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Abstract How physical systems approach hydrodynamic
behavior is governed by the decay of nonhydrodynamic
modes. Here, we start from a relativistic kinetic theory
that encodes relaxation mechanisms governed by different
timescales thus sharing essential features of generic weakly
coupled nonequilibrium systems. By analytically solving for
the retarded correlation functions, we clarify how branch cuts
arise generically from noncollective particle excitations, how
they interface with poles arising from collective hydrody-
namic excitations, and to what extent the appearance of poles
remains at best an ambiguous signature for the onset of fluid
dynamic behavior. We observe that processes that are slower
than the hydrodynamic relaxation timescale can make a sys-
tem that has already reached fluid dynamic behavior to fall
out of hydrodynamics at late times. In addition, the analytical
control over this model allows us to explicitly demonstrate
how the hydrodynamic gradient expansion of the correlation
function can be resummed such that the complete and exact
non-analytic form of the correlation function can be recov-
ered.

1 Introduction

A broad range of physical phenomena is involved in how
relativistic nonequilibrium systems reach thermal equilib-
rium. For near-equilibrium systems, these mechanisms are
expected to leave characteristic traces in the analytic struc-
ture of the retarded correlation function of conserved quan-
tities GR(ω, k). On the one hand, the prototypic longtime
behavior of the correlation functions that describes collec-
tive excitations evolving towards global equilibrium is given
by hydrodynamic poles, whose locations and residues are
dictated by the fluid dynamical gradient expansion. On the
other hand the question at which time scales hydrodynamic
behavior emerges, and with which confounding mechanisms
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it may compete, is related to the existence and properties of
other nonanalytic structures in the lower complex half plane
of the correlators. These nonhydrodynamic modes have been
seen to govern the approach to hydrodynamics – or hydro-
dynamization – not only in static but also in rapidly evolving
backgrounds, used in the phenomenological description of
heavy-ion collisions [1–6]. While much of the recent work
on nonhydrodynamic modes has focused on strongly cou-
pled theories [7–9,11,12], the present study will deal with
nonhydrodynamic modes in weakly coupled theories.

Additional motivations for studying nonhydrodynamic
modes in relativistic equilibrating systems come from the
apparent phenomenological need to understand how fluid
dynamical behaviour arises in nucleus-nucleus, nucleus-
nucleon and possibly proton-proton collisions [13,14]. Some
phenomenologically successful descriptions of these sys-
tems interface hydrodynamics with transport models (see e.g.
[15,16]), while others do not invoke hydrodynamics explic-
itly (see e.g. [17]). This asks for a better understanding of
where and how kinetic theory differs from hydrodynamics.
The standard way of relating kinetic theory to viscous hydro-
dynamics is to derive the latter by truncating the former to a
finite set of moments of the distribution function [18,19].
However, this truncation is based on the assumption that
hydrodynamics works. To understand whether, when, and
how it breaks down necessitates investigating kinetic theory
beyond the moment expansion. The purpose of the present
manuscript is to do so by studying how small deviations from
thermal equilibrium relax in a full kinetic theory framework.

1.1 Analytic structure at strong and weak coupling

In known examples of strongly coupled systems at large Nc,
the remarkable simplicity of the microscopic structures of
nonabelian plasmas is reflected in a remarkably simple ana-
lytic structure of the full field theoretic correlation functions.
More specifically, in N = 4 SYM theory in the limit of
large number of colors Nc → ∞ and strong coupling λ =
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g2Nc → ∞, the retarded correlation functions are known
to exhibit an infinite set of nonhydrodynamical poles located
(asymptotically for large n) at ω±

n = ω±
0 ± 2πnT (1 ∓ i),

with n ∈ [1, 2, 3, . . .], and ω±
0 /πT = ±1.2139 − 0.7775i

[7–9]. (This position of quasi-normal poles is the same for
the stress energy tensor and for the scalar TrF2 [8,10].) In
addition, in the channels where energy momentum conserva-
tion demands, the correlation functions exhibit poles whose
locations and residues are dictated for small k by the hydro-
dynamic gradient expansion.

In weakly coupled theories, the analytic structure of
retarded correlation functions is much richer. In these theo-
ries, there is a scale separation between the typical size of the
wave packets 1/T and the mean free path between the indi-
vidual scatterings tscat. Therefore for time separations larger
than �t � 1/T , when interference effects can be neglected,
the correlation function is determined by Boltzmann trans-
port theory, in which the collision kernels are given by in-
medium scattering processes in the field theory [20–23]. The
nonanalytic features of the full field theory that are absent in
the transport theory are well known (see Sect. 2.1). However,
the nonanalytic structures appearing in the transport theory
are less well understood, and will be the topic of this contribu-
tion. In weakly coupled theories, transport theory has a wider
regime of validity than hydrodynamics but encompasses it.
Therefore, understanding these non-analytic structures pro-
vides a technically controlled in-road to understanding the
onset of hydrodynamic behaviour in weakly coupled theo-
ries.

1.2 Kinetic theory in the relaxation time approximation

While there have been numerous numerical studies of the
full collision kernel in nonabelian gauge theories [24–31],
including computations of equilibrium and nonequilibrium
retarded correlation functions [32], the question of analyti-
cal structures has been addressed only recently [33] in the
simplest possible model of the collision kernel – that of sim-
ple relaxation time τR . In this relaxation time approximation
(RTA), an ostensibly crisp and simple picture of the onset of
fluid dynamic behaviour appears by a migration of a hydro-
dynamic pole through a nonhydrodynamic cut for a specific
value of Knudsen number K = k τR where k is the wave
number of the perturbation [33]. However, this simple model
forgoes much of the structures of the collision kernel in favour
of a single relaxation time. The question of whether this sim-
ple picture survives the inclusion of more realistic collision
processes is the starting point of this paper.

The full weak coupling dynamics contains nonhydrody-
namic excitations at different energy scales that relax at
widely different time scales. A minimal way of incorporating
this generic qualitative feature while maintaining an analyti-
cally tractable model is to extend the standard RTA to a model

with a momentum dependent relaxation time

pμ∂μ f = p0

τR(p)
( f − feq). (1)

For a power law form of the relaxation time

τR(p) = tR(p/T )ξ , (2)

such a model has been used before to gain insight into freeze-
out dynamics [34].

By including the scale dependence of τR(p), we supple-
ment the standard RTA approximation with features that are
known to exists in QCD and other field theories of nonabelian
plasmas. In particular, for extreme out-of-equilibrium pertur-
bations, a.k.a. jets, the relaxation is related to the famous jet
stopping time [35,36]

t jet (p) ∼ 1

α2T

( p
T

)1/2
, (3)

corresponding to the value ξ = 1/2 in our model. Moreover,
this generalized model shares features of bottom-up thermal-
ization [37] in the sense that decaying particles will heat up
the thermal bath locally (see discussion at Sect. 3). Both fea-
tures appear generically for ξ > 0 while they are not realized
in the exceptional case ξ = 0. Other characteristic features
of QCD thermalization processes are not realized in the sim-
ple model (1). For instance, according to (1), hard particles
decay directly to the thermal bath while this process proceeds
in full QCD via a cascade of intermediate quasi-democratic
splittings [37,42]. Therefore, we cannot exclude that addi-
tional analytical structures of retarded correlations functions
might arise in full QCD that cannot be illustrated in an anal-
ysis of (1). However, as the analytic structures established
in this manuscript for the model (1) arise from generic fea-
tures of kinetic theory, we expect them to be realized in more
complete descriptions, too.

The main result of the present paper is to establish the
analytic structure of the retarded correlators of the energy-
momentum tensor for the model (1). This result is sketched
in Fig. 1 for the (analytically continued) shear channel cor-
relation function obtained from the model. Causality and the
stability of thermal equilibrium make the correlation function
analytic in the upper complex half-plane, while the locality of
the collision kernels in the Boltzmann equation allows one to
write the correlation function as analytic for |Re ω| > k. Of
course, ambiguities in the analytic continuation of the physi-
cal correlation function allow one in principle in kinetic the-
ory to deform branch cuts to the region |Re ω| > k. Also, in
quantum field theories, non-analytic structures can occur in
the region |Re ω| > k. In addition to the hydrodynamic pole,
the model exhibits two nonhydrodynamic cuts whose branch
points are located at ω = ±k. For any k, the cuts extend
to smaller imaginary parts than the hydrodynamic pole; it is
these structures that are responsible for a nontrivial competi-
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Fig. 1 Analytic structure of the retarded energy momentum correlation
function in the shear channel G0x,0x (ω, k) in the complex frequency
plane ω for the kinetic theory (1). The parts of the cut marked with
red crosses correspond to medium constituent particles with lifetimes
longer than the hydrodynamical decay time and will eventually domi-
nate the correlation function at late times. The upper complex half plane
is analytic by causality whereas for |Re ω| > k the correlation function
is analytic by locality of the scattering kernel. The nonanalytic features
of the function are confined to the grey area

tion between hydrodynamics and nonhydrodynamic modes
that we discuss in detail.

The paper is organized as follows: in Sect. 2, we first
provide simple qualitative arguments for the physical mech-
anisms and corresponding analytic structures arising in full
gauge theories. For the class of models (1), Sect. 3 derives
then explicit expressions for the retarded correlation func-
tions. For the case ξ = 1, these correlation functions can be
expressed in terms of one single, analytically known generat-
ing function H that largely determines the analytic structure
of the correlation functions. A detailed discussion of this ana-
lytic structure, its physical meaning, and its ambiguities is the
focus of Sect. 4, before we turn in Sect. 5 to a discussion of
the physical response on pre-hydrodynamic, hydrodynamic
and post-hydrodynamic time scales. As our study provides
explicit analytic control over a model of significant physi-
cal complexity, it is also an interesting scholarly playground
for understanding how Borel resummation techniques can be
applied to the asymptotic hydrodynamic gradient expansion.
This will be discussed in Sect. 6, before we conclude with a
short summary of main results and open questions.

2 Generic analytic properties of retarded correlators
and their physical origin

Before analyzing in detail the model (1) in subsequent sec-
tions, we discuss here generic features of the analytic struc-
ture of retarded correlation functions of the energy momen-

Fig. 2 Diagram of (4)
contributing to a retarded
correlation function

tum tensor. In particular, we aim at providing physical intu-
ition for the features appearing in kinetic theory.

