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A measurement of the production of three isolated photons in proton–proton collisions at
a centre-of-mass energy

√
s = 8 TeV is reported. The results are based on an integrated

luminosity of 20.2 fb−1collected with the ATLAS detector at the LHC. The differential cross
sections are measured as functions of the transverse energy of each photon, the difference
in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of
pairs of photons, and the invariant mass of the triphoton system. A measurement of the
inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD
predictions are compared to the cross-section measurements. The predictions underestimate
the measurement of the inclusive fiducial cross section and the differential measurements at
low photon transverse energies and invariant masses. They provide adequate descriptions of
the measurements at high values of the photon transverse energies, invariant mass of pairs of
photons, and invariant mass of the triphoton system.
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1 Introduction

The production of three prompt photons in proton–proton (pp) collisions, pp → γγγ + X , provides a
testing ground for perturbative quantum chromodynamics (pQCD). This process is rare in the Standard
Model (SM) since the leading-order (LO) contribution to triphoton production is of order α3

EM. The
measurement of triphoton production can be performed in a broader range of kinematic regions than
in 2 → 2 reactions such as inclusive-photon [1–4] and diphoton [5–7] production. This provides a
complementary test of pQCD in processes with photons in the final state.

Precise measurements of triphoton production can be used to improve the description of this process in
Monte Carlo (MC) models. In addition, SM triphoton production provides one of the main irreducible
backgrounds for some beyond-the-SM (BSM) searches. Potential BSM processes include the associated
production of a photon and an exotic neutral particle decaying into a photon pair (qq → X0γ), where X0

can be a Kaluza–Klein graviton (GKK) [8–10] or a pseudoscalar (a) [11]. Moreover, triphoton production
is also the main background to the predicted decay of the Z boson into three photons. The current upper
limit at 95% confidence level on the branching fraction for Z → 3γ is 2.2 × 10−6 [12].

Three photons can be produced via two main mechanisms: direct and fragmentation production. In the
case of the direct production process, three photons are produced in the hard interaction via the annihilation
of an initial-state quark–antiquark pair (qq → γγγ). In the fragmentation process, at least one of the
photons arises from the fragmentation of a high-transverse-momentum (high-pT) parton (qg → γγq[γ]).
Direct photons are typically isolated, while those originating from the fragmentation process are usually
accompanied by nearby partons. Measurements of final-state photons include an isolation requirement
to reduce background contributions from neutral-hadron decays into photons. As a consequence, signal
processes with one or more fragmentation photons are also suppressed.

This Letter presentsmeasurements of three-photon production. The analysis is performedusing 20.2±0.4 fb−1

of ATLAS data at a centre-of-mass energy of
√

s = 8 TeV [13]. The measurements study the topology and
kinematics of the individual photons, pairs of photons, and the three-photon system. Differential cross
sections are measured as functions of the transverse energy1 of the leading photon (Eγ1

T ), the second-
highest-ET photon (Eγ2

T ) and the third-highest-ET photon (Eγ3
T ); the difference in azimuthal angle and in

pseudorapidity between pairs of photons (∆φγ1γ2 , ∆φγ1γ3 , ∆φγ2γ3 , |∆ηγ1γ2 |, |∆ηγ1γ3 |, |∆ηγ2γ3 |); the invari-
ant mass of pairs of photons (mγ1γ2 , mγ1γ3 and mγ2γ3); and the invariant mass of the triphoton system
(mγγγ). A measurement of the inclusive fiducial cross section is also reported. Photons are required to be
isolated based on the amount of transverse energy, excluding the photon contribution, inside a cone of size
∆R ≡

√
(η − ηγ)2 + (φ − φγ)2 = 0.4 centred around each photon direction (defined by the photon pseu-

dorapidity ηγ and azimuthal angle φγ). Finally, the measurements are compared to next-to-leading-order
(NLO) QCD calculations.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring,and the y-axis points upwards.
Cylindrical coordinates (r ,φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis measured in
radians. The pseudorapidity is defined in terms of the polar angle θ as η = - ln tan(θ/2). The transverse energy is defined as
ET = E sinθ, where E is the energy.
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2 ATLAS detector

The ATLAS detector [14] is a multi-purpose detector with a forward-backward symmetric cylindrical
geometry. The most relevant systems for the present measurement are the inner detector, immersed in a
2 T magnetic field produced by a thin superconducting solenoid, and the calorimeters. At small radii, the
inner detector is made up of fine-granularity pixel and microstrip detectors. These silicon-based detectors
cover the pseudorapidity range |η | < 2.5. A gas-filled straw-tube transition radiation tracker complements
the silicon tracker at larger radii in the range |η | < 2.0 and also provides electron identification capabilities
based on transition radiation. The electromagnetic calorimeter is a lead/liquid-argon sampling calorimeter
with accordion geometry. The calorimeter is divided into a barrel section covering |η | < 1.475 and two
end-cap sections covering 1.375 < |η | < 3.2. For |η | < 2.5 it is divided into three layers in depth,
which are finely segmented in η and φ. A thin presampler layer, covering |η | < 1.8, is used to correct
for fluctuations in upstream energy losses. The hadronic calorimeter in the region |η | < 1.7 uses steel
absorbers with scintillator tiles as the active medium. Liquid-argon with copper absorbers is used in
the hadronic end-cap calorimeters, which cover the region 1.5 < |η | < 3.2. Events are selected using a
first-level trigger implemented in custom electronics, which reduces the event rate to a value of 75 kHz
using a subset of detector information. Software algorithms with access to the full detector information
are then used in the high-level trigger to yield a recorded event rate of about 400 Hz [15].

