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Abstract. The VecGeom geometry library is a relatively recent effort aiming to provide a
modern and high performance geometry service for particle detector simulation in hierarchical
detector geometries common to HEP experiments. One of its principal targets is the efficient
use of vector SIMD hardware instructions to accelerate geometry calculations for single track
as well as multi-track queries.

Previously, excellent performance improvements compared to Geant4/ROOT could be
reported for elementary geometry algorithms at the level of single shape queries. In this
contribution, we will focus on the higher level navigation algorithms in VecGeom, which are
the most important components as seen from the simulation engines. We will first report on our
R&D effort and developments to implement SIMD enhanced data structures to speed up the
well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex
detector modules consisting of many daughter parts.

Second, we will discuss complementary new approaches to improve navigation algorithms
in HEP. These ideas are based on a systematic exploitation of static properties of the detector
layout as well as automatic code generation and specialisation of the C++ navigator classes.
Such specialisations reduce the overhead of generic- or virtual function based algorithms and
enhance the effectiveness of the SIMD vector units.

These novel approaches go well beyond the existing solutions available in Geant4 or
TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide
range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks
for the CMS and ALICE detectors.

1. Introduction
Being able to transport particles in a complex three-dimensional world is one of the cornerstones
of particle detector simulation frameworks. Much like in many gaming or ray tracing
applications, the geometry engine is responsible for calculating various distances between the
transported particle and detector components as well as to provide collision detection algorithms.

VecGeom [1] is a C++ geometry modeller for particle detector simulation frameworks which
was developed from scratch with the target to modernise and optimise geometry routines, in
particular by making use of single instruction multiple data (SIMD) vectorisation. It is based
on a model of hierarchies of (CGS) volumes following the logic of what is or was available in
Geant3, Geant4 [2, 3] and TGeo/ROOT [4, 5].

VecGeom’s development first started as a component of the GeantV simulation project (see,
e.g., Refs. [6–8]) to satisfy the need for a many-track API needed by the GeantV engine and
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(1) transform global particle coordinates
to local system of scene

(2) determine distance leaving this vol-
ume (scene)

(3) query for set of candidate daughter
volumes to probe for intersection

(4) test candidate set for intersection
distances

(5) optionally relocate across boundaries

Figure 1: (left) Component overview of VecGeom. (right) Main algorithmic steps in navigation

which was not offered by any existing solution. Today, VecGeom is a standalone library which
is used by GeantV, but with the capability to serve simulations using the Geant4 engine or the
TGeo/ROOT framework. Indeed, VecGeom is a consequential evolution of the Unified Solids
(USolids) [9] project on the shape algorithms, which was started to foster more common and
modular code shared between Geant4 and TGeo. Today, the USolids and VecGeom effort have
joined forces and constitute a common project. Figure 1 (left) gives a rough overview over
the principal components of VecGeom, which are: (a) algorithms for geometric primitives, (b)
higher level navigation components doing hit detection and querying the location of tracks in
the detector as well as (c) structures to model and describe the layout of a detector.

A lot of the effort of the VecGeom project has so far gone into development of algorithms
for basic geometric entities within component (a) in order to enable multi-particle operations
using SIMD processing or to improve on existing code. This work has been presented previously
[10, 11] and continues to be improved and extended constantly.

The present proceeding focuses on our recent developments done for the navigation
components (b). In section 2, we will describe the work undertaken to achieve scalable and SIMD
enabled collision detection and location queries. In section 3, complementary ideas are presented
for speeding up navigation algorithms, based on the idea of complete code specialisation.

2. SIMD accelerated navigation
2.1. General navigation algorithms
The purpose of the navigation module is to provide algorithms to locate particles in hierarchical
detectors and to trace them in a scene of geometric objects. A scene can be thought of as the
set of objects which can be seen by a particle at any moment. A detector consists of many
different modules or scenes and whenever a particles crosses a material boundary it enters into
a different scene. Using the terms of TGeo or Geant4 geometry, a scene is associated with a
logical volume. A logical volume has a material, an associated geometric primitive describing
its boundary as well as daughter volumes making up its content.