2.1 Analyticity properties of retarded correlation functions
in gauge theories at finite temperature

At weak coupling the analytic structure of the retarded corre-
lation function for ω � 1/tscat ∼ g4 T has been discussed in
the context of theories with different field content as well as
in terms of different operators [9,20,38–41]. Quite generally,
the two point function of composite operators constructed
from two field operators (such as Tμν or the electromagnetic
current Jμ of a charged field) is given to leading order by
the simple one loop diagram depicted in Fig. 2. In the time
domain, this diagram is of the generic form

GR(t, �k) ∼
∫

p
V (p, k)DR(t, �p − �k)Drr (t, �p),

∼
∫

p

−iV (p, k)

2Ep−k Ep
θ(t)

(
ei Ep−k t − e−i E p−k t

)

×
[

1

2
+ n(Ep)

] (
ei Ept + e−i E pt

)
, (4)

where DR stands for the retarded propagator, Drr = D> +
D< is the symmetric one, and Ep = √

p2 + m2 denotes
the energy associated with an excitation of momentum p.
The vertices combine to a function V which depends on the
theory and the particular channel studied and is a function of
momenta �p and �k. For specific cases, see [9,38] for gauge
theories.

The correlator (4) can be decomposed naturally into two
parts

GR(t, k) ∼ C(t, k) + D(t, k) (5)

that contain slowly oscillating modes of frequencies ω =
Ep − Ep+q , and rapidly oscillating modes of frequencies
ω > Ep + Ep+q , respectively,

C(t, k) = θ(t)
∫

p

−iV (p, k)

2Ep−k Ep
n(Ep) sin((Ep − Ep−k)t),

(6)

D(t, k) = θ(t)
∫

p

−iV (p, k)

2Ep−k Ep

(
1

2
+ n(Ep)

)

× sin((Ep + Ep−k)t). (7)
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2.1.1 Rapidly oscillating part D(t, k)

The Fourier transform of the rapidly oscillating part

D(ω, k) ∼
∫

p

−iV (p, k)

2Ep−k Ep

(
1

2
+ n(Ep)

)

×
[

Ep + Ep−k

(Ep + Ep−k)2 − ω2

]
(8)

has a cut that extends from m + √
k2 + m2 < ±ω < ∞.

It will be a recurrent theme in this paper that the analytic
structure of retarded correlation functions is ambiguous in
the sense that different analytic continuations in the complex
frequency plane can account for the same physical response
in the time domain. In the present case, this can be illustrated
by inserting for the massless theory the Matsubara represen-
tation n(p) + 1

2 = ∑∞
n=−∞

βp
(2πn)2+(βp)2 into (8) and inte-

grating over p. It can be seen that by choosing a suitable
analytic continuation of D in the lower complex half-plane,
the cutsm+√

k2 + m2 < ±ω < ∞ along the real axis can be
exchanged into a series of cuts that are positioned deep in the
negative imaginary region at (for m = 0) Imω = −4πn T
and −k < Re ω < k with n ∈ [1, 2, . . .], see figure 3 of Ref.
[9]. As the nonanalytic structures in D have a distance O (T )

from the real ω-axis, the contribution D decays on timescale
1/T , and it is insignificant at late times when fluid dynamic
behaviour is expected to take place.

2.1.2 The slowly oscillating part C(t, k) and kinetic theory

As argued in [20], the slowly oscillating part C arises from
contributions that can be written in terms of expectation val-
ues of number operators. This suggests that for small k, the
physics contained in C(t, k) can be captured by kinetic the-
ory. In Fourier space,

C(ω, k) ∼
∫

p

−iV (p, k)

2Ep−k Ep
n(Ep)

[
Ep − Ep−k

(Ep − Ep−k)2 − ω2

]
,

(9)

the slowly oscillating nature of C(ω, k) is reflected in a
branch cut that extends along the real axis over the limited
range −k < ω < k (for all masses). For small k, this expres-
sion can be expanded to give

C(ω) ≈
∫

p

V (p, 0)

E2
p

n(Ep)

[
1

iω − i �v · �k
]

, (10)

where �v = ∂ �pEp is the group velocity and the term in square
brackets is the ballistic propagator of a free streaming point
particle. We shall encounter the same branch-cut −k < ω <

k and the same integral (10) when we discuss the free kinetic
theory in Sect. 2.2.

The free theory calculation recalled here and presented,
e.g., in [9] is insufficient for ω ∼ 1/tscat ∼ g4 T , where
interactions change the dynamics qualitatively. It therefore
does not reveal the hydrodynamic pole which is close to the
origin at ω ∼ g4 T . To obtain even at leading order complete
results in this region, a class of ladder diagrams needs to be
resummed [21]. Such resummation can be dressed in the lan-
guage of an effective kinetic theory [22,23] of nearly mass-
less quasiparticles, where the resummed diagrams appear in
the particular scattering kernels of the kinetic equation. The
effective kinetic theory is suitable for the computation of
correlation functions of the quantum field theory with exter-
nal momenta ω, k � 1/tscat, and therefore it is suitable for
studying the vicinity of the slowly oscillating cut of C in
more detail than the unresummed calculation. However, this
resummation fails for larger (negative imaginary) values of
ω and does not capture the physics of cuts of D.

2.2 Analytic structure of retarded correlation functions in
kinetic theory

In this subsection, we develop an intuitive understanding for
the analytic structures accessible via kinetic theory.

2.2.1 Massless kinetic theory without interaction

As sketched on the left hand side of Fig. 3, a sound chan-
nel perturbation in an equilibrium system may be viewed as
embedding alternating sheets of overdense and underdense
regions that are separated in the z-direction by a distance
2π/k. Analogous sketches can be given for perturbations
in other channels. Computing the retarded response at time t
amounts then to studying the state of the system at some arbi-
trary point �x which initially is on the peak of the overdense
region at t = 0 when the perturbation is introduced.

In a massless kinetic theory without interactions, particles
move on straight lines at the speed of light. What determines
the state at the point �x at time t is then the average over a
sphere of radius ct . As the overdense regions are spaced 2π/k
apart, the particles moving in -z direction will give rise to a
signal oscillating with frequency ω = k. This corresponds
to a pole at k in the complex ω plane. Particles coming from
any other direction with velocity �v will result in an oscillating
signal with smaller frequency ω = �k · �v, corresponding to
a pole at �k · �v in the complex ω plane. Integrating over all
orientations �v from which particles reach the point �x , one
finds a string of poles between −k < ω < k that assemble
to a logarithmic cut

∫
d

4π

1

iω − i �v · �k = i

2k
log

(
ω − k

ω + k

)
. (11)

123



Eur. Phys. J. C (2019) 79 :776 Page 5 of 21 776

Fig. 3 Left hand side: schematic picture of a perturbation in an equi-
librium state that displays sheets of overdensity at wavelength 2π/k.
For a massless, free streaming gas at time t , the dynamical response
at a position x is given by integrating contributions along the circle of

radius c t . Right hand side: Analytic structure of the retarded correlation
functions Gαβ,γ δ

R (ω, k) in the complex frequency plane. The physics of
free streaming particles is reflected in a branch cut along the real axis

This cut is also well known in the physics of hard thermal
loops, where it gives rise to Landau damping [43]. We con-
clude that the simple picture of a homogeneous and isotropic
free-streaming dynamics explains the logarithmic branch cut
found in interaction-free massless kinetic theory for retarded
correlation functions like, e.g., the correlation function in the
sound channel calculated in [33]

G00,00
R (ω, k) = −sT

3ω

2k
log

(
ω − k

ω + k

)
. (12)

2.2.2 Massless kinetic theory in the standard RTA

Romatschke [33] has studied the effect of adding interactions
to the free kinetic theory in a simplified model of momentum-
independent relaxation time approximation with collision
kernel

CRT A[ f ] = 1

tR

(
f − feq

)
, (13)

where feq is the local equilibrium distribution function to
which the system wants to relax, determined by energy and
momentum conservation. The inclusion of these interactions
has two qualitative effects.

First, trivially, the free particle propagator will be damped
at length scales of �x ∼ tR , shifting the cut into the negative
complex plane by an amount of −i/tR

∫
d

4π

1

iω − i �v · �k − 1
tR

= i

2k
log

(
ω − k + i/tR
ω + k + i/tR

)
. (14)

A more subtle effect arises as a consequence of energy-
momentum conservation (see Eq. (23) for technical details).

As the energy and momentum from the lost particles need
to go somewhere, a new collective excitation is dynami-
cally created in channels where the conservation demands
it (sound G00,00

R and shear G0x,0x
R ). For small k, the location

and residues of these poles are dictated by the hydrodynamic
gradient expansion. We will call this pole in the following
hydrodynamic pole (Fig. 4). For k ≥ π/2tR , the pole crosses
the cut and enters the next Riemann sheet, thus disappearing
from the physical plane. Therefore, the model has two dis-
tinct kinematic regimes: one where the pole is above the cut
and the late time behaviour of the system is dictated by the
hydrodynamic pole, and the other where the cut dominates
the dynamics at all times. This was called the hydrodynamic
onset transition in [33].

2.2.3 Massless kinetic theory with scale-dependent RTA

How does the analytic structure of the retarded correla-
tor indicate that the kinetic theory of a free-streaming gas
has been supplemented with the scale-dependent relaxation
dynamics of (1)? In close analogy to the angular integrals (11)
and (14), we expect that qualitative properties of the analytic
structure of retarded correlation functions are captured in this
case by the integral

∫
dp feq(p)

∫
d

4π

1

iω − i �v · �k − 1
τR(p)

. (15)

This indicates that relaxing the assumption of a single relax-
ation time will render the correlation function nonanalytic in
the entire strip −k < Re ω < k, Im ω < 0, where poles at
different Re ω correspond to different angles of the particles,
and different Im ω correspond to different p. We shall estab-
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Fig. 4 Analytic structure of the retarded shear correlation function
G0x,0x

R (ω, k) in the complex frequency plane for the kinetic theory with
scale-independent relaxation time (13)

lish this picture in an explicit calculation in Sect. 4. It implies
that the hydrodynamic pole is always embedded in the non-
analytic structure. The existence of a clear onset transition
of hydrodynamics is therefore a consequence of assuming
a single relaxation time in (13). As we discuss in the next
subsection, emersing the hydrodynamic pole in a nonana-
lytic strip results in a subtle interplay between hydrodynamic
and nonhydrodynamic modes that can lead to a qualitatively
novel phenomenon in the long-time behavior.