3 Monte Carlo simulations and theoretical predictions

3.1 Monte Carlo simulations

The MC samples were generated to study the characteristics of the signal and background events. The
MC program MadGraph 5.1.4.4 [16] interfaced with Pythia 8.186 [17] was used to simulate signal
events. The partonic subprocess was simulated by MadGraph to include the leading-order matrix element
(qq → γγγ), whereas Pythia was added to include the initial- and final-state parton showers and the
fragmentation of partons into hadrons. The LO CTEQ6L1 parton distribution functions (PDFs) [18]
are used to parameterise the parton momentum distributions in the proton. To study the effect of the
contribution of photon fragmentation, a Pythia MC sample supplemented by QED final-state radiation
was generated with LO CTEQ6L1 PDFs. This sample includes the LO diphoton, photon+jet and dijet
processes with initial-state and final-state radiation modelled by the parton shower (PS).

The MC program Sherpa 1.4.1 [19] was used to estimate the background arising from electrons misrecon-
structed as photons. Three processes were simulated with at least one high-pT electron and photon in the
final state: e+e−γ, e+e−γγ, and e±νeγγ. The matrix elements were calculated with up to three final-state
partons at LO in pQCD and used the CT10 PDFs at NLO [20]. The matrix elements were merged with
the Sherpa parton-shower algorithm [21] following the ME+PS@LO prescription [22].

The generated signal and background event samples were passed through the Geant4-based [23] ATLAS
detector and trigger simulation programs [24]. The signal and background samples include a simulation
of the underlying event (UE) where Pythia event-generator parameters were set according to the “AU2”
tune [25]. The generation of the simulated event samples includes the effect of multiple pp interactions
per bunch crossing, as well as the effect of the detector response to interactions from bunch crossings
before or after the one containing the hard interaction. These MC events were weighted to reproduce the

3



distribution of the average number of interactions per bunch crossing observed in the data. The generated
MC events are reconstructed and analysed with the same program chain as the data.

3.2 Next-to-leading-order pQCD predictions

The NLO pQCD predictions presented in this Letter are computed using the programs MCFM [26, 27]
and MadGraph5_aMC@NLO 2.3.3 [28]. The strong coupling constant is calculated at two loops with
αS(mZ ) = 0.118 and the electromagnetic coupling constant is set to αEM = 1/137. In addition, the number
of massless quark flavours is set to five and the CT10 parameterisations of the proton PDFs at NLO are
used.

The MCFM program includes NLO pQCD calculations of the direct contribution, whereas the production
of a photon via parton fragmentation is estimated from the LO QCD matrix element multiplied by
the BFG II parton-to-photon fragmentation functions [29]. The renormalisation scale µR, factorisation
scale µF and fragmentation scale µf are chosen to be µR = µF = µf = mγγγ. In addition, the MCFM
calculations are performed using an isolation criterion which requires the total transverse energy from
the partons inside a cone of size ∆R = 0.4 around the photon direction to satisfy E iso

T < 10 GeV. The
MCFM NLO pQCD predictions refer to the parton level while the measurements are performed at the
particle level. Since the E iso

T requirement at the particle level is applied after the subtraction of the
UE transverse energy, it is expected that parton-to-hadron corrections to the NLO pQCD predictions
are small. This is confirmed by computing the ratio of the particle-level cross section for a MadGraph
sample interfaced with Pythia with UE effects to the computed cross section without hadronisation and UE
effects. The ratio is consistent with unity over the measured range of the variables under study. Therefore,
no correction is applied to the MCFM NLO pQCD calculations. Deviations from unity of O(1%) on
the parton-to-hadron correction factors are found when the hadronisation and UE effects are included
using Herwig++ 7.0.1 [30]. Predictions based on other proton PDF sets, namely MSTW2008 [31] and
NNPDF2.1 [32], are also computed. Differences of +5% and +6% in the calculation of the inclusive
fiducial cross section are found using the MSTW2008 and NNPDF2.1 PDF sets, respectively, whereas the
dependence of the shape of the differential cross sections on the PDF sets is found to be small.

