in local files of disparate formats; collaborators with data analysis
experience at CERN tend to be trained in the use of the ROOT [3] analysis framework and the
related forms of data object compressed storage; the integrated DAQ and data storage package
most commonly used by the antimatter experiment community (and inherited by collaborators
who are ‘native’ to the field) seems to be MIDAS [4]. The first effort was therefore spent in
reducing the technology palette to a minimal set that would gain the confidence of most, if not
all, collaborators.

We started by putting together a test stand based on MIDAS. We quickly realised that the
most noticeable shortcoming of MIDAS was neither code obsolescence nor lack of maintenance or
support, but rather the fact that the package comes as a tightly integrated system. Developing
new components that fit and morph into the existing MIDAS interfaces is a complex task, but it
is required in case part of the needed functionality (front-end module support, storage data[base]
format, access tools) is not found in the integrated package.

We then focused on identifying and designing a small set of simple building blocks built
only around ROOT and LabVIEW�, providing the needed data acquisition, logging and access
functions. The prototype data object was chosen to be a generic LabVIEW Cluster, including
a unique name and a common format timestamp. The long-term storage technology was chosen
to be ROOT TTrees. In the coming sections we describe in more detail this “AEḡIS data atom”,
the chosen serialisation format for network transfer and the related software libraries.

2. The AEḡIS data atom and its serialisation
One data object whose expressiveness is well understood by many people in the collaboration
is the LabVIEW� Cluster. We therefore chose to limit the allowable numeric formats to what
LabVIEW� can use and to model structured data types around the LabVIEW� Array and
Cluster types2. Two additional requirements were imposed:

(i) that all data that circulate in the DAQ system be identified by a unique name (string) and
include a common format timestamp (see Table 1 for details).

(ii) that the recursiveness in data Cluster definitions be limited to what can be unwound into
human-readable ROOT TTree definitions. The final data format for long-term storage can
be thought of as a ROOT TTree translation of a LabVIEW� cluster. In short, we allow
clusters to contain arrays of scalar values, but we do not allow arrays of clusters or clusters
containing other clusters.

This leads to the definition of the AEḡIS data atom shown in Table 1. It represents all data
objects handled by the DAQ for both apparatus monitoring and physics data.

The issue of serialising data atoms for network transfer was addressed by scouting various
options available within the LabVIEW� software library. We looked for a format with
no proprietary data content in order to preserve the interoperability with non-LabVIEW�

components. A text format was perceived as acceptable in the foreseen data throughput scale,
so we examined the default ”Flatten to/Unflatten from XML”3 functions, but passed on them
as the produced XML code was too verbose. We then settled on the GXML [5] reference library,
that provided a reasonable balance between expressiveness and verbosity. An example of the
GXML representation of a data atom with a cluster data payload is found in Figure 2. The main
advantage of relying on a reference library provided by National Instruments is a guarantee that
any internal component needed to unwind and serialise (“flatten” in LabVIEW� jargon) data

2 A LabVIEW� Array is a collection of data of identical type, while a Cluster is a collection of data of different
types, similar to a C language struct.
3 The LabVIEW� JSON helpers were still to come at the time (circa 2011) when the AEḡIS DAQ was being
designed.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

Name Alphanumeric String containing a (possibly hierarchical) unique

name for the data atom. The format of the data associated

with a given name should not be changed.

Timestamp Instant when the data was acquired, in three formats:

1) character string, parsable by strptime(3);

2) struct timespec containing time since the UNIX epoch;

3) 64-bit unsigned integer with RF clock count, if applicable.

Data Instance of a scalar, vector or structured (cluster) data type,

compatible with LabVIEW� types, and their conversion

into ROOT TTrees.

Table 1. Structure of the AEḡIS data atom, representing all DAQ data objects.

<GXML Root>

<Name type=’String’>a test cluster</Name>

<Timestamp mems=’4’>

<str type=’String’>16:18:09.220036 09/20/2016</str>

<tv sec type=’U64’>1474381089</tv sec>

<tv nsec type=’U32’>220036174</tv nsec>

<Clock type=’U64’>7856432</Clock>

</Timestamp>

<Data mems=’3’>

<double val type=’DBL’>1.2344999999999999307</double val>

<int val type=’I32’>12345</int val>

<float array dim=’[3]’ type=’SGL’>

<v>1.1</v><v>2.2</v><v>3.3</v>

</float array>

</Data>

</GXML Root>

Figure 2. Example of GXML serialisation of an AEḡIS data atom containing a cluster of two
numeric scalar values and one numeric array.

objects will be maintained and upgraded. The NI-supplied GXML helpers were supplemented
with a (C++) library to code, decode, transfer, translate GXML on other platforms. They were
also integrated into higher level LabVIEW� Virtual Instruments (VIs). Both developments are
described in the following sections.

3. C++ library and tools
All DAQ components and processes that are not run by LabVIEW� create data atoms as
instances of the LVTClusterData C++ class. The class can include a scalar payload, but is
also provided with container-like properties to represent arrays and clusters: it can therefore
represent any LabVIEW� data type. A glance at Figure 3 shows that:

• All C++ classes developed for handling GXML data can inherit from a ROOT TObject,
so they can be constructed and used in the interactive ROOT shell.