2.3 Dehydrodynamization in kinetic theory

With the simple extension to a scale-dependent relaxation
time, the notion of a unique Knudsen number is obscured, as
for any arbitrarily small wavenumber k, physics of different
energy scales enters the transport on different time scales. To
illustrate this parametrically, consider a generic small defor-
mation of the thermal equilibrium. As by assumption the
deformation does not take the system far from equilibrium,
the number of perturbed modes will be, for large p, propor-
tional to e−βp. Each of these modes will then evolve toward
equilibrium in a timescale τR(p), such that the overall mag-
nitude of the nonhydrodynamic part of the perturbation can
be estimated at time t by

δTμν(t) ∼
∫

p
e−βpe

− t
τR (p) . (16)

For a given t , the integral is dominated by the decay of modes
at a characteristic scale

p∗(t) ∼ T

(
ξ
t

tR

) 1
1+ξ

, (17)

and the perturbation has then an overall magnitude of

δTμν ∼ e− (1+ξ)
ξ

p∗(t)
T . (18)

In channels where conservation laws so demand, the defor-
mation may also excite modes which relax on hydrodynamic
time scales

δTμν
hydro ∼ e−Dk2t , (19)

where D ∼ tR is the appropriate diffusion coefficient in the
channel in question. For ξ = 0, corresponding to a single
relaxation time, both contributions turn out to be exponentials
and the origin of the well defined hydrodynamization scale
discussed in the previous subsection is related to the question
which contribution decays faster. However, for general ξ the
situation is obviously more intricate. Amusingly, for ξ > 0,
the contribution arising from the nonhydrodynamic sector is
subexponential, and dominates the signal at late times t �
tout

tout ∼ t−1/ξ
scat

D
1+ξ
ξ k2(1+ξ)/ξ

, (20)

so that one expects that at some late time a system that was
hydrodynamic, will again lose its universal fluid dynamical
description and be again described by specific microscopic
physics related to the dynamics of the nonhydrodynamic
modes.

This dehydrodynamization mechanism will be seen at
work in the model (1) of scale-dependent relaxation time,
where hard particles still decay directly to a thermal bath and
hydrodynamic fluctuations of the thermal bath are ignored. In
the full QCD collision kernel, however, the same process pro-
ceeds via a cascade of intermediate quasi-democratic split-
tings [29,30,37,42]. Also, due to the fluctuation-dissipation
theorem, there are other sources of hydrodynamic pertur-
bations that can give rise to late-time power-law hydrody-
namic tails [20,39,44,45]. Therefore, while the mechanism
discussed here is expected to be part of full QCD, the resulting
sub-exponential decay is faster than the power-law decay of
hydrodynamic tails, and it is therefore not expected to dom-
inate the late-time behavior of the full theory.

3 The model: momentum dependent relaxation time

We consider a kinetic theory of the form (1), coupled to an
external force Fα

pμ∂μ f (�x, �p, t) + Fα∇(p)
α f (�x, �p, t)

= pαuα

τR(pαuα)

(
f (�x, �p, t) − feq(T (�x, t), �u(�x, t))) . (21)

The particle distribution f (�x, �p, t) fulfils the massless
onshell condition pα pα = 0, and it is taken to be a func-
tion of spatial momenta only, such that the partial derivative
∇(p)

0 f ≡ 0. We write p = p0 = | �p|, and our metric con-
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vention is mostly plus ημν = diag(−1, 1, 1, 1). τR(pαuα) is
the momentum dependent relaxation time defined in (2). The
local target equilibrium distribution function

feq = eβpαuα

(22)

depends on four macroscopic variables, the inverse tempera-
ture β = 1/T and the flow field �u, with uaua = −1 that need
to be adjusted locally such that the time evolution conserves
energy and momentum locally in the absence of the external
force Fα = 0. According to (21), the condition ∂μTμν = 0
implies

∫
d3 p

(2π)3

pν

p0

[
pαuα

τR(pαuα)
( f − feq)

]
= 0. (23)

For the case of a scale-independent relaxation time approxi-
mation when ξ = 0, Eq. (23) implies that the target thermal
system has the same local energy density as the perturbed sys-
tem. In contrast, for ξ = 1 when τR(pαuα) = tR pαuα/T ,
it is the particle number density that is the same in both sys-
tems. For the case ξ = 1/2 it is something in between. There-
fore, for ξ > 0, the evolution of the perturbed system to the
local target equilibrium will increase the energy density of
the local target equilibrium system, i.e., it will heat it up. It
is in this sense that the model displays features of bottom-up
thermalization for ξ > 0.

3.1 Solution for linear perturbations induced by an external
source

The application of an external force Fα reshuffles energy
and momentum such that, at a given point in space, the local
target thermal distribution feq is no longer the global equi-
librium distribution f geq but rather the local thermal distri-
bution given by the local energy and momentum densities,
feq = f geq + δ feq. Here δ feq accounts for the change of the
target local equilibrium distribution due to the external force.
For a Maxwell distribution – relevant for the high-momentum
particles that we are concentrating on – the δ feq can be writ-
ten as a local perturbation of the global distribution

δ feq(�x, �p, t) = p
f geq
T

[
δT (�x, t)

T
+ viδu

i (�x, t)
]

, (24)

with �v ≡ �p/p.
In the presence of a small external force Fα , the evolu-

tion of linear perturbations δ f on top of the global thermal
equilibrium f = f geq + δ f can be expressed by formulating
Eq. (21) in Fourier space

δ f =
1
p F

α∇(p)
α f geq − 1

τR(p) δ feq

iω − i �v · k − 1
τR(p)

. (25)

Our convention for the Fourier transform is Q(ω, k) =∫
dtd3keiωt−i �k·�x Q(t, �x). In Eq. (25), we have used the rela-

tion f − feq = δ f − δ feq. This relation implies also that up
to linear perturbations, Eq. (23) translates into constraints for
four particular integral moments of δ feq and δ f , namely

∫
d3 p

(2π)3

pν

τR(p)
δ f =

∫
d3 p

(2π)3

pν

τR(p)
δ feq

=
∫

d3 p

(2π)3

(pν)

τR(p)
f geq

[
p δT

T 2 + piδui

T

]
. (26)

As a consequence, both sides of Eq. (25) depend on δ f ,
the left hand side explicitly and the right hand side implic-
itly through δ feq. The rewritten condition (26) for energy-
momentum conservation makes this implicit dependence
manifest. The task is to solve the four equations (26) self-
consistently for the four local perturbations of the target tem-
perature δT (�x, t) and target flow fields δ�u(�x, t) that define
δ feq. This is done by inserting (25) into (26), thus finding a
closed set of four equations for the four variations δT and
δui . The solution of this set of equations is

δT = S0 + δT I 2ξ,0,0 + δuz I
2ξ,0,1, (27)

δuz = 3S0 + 3δT I 2ξ,0,1 + 3δuz I
2ξ,0,2, (28)

δux = Sx + δux
2

I 2ξ,2,0, (29)

δuy = Sy + δuy

2
I 2ξ,2,0, (30)

where the integral moments and sources are defined by

I abc = −2π2

�(5 − ξ)T 5tR

×
∫

d3 p

(2π)3 p
2 f geq(p)(T/p)avb⊥vcz

iω − i �v · �k − T ξ

tR pξ

, (31)

Sμ = −2π2

�(5 − ξ)T 5

×
∫

d3 p

(2π)3

T ξ

pξ

f geq(p)Fiviv
μ

iω − i �v · �k − T ξ

tR pξ

, (32)

with v2⊥ = 1 − v2
z . The solutions (27)–(30) for the perturba-

tions of the local target temperature and flow velocity fully
define the deviation δ feq of the local target equilibrium distri-
bution from the global equilibrium distribution. This allows
one to write explicit expressions for all terms on the right
hand side of Eq. (25). Therefore, in terms of these solutions,
Eq. (25) contains now the full microscopic information of
the system.
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We note as an aside that the following discussion could
be easily extended to the case of Bose (or Fermi) statistics,
replacing (22) by the corresponding sum over exponentials

1

eβp − 1
=

∞∑
n=1

e−nβp. (33)

In particular, the integral moments (31) can be simply
calculated for this statistics, resulting in

I abcBose(T ) =
∞∑
n=1

I abc(T/n). (34)

3.2 Retarded correlation functions

We follow the standard procedure of sourcing the departure
of the energy-momentum tensor from equilibrium,

δTμν =
∫

d3 p

(2π)3

pμ pν

p0 δ f (35)

by a perturbation of the metric gμν = ημν + hμν . This
amounts to applying an external force

Fivi = −p2�i
αβvαvβvi , (36)

where the �i
αβ denote Christoffel symbols. The retarded cor-

relation functions Gμν,αβ
R define then the response of the

energy momentum tensor to the metric perturbation,

〈Tμν〉 = ∂Tμν
eq

∂hαβ

∣∣∣
h=0

hαβ − 1

2
Gμν,αβ

R hαβ, (37)

and they can be evaluated in terms of functional derivatives

Gμν,αβ
R = δTμν

δhαβ

. (38)

The disturbance δTμν of the energy momentum tensor is
given explicitly in terms of Eq. (25), with δ feq defined in
terms of Eqs. (24) and (27)–(30). The evaluation of the func-
tional derivative δTμν/δhαβ is then straightforward and one
finds

Gxy,xy
R = −iωsT tR

�(5 − ξ)

64
I 0,4,0, (39)

G0x,0x
R = iksT tR

�(5 − ξ)

16[
−I 0,2,1 − 3

2
I ξ,2,0 I ξ,2,1

1 − 3
2 I

2ξ,2,0

]
, (40)

Gzz,zz
R = −iωsT tR

�(5 − ξ)

8((
1 − 3I 2ξ,0,2

)
(I ξ,0,2)2 + 6I 2ξ,0,1 I ξ,0,3 I ξ,0,2 + 3

(
1 − I 2ξ,0,0

)
(I ξ,0,3)2

−3(I 2ξ,0,1)2 − I 2ξ,0,0 − 3
(
1 − I 2ξ,0,0

)
I 2ξ,0,2 + 1

+ I 0,0,4

)
. (41)

These retarded correlators describe the response in the
spin 2 tensor channel (39) induced by hxy , in the spin 1 shear
channel (40) induced by h0x (or h0y , hxz , hyz) and in the
spin 0 sound channel (41) induced by hzz (or h00, h03, hxx ,
hyy), respectively. The remaining components of the corre-
lation functions can be obtained from relations imposed by
energy-momentum conservation, such as ∂μGμα,βγ = 0. For
instance, Gxz,xz

R (ω, k) = ω
k G

xz,x0
R (ω, k), G0x,0x

R (ω, k) =
k
ω
G0x,xz

R (ω, k) orG00,00
R (ω, k) = k

ω
G0z,00

R (ω, k) ,G00,00
R (ω,

k) = k2

ω2 G
0z,0z
R (ω, k). We have explicitly checked (up to high

orders in the gradient expansion) that the various correla-
tion functions satisfy these nontrivial Ward identities that
are not apparent in the above calculation. We have also
checked explicitly that for the special case of a momentum-
independent relaxation time, ξ = 0, the retarded correlation
functions (39), (40), and (41) reduce to the results of Ref.
[33].