MadGraph5_aMC@NLO calculations include the NLO pQCD contribution of direct processes and apply
a smoothly varying isolation cone to the photons [33]. This isolation requirement regularises the photon
collinear divergences which appear in the calculation of the matrix element and removes the contribution
of photons resulting from the fragmentation of a parton: E iso

T (∆R) < EγT(1− cos ∆R)/(1− cos R0), where
R0 = 0.4 and E iso

T (∆R) is the sum of the transverse energies of the particles around the photon up to∆R. The
MadGraph5_aMC@NLO calculations are interfaced with Pythia 8.212 [34] in the NLO+PS prescription
to include the initial- and final-state parton showers and the hadronisation [35]. The renormalisation and
factorisation scales are chosen to be equal to the transverse mass of the clustered jets from the final
state partons and photons defined in the matrix element. This choice follows the recommendations in
Ref. [28] when interfacing the MadGraph5_aMC@NLO calculations to Pythia. After the generation, the
isolation value of the photon is computed by summing the transverse energy of all final-state particles
(excluding muons and neutrinos) inside a cone of size ∆R = 0.4 around the photon candidate. Events with
E iso
T > 10 GeV for any of the photons are excluded.
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4 Event selection

The data considered in this analysis were taken in stable beam conditions and satisfy detector and data-
quality requirements. Events are recorded using a diphoton trigger with a transverse energy threshold of
20 GeV. The trigger efficiency for pairs of isolated photons with EγT > 22 GeV and |ηγ | < 2.37 is higher
than 99%. Events are required to have a reconstructed primary vertex with at least two associated tracks
with pT > 500 MeV and |η | < 2.5, consistent with originating from the same three-dimensional spot
within the luminous region of the colliding proton beams. If multiple primary vertices are reconstructed,
the one with the highest sum of the p2

T of the associated tracks is selected as the primary vertex.

Photon and electron candidates are reconstructed from clusters of energy deposited in the electromagnetic
calorimeter. Candidates without a matching track or reconstructed conversion vertex in the inner detector
are classified as unconverted photons [36]. Those with a matching reconstructed conversion vertex or a
matching track consistent with originating from a photon conversion are classified as converted photons.
Photons reconstructed within |ηγ | < 2.37 are retained. Those in the transition region between the barrel
and end-caps (1.37 < |ηγ | < 1.56) or regions of the calorimeter affected by read-out or high-voltage
failures are not considered in the event reconstruction.

Photon candidates passing loose identification requirements, based on the energy leaking into the hadronic
calorimeter and the lateral shower shape in the second layer of the electromagnetic calorimeter, are
retained [1, 2]. The photon cluster energies are corrected using an in situ calibration based on the
Z → e+e− reconstructed mass peak [37]. Once these corrections are applied, the three reconstructed
photons with the highest transverse energies Eγ1

T , Eγ2
T and Eγ3

T in each event are retained. Events with Eγ1
T ,

Eγ2
T and Eγ3

T greater than 27 GeV, 22 GeV and 15 GeV, respectively, and with a ∆R distance in the η–φ
plane above 0.45 between pairs of photons, are selected. Additionally, the invariant mass of the triphoton
system mγγγ is required to be above 50 GeV. This requirement corresponds to the minimum value of mγγγ

predicted at particle level by the signal MC sample described in Section 3.

Two further criteria are used to define the signal region and the background-enriched regions used to
estimate the jet-to-photon misidentification background. A tight photon-identification selection [36] is
applied to reject hadronic jet background, by imposing requirements on nine discriminating variables
(referred to as “shower shapes”) computed from the energy leaking into the hadronic calorimeter and the
lateral and longitudinal shower development in the electromagnetic calorimeter. The efficiency of this
selection for one photon is ≈ 67% (> 90%) for EγT ≈ 15 GeV (> 100 GeV). For the MC simulations, the
shower-shape variables are shifted to correct for small differences in the average values between data and
the simulation. In addition, EγT- and η

γ-dependent factors are applied to correct for the residual mismatch
between the photon identification efficiencies in the simulation and the data. The isolation of the photon
E iso
T is based on the amount of transverse energy inside a cone of size ∆R = 0.4 in the η-φ plane around the

photon candidates, excluding an area of size ∆η×∆φ = 0.125 × 0.175 centred on the photon energy cluster.
The isolation transverse energy is computed from the topological clusters of calorimeter cells [38]. The
measured E iso

T is corrected for the leakage of the photon’s energy into the isolation cone and the estimated
contributions from the UE and pile-up. These latter two corrections are computed simultaneously on an
event-by-event basis and the combined correction is typically between 1.5 and 2.0 GeV [3]. The E iso

T
value for isolated photons is required to be lower than E iso

T = 0.025·EγT + 2.7 [GeV]. The efficiency of
the isolation requirement is typically above 80% and increases as a function of EγT . The number of data
events selected in the signal region is 1085. For background studies, two alternative categories of photons
are defined. First, non-tight photon candidates are defined as those passing the loose selection but not
satisfying the tight identification criteria for at least one of the shower-shape variables computed from the
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energy deposits in cells of the first layer of the EM calorimeter. Second, non-isolated photon candidates
are defined to have E iso

T > 0.025· EγT + 4.7 [GeV].