Using such definitions, the main tasks of a navigation module are

(i) To determine in which scene a particle is, given its global coordinates

(ii) To tell which object will be hit next, given the ray (i.e., the position and the current straight
line direction) of a particle

(iii) Related to (i) and (ii): To determine the next scene after crossing the next boundary

In this work we will concentrate mostly on task (ii) and show how it can be accelerated using
SIMD techniques. The typical algorithmic pipeline for this task is shown in figure 1 (right). We
will focus here on a description to speed up tracing single particles in a complex geometry which
is applicable to both GeantV and Geant4.
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Figure 2: Data structures used for SIMD
filtering of hit candidates. A (part of a)
regular and balanced bounding box tree
structure is shown in the upper half while
a tree with a fixed depth but variable
number of first-level children is shown
at the bottom. Both bounding volume
hierarchies contain leaf nodes that group
aligned bounding boxes (solid boxes) of
objects (circles) in a scene. Leaf nodes are
grouped into bigger boxes (dashed boxes)
by using clustering.

2.2. Introduction to SIMD-tree traversal
The simplest hit detection algorithms, just iterating over the complete list of objects and testing
each in turn, have linear running time with respect to the number of objects in a scene and
are hence not computationally efficient. Via the use of helper spatial data structures, this
linear time bottleneck can be overcome (see, e.g., Ref. [12] for an overview). The accelerating
helper structure can be queried quickly and commonly in logarithmic time for a set of candidate
objects which are subsequently tested for intersection. Both Geant4 and TGeo implement such
“voxelisation” techniques but neither of them uses CPU SIMD instruction sets as an acceleration.

Our goal of speeding up the filtering of the candidate set using vector instructions, puts a
couple of constraints on the spatial data structure. Notably, one may argue that traversal of
completely irregularly shaped hierarchies is not well suited due to a lot of branching and bad
load balancing. To gain most from SIMD, all vector lanes should be kept busy at a maximum of
times. On the other hand, well-balanced and regularly formed tree structures, in which during
traversal each node query is doing the same work on all vector lanes, could be well suited for
SIMD acceleration. Regular trees (or hierarchies) of bounding volumes (BVH) (see Ref. [12])
seem to be a natural choice for this: By virtue of vectorisation instructions we are able to
quickly calculate the intersection between a ray and a fixed number of bounding boxes during
tree traversal and hence decide quickly with which tree branch to proceed. In other words, the
idea is to gain from SIMD acceleration by calculating the distance to a bunch of bounding boxes
in parallel, whereas a good overall scaling property comes from a hierarchical organisation of
bounding boxes enclosed by larger bounding boxes. This idea has also been described in the ray
tracing literature in various contexts and variants [13–15].

2.3. Concrete data structure approach
Without loss of generality, we have concentrated our efforts on treating axis-aligned bounding
boxes (AABBs) as the basic building blocks. The key computational kernel is hence
ray.computeDistance(group of AABBs) [16] which is easily vectorised for multiple boxes using
platform independent vectorisation libraries such as Vc [17] or our higher level abstraction called
VecCore [18]. AABBs have the advantage to avoid expensive coordinate transformations and
floating point divisions. However, in certain circumstances, more tightly placed (arbitrarily
rotated) bounding boxes might be of advantage. The above kernel can easily be generalised to
this situation.

Starting from the basic geometry primitives in a scene, we first calculate the AABB of each
object. The resulting boxes then serve as input for constructing hierarchical bounding box
structures. In the course of this work, we have notably played with two concrete structures, as
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displayed in figure 2, which we call pure and hybrid BVH, respectively. The first, BVHp, is a
regular tree structure with fixed number of children per node and arbitrary depth whereas the
second is a tree of fixed depth but arbitrary children for the root node. As this is some sort of
hybrid between a tree and a flat list, we call it BVHh.