3.3 The fluid dynamic limit of GR

Up to second order in the gradient expansion in small ω and
k, the form of retarded correlation functions is dictated by
second order fluid dynamics, namely

Gxy,xy
R,hyd = −iηω + 1

2

(
κ
(
k2 + ω2

)
+ 2ητπω2

)
+ · · · ,

(42)

G0x,0x
R,hyd = − ik2η

ω
+
(

η2k4

sTω2 + ητπk
2
)

+ · · · , (43)

Gzz,zz
R,hyd = c2

s sTω2

−c2
s k

2 + ω2 − 4iηω5

3
(−c2

s k
2 + ω2

)2 + · · · , (44)

where dots indicate terms of higher power in k or ω. These
fluid dynamic expressions depend on entropy s, temperature
T , sound velocity c2

s , as well as shear viscosity η, the shear
viscous relaxation time τπ and the second order transport
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coefficient κ . To determine these fluid dynamic parameters
for the kinetic theory with scale-dependent relaxation time,
we want to compare the gradient expansion of (39), (40) and
(41) to the hydrodynamic expressions (42), (43) and (44). To
this end, we expand the integrand of the integral moments
(31) to arbitrary order N in ω and k, and we perform the
p-integration for each term in this expansion. This leads to

I abc ≈
N∑

R=0

(iω)R
√

π�(−a + Rξ + ξ + 5)�
( b

2 + 1
)

2�(5 − ξ)

×

⎧⎪⎨
⎪⎩

�
( c+1

2

)
3 F̃2

c+1
2 , 1−R

2 ,− R
2

1
2 , 1

2 (b+c+3)

(
k2

ω2

)
even c

− kR
2ω

�
( c

2 + 1
)

3 F̃2

c+2
2 , 1−R

2 ,1− R
2

3
2 , 1

2 (b+c+4)

(
k2

ω2

)
odd c

,

(45)

where 3 F̃2 is the regularized generalized hypergeometric
function. If one of the upper indices of the hypergeomet-
ric function is zero or negative integer, the sum truncates to
a hypergeometric polynomial, which is the case here when
R �= 0. For example

I 040 ≈ 1

�(5 − ξ)

(
8

15
�(5 + ξ) + 8iω

15
�(5 + 2ξ)

− 8(k2 + 7ω2)�(5 + 3ξ)

105

−8i(3k2ω + 7ω3)�(5 + 4ξ)

105
+ · · ·

)
, (46)

which, modulo prefactors, determines the gradient expansion
of the tensor channel Gxy,xy

R in (39). We note that this is an
asymptotic series. Comparing these gradient expansions to
the hydrodynamic limits, one finds

c2
s = 1/3, (47)

η = �(5 + ξ)

120
sT tR, (48)

τπ = �(5 + 2ξ)

�(5 + ξ)
tR, (49)

κ = 0, (50)

see also Ref. [34]. Given that the retarded correlators (39),
(40) and (41) are those of a kinetic theory of massless parti-
cles, the speed of sound takes of course the value expected
for a conformal theory. The expressions for shear viscosity
η, the shear viscous relaxation time τπ , and κ are genuine
kinetic theory results. As the present evaluation is based
on a linearized response to perturbations, it is not suffi-
cient to determine those second order transport coefficients
λ1, λ2, λ3 which depend nonlinearly on perturbations.

Hydrodynamic poles arise as a consequence of energy
momentum conservation. In the kinetic theory calculation

of Sect. 3.2, the structures in the retarded correlators that
arise from energy-momentum conservation are related to the
term δ feq on the right hand side of (25). Inserting the distur-
bance (25) into (35) and performing the functional deriva-
tive δTμν(ω, k)/δhαβ(ω, k), one finds that it is exactly the
nontrivial denominators in (40) and (41) that arise from the
terms proportional to δ feq. The hydrodynamic poles in (40)
and (41) are therefore given by the zeroes of the nontrivial
denominators in these two channels that arise from energy
momentum conservation.

To make the pole structure of the fluid dynamic limit of
retarded correlation functions more explicit, one can write
the fluid dynamic limit of the shear and sound channels as

G0x,0x
R,hyd = ηk2

iω (1 − iτπω) − η
sT k

2 , (51)

and

Gzz,zz
R,hyd = sT

c2
sω

2 − i 4
3

η
sT ω3

ω2 − c2
s k

2 + i 4
3

η
sT k

2ω
. (52)

These expressions agree up to second order in gradient expan-
sion with (43) and (44), respectively. Higher orders in the
gradient expansion of the full retarded correlators cannot be
expected to be reproduced correctly by (51) and (52). In this
sense, the precise location of fluid dynamical poles is beyond
the scope of a second order gradient expansion. We shall
discuss it in Sect. 5 without taking recourse to the gradient
expansion.

4 Analytic structure of the retarded correlation
function in momentum dependent relaxation time
approximation

The full retarded correlation functions are defined in terms
of the integral moments I a,b,c(ω, k) . To study these corre-
lation functions beyond the simple gradient expansion, one
needs to evaluate I a,b,c(ω, k) for nonzero ω and k. A numer-
ical evaluation of I a,b,c(ω, k) in (32) is possible for arbitrary
momentum dependencies of the relaxation time approxima-
tion (2), i.e., for arbitrary ξ . However, analytical control is
advantageous for studying the analytic structure. We there-
fore focus in the following sections on the case ξ = 1 for
which explicit analytical results can be obtained. However,
we expect that the qualitative features found for the case
ξ = 1 extend to the generic case ξ > 0.

The simplification in the case ξ = 1 arises from the fact
that all integral moments can be related explicitly to a single
generating function

I a,b,c = Ra,b,c
1 (ω̄, k̄)
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+ Ra,b,c
2 (ω̄, k̄, ∂ρ)H(ρ, ω̄, k̄)|ρ=1, (53)

with

ω̄ ≡ tRω, (54)

k̄ ≡ ktR . (55)

Here, Ra,b,c
1 and Ra,b,c

2 are simple rational functions of ω and
k, and in R2 the derivative ∂ρ appears only in the numerator
of the rational function. The generating function reads

H(ω̄, k̄, ρ) = 1

2

∫ 1

−1
dx
∫ ∞

0
dp

pe−ρp

(ω̄ − k̄x)p + i
. (56)

Appendix A provides details of this reduction. According
to the procedures presented there, a symbolic computation
program for algebraic reduction [47] can be employed to
obtain explicit expressions for the rational functions Ra,b,c

1

and Ra,b,c
2 that enter all moments I a,b,c of interest.

We note as an aside that we have attempted to derive
expressions similar to (53) for other values of ξ . For other
rational values, such as ξ = 1/2, ξ = 1/3 etc, one finds
typically expressions in terms of more than one generating
function, but we were not able to bring all of them into closed
analytical form.

To evaluate H(ω̄, k̄, ρ), we start from the representation

H(ω̄, k̄, ρ) = 1

2k̄

∫ k̄

−k̄
dx(−∂ρ)G(ω̄ − x, ρ) (57)

in terms of the function

G(ω̄, ρ) =
∫ ∞

0
dp

e−ρp

ω̄p + i
= e

iρ
ω̄

ω̄
�

(
0,

iρ

ω̄

)
, (58)

Here, the integration contour crosses the pole when ω̄ takes
negative imaginary values. The incomplete gamma function

�
(

0,
iρ
ω̄

)
therefore has a logarithmic branch cut for negative

imaginary ω̄.

4.1 Analytic structure of the generating function H

The analytic structure of the retarded correlation functions is
determined by the analytic structure of the integral moments
I a,b,c which in turn is mainly determined by the analytic
structure of the generating function H . We therefore discuss
now the properties of H in detail. To perform the integral in
(57), we note that ρG(ω̄, ρ) is a function of ω̄/ρ only. The
derivative with respect to ρ can therefore be replaced by a
derivative with respect to x ,

H(ω̄, k̄, ρ) = − 1

2k̄

∫ k̄

−k̄
dx∂x

[
ω̄ − x

ρ
G(ω̄ − x, ρ)

]
. (59)

When integrating this total derivative, one needs to note that
for ω̄-values with real part in the range −k̄ < Re ω̄ < k̄,
the x-integration crosses between x = Re ω̄ − ε and x =
Re ω̄ + ε the branch cut of �

[
0,

iρ
ω̄−x

]
for all values ω̄ with

Im (ω̄) < 0. The corresponding discrete contribution to the
integral is proportional to

[
ω̄ − x

ρ
G(ω̄ − x, ρ)

] ∣∣∣∣
Reω̄+ε

Reω̄−ε

= eρ/Imω̄

ρ

[
�

(
0,

iρ

iImω̄ − ε

)

−�

(
0,

iρ

iImω̄ + ε

)]

= −eρ/Imω̄

ρ

[
log

( −ρ

(−Im ω̄)
− iε

)

− log

( −ρ

(−Im ω̄)
+ iε

)]

= eρ/Im ω̄

ρ
[i2πθ(−Im ω̄)] . (60)

Integrating the total derivative in (59) therefore yields

H(ω̄, k̄, ρ) = −1

2k

([
ω̄ − x

ρ
G(ω̄ − x, ρ)

] ∣∣∣∣
k̄

−k̄

−2π i e−ρ/Im ω̄θ(−Im ω̄)θ(k̄2 − (Re ω̄)2)

)
.