5 Background estimation and signal extraction

The background contributions to the signal come from high-pT jets and electrons that are misidentified
as isolated photons (referred to as jet and electron backgrounds). The estimation of these backgrounds is
explained in the following.

5.1 e–γ misidentification

The number of background events due to e–γ misidentification is estimated using the MC samples listed
in Section 3.1. The Sherpa MC events were weighted to correct the e–γ misidentification rates to match
those found in data (referred to as e–γ scale factors in the following). These weights were estimated from
Z → e+e− events where at least either the electron or the positron was reconstructed as a photon. The
expected number of electron background events in the signal region is 71±2 (stat), which corresponds to
(6.5±0.2)% of the selected events. A systematic uncertainty is computed by propagating the uncertainty
in the e–γ scale factors to the estimation of the yield (see Section 7).

The normalisation of the MC samples is tested by fitting the signal, e–γ and jet–γ misidentification
contributions to the data as a function of mγγγ in the region 50 < mγγγ < 125 GeV. Since 86% of electron
background events come from processes where a photon is emitted by an electron or positron originating
from the decay of a Z boson (pp→ Z → e+e−γ), a peak around mγγγ ≈ mZ is expected. To enhance the
relative contribution of electrons that are misidentified as photons, only events with at least one converted
photon are considered. Signal and electron background MC events are used to describe the shape of the
mγγγ distribution, whereas data events with at least one non-tight identified photon are used to describe
the jet background contribution. The fit gives an electron background yield that is consistent with the MC
estimation, since it predicts a correction factor equal to 1.0 ± 0.4 (stat). Moreover, the result of the fit is
found to be independent of the definition of non-tight identified photons and a change of < 2% is found
when the isolation requirement is loosened by 1 GeV.

5.2 Jet–γ misidentification

A large background from jet–γ misidentification remains in the selected sample, even after imposing
the tight identification and isolation requirements on the photons. The jet background originates from
multi-jet ( j j j), photon + jets (γ j j), and diphoton + jets (γγ j) processes in which at least one jet is
misidentified as a photon. The two-dimensional-sideband method exploited in Refs. [2, 3, 5, 39–41] to
measure the inclusive photon and diphoton differential cross sections is used to perform an in situ statistical
subtraction of the background. The method uses the photon isolation energy and photon identification
criteria to discriminate prompt photons from jets. It relies on the fact that the correlations between the
isolation and identification variables in jet background events are small, and that the signal contamination
in the non-tight or non-isolated control region is low.

The two-dimensional-sideband method counts all combinations of photons meeting or failing to meet
the tight identification or isolation criteria. Four categories are defined for each photon, resulting in 64
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categories of events where 63 of these categories correspond to j j j, γ j j, and γγ j background-enriched
regions. The inputs of the method are the number of events in each category, the correlation between
the isolation and identification variables in jet background events (Rbg), the signal leakage fractions
in non-tight and non-isolated regions, and the expected number of electron background events in each
category. The correlation between the isolation and identification variables is taken to be negligible (Rbg =
1.0) based on studies in simulated background samples and on data in a background-dominated region [3].
The signal leakage fractions and electron-background events are estimated using theMC samples described
in Section 3.1.

The method allows the extraction of the number of true three-photon signal events (Nγγγ), the number
of events where at least one, two and three candidates are true jets and the tight and isolation efficiencies
for fake photon candidates from jets (“fake rates”). The number of events in each category is expressed
as a function of the following parameters: signal, electron- and jet-background yields, signal leakage
fractions, fake rates, and Rbg. Then, the system of 64 independent equations is grouped into 21 dependent
linear equations which are solved iteratively using a χ2 minimisation procedure. The size of each bin of
the observables under study is chosen to have a sufficiently large number of events to apply this method
bin-by-bin. The statistical uncertainty of the signal and jet background-enriched regions is propagated to
the estimation of the three-photon signal yield via pseudo-experiments.

The signal purity, defined as Nγγγ/NSR, where NSR is the number of selected events in the signal region, is
found to be (55±5)% (stat), with a value of ≈ 45% (≈ 60%) at low (high) EγT . The fractions of γγ j, γ j j and
j j j events are (33±2)% (stat), (5±2)% (stat) and (0.2±0.2)% (stat) respectively. Systematic uncertainties
are assigned to the modelling of the non-tight and non-isolated signal leakage fractions and to the value
of Rbg (see Section 7).