The idea in both cases is to cluster the leaf AABBs into bigger bounding boxes by a proximity
criterion. This process is repeated iteratively resulting in a tree of bounding volumes, taking into
account the constraint we impose on the overall structure. Possible mechanisms to achieve this
are described further below. The vector length S of the SIMD registers (for example S = 4 for
float on SSE4.2 and S = 8 for AVX) influences directly the tree structure. In case of BVHp, the
number of children for each node in the tree is (in principle) exactly S, thus leading to quadtrees,
octrees, etc. depending on the SIMD architecture. The depth of the tree is determined by the
number of objects. The benefit of BVHp is that it scales very well leading to the least possible
number of collision tests (on average). This structure is best for geometries with very many
objects (such as millions of triangles in ray tracing).

On the other hand, BVHp is a rather non-local data structure with many indirections and
might be outperformed by other (more cache-friendly) structures in case of fewer number of
objects. In HEP, typically not more than O(1000) objects – and often much less – are present in
a scene which motivated us to also look into more data-local approaches. The hybrid hierarchy
is based on this idea. Here, the depth of the tree is fixed to two, which allows us to map all the
tree nodes into a consecutive array without relying on additional data structures for navigation.
This memory layout is very cache-friendly, while retaining some form of hierarchical scaling
benefit.

Depending on the complexity of the scene, VecGeom can decide to use either BVHp or BVHh

(or just a linear search). In our experience so far, BVHh almost always performed better than
BVHp for the use cases encountered.

2.4. BVH building techniques
We now discuss two possible algorithms to perform the tree building. In the top-down
implementation of both BVHs we face the problem of splitting the set of volumes belonging
to the current node into as many sub-clusters as there are child nodes, such that each group
will be assigned to a new child node. We used two approaches to carry out clustering, one of
them is a variation of the k-means algorithm. The algorithm has one parameter k which is the
number of clusters. For BVHp we cluster the volumes of the current node each time a node gets
extended, where k = S. For BVHh we only need to cluster once on all volumes of the geometry,
where k = �#allvolumes/S�. Given N volumes to cluster, both algorithms guarantee that in
the end at least k − 1 clusters are filled up to their maximum capacity, i.e. having κ = �N/k�
elements each.

2.4.1. Clustering: k-means variation First, we carry out the classic k-means algorithm on the
set of volumes with positions V = {v1, . . . , vN}, where we initialise the cluster centers with
random volume positions. Let’s denote the final clusters with C = {c1, . . . , ck} and the cluster
centers with M = {m1, . . . ,mk}. After the clustering step, we conduct an equalisation on the
clusters to ensure k − 1 clusters have κ elements each. To this end, we first sort the clusters
by descending cluster size and then iterate over these. As long as there is a cluster with more
volumes than it can hold, we pick the volume furthest away from the cluster center and move it
to the closest cluster which has an available spot.

2.4.2. Clustering: around furthest volume This algorithm aims to maximise the separation
and minimise the intersection of child bounding boxes by clustering the furthest volumes first.
From the set of remaining volumes that have not been assigned to any cluster yet, we choose
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Algorithm 1 Cluster Equalisation

Input: C,M, κ
Output: equalised clusters C
1: k := |C|
2: for i := 0 to k do
3: sort(C) by decreasing size
4: while |ci| > κ do
5: c∗i ←− furthest element in ci to mi

6: l←− argmin
z

‖mz − c∗i ‖ where |cz| < κ

7: move(c∗i , ci, cl) // move c∗i from cluster i to l
8: end while
9: updateCenters(C) // recalculate cluster centers

10: end for

Algorithm 2 Cluster around furthest volume

Input: V, κ,k
Output: equalised clusters C

initialise C with k empty sets
2: N := |V|

meanr =
∑N

i=1
vi

N // mean of unassigned volumes
4: for i := 0 to k do

meanc := 0 // mean of i-th cluster
6: while |ci| < κ do

if |ci| == 0 then
8: index = argmax

j
‖vj −meanr‖ // index of furthest volume from remaining volumes

else
10: index = argmin

j
‖vj −meanc‖ // index of closest volume to the cluster center

end if
12: V←− V\vindex

updateMean(V,meanr)
14: ci ←− ci ∪ vindex

updateMean(ci, meanc)
16: end while

end for

the furthest one from the mean center of these volumes and create a new cluster at its position.
The new cluster is then filled up to its maximum capacity with the closest volumes. After each
addition the cluster center will be updated to the mean of its current elements.