(61)

The analytic structure of the full retarded correlation func-
tions inherits the analytic structure of the generating function
H in the sense that where the generating function is nonan-
alytic, so is the full correlation function. The nonanalytic
structures seen in Eq. (61) can therefore be related to some
of the nonanalytic structures sketched for the retarded corre-
lation function in the introductory Fig. 1. In particular, in the
first line of Eq. (61), the two terms ∝ (

ω̄ + k̄
)
G(ω̄ + k̄, ρ)

and ∝ (ω̄ − k̄
)
G(ω̄− k̄, ρ) have a logarithmic branch cut for

negative imaginary values of ω̄ + k̄ and ω̄ − k̄, respectively.
This corresponds to the two nonhydrodynamic cuts depicted
in Fig. 1. Moreover, the term in the second line of Eq. (61) is
nonanalytic in the entire strip Im ω̄ < 0 and −k̄ < Re ω̄ < k̄
due to the explicit appearance of Im ω̄. This corresponds
to the grey-shaded area of nonanalyticity in Fig. 1. We note
that this nonanalytic contribution becomes nonperturbatively
small for small ω̄ due to the factor ∼ e1/Im ω̄ in G(ω̄, ρ = 1).
Therefore, the analytic region at Im ω̄ ≥ 0 is reached very
smoothly, whereas the generating function is discontinuous
when crossing the (Re ω̄)2 = k̄2 lines. In contrast to poles
and branch-cuts, the analyticity in this strip is also mild in
the sense that a contour integral around a region of area A is
proportional to A.
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The converse of the above statement is not true: the full
retarded correlation functions can show additional nonana-
lytic features that are not visible in the generating function
H . There are singular points, arising from the zeroes of the
denominators of Eqs. (40) and (41). These special points are
embedded in the strip of mild nonanalyticity, but they give
rise to pole-like structures in the sense that they give a finite
contribution even when A goes to zero, provided that the spe-
cial point lies within A (see Fig. 1). Some of these correspond
to the hydrodynamical modes in the model. Indeed, the loca-
tion of such a special point, in shear channel for example, is
given for small k by

ωshear = −i
η

sT
k2 + O(k4), (62)

as expected from hydrodynamical gradient expansion. We
note that for this result, as for any expression derived in a
gradient expansion, the nonanalytic parts of the generating
function H cannot contribute because of the nonperturbative
suppression factor.

4.2 Ambiguities in the analytical structure

To obtain correlation functions in the time domain, an inverse
Fourier transformation needs to be taken

Gαβ,γ δ

R (t, k) =
∫ ∞

−∞
dω

2π
e−iωtGαβ,γ δ

R (ω, k). (63)

This expression is typically evaluated by completing the con-
tour of the ω-integration along a path at negative complex
infinity, and writing the result as the sum of contour integrals
around the nonanalytic structures in the negative complex
half plane. In the present case, however, this standard strat-
egy seems difficult to follow as instead of simple cuts and
poles, the generating function H in Eq. (62) and, a fortiori,
the retarded correlation functions are nonanalytic in an entire
two-dimensional region as sketched in Fig. 1.

4.2.1 The analytically continued generating function Ha

A better strategy for calculating (63), that is more practical
and more physically revealing is to note that the correla-
tion function is analytic in the upper complex half-plane and
along the contour of integration in Eq. (63). Therefore, for
the purposes of calculating measurable quantities like (63),
we may replace the correlation function in the lower complex
half-plane with the analytic continuation of the function from
the upper complex half-plane. The nonanalytic structure of
the correlation functions Gαβ,γ δ(ω, k) and their generating
function H in the lower complex half-plane are thus ambigu-
ous to the extent to which the nonanalytic structures arising

Fig. 5 The real (upper plot) and imaginary (lower plot) part of the shear
channel retarded correlation function, G0x,0x

R (ω̄, k̄), evaluated for k̄ =
0.4 and plotted as a function of complex ω̄. The function G0x,0x

R (ω̄, k̄)
is calculated according to Eq. (40) with integral moments evaluated
according to (53) from the generating function Ha in (64)

in H can be substituted by an analytic continuation from the
upper half-plane.

As the nonanalytic part of the function has already been
separated in Eq. (61), an analytic continuation of H from the
upper half plane is found simply by removing the nonanalytic
part form Eq. (61),

Ha(ω̄, k̄, ρ) =−1

4k̄

[
ω̄ − x

ρ
G(ω̄ − x, ρ)

] ∣∣∣∣
k̄

−k̄
. (64)

Here, the subscript a stands for analytic continuation. The
function Ha contains incomplete gamma functions with log-
arithmic branch cuts whose paths are arbitrary as long as
their endpoints are fixed to ω̄ = ±k̄ and to negative complex
infinity. Here, we adopt the simplest, but ambiguous choice of
continuing the complex gamma function to the full complex
plane, resulting in branch cuts at ω̄ = ±k̄+i ȳ, for real ȳ ≤ 0.
So, Ha shows the nonhydrodynamic cuts depicted in Fig. 1,
but unlike H , these cuts do not bracket a two-dimensional
strip of mild nonanalyticity.
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To visualize how the analytic structure of Ha shapes that
of retarded correlation functions, we plot in Fig. 5 the real
and imaginary part of the shear channel G0x,0x

R , calculated
from Ha . This correlation function clearly shares with Ha the
two branch cuts that run in the negative imaginary half plane
along Re (ω̄) = ±k̄ from zero to complex negative infinity.
Closer inspection also reveals that the discontinuity across
these branch cuts is exponentially small for small Im (ω̄),
as expected from the factor exp [iρ/ω̄] in (58). In addition,
there is a prominently visible structure of neighbouring peak
and trough close to Re (ω̄) = 0 at negative Im (ω̄), whose
orientation is rotated by π/2 between the real and imaginary
part of G0x,0x

R . This is the tell-tale signature of a simple pole
∝ 1/(ω̄+ i const) in the complex plane. The precise location
of this hydrodynamic pole will be discussed in the following.
In the gradient expansion, it is given of course by (62).

4.2.2 Deforming the branch cuts

The purpose of this section is to show that in general, the pres-
ence or absence of hydrodynamic poles in the lower imagi-
nary half plane of Gαβ,γ δ(ω, k) is not indicative of the onset
or disappearance of fluid dynamic behavior.

To set the stage of this discussion, we note first that the
same physical response Gαβ,γ δ

R (t, k) in the time domain can

be encoded in different analytical structures Gαβ,γ δ

R (ω, k) in
the complex frequency domain. This was illustrated already
by showing that constructing Gαβ,γ δ(ω, k) from the gener-
ating function H in Eq. (61) or from Ha in Eq. (64) yields
physically identical responsesGαβ,γ δ

R (t, k) while the analytic
structure of Gαβ,γ δ(ω, k) is qualitatively different for both
cases in the sense that it has a two-dimensional region of mild
nonanalyticity if constructed from H , but not if constructed
from Ha . In the present section, we consider formulations of
the latter kind, for which Gαβ,γ δ

R (ω, k) is given in terms of
branch cuts and poles only. In particular, the construction of
Gαβ,γ δ

R (t, k) from the generating function Ha is technically
advantageous, since the contour of the integration (63) can
be closed by encircling the branch cuts going from ±k to
±k − i∞ and encircling any hydrodynamical poles ωi that
may be found in the given channel,

Gαβ,γ δ

R (t, k) = −2π i
∑
i

Res(ωi )e
−iωi t

+ 2Im e−ikt
∫ 0

−∞
dyeytDiscGαβ,γ δ(k+iy, k),

(65)

As we shall illustrate in the following with an explicit con-
struction, only the sum of the pole and cut contributions on
the right hand side of (65) is physical. The relative weight
of both terms depends on the orientation of the branch cuts

Fig. 6 A particular deformation of the branch cuts of the generating
function Ha , defined in Eq. (66) and the surrounding text

in the lower complex half plane, which is a purely technical
choice without unambiguous physical interpretation.

If calculated from Ha , all integral moments entering
the correlators Gαβ,γ δ

R (ω, k) can be expressed in terms
of rational functions and rational functions times G+ =
e

i
ω̄+k̄

ω̄+k̄
�
(

0, i
ω̄+k̄

)
or G− = e

i
ω̄−k̄

ω̄−k̄
�
(

0, i
ω̄−k̄

)
. The branch

cuts ofGαβ,γ δ

R (ω, k) are therefore determined by the logarith-

mic branch cuts of �
(

0, i
ω̄±k̄

)
. To be specific, we consider

now a particular deformation of these branch cuts, sketched
in Fig. 6 and defined by the replacement

�

(
0,

i

ω̄ + k̄

)
= Rreg(ω̄ + k̄) − log

(
i

ω̄ + k̄

)

−→ �

(
0,

i

ω̄ + k̄

)
+ log

(
i

ω̄ + k̄ + iσ

)

− log

( −1

ω̄ + k̄ + iσ

)
+ log

( −1

ω̄ + iσ

)

− log

(
i

ω̄ + k̄ + iσ

)
. (66)

Here, Rreg denotes the regular part of the �-function. In the
replacement (66), the logarithm in the second line of (66)
cancels part of the branch cut of the �-function, such that
only the segment a) in Fig. 6 remains. The two logarithms in
the third line of (66) combine to the segment b) in Fig. 6, and
the logarithm in the last line corresponds to segment c). We
deform the branch cut of G− symmetrically (see Fig. 6), so
that both branch cuts meet at ω̄ = −iσ on the imaginary axis,
and are then continued on top of each other up to complex
imaginary infinity. This deformation leaves the generating
function unchanged for Re (ω̄) ≥ 0 and it therefore encodes
the same physics.