6 Unfolding to particle level

The production cross section for three isolated photons is measured as functions of Eγ1
T , Eγ2

T , Eγ3
T , ∆φγ1γ2 ,

∆φγ1γ3 , ∆φγ2γ3 , |∆ηγ1γ2 |, |∆ηγ1γ3 |, |∆ηγ2γ3 |, mγ1γ2 , mγ1γ3 , mγ2γ3 and mγγγ. The fiducial phase-space region
is listed in Table 1. The predictions of the MC generators at particle level are defined using those particles
with a lifetime τ longer than 30 ps; these particles are referred to as “stable”. The particles associated
with the overlaid pp collisions are not considered. The particle-level isolation requirement on the photons
is built by summing the transverse energy of all stable particles, except for muons and neutrinos, in a
cone of size ∆R = 0.4 around the photon direction. The contribution from the UE is subtracted using
the same procedure as applied to the data at the reconstruction level [42]. The data distributions after
background subtraction are unfolded to the particle level using bin-by-bin correction factors determined
using the signal MC sample. The correction factors take into account the efficiency of the event and photon
selection criteria and the small migration effects. Of the signal events reconstructed in a given bin, the
fraction that are generated in the same bin is typically found to be > 93%. The data distributions are
unfolded to the particle level via the formula

dσ
dA
(i) = Nsig(i)C(i)

∆A(i) L ,

where for a given bin i, (dσ/dA) is the differential cross section as a function of observable A, Nsig is the
number of background-subtracted data events, C is the correction factor, L is the integrated luminosity
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Table 1: Fiducial phase-space region defined at particle level.

Requirements on Phase-space region
EγT Eγ1

T > 27 GeV, Eγ2
T > 22 GeV, Eγ3

T > 15 GeV
mγγγ mγγγ > 50 GeV
∆Rγγ ∆Rγγ > 0.45
|ηγ | |ηγ | < 2.37 (excluding 1.37 < |ηγ | < 1.56)

Isolation E iso
T < 10 GeV

and ∆A is the width of the bin. The correction factors are computed using the MC sample of events as
C(i) = NMC

part (i)/NMC
reco(i), where NMC

part (i) is the number of events which satisfy the kinematic constraints
of the phase-space region at the particle level, and NMC

reco(i) is the number of events which fulfil all the
selection criteria at the reconstruction level. The correction factors vary between 1.5 and 3.3 as functions
of photon transverse energy, invariant mass of pairs of photons, and the invariant mass of the triphoton
system, whereas they have a constant value close to 2.5 as functions of the difference in azimuthal angle
and in pseudorapidity between pairs of photons.

7 Experimental and theoretical uncertainties

7.1 Experimental uncertainties

The sources of experimental systematic uncertainty that affect the measurements are the photon energy
scale and resolution, photon identification, jet and electron background subtraction, modelling of the
photon isolation, the photon fragmentation contribution, the unfolding procedure and the luminosity.

• Photon energy scale and resolution. The uncertainty due to the photon energy scale is estimated
by varying the photon energies in the MC simulation [37]. This uncertainty mostly affects the C(i)
correction factor. The effect of this variation on the estimation of the cross section is typically < 2%.
In addition, the uncertainty in the energy resolution is estimated by smearing photon energies in the
MC simulation as described in Ref. [37]. The resulting uncertainty in the cross section is typically
< 0.1%.

• Photon identification efficiency. The uncertainty in the photon identification efficiency is es-
timated from the effect of differences between shower-shape variable distributions in data and
simulation [36]. This uncertainty affects the estimation of the non-tight signal leakage fractions and
the C(i) correction factor and is fully correlated between photons. The correlation between tight
and non-tight identification variables is also considered in the propagation of the uncertainty. The
resulting uncertainty in the cross section is ≈ 10% (≈ 4%) at low (high) EγT .

• Photon identification and isolation correlation in the background. The photon isolation and
identification variables used to define the two-dimensional background sidebands are assumed to be
independent in jet background events (Rbg = 1.0). Any correlation between these variables affects
the estimation of signal purity and leads to systematic uncertainties in the background-subtraction
procedure. The value of Rbg is estimated using backgroundMC samples and is found to be consistent
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with unity within ±10% [3, 41]. This value of Rbg is verified using background-enriched regions
in data. The assumption of Rbg = 1.0 is found to hold within ±10% in the kinematic region of the
measurements presented here. The resulting uncertainty in the cross section is ≈ 8% (≈ 4%) at low
(high) EγT .

• Photon isolation modelling. Differences between data and signal MC events in the modelling of
the isolation distribution can lead to systematic uncertainties in the estimation of the non-isolated
signal leakage fractions and the C(i) correction factor. Two subsamples are selected from data by
applying either the tight or non-tight identification criteria to each photon; the subsample selected
with non-tight identification criteria is expected to be enriched in background candidates. The
E iso
T value for the non-tight candidates is scaled so that the integral for E iso

T > 10 GeV, where the
contribution from the signal is expected to be negligible, matches that of the tight candidates. The
rescaled background distribution is subtracted from that of the tight photon candidates to extract
the isolation profile of signal-like candidates. These distributions are used to derive Smirnov
transformations [36]. The Smirnov transformation shifts the photon isolation values event-by-event
in MC simulation to match the isolation distribution found in data. This Smirnov-transformed MC
sample is used to estimate new differential cross sections. Differences from the nominal results are
taken as systematic uncertainties. The resulting uncertainty in the cross section is ≈ 7% (≈ 4%) at
low (high) EγT .