• Data arrays can also be represented by a specialised LVTArrayData subclass. While the base
LVTClusterData class has the ability to represent array data types, it stores array contents

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

as a vector of LVTClusterData. On the other hand, LVTArrayData uses the ordinary,
contiguous memory area storage for arrays and can therefore be made to point to existing
array or std::vector storage, avoiding unnecessary memory copies. For increased data
transfer efficiency (see Section 7) LVTArrayData can be serialised and deserialised in a
compressed text format, in addition to the standard GXML format.

.

TCP Network Transfer (multicast capable)
UDP Network transfer

Figure 3. Inheritance graphs for the C++ support library allowing to code, decode, convert
and transfer AEḡIS DAQ data atoms. The LVTCluster class represents any object that can be
expressed as a Cluster in LabVIEW�, and has the ability to serialise itself into GXML. IPv6-
compatible classes to exchange data atoms via either TCP or UDP (including multicast) allow
to assemble any needed data transport channel. All classes can (via a compile-time option)
inherit from a ROOT TObject and be used from the interactive ROOT shell.

The remainder of the C++ library is used to transfer LVTClusters across the network.
It includes base transmitter and receiver classes and their specialisation for TCP and UDP
transfer. The UDP classes support multicast transfer. All network code is IPv6 compliant.
While LVTClusters can serialise themselves in GXML format, the de-serialisation code is kept
in the network receiver class to avoid bringing in unnecessary dependencies from the external
XML library used for XML parsing (see Section 7 for details). The receiver class is also able
to cast received data into a semantically equivalent ROOT TTree format for long-term storage
and subsequent data analysis.

The main users of the C++ library are:

(i) The core data logging executable. It is run in multiple instances to handle run and
monitoring data for various subsystems: GXML data received by threads (serving one TCP
and/or UDP port each) is parsed and converted into ROOT TTrees. These are continuously
saved to disk (via TTree::AutoSave("saveself")).

(ii) The executable that is run on a VME embedded processor for front-end data collection via
VMEbus (more details in Section 5).

4. LabVIEW library
Turning to the LabVIEW� side of the design, while the basic code to serialise and deserialise
data in GXML format is provided and maintained by National Instruments [5], we needed to:

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

• Add integrated VIs for network data transfer (a quick review of these is shown in Figure 4).
Data can also be retrieved from the experiment long-term storage by querying a dedicated
web server over HTTP.

• Work around performance shortcomings of the 32-bit LabVIEW� memory allocator by
developing a few Windows DLLs and executables to accelerate data conversion. More
details on this specific issue can be found in Section 7.

Figure 4. Fundamental LabVIEW� Virtual Instruments for data atom exchange. They can
be seen as equivalent to the C++ classes shown in Figure 3

One of the most noticeable practical advantages of building the DAQ design around the
native LabVIEW� data representation lies probably in the ease of sending data from any piece
of code run by LabVIEW� anywhere on the experiment network, including National Instrument
embedded real-time processors running on the front-end. As long as data is tagged by a unique
name, it can simply be connected to the appropriate VI and sent to the applicable TCP or UDP
port for either run-data taking or long-term, continuous experiment monitoring. An example of
how data can be sent to the DAQ is shown in Figure 5.

Figure 5. Sending a LabVIEW� Cluster to the DAQ via TCP.

As the main run-control functions can also be driven from LabVIEW�, the palette of
experiment-specific VIs was completed with run start/stop/status blocks (interacting with the
main DAQ control node over the network).

5. DAQ front-end components
The complete data flow for the experiment, leveraging all components described so far, is shown
in Figure 6. The system includes so far three categories of front-end equipment:

(i) Regular PCs running any operating system, sending data either via the LabVIEW� or the
C++ support libraries.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

M
a
st

er
P
ro

ce
ss

o
r CAEN

V1495
FPGA
(Cyclone II)

2. Data is sent
 by on−bus
 realtime
 processors
 over the local
 area network.

Outside
World

3. Data is accessed
 and/or stored locally
 and/or remotely.

Back−up
on EOS @ CERN.

CERN−supported (Concurrent Technologies)
Intel single−board PC with VME bridge.
VME is accessed via the CERN TDAQ library.

Experiment LAN

Crate(s)
VME

and TCP

L
a
b
vi

ew
R

T
P
ro

ce
ss

o
r

Data Object

PXI
Crate(s)

(ROOTuples)

DAQ PC

Permanent
Storage

UDP

UDP Multicast where useful
and TCP

Figure 6. Interaction of front-end, data logging, storage and monitoring components on the
experiment LAN.

(ii) CERN-supported VME PCs. After a few years on an EL Pool Concurrent Technologies
VP110, we are currently running a VP717, also by Concurrent Technologies. Low-level code
to drive respectively the Tundra Universe II or TSI148 VME bridge was inherited by the
ATLAS TDAQ project at CERN [6], extracted from the ATLAS environment and adapted
for AEḡIS. All data-taking chores can so far be handled by running one 3-thread process
that gathers data on VMEbus and sends it out through one 1 Gbit/s Ethernet interface
with the help of the C++ library described in Section 3.