In Fig. 7, we plot the real and imaginary parts of the
retarded correlation function in the shear channel for this
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Fig. 7 The real and imaginary
part of the retarded correlation
function G0x,0x

R (ω̄, k̄ = 1.5),
evaluated for choices of the
logarithmic branch cuts depicted
in Fig. 6. Left hand side: If the
two branch cuts are joined at
imaginary depth σ = 1.4, then
the shear pole is clearly visible
above the cut. Right hand side:
for a different choice of
σ = 0.5, the pole moves under
the cut while the physical
properties in the time domain
remain by construction identical
to those defined by the
correlation functions on the left
hand side

choice of branch cuts.1 Depending on the depth −iσ in the
complex ω̄-plane at which the two branch cuts are joined, the
shear pole is either clearly visible (left hand side of Fig. 7), or
it disappears under the branch cut. We emphasize that while
both choices of σ lead to qualitatively different features in
the analytical structure of Gαβ,γ δ

R (ω, k), they are physically
equivalent in the sense that they give rise to identical physical
responses Gαβ,γ δ

R (t, k) in the time domain. In this sense, the
appearance or disappearance of a hydrodynamic-like pole is
related to purely technical and physically ambiguous choice
of branch cut and it therefore cannot be related to the onset
of fluid dynamic behavior.

4.2.3 Differences between the cases ξ = 0 and ξ > 0

As explained in Appendix A, Eq. (A3), the integral moments
(31) that define retarded correlation functions for the case of
a scale-independent relaxation time, ξ = 0, can be written
in terms of rational functions of ω̄ and k̄, and in terms of

1 We note that our construction of these branch cuts in (66) involves
pairs of logarithmic cuts that cancel each other outside a finite seg-
ment. For instance, the two terms in the third line of (66) extend both to
ω̄ = −iσ + ∞ but they cancel each other for Re (ω̄) > k̄. The numer-
ical evaluation shown in Fig. 7 does not attribute values to these lines
along which logarithm contributions cancel each other, even though the
correlation function is regular there.

rational functions times the difference of logarithms

∝ [log (ω − k + i/tR) − log (ω + k + i/tR)
]
.

[for the case ξ = 0] (67)

This is consistent with the qualitative argument leading to
(14). As a consequence, for ξ = 0, the retarded correlation
functions share the nonanalytic structure of (67).

According to the standard definition, the branch cuts of
the logarithms in (67) start at ω = −i/tR ± k and they run
parallel to the real axis to ω = −i/tR − ∞. Therefore, they
cancel each other outside the range −k ≤ Re ω ≤ k, and
this gives rise to the nonanalytic segment sketched in Fig. 4.
However, the two logarithmic branch cuts of (67) could also
be deformed to run parallel to the imaginary axis from ω =
±k − i/tR to negative complex infinity, ω = ±k − i∞.

These two ways of orienting the branch cuts of (67) are
reminiscent of the two choices of branch cuts for Ha depicted
in Fig. 7 and discussed for ξ = 1 in the previous subsections.
However, there are marked physical differences between the
cases ξ = 0 and ξ > 0.

First, for ξ = 0, the branch cuts can be oriented such that
for sufficiently small k, hydrodynamic poles are the unique
nonanalytic structure closest to the real axis, thus determining
the late-time behavior of retarded correlation functions, see
Eq. (65). In contrast, for ξ = 1, the branch cuts start always
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Fig. 8 Real and imaginary part of the function Ha , defined in the Left
(Re (ω̄) < −k̄), Middle (−k̄ < Re (ω̄) < k̄) and Right (k̄ < Re (ω̄))
part of the complex plane and analytically continued into the other
regions of the ω-plane. The red curves indicate the function for a choice
of the two branch cuts that pass Re (ω̄) = ±1 at Im (ω̄) = −1. Deform-
ing the branch cuts amounts to varying the positions Re (ω̄) at which
the different analytical patches of Ha are interfaced

at ω̄ = ±k̄, and for a gradient expansion around k̄ = 0,
poles and the starting point of branch cuts are not separated.
This observation is related to the finding that the gradient
expansion for the position of the pole converges for the case
ξ = 0 (for instance, ωshear(k)|ξ=0 = −i

tR
+ ik

tan(k̄)
[33]), while

it is an asymptotic series for ξ = 1 (see discussion of Fig. 8
below).

Second, for ξ = 0, the branch cuts in (67) can cancel each
other outside a finite segment. As illustrated in Fig. 8, this is
not possible for the case ξ = 1. If one deforms the branch
cuts of Ha so that they lie on top of each other from ω̄ = −iσ
up to ω̄ = −∞, they will not cancel exactly. Rather, along the
line of overlapping branch cuts, there will be a discontinuity

HRight
a (iIm (ω̄) + ε, k̄) − HLeft

a (iIm (ω̄) − ε, k̄)

= iπ

k̄

(
exp

[
i

−k̄ + ω̄

]
− exp

[
i

k̄ + ω̄

])
, (68)

where HRight
a , HLeft

a denote analytically continued branches
of Ha as defined in the caption of Fig. 8.

Fig. 9 The pole ω̄shear(k̄) of the shear channel correlator G0x,0x
R (ω̄, k̄)

(red curve) compared to gradient expansions (70) of ω̄shear(k̄) up to
power k̄2N . The integers 2N on the dashed lines denote the highest
power ∝ k2N included in the gradient expansion

5 Retarded correlation functions Gαβ,γ δ
R (t, k) in the

time domain

In this section, we utilize our understanding of the nonana-
lytic structures of Gαβ,γ δ

R (ω, k) in the frequency domain for

a discussion of the physical response Gαβ,γ δ

R (t, k) in the time
domain. The connection between both is given by Eq. (65).

In general, with small but increasing k, the pole contribu-
tions to Gαβ,γ δ

R (t, k) in (65) move deeper into the complex
plane and they start being cancelled more efficiently by the
discontinuities from the branch cuts. While only the sum of
these nonanalytic contributions has unambiguous physical
meaning, the separate determination of both, the poles and
their residues, and the discontinuities along the branch cuts
is needed in practice for a discussion of the full physical
response in the time domain. In the following, we discuss
these nonanalytic contributions separately for the specific
choice of the generating function Ha in (64) with branch
cuts taken along ω̄ = ±k̄ + i y tR , y ∈ [0,−∞].

5.1 The location of the hydrodynamic poles in the shear
and sound channel

5.1.1 The pole in the shear channel

The pole ω̄shear(k̄) of the retarded correlation function
G0x,0x (ω̄, k̄) is defined implicitly in terms of the zero of
the nontrivial denominator in Eq. (40),

2 − 3 I 2ξ,2,0 (−i ω̄shear(k̄), k̄
) ≡ 0. (69)

This equation can be solved numerically without any
recourse to the gradient expansion. Alternatively, it can be
solved by determining the first N coefficients bi in a gradient
expansion
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Fig. 10 The location of the two sound poles in the lower complex
plane. The red dots are at values of k̄ = 0, 1, 2, . . .. For large wave-
lengths, the location and residue are described by hydrodynamic gradi-
ent expansion. For large k̄ the poles move to large real frequencies

i ω̄shear(k̄) =
N∑
j=1

b j (k̄)
2 j . (70)

In Fig. 9, the exact solution is compared with this gradi-
ent expansion. With increasing orders ∝ k̄2N , the gradient
expansion is seen to deviate from the exact result at smaller
and smaller k̄. This illustrates that the gradient expansion is
an asymptotic expansion that does not possess a finite radius
of convergence.

For large k̄, the hydrodynamic pole moves deep into the
complex plane

ω̄shear ≈ −i

√
2

π
k̄3/2 + i k̄

2π
+ O(k̄1/2). (71)

5.1.2 The sound channel

In close analogy to the discussion of the pole in the shear
channel, the poles in the sound channel can be determined in
terms of the zeros of the denominator of (41). While the pole
in the shear channel is purely imaginary, the pair of sound
poles start at finite real values ω̄sound(k̄ = 0) = ±cs = ± 1√

3
before diving into the negative imaginary half plane. The full
numerical solution is shown in Fig. 10.

We note that branch cuts can be chosen such that hydro-
dynamic poles disappear below the cut in one channel while
they do not disappear in another channel. Here, this is the
case for the choice of branch cuts in Ha along the imaginary
axis. For this choice, the shear pole will remain visible for all
k̄, while the sound pole disappears at k̄ = 4, see Fig. 10. This
is yet another illustration of the general statement that there
is no unambiguous relation between the existence of hydro-
dynamic poles in the retarded correlator and the persistence
of fluid dynamic behavior.

We further observe with curiosity that the positions of the
sound poles move first away from the real axis, before they
move closer to the real axis again, see Fig. 10. We note that
other cases are known in the literature where a pole moves
closer to the real axis with increasing k, see e.g. Ref. [46].
The asymptotic large-k behavior is given by

ω̄sound ≈ 1√
π
k̄3/2 −

√
π

6
k̄1/2 − 2i

3
+ O(k̄−1/2), (72)

5.2 Contributions of the branch cuts to Gαβ,γ δ

R (t, k)

We now combine the information gathered about the non-
analytic structure of Gαβ,γ δ

R (ω, k) to arrive via Eq. (65) at
a qualitative understanding of the time-dependence of the
physical response Gαβ,γ δ

R (t, k). For the shear channel, this
time dependence is illustrated with the numerical results in
Fig. 11 that display the three characteristic stages of hydrody-
namization, hydrodynamic evolution and dehydrodynamiza-
tion. The following discussion aims at providing an analytic
understanding for how these features arise.

For notational simplicity, we work in the following with

Ḡαβ,γ δ

R ≡ 1

sT
Gαβ,γ δ

R . (73)

5.2.1 The limit t → 0 of the retarded correlation functions

In the kinetic theories studied here, the physical response at
time t = 0 starts always from

Ḡαβ,γ δ

R (t = 0, k) = 0. (74)

This can be seen by expanding the exponent in the Fourier
transform for small t ,

Ḡαβ,γ δ

R (t, k) =
∫ ∞

−∞
dω

2π
(1 − iωt + · · · ) Ḡαβ,γ δ

R (ω, k).