• Photon fragmentation contribution. The admixture of direct and fragmentation photons affects
the estimation of the signal leakage fractions which are used in the jet background subtraction
procedure and the C(i) correction factor. A photon originating from the fragmentation of a parton
can be modelled in the MC simulation by allowing the radiation of a photon by a parton. A sample
of fragmentation photons is selected by applying the event selection to a diphoton MC sample
(see Section 3.1). This selects three-photon events where at least one of the final-state photons
results from fragmentation. The diphoton MC sample predicts that for more than 98% of the events
the sub-sub-leading photon originates from parton bremsstrahlung. Differences in the isolation
distributions between direct and fragmentation photons are expected. Therefore, a template fit to
the sub-sub-leading photon isolation distribution is performed to determine the optimal admixture
of the nominal and diphoton MC samples. The direct and fragmentation isolation templates are
given by the nominal and diphoton MC samples respectively, whereas the jet background template
is taken from a data control region where the sub-sub-leading photon candidate satisfies the non-
tight selection. The fit estimates that about 40% of the sub-sub-leading photons originate from
fragmentation, as modelled by the diphoton MC sample. This value is used to merge the nominal
and diphoton MC samples. The newMC sample is used to estimate the signal leakage fractions and
the C(i) correction factors. The deviation of the differential cross section from the value obtained
using the Smirnov-transformed MC sample is taken as the systematic uncertainty. This avoids
double counting the effect of the photon isolation modelling. The resulting uncertainty in the cross
section is ≈ 4%.

• e–γ misidentification. The uncertainty in the electron background contamination is estimated by
propagating the uncertainty in the e–γ scale factors (see Section 5.1), which affects the prediction
of the e–γ misidentification rates, to the estimation of the cross section. The resulting uncertainty
is ≈ 0.1%.

• Unfolding procedure. The effect of unfolding is investigated by using smooth functions to re-
weight the signal MC simulation to match the data distributions after background subtraction. The
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Table 2: Breakdown of the relative systematic uncertainties in themeasurement of the inclusive fiducial cross section.

Source Relative systematic uncertainty
Photon identification efficiency 7.9%

Identification and isolation correlation in the background 7.7%
Photon isolation modelling 5.8%

Photon fragmentation contribution 3.9%
Photon energy scale and resolution 1.6%

Unfolding 0.6%
e–γ misidentification 0.1%

Measurement of the integrated luminosity 1.9%
Total 13%

data are unfolded using this reweighted MC sample and the resulting cross sections are compared
to the nominal measurements. The differential cross sections are found to differ by < 1%.

• Other sources. The effect of different amounts of pile-up is estimated by comparing the ratio of
data to MC simulated signal for high and low pile-up samples. No dependence of this ratio on
pile-up conditions is found. In addition, the effect of the trigger efficiency on the estimation of the
cross section is found to be < 0.3%. The uncertainty in the integrated luminosity is 1.9% [13].

The total systematic uncertainty is computed by adding in quadrature the uncertainties from the sources
listed above and is found to be ≈ 13%. It decreases as a function of EγT from ≈ 15% to ≈ 10%. For regions
with Eγ1

T & 50 GeV, Eγ2
T & 50 GeV and Eγ3

T & 30 GeV, the uncertainty of the measurements is dominated
by the statistical uncertainty of the data. Table 2 shows the breakdown of the systematic uncertainties
in the measurement of the inclusive fiducial cross section. The statistical uncertainty in the measured
inclusive fiducial cross section is ≈ 9%.

7.2 Theoretical uncertainties

The following sources of uncertainty in the theoretical predictions are considered for the MCFM and
MadGraph5_aMC@NLO calculations.

• The uncertainty in the NLO QCD calculations due to terms beyond NLO is estimated by re-
peating the calculations using values of µR, µF and µf scaled by factors 0.5 and 2. For the
MadGraph5_aMC@NLO calculations, only the µR and µF scales are varied. In addition, the
scales are either varied simultaneously, individually or by fixing one and varying the other two.
The final uncertainty is taken as the largest deviation of the possible variations with respect to the
nominal value.

• The uncertainty in the NLO QCD calculations due to uncertainties in the proton PDFs is estimated
by repeating the calculations using the 52 additional sets from the CT10 error analysis [20].