2.5. Evaluation
In order to evaluate our implementation, we have picked a couple of complex and representative
detector volumes (scenes) from the ALICE and CMS detector descriptions. Within each of those
volumes, we have generated half a million random rays. For these rays we then perform the
navigation pipeline of figure 1 (right) corresponding to navigation task iii and measure the time
to process all rays. This task is done using both the Geant4 (10.2.1) and TGeo (ROOT v6.06.8)
engines as well as using VecGeom (VG), using BVHh, for two different ISA (SSE4.2 and AVX2).
The evaluation has been performed with one thread on an otherwise idle Intel(R)-Core(TM)

i7-5930K running CERN CentOS7. The compiler was gcc4.8.5. VecGeom tag W40-16 was
compiled in its release mode. Table 1 shows the resulting timings and clearly demonstrates
that SIMD enabled navigation performs consistently faster than Geant4 and TGeo. Moreover,
one can clearly observe the benefit coming from the SIMD treatment because a clear timing
improvement is noticed by increasing the SIMD vector from 4 elements (SSE4.2) to 8 (AVX2).
Note that it cannot be expected to achieve perfect scaling with the vector width as the SIMD-tree
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Table 1: Timings (in seconds) to process all test rays for a list of complex detector volumes. The worst
timing is shown in red while the best in blue. VecGeom’s SIMD enabled navigation performs consistently
better than any existing solutions.

Volume #daughters Geant4 TGeo VG (SSE4.2) VG (AVX2)

ALIC (ALICE) 65 0.74 1.07 0.30 0.23
TPC Drift (ALICE) 641 14 2.2 1.2 0.9
MBWheel 1N (CMS) 789 0.84 1.09 0.49 0.35

query only represents one algorithmic part of the problem.

3. Specialised navigators through code generation
So far, we have focused on SIMD acceleration of the navigation pipeline. In this section, we
change directions and address some completely orthogonal ideas to speed up the navigation
algorithms. We would like to discuss the question “What other ways exist to make the navigation
system in typical HEP applications faster?”.

Working on this question is motivated by at least two goals: (a) Minimising the overall
runtime of treating particles in the geometry module and (b) Maximising the number of CPU
cycles that can be treated using the SIMD paradigm. The latter is equivalent to reducing
algorithmic parts which are hard to vectorise (for example because of many branches).

The basic observation that we try to exploit here is the fact that HEP detectors are pretty
static objects. Often they don’t change much during a long period of simulation runs or data
taking. Hence, the tracing of particles is repeated over and over again in almost identical
geometric setups. In addition, in many applications only a few geometry scenes are dominating
the CPU budget.

In this context, wouldn’t it make sense to construct highly-optimised navigation algorithms
for each of the dominating scenes? By design, VecGeom already provides this possibility
because it allows to attach specialised navigator instances – implementing well-defined navigation
interfaces – to logical volumes/scenes.

By “highly-optimised” we mean exploiting static information inside the algorithm itself. On
the one hand, such specific information could, in some cases, be used within generic algorithms
via some form of tabulation. On the other extreme, the information could be hard-coded into
a specialised algorithm directly. Some trade-off might finally be best suited. For now we have
opted to follow the direction of complete code specialisation in order to investigate what is
possible and how much performance one can ultimately gain by giving the compiler as much
information as possible.

We have identified at least the following areas where static information can be exploited:

Fast touchable to index hashing At any moment in time, particles have a concrete location
in the detector. As the detector in VecGeom is described as a tree structure of placed
volumes, the local reference frame of the particle with respect to the global detector frame
is determined by a unique path/branch on the geometry tree (see “touchable” concept in
Geant4). This path information is carried around in the state of the simulated particle.
The path is essentially a variable length list of indices and it determines the global-local
coordinate transformations which are needed during navigation. It is highly desirable
to quickly lookup these transformations based on the path (instead of recalculating it
frequently). The most efficient lookup would be to calculate a linear index, given a path,
and fetch the transformation from a contiguous vector. For the most important logical
volumes, a static analysis will be able to produce optimal path to index conversion lookup
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structures. In particular, static analysis will do a dimensional reduction of the path state
space and will figure out the relevant indices that influence the mapping.