(iii) Various Run-Time processors manufactured by National Instruments and running
LabVIEW RT� natively. All VIs developed for the experiment (and the reference GXML
library) are compatible with LabVIEW RT�.

6. Web-based run control and data monitor
All data acquired by the AEḡIS DAQ system end up on disk in the form of ROOT files
containing a number of TTrees, each representing a collection of data atoms unwound into
ROOT native data types (object storage is used for std::vector<std::string>s only). This
includes calibration data, physics run data as well as data from continuous apparatus monitoring.
Alongside analysis code accessing directly the ROOT files, data are also served through an
HTTP server. A custom back-end serves queries for specific data series by properly accessing
and decoding stored ROOT files. This service is accessed by three classes of clients:

(i) LabVIEW� code, where a VI is provided to retrieve and reconstitute data in the original
data cluster format.

(ii) A Javascript data browser with simple stripchart display capabilities. Generated graphs
can be annotated and sent directly to the experiment ELOG [7] server.

(iii) DAQ front-end C/C++ code requiring access to the calibration data.

Long-term preservation of the acquired data is granted by staging files into the EOS [8] and
CASTOR [9] systems at CERN. The current production of about half a TB of compressed data

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032014 doi :10.1088/1742-6596/898/3/032014

per data-taking year fits in the minimum experiment quotas on those systems.

7. Lessons learned and conclusions
While the system described so far has been running and acquiring data continuously over the
experiment lifetime (interrupted only by the occasional power outage), a few operational issues
required adjustments to the implementation. We recollect them here for future memory:

• While the need to transfer large (O(106) numeric members) arrays from LabVIEW� to the
DAQ did not emerge clearly at the time of system requirement collection, it imposed itself
as a need at data-taking time. This required two corrections:

(i) Most of the LabVIEW� installations in the experiment are running the 32-bit package
version. This includes a custom memory allocator that displays poor performance when
copying arrays. As an update of LabVIEW� was ruled out for fear of regression issues,
alternative ways to funnel array data to the DAQ had to be explored. In addition to the
native GXML code, both a custom Windows DLL (C-language source, to be invoked
within a “Call Library Function” node) and a standalone executable were developed.
The latter was needed because the most effective technique to avoid bottlenecks in
LabVIEW� was found to be dumping data on disk in “LabVIEW SpreadSheet” format
and invoking an external executable to convert and transmit them.

(ii) For these very large arrays, the default GXML representation of data is too verbose and
data bloating is excessive. So an additional transfer format (i.e. compressed, base64-
encoding of the array contents) was added into the system to handle large array data
only. This led to the addition of a specialised class to model arrays in the C++ library
(see Section 3).

• In order to limit the set of code dependencies, we initially based the (G)XML parsing code
on the Root::TDOMParser class packaged with ROOT. To achieve acceptable performance
under real data-taking conditions we had to replace this with RapidXML [10].

Applying these corrections, the DAQ system ran continuously for apparatus monitoring and
for all data-taking campaigns so far. We were happy to have settled on one common format
for all data, for having bridged cultural gaps by settling on a minimal set of well understood
technologies (LabVIEW� and ROOT) and for the flexibility achieved both in network transport
arrangement and in data schema update/extension. These needs were addressed satisfactorily
by the design we exposed.

References
[1] Doser M et al. [AEḡIS Collaboration], 2012 Class. Quant. Grav. “Exploring the WEP with a pulsed cold beam

of antihydrogen,” 29 184009. doi:10.1088/0264-9381/29/18/184009
[2] Aghion S et al. [AEḡIS Collaboration], 2014 Nature Commun. “A moiré deflectometer for antimatter,” 5 4538.

doi:10.1038/ncomms5538
[3] Brun R and Rademakers F, 1997 Nucl. Inst. & Meth. “ROOT - An Object Oriented Data Analysis Framework,”

A 389 81-86. doi:10.1016/S0168-9002(97)00048-X. See also http://root.cern.ch/.
[4] The main web page for MIDAS system can be accessed from http://midas.triumf.ca/. We were unable to

locate a published overview paper on the system.
[5] The LabVIEW�“Reference Library for Converting Between LabVIEW and XML Data (GXML)” is

documented and available for download at http://www.ni.com/example/31330/.
[6] Resources for the ATLAS TDAQ project can be currently located at:

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/Newdaqtrig.php.
[7] The home page for Elog is at http://midas.psi.ch/elog/.
[8] Peters A J, Sindrilaru E A, Adde G, 2015 J. Phys.: Conf. Series “EOS as the present and future solution for

data storage at CERN,” 664 042042. doi:10.1088/1742-6596/664/4/042042
[9] Lo Presti G, Barring O, Earl A, 2007 24th IEEE MSST Conference “CASTOR: A Distributed Storage Resource

Facility for High Performance Data Processing at CERN,” doi:10.1109/MSST.2007.4367985
[10] The home page for RapidXML is at http://rapidxml.sourceforge.net/.