• The uncertainty in the NLO QCD calculations due to the value of αS(mZ ) = 0.118 is estimated by
repeating the calculations using two additional sets of proton PDFs [20] employing different values
of αS(mZ ), namely αS(mZ ) = 0.116 and 0.120.
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The dominant theoretical uncertainty in the predicted cross section arises from the missing terms beyond
NLO and amounts to 10–12%. The uncertainty arising from the PDF variations amounts to 2–3% and the
uncertainty arising from the value of αS(mZ ) is below 2%. The total theoretical uncertainty is obtained
by adding in quadrature the individual uncertainties listed above and amounts to 10–13%.

8 Results

Themeasured inclusive fiducial cross section for the production of three isolated photons in the phase-space
region given in Table 1 is

σmeas = 72.6 ± 6.5 (stat.) ± 9.2 (syst.) fb,

where “stat.” and “syst.” denote the statistical and systematic uncertainties. The fiducial cross sections
predicted at NLO by MCFM and MadGraph5_aMC@NLO are

σNLO = 31.5 +3.2
−2.5 fb (MCFM),

σNLO+PS = 46.6 +5.7
−3.6 fb (MadGraph5_aMC@NLO).

The NLO QCD calculations underestimate the measured inclusive fiducial cross section by factors of
2.3 and 1.6 for MCFM and MadGraph5_aMC@NLO, respectively. The addition of the parton shower
to the MadGraph5_aMC@NLO prediction improves the agreement with the measured value. The NLO
electroweak corrections are small and cannot account for the observed differences between NLO QCD
and the measurements [43]. Similar discrepancies between the NLO calculations and the measurements
are found for the prediction of the inclusive fiducial cross section for γγ, Wγγ and Zγγ production [5, 44,
45]. The NNLO calculations, which are available for the computation of γγ but not for γγγ production,
significantly improve the description of the diphoton fiducial cross section [6, 46, 47].

Figure 1 shows the three-isolated-photons differential cross sections as functions of Eγ1
T , Eγ2

T and Eγ3
T . The

measurements are compared to NLO QCD predictions from MCFM and MadGraph5_aMC@NLO. The
NLO QCD calculations fail to describe the regions of low Eγ1

T , Eγ2
T and Eγ3

T . Differences of up to 60%
are observed between data and the predictions. The description of the measurements by the theory is
improved at high EγT . In particular, MadGraph5_aMC@NLO calculations describe the measured cross
sections for Eγ2

T & 50 GeV and Eγ3
T & 30 GeV within the statistical and systematic uncertainties, whereas

MCFM describes the data only at the highest values of Eγ1
T , Eγ2

T and Eγ3
T .

A comparison of the NLO calculations to the measurements as functions of mγ1γ2 , mγ1γ3 , mγ2γ3 and
mγγγ is shown in Figure 2. The MCFM calculations underestimate the measurements by 50% in the
low invariant mass regions, whereas the differences are 30–40% for mγ1γ2 & 150 GeV, mγ1γ3 & 75 GeV,
mγ2γ3 & 75 GeV and mγγγ & 150 GeV. The MadGraph5_aMC@NLO calculations also underestimate the
data by 30–50% in the low invariant mass regions. However, they tend to give a better description of the
measurements for mγ1γ2 & 150 GeV, mγ1γ3 & 75 GeV, mγ2γ3 & 75 GeV and mγγγ & 150 GeV. For such
regions, MadGraph5_aMC@NLO predictions are 25–30% higher than the MCFM estimates.

Figure 3 shows the three-isolated-photons differential cross sections as functions of ∆φγ1γ2 , ∆φγ1γ3 ,
∆φγ2γ3 , |∆ηγ1γ2 |, |∆ηγ1γ3 | and |∆ηγ2γ3 |. The theoretical calculations underestimate the normalisation
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of the measurements. This is due to the fact that these distributions are mainly populated by low-EγT
photons. Both NLO QCD calculations give an adequate description of the shape of the differential cross
sections as functions of |∆ηγ1γ2 |, |∆ηγ1γ3 | and |∆ηγ2γ3 |. A quantitative comparison of the NLO QCD
predictions to the measurements as functions of ∆φγ1γ2 , ∆φγ1γ3 and ∆φγ2γ3 is performed with a χ2 fit
to the cross-section normalisation including both statistical and systematic uncertainties. This tests the
description of the shape of the differential cross sections. The total systematic uncertainty is considered
to be fully correlated across bins and is included in the χ2 definition using nuisance parameters. After the
χ2 minimisation, scale factors equal to ≈ 1.6 (MadGraph5_aMC@NLO) and ≈ 2.3 (MCFM) are found
for each angular distribution independently. Both theoretical predictions give an adequate description of
the shape of dσ/d∆φγ2γ3 (χ2/ndof = 6/5 and 7/5 for MadGraph5_aMC@NLO and MCFM, respectively,
where ndof is the number of degree of freedom). In addition, MadGraph5_aMC@NLO calculations
describe adequately the shape of dσ/d∆φγ1γ2 and dσ/d∆φγ1γ3 (χ2/ndof = 6/5 and 7/5, respectively) but
not MCFM (χ2/ndof = 13/5 and 14/5, respectively). This shows the importance of the addition of the
parton shower to improve the description of the shape of dσ/d∆φγ1γ2 and dσ/d∆φγ1γ3 .
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Figure 1: Measured differential cross sections for the production of three isolated photons (dots) as functions of
(a) Eγ1