(75)

One checks explicitly for each channel of interest that
Gαβ,γ δ

R (ω, k) falls off like ∝ 1/ω2 or faster for large ω.
Therefore, the first term in the expansion (75) can be obtained
by closing the integration contour in the positive imaginary
half plane where integrals along closed contours vanish due
to the analyticity ofGαβ,γ δ

R (ω, k). This implies that the small-

t expansion of Gαβ,γ δ

R (t, k) starts with a positive power of t
and that Eq. (74) is satisfied.

According to Eq. (65), the pole contribution toGαβ,γ δ

R (t, k)
at time t = 0 is a sum of residues which is nonzero. To satisfy
(74), this pole contribution must therefore cancel exactly the
contribution from the cut at time t = 0. To see this cancel-
lation explicitly at work, we consider the shear channel that
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Fig. 11 The full physical
response Ḡ0x,0x

R (t, k̄) as a
function of time for k̄ = 0.4
(blue line) and the individual
pole (green dashed line) and cut
(red dotted line) contributions
that determine G0x,0x

R (t, k)
according to Eq. (65). The
dashed vertical line indicates the
time-scale τπ = 6 tR where
hydrodynamization is estimated
to be accomplished, see Eq. (49)

has one single pole, and we focus for simplicity on large k.
In this limit, the residue of the shear pole of Ḡ0x,0x

R is

Res(ω̄shear ) ≈ −9i k̄3

4π
+ O(k̄3/2). (76)

Therefore, the pole contribution to the retarded correlation
function (65) diverges for large k and small t . In the same
limit, the cut contribution is sharply peaked around the loca-
tion of the pole

DiscḠ0x,0x
R (k̄ + i ȳ, k̄) ≈ 9i k̄4

4π(ȳ + iω̄shear )2 + 4π k̄2

+ O(ȳ + iω̄shear )
2, (77)

such that the contribution from the discontinuity for large k
and small t reads

2Im
∫ 0

−∞
dyDiscḠ0x,0x

R (k̄ + i ȳ, k̄) = 9k̄3

2
. (78)

So, indeed, cut and pole contribution cancel exactly for t = 0.
Since both are continuous in t , they will cancel partially for
short times t > 0.

5.2.2 Hydrodynamization

In applications of hydrodynamics, it is often assumed that
hydrodynamic behavior dominates the evolution of near-
equilibrium perturbations on time scales t > τπ . In the

kinetic model studied here, this hydrodynamic shear relax-
ation time (49) is τπ = 6tR .

According to Eq. (65), the timescale over which the cut
contribution dies out exponentially is inversely proportional
to the depth y in the complex plane where the discontinuity
becomes sizeable. The physics is particularly clear in the limit
k → 0, where one is dealing with one single cut and avoids
issues related to the partial cancellation between different
cut contributions. In this limit, the shear viscous correlation
function takes the form

ω̄

k̄2
Ḡ0x0x

R (ω̄, k̄)|k̄=0 = 24ω̄5 − 6iω̄4 − 2ω̄3 + iω̄2 + ω̄

120ω̄6

− iei/ω̄�
(
0, i

ω̄

)

120ω̄6 . (79)

(We note as an aside that the first nontrivial order of the
shear correlator is ∝ k2 as a homogeneous shear perturbation
corresponds to a boost and does not create shear flow.) In
Fig. 12, we have plotted the suitably normalized imaginary
part of the discontinuity DiscḠ0x,0x

R (k̄ + i ȳ, k̄)/k2|k=0 as a
function of negative Im (ω). One finds that this function peaks
indeed close to 1/τπ , thus indicating that the cut contribution
to the retarded correlation function (65) will be governed
initially by an exponential decay time close to τπ .

In summary, simple physics arguments, the numerical
inspection of the imaginary part of the cut discontinuity, and
the numerical calculation of the retarded correlation func-
tion shown in Fig. 11 all indicate that the physical response
to perturbations starts being dominated by hydrodynamics
on time scales t > τπ = 6tR . We emphasize, however, that
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Fig. 12 The suitably normalized imaginary part of the discontinuity
Im DiscḠ0x,0x

R (k̄ + Im (ω̄), k̄)/k2|k̄=0 as a function of Im ω̄ along the
cut at Re ω̄ = 0

it is difficult to make this numerical observation analytically
precise. The kinetic theory studied here allows for physics on
different momentum scales to relax on different time scales.

5.2.3 Late time limit of the correlation function

The late time behaviour of the correlation function is deter-
mined by the nonanalytic structures closest to the real axis
which are the cuts running to the real axis at ω̄ = ±k̄. In the
physical response Ḡαβ,γ δ

R (t, k̄) in Eq. (65), the cut disconti-

nuity DiscḠαβ,γ δ

R (k̄ + i ȳ, k̄) at distance ȳ = y tR from the
real axis is weighted with an exponential suppression eȳt/tR .
For the study of the late time behavior t � 1/k and for suffi-
ciently long wavelengths 1/k � tR , i.e. k̄ � 1, it is therefore
sufficient to expand this discontinuity around the “on-shell”
point ω̄ = k̄.

To be specific, let us consider the shear channel correla-
tion function Ḡ0x,0x

R where the expansion of the branch cut
discontinuity around the on-shell point yields

DiscḠ0x,0x
R (k̄ + i ȳ, k̄) ≈ −πe1/ȳ

8k̄ ȳ2
(1 + O (ȳ)) . (80)

The corresponding contribution to the retarded correlation
function (67) in the time domain reads

2Im e−i k̄ t/tR

∫ 0

−∞
dyeȳt/tRDiscḠ0x,0x

R (k̄ + i ȳ, k̄)

≈ −Im
π

√
t/tRe−i k̄t/tR K1

(
2
√
t/tR

)

2k̄

≈ π3/2(t/tR)1/4

4k̄
e−2

√
t/tR sin

(
k̄ t/tR

)
. (81)

This contribution to the retarded correlation function is
clearly nonhydrodynamic. It is an oscillating function with
subexponential decay, and it will therefore dominate at late
times over any contribution from hydrodynamic poles. Equa-
tion (81) confirms in an explicit calculation for ξ = 1 the

Fig. 13 Same as Fig. 11, but now for a larger momentum scale k̄ = 2
for which the hydrodynamic pole does not dominate the time evolution
on any timescale

parametric estimates obtained for arbitrary ξ in Sect. 2.2,
see Eq. (18). To estimate the scale at which this dehydrody-
namization takes place, we require that the negative expo-
nent of the pole contribution in (65) is much larger than
the nonexponential factor in (81), tIm (−ωi ) � 2

√
t/tR .

Since the imaginary part of the fluid dynamic poles ωi starts
∝ k2 for small k, we therefore conclude that in the scale-
dependent relaxation time approximation investigated here,
the kinetic theory dehydrodynamizes for arbitrarily small k
at sufficiently late times,

t � 1

Im [−ωi (k)]2 tR
. (82)

This dehydrodynamization is visible in an oscillatory sub-
exponential late-time decay of retarded correlation functions,
as can be seen in Fig. 11.

According to Eq. (82), the timescale at which dehy-
drodynamization occurs varies strongly with the momen-
tum k. While Fig. 11 shows a wide window of close-to-
hydrodynamic evolution for k̄ = 0.4, this window closes if
k̄ is increased to values larger than unity. As seen in Fig. 13,
already for k̄ = 2, the oscillatory late-time behavior is visi-
ble at all time-scales and a window of close-to-hydrodynamic
behavior does not exist.

6 Asymptotic nature of gradient expansion and Borel
summability

We discuss now the use of Borel techniques to resum the
divergent gradient series of the correlation functions. To sim-
plify the discussion and to arrive at analytical expressions,
we consider the shear channel correlation function (79) in the
limit of vanishing k as an explicit example. Its hydrodynam-
ical gradient expansion corresponds to a Taylor expansion in
ω

ω̄

k̄2
Ḡ0x0x

R (ω̄, k̄)|k̄=0 ≈
N∑
i=0

b j ω̄
j . (83)

Comparing the full expression to different orders of this gra-
dient expansion, one sees from Fig. 14 that the expansion
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Fig. 14 The real part of the shear channel correlation function (79)
(red line) compared to gradient expansions (83). The integers N on the
dashed lines denote the highest power ∝ ω̄N included in the gradient
expansion. The blue dashed line on top of the red line is the 25th order
Padé approximant

in powers of ω is an asymptotic. For a given value of ω̄,
inclusion of higher order terms does not improve the approx-
imation but instead makes it worse. This poor convergence
of the series is caused by a factorial growth in the Taylor
coefficients and is a consequence of the cut of the �-function
extending to the expansion point ω̄ = 0.

A standard trick for improving the convergence of the
series near non-analytic structures is to replace the Taylor
series by a Padé approximant

ω̄

k̄2
Ḡ0x0x

R (ω̄, k̄)|k̄=0 ≈
∑

i ci ω̄
i

∑
j d j ω̄ j

, (84)

which as a rational polynomial can account for non-analytic
structures. Indeed, as is evident from Fig. 14, the 25th order
Padé approximant (that is, approximating the function with
rational polynomial whose numerator and denominator are
25th order polynomials in ω, and whose Taylor expansion
coincides with that of the original function up the ω̄50) per-
forms vastly better numerically.

Whereas the non-analytic structure of the correlation func-
tion is a cut, the only non-analytic structures present in the
Padé approximant are poles. The way the cut is mimicked
by the Padé approximant is in term of an alternating string
of poles and zeroes where the original cut lies, such that
the poles become denser as the order of approximation is
increased, see Fig. 15.

In order to gain further improvement, one may try to use
Borel’s trick of writing factorials in integral representation,
j ! = ∫∞

0 s j e−s ds,

ω̄

k̄2
Ḡ0x0x

R (ω̄, k̄)|k̄=0 =
n∑
j=1

b j ω̄
j

=
∫ ∞

0
e−s

⎛
⎝

∞∑
j=1

b j

j ! (sω̄) j

⎞
⎠ . (85)

The art is then to perform the Borel sum in the integrand
of (85) which can be convergent since it has factorially sup-
pressed coefficients. As typically one has information only
of finite set of Taylor coefficients b j , the standard practice is
to again approximate the Borel transform

B(s) =
∞∑
j=1

b j

j ! s
j (86)

using a Padé approximant.
In our case it turns out that the Borel transform is itself

a rational function, and therefore the Padé approximation is
exact once a required amount of terms are taken into account

B(s) = i

(i + s)6 . (87)

Of course, if we had access only to a finite number of Taylor
coefficients, we could not know for sure that we have fully
reconstructed the Borel transform. But in our case, we may
simply compute the inverse transformation of Eq. (85), and
indeed we recover back the original expression (79). It is
remarkable how using the Borel resummation we have been
able to recover the non-analytic features of the correlation
function with only perturbative information about the gradi-
ent series.