Exploiting transformation structure Another optimisation for coordinate transformation
is the exploitation of the structure of the transformation matrices. For example, static
analysis will be able to tell if some coefficients are zero or one. Such information can
directly be put into the code improving the floating point throughput.

Reduction of virtual functions Reducing virtual function calls will enable the compiler to
perform additional optimisation. Static analysis of a scene is able to tell which exact
geometric primitives (boxes, tubes, cones) are being queried during collision detection.
This can directly be encoded into the C++ sources instead of letting the runtime figure this
out through dynamic polymorphism. (Note that this is usually not an issue for ray tracing
platforms which mostly only treat triangles anyway).

Optimised relocation When a particle moves across a material boundary it will obtain a new
path state which needs to be calculated. Although this calculation can benefit from SIMD
acceleration similar to section 2, it is still quite expensive. Static information such as which
volumes share boundaries with which other volume would definitely help constraining the
search space needing to be traversed and are hence a valuable optimisation. This technique
is known to be used in other packages (e.g., DAGMC [19]) and is more straightforward
to apply when the geometry is based on flat surface models coming from CAD systems.
In our case, determining touching properties is relatively complicated and needs sampling
techniques.

It is clear that performing the code specialisation related to the above ideas cannot be done by
hand. We have hence developed a prototypic tool, which – given a detector description (in form
of a TGeo ROOT file) and the logical volume name – emits an optimised navigator algorithm
in C++. Our tool implements all of the aforementioned ideas in a first form. The resulting
code can be compiled into a shared library that can be loaded as a plugin to the simulation.
It is even conceivable that during a running simulation itself, important logical volumes are
detected, specialised code constructed, compiled and hooked back into the simulation. However,
more often than doing this just-in-time compilation, users might do a separate short simulation,
construct the optimised code and use it in longer production runs. Table 2 presents a few
preliminary numbers from a first evaluation of the tool. We use the same procedure as in
section 2.5, but focus on ALICE detector volumes which were measured to be very important
in terms of the number of steps done within them (from typical Pb-Pb collisions). Moreover,
these volumes are rather simple and they do not contain lots of daughter objects. It is expected
in these cases, that specialisation would give us the best improvements, although many other
parameters (hierarchical depth of volume, complexity of scene in neighbouring volumes) have

Table 2: Navigation timing measurements for ALICE detector volumes, known to be important CPU
consumers. Timings represent seconds to process 0.5M tracks as in section 2.5. Next to the times obtained
with Geant4 and TGeo, VecGeom timings are shown for both the normal as well as the code-specialised
navigator. The additional benefit of code specialisation (factor VGnorm/VGspec) is indicated in square
brackets.

VolumeName #daughters Geant4 TGeo VG norm VG spec

ZNST 4 0.24 0.28 0.10 0.06 [x1.6]
voRB243CuTube 0 0.16 0.24 0.10 0.06 [x1.6]
AFaGraphiteCone 1 0.74 0.36 0.11 0.03 [x3.6]



8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072032  doi :10.1088/1742-6596/898/7/072032

a strong influence too. We observe significant accelerations (here between factors ≈ 1.6 and
≈ 3.6) due to code specialisation, and conclude that this technique can be extremely valuable
and promising to further accelerate VecGeom and HEP simulation in general. Turning this
study into production is from our perspective strongly encouraged, and of course not limited to
the above list of ideas.

Note that in the context of GeantV, the technique using specialised navigators already allowed
to obtain significant SIMD efficiency when treating baskets of particles in a (toy) simulation [20].

4. Summary and outlook
We presented two orthogonal advances in the VecGeom library related to the navigation
component. The first one is related to making use of the SIMD paradigm in hierarchical
data structures to quickly query hit candidate objects. It was shown that this leads to clear
improvements over existing voxelisation approaches in Geant4 and TGeo. The second idea is
related to automatic code specialisation and generation of navigator algorithms based on the
idea to exploit static properties of HEP detectors.

It is planned to extend the SIMD BVH techniques to other areas in VecGeom, such as to the
tessellated solid or multi-union geometric primitives.
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