T , (b) Eγ2
T and (c) Eγ3

T . The NLO QCD calculations from MCFM and MadGraph5_aMC@NLO are also
shown. The thickness of each theoretical prediction corresponds to the theoretical uncertainty. The bottom part of
each figure shows the ratios of predicted and measured differential cross sections. The red inner (black outer) error
bars represent the systematic uncertainties (the statistical and systematic uncertainties added in quadrature). For
most of the data points, the inner error bars are smaller than the marker size and thus not visible.
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Figure 2: Measured differential cross sections for the production of three isolated photons (dots) as functions of
(a) mγ1γ2 , (b) mγ1γ3 , (c) mγ2γ3 and (d) mγγγ. The NLOQCD calculations from MCFM and MadGraph5_aMC@NLO
are also shown. The thickness of each theoretical prediction corresponds to the theoretical uncertainty. The bottom
part of each figure shows the ratios of predicted and measured differential cross sections. The red inner (black outer)
error bars represent the systematic uncertainties (the statistical and systematic uncertainties added in quadrature).
For most of the data points, the inner error bars are smaller than the marker size and thus not visible.
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Figure 3: Measured differential cross sections for the production of three isolated photons (dots) as functions of (a)
∆φγ1γ2 , (b) ∆φγ1γ3 , (c) ∆φγ2γ3 , (d) |∆ηγ1γ2 |, (e) |∆ηγ1γ3 | and (f) |∆ηγ2γ3 |. The NLO QCD calculations from MCFM
and MadGraph5_aMC@NLO are also shown. The thickness of each theoretical prediction corresponds to the
theoretical uncertainty. The bottom part of each figure shows the ratios of predicted and measured differential cross
sections. The red inner (black outer) error bars represent the systematic uncertainties (the statistical and systematic
uncertainties added in quadrature). For some of the data points, the inner error bars are smaller than the marker size
and thus not visible.
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9 Summary

Ameasurement of the production cross section of three isolated photons in pp collisions at
√

s = 8 TeVwith
the ATLAS detector at the LHC is presented using a data set with an integrated luminosity of 20.2 fb−1.
Differential cross sections as functions of Eγ1

T , Eγ2
T , Eγ3

T , mγ1γ2 , mγ1γ3 , mγ2γ3 , mγγγ, ∆φγ1γ2 , ∆φγ1γ3 , ∆φγ2γ3 ,
|∆ηγ1γ2 |, |∆ηγ1γ3 |, and |∆ηγ2γ3 | are measured for photons with Eγ1

T > 27 GeV, Eγ2
T > 22 GeV, Eγ3

T > 15 GeV,
mγγγ > 50 GeV, and |ηγ | < 2.37, excluding the region 1.37 < |ηγ | < 1.56. The distance between pairs
of photons in the η–φ plane is required to be ∆R > 0.45. The selection of isolated photons is ensured by
requiring that the transverse energy in a cone of size ∆R = 0.4 around the photon is smaller than 10 GeV.

The inclusive fiducial cross section is measured to be σmeas = 72.6 ± 6.5 (stat.) ± 9.2 (syst.) fb. The NLO
QCD calculations underestimate the measured inclusive fiducial cross section by a factor 2.3 for MCFM
and 1.6 for MadGraph5_aMC@NLO. Both NLO QCD predictions underestimate the measurements in
the low transverse energy and invariant mass regions. The MadGraph5_aMC@NLO predictions give an
adequate description of the measured cross-section distributions for Eγ2

T & 50 GeV and Eγ3
T & 30 GeV and

for mγ1γ2 & 150 GeV, mγ1γ3 & 75 GeV, mγ2γ3 & 75 GeV and mγγγ & 150 GeV. Both NLO calculations give
an adequate description of the shape of the measured cross section as functions of |∆ηγ1γ2 |, |∆ηγ1γ3 | and
|∆ηγ2γ3 |, whereas they underestimate the normalisation of the measurements. In addition, both theoretical
predictions inadequately describe the normalisation of the measurements as functions of ∆φγ1γ2 , ∆φγ1γ3

and ∆φγ2γ3 . MCFM predictions give an adequate description of the shape of dσ/d∆φγ2γ3 and fail to
describe the shape of dσ/d∆φγ1γ2 and dσ/d∆φγ1γ3 , whereas MadGraph5_aMC@NLO predictions give
an adequate description of the shape of the measured cross sections as functions of all three angular
variables. The measurements provide a test of pQCD for the description of the dynamics of triphoton
production and indicate the need for improved modelling of this process in MC models.
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