It has been suggested that the non-analytic features in the
Borel transform arise from physics of non-hydrodynamical
modes. In the example at hand, it is easy to see that the
essential singularity at the origin arises from the residue of
the only pole of the Borel transform

∮
dse−s i

(i + sω̄)6 = − ei/ω̄

240πω̄6 . (88)

We find it curious that the exponent in the previous equation,
or the location of the nonanalyticity of the Borel transforma-
tion are not directly related to the location of the nonhydrody-
namic mode with the smallest imaginary part. This is in con-
trast to the analogous problem in an expanding background,
where the system is driven out of equilibrium because of lon-
gitudinal expansion instead of a external metric source. It has
been suggested in [1,2,4] that in this case the location of the
first nonanalytic structure in the Borel plane is given by the
slowest decaying nonhydrodynamic mode. In our case, the
nonhydrodynamic mode with the smallest imaginary part has
always vanishing imaginary part, and indeed the nonanalytic
behaviour arises from the combined effect of all nonhydro-
dynamic modes.
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Fig. 15 Poles and zeros of 25th order Padé approximant of the shear
channel correlation function. The cut of the �-function is mimicked by
a string of poles and zeros

To contrast this picture with a case where the nonhydrody-
namic modes are well separated from the expansion point of
ω̄ = 0, consider the corresponding shear channel correlation
function at vanishing k̄ in the case of ξ = 0

ω̄

k̄2
Ḡ0x0x

R (ω̄, k̄)|k̄=0 = 1

5

1

ω̄ + i
. (89)

In this trivial case the gradient expansion is well behaved and
the pole located at ω̄ = −i sets the radius of convergence. In
this case the Borel transformation reads

B(s) = e−is

5
, (90)

which is a complete function with only an essential singular-
ity at large s.

We also note that, from the point of view of Borel summa-
tion, the cases ξ = 0 and ξ = 1 are both special. For ξ = 0,
the gradient expansion is convergent series. For 0 < ξ ≤ 1,
its Borel sum is convergent while the gradient expansion itself
is asymptotic. As seen, e.g., from Eq. (46), the coefficients of
the gradient expansion for ξ > 1 grow faster than factorial,
making also the Borel sum nonconvergent.

7 Conclusions

Generically, the path to equilibration in relativistic systems
described by Boltzmann transport is governed by an inter-
play of collective hydrodynamic and non-collective parti-
cle excitations. The present study allowed us to expose this
interplay in detail. Generically, there is no sharp onset of
hydrodynamic behavior. On all time and length scales, both
hydrodynamic and non-hydrodynamic modes are present. To
which extent the one dominates over the other can be at best
a quantitative statement that changes gradually with scale.
Also, the appearance of poles in the first (physical) Riemann

sheet of retarded correlation functions is a matter of choos-
ing a particular analytical continuation and thus cannot be
related unambiguously to the onset of fluid dynamic behav-
ior. Still, even if the pole can be made disappear from the
physical Riemann sheet by utilizing the ambiguity in analytic
continuation, its weight is translated unambiguously to other
non-analytic structures in that sheet. In this sense, the rela-
tive closeness of hydrodynamic poles to the real axis carries
quantitative information about the onset of hydrodynamic
behavior irrespective of whether they are visible.

The hydrodynamic behavior is fully characterized by the
coefficients of a gradient expansion. As we showed for a
generic kinetic theory, this expansion is asymptotic already
for retarded correlation functions, since the starting point
of the branch cut approaches the origin for small k. This is
in marked difference to results obtained for strong coupled
field theories and in the standard scale-independent relax-
ation time approximation, where the gradient expansion for
retarded correlation functions converges. Remarkably, how-
ever, the latter theories if pushed out of equilibrium by lon-
gitudinal expansion exhibit a time-dependent energy den-
sity whose gradient expansion (in powers of inverse time)
is asymptotic. We note that non-linear transport coefficients
appear in this expansion, while the above-mentioned gra-
dient expansions of retarded correlation functions involve
linear transport coefficients only. It would be interesting to
understand the relation between the analytic structures of the
higher n-point functions that give rise to non-linear trans-
port coefficients, and the qualitatively different convergence
properties of the above-mentioned gradient expansions.

Borel summation is employed in attempts to extract phys-
ically meaningful information from non-convergent asymp-
totic series. This technique is often advocated with the seem-
ingly contradictory claim that it can reveal non-perturbative
information from analysis of purely perturbative input. By
explicitly resumming the Borel series of the gradient expan-
sion of a retarded correlator, we demonstrated in Sect. 6 how
this can function.

Our study could be extended on several fronts. The present
discussion remained limited to linear response and it could
be extended within the present set-up to non-linear response
and, in line with the remarks above, to systems undergo-
ing expansion. It may also be interesting to supplement the
kinetic theories studied here with thermal fluctuations that via
the fluctuation-dissipation theorem are known to give rise to
characteristic long-time hydrodynamical tails. Furthermore,
it would be interesting to observe, e.g., in numerical simu-
lations, the features identified here in kinetic theories whose
collision kernels are derived directly from quantum field the-
ory. Finally, as mentioned in the introduction, a full quan-
tum field theoretical treatment contains interference effects
that go beyond simple kinetic theory and become relevant at
higher orders in perturbation theory.
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Appendix A: Calculation of the integral moments I abc

for ξ = 1

In this appendix, we provide further information on how to
evaluate the integral moments I abc of Eq. (31), which can be
written for ξ = 1 in the form

I a,b,c = 1

24

∫
dp p5−a e−p

∫
dφ

2π
sinb φ

×
∫ 1

−1

dx

2

(
1 − x2

)(b/2)
xc

1 + p (−iω̄ + i k̄x)
. (A1)

Here, ω̄ ≡ tRω, k̄ ≡ tRk and x denotes the cosine of the
angle between �v and �k. The φ-integration leads to trivial
prefactors. Only integral moments with even integer index b
are non-vanishing. To bring the p- and x-integrations into a
simpler form, we proceed as follows: We first observe that
for b = c = 0, the elementary x-integral returns a logarithm

∫ 1

−1

dx

2

p

1 + p(−iω̄ + i k̄x)
= − i

2k̄
log

[
i − p k̄ + pω̄

i + p k̄ + p ω̄

]

≡ − i

2k̄
L . (A2)

For arbitrary positive integers b, c, the corresponding integral
can be shown to be of the form

∫ 1

−1

dx

2

p
(
1 − x2

)(b/2)
xc

1 + p(−iω̄ + i k̄x)

∫
dφ

2π
sinb φ

= T b,c
1 (k̄ p, ω̄ p) + T b,c

2 (k̄ p, ω̄ p)
−i

2k̄
L . (A3)

For the components relevant for our calculation, we have
tabulated the functions T b,c

1 (k̄ p, ω̄p) and T b,c
2 (k̄ p, ω̄p) in

Table 1 The functions T b,c
1 (k, ω) and T b,c

2 (k, ω) that appear in
Eq. (A3)

b c T b,c
1 (k, ω) T b,c

2 (k, ω)

0 0 0 1

0 1 −i
k

i+ω
k

0 2 1−iω
k2

(i+ω)2

k2

0 3
−i
(
k2+3(i+ω)2

)
3 k3

(i+ω)3

k3

0 4
(1−iω)

(
k2+3(i+ω)2)
3 k4

(i+ω)4

k4

2 0 1
2

−(1−iω)

k2
1
2
k2−(i+ω)2

k2

2 1 1
2

−i
(
2k2−3(i+ω)2

)
3 k3

1
2

(i+ω)
(
k2−(i+ω)2

)
k3

2 2 1
2

(1−iω)
(
2k2−3(i+ω)2)

3 k4
1
2

(i+ω)2 (k2−(i+ω)2)
k3

4 0 3
8

(1−iω)
(−5k2+3(i+ω)2

)
3 k4

3
8

(
k2−(i+ω)2

)2
k4

Table 1. To obtain the moments I a,b,c in (A1), it then remains
to perform the integral

I a,b,c(k̄, ω̄)

= 1

24

∫
dp p4−a e−p

(
T b,c

1

(k̄ p, ω̄p) + T b,c
2 (k̄ p, ω̄p)

−i

2k̄
L

)
. (A4)

For all moments that enter the retarded correlation func-
tions (39), (40) and (41), the products p4−a T b,c

1 (k̄ p, ω̄p) and

p4−a T b,c
2 (k̄ p, ω̄p) in the integrand of Eq. (A4) are explicitly

known polynomials in p that include only positive powers up
to p4. The first term in (A4) is then easily integrated, using

∫
dp pn e−p = �[n + 1]. (A5)

The second term in (A4) requires calculating for n =
0, 1, 2, 3, 4 the expression

1

24

∫
dp pn e−p −i

2k̄
L

= i

24

∫
dp pn e−p

∫ 1

−1

dx

2

p

(ω̄ − k̄x)p + i

= i

24
(−1)n ∂nρ

∫ 1

−1

dx

2

∫ ∞

0
dp

p e−ρ p

(ω̄ − k̄x)p + i

∣∣∣
ρ=1

= i

24
(−1)n ∂nρ H(ω̄, k̄, ρ)

∣∣∣
ρ=1

, (A6)

where H(ω̄, k̄, ρ) is the analytically known generating func-
tion defined in (56), or an analytically continued function
Ha that agrees with H along the real axis and the positive
imaginary ω̄-half plane.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :776 Page 21 of 21 776

In this way, somewhat lengthy but explicit expressions for
all relevant integral moments I a,b,c(ω̄, k̄) are obtained by
inserting into (A4) the explicit terms given in table 1, writing
these terms in powers of p, and performing the p-integrals
with the help of Eqs. (A5) and (A6).
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