
CERN-TH-2017-255

Analytic structure of nonhydrodynamic modes in kinetic theory

Aleksi Kurkela1, 2 and Urs Achim Wiedemann1

1Theoretical Physics Department, CERN, CH-1211 Genève 23, Switzerland
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How physical systems approach hydrodynamic behavior is governed by the decay of nonhydrody-
namic modes. Here, we start from a relativistic kinetic theory that encodes relaxation mechanisms
governed by different timescales thus sharing essential features of generic weakly coupled nonequilib-
rium systems. By analytically solving for the retarded correlation functions, we clarify how branch
cuts arise generically from noncollective particle excitations, how they interface with poles arising
from collective hydrodynamic excitations, and to what extent the appearance of poles remains at
best an ambiguous signature for the onset of fluid dynamic behavior. We observe that processes that
are slower than the hydrodynamic relaxation timescale can make a system that has already reached
fluid dynamic behavior to fall out of hydrodynamics at late times. In addition, the analytical control
over this model allows us to explicitly demonstrate how the hydrodynamic gradient expansion of
the correlation functions can be Borel resummed such that the full nonperturbative information is
recovered using perturbative input only.

I. INTRODUCTION

A broad range of physical phenomena is involved in
how relativistic nonequilibrium systems reach thermal
equilibrium. For near-equilibrium systems, these mecha-
nisms are expected to leave characteristic traces in the
analytic structure of the retarded correlation function
of conserved quantities GR(ω, k). On the one hand,
the prototypic longtime behavior of the correlation func-
tions that describes collective excitations evolving to-
wards global equilibrium is given by hydrodynamic poles,
whose locations and residues are dictated by the fluid
dynamical gradient expansion. On the other hand the
question at which time scales hydrodynamic behavior
emerges, and with which confounding mechanisms it may
compete, is related to the existence and properties of
other nonanalytic structures in the lower complex half
plane of the correlators. These nonhydrodynamic modes
have been seen to govern the approach to hydrodynamics
– or hydrodynamization – not only in static but also in
rapidly evolving backgrounds, used in the phenomeno-
logical description of heavy-ion collisions [1–6]. While
much of the recent work on nonhydrodynamic modes has
focused on strongly coupled theories [7–10], the present
study will deal with nonhydrodynamic modes in weakly
coupled theories.

Additional motivations for studying nonhydrodynamic
modes in relativistic equilibrating systems come from the
apparent phenomenological need to understand how fluid
dynamical behaviour arises in nucleus-nucleus, nucleus-
nucleon and possibly proton-proton collisions [11, 12].
Some phenomenologically successful descriptions of these
systems interface hydrodynamics with transport models
(see e.g. [13, 14]), while others do not invoke hydrody-
namics explicitly (see e.g. [15]). This asks for a better
understanding of where and how kinetic theory differs
from hydrodynamics. The standard way of relating ki-
netic theory to viscous hydrodynamics is to derive the
latter by truncating the former to a finite set of mo-
ments of the distribution function [16, 17]. However, this

truncation is based on the assumption that hydrodynam-
ics works. To understand whether, when, and how it
breaks down necessitates investigating kinetic theory be-
yond the moment expansion. The purpose of the present
manuscript is to do so by studying how small deviations
from thermal equilibrium relax in a full kinetic theory
framework.

1. Analytic structure at strong and weak coupling

In known examples of strongly coupled systems at large
Nc, the remarkable simplicity of the microscopic struc-
tures of nonabelian plasmas is reflected in a remarkably
simple analytic structure of the full field theoretic cor-
relation functions. More specifically, in N = 4 SYM
theory in the limit of large number of colors Nc → ∞
and strong coupling λ = g2Nc → ∞, the retarded cor-
relation functions are known to exhibit an infinite set
of nonhydrodynamical poles located (asymptotically for
large n) at ω±n = ω±0 ± 2πnT (1∓ i), with n ∈ [1, 2, 3, . . .],
and ω±0 /πT = ±1.2139 − 0.7775i [7–9]. In addition, in
the channels where energy momentum conservation de-
mands, the correlation functions exhibit poles whose lo-
cations and residues are dictated for small k by the hy-
drodynamic gradient expansion.

In weakly coupled theories, the analytic structure of
retarded correlation functions is much richer. In these
theories, there is a scale separation between the typical
size of the wave packets 1/T and the mean free path be-
tween the individual scatterings tscat. Therefore for time
separations larger than ∆t� 1/T , when interference ef-
fects can be neglected, the correlation function is deter-
mined by Boltzmann transport theory, in which the colli-
sion kernels are given by in-medium scattering processes
in the field theory [18–21]. The nonanalytic features of
the full field theory that are absent in the transport the-
ory are well known (see Sec. II A). However, the nonana-
lytic structures appearing in the transport theory are less
well understood, and will be the topic of this contribu-
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tion. As transport theory has a wider regime of validity
than hydrodynamics but encompasses it, understanding
these structures provides a technically controlled in-road
to understanding the onset of hydrodynamic behaviour
in weakly coupled theories.

2. Kinetic theory in the relaxation time approximation

While there have been numerous numerical studies
of the full collision kernel in nonabelian gauge theo-
ries [22–29], including computations of equilibrium and
nonequilibrium retarded correlation functions [30], the
question of analytical structures has been addressed only
recently [31] in the simplest possible model of the collision
kernel – that of simple relaxation time τR. In this relax-
ation time approximation (RTA), an ostensibly crisp and
simple picture of the onset of fluid dynamic behaviour
appears by a migration of a hydrodynamic pole through
a nonhydrodynamic cut for a specific value of Knudsen
number K = k τR where k is the wave number of the per-
turbation [31]. However, this simple model forgoes much
of the structures of the collision kernel in favour of a sin-
gle relaxation time. The question of whether this simple
picture survives the inclusion of more realistic collision
processes is the starting point of this paper.

The full weak coupling dynamics contains nonhydrody-
namic excitations at different energy scales that relax at
widely different time scales. A minimal way of incorpo-
rating this generic qualitative feature while maintaining
an analytically tractable model is to extend the standard
RTA to a model with a momentum dependent relaxation
time

pµ∂µf =
p0

τR(p)
(f − feq) . (1)

For a power law form of the relaxation time

τR(p) = tR(p/T )ξ , (2)

such a model has been used before to gain insight into
freeze-out dynamics [32].

By including the scale dependence of τR(p), we sup-
plement the standard RTA approximation with features
that are known to exists in QCD and other field theories
of nonabelian plasmas. In particular, for extreme out-of-
equilibrium perturbations, a.k.a. jets, the relaxation is
related to the famous jet stopping time [33, 34]

tjet(p) ∼
1

α2T

( p
T

)1/2

, (3)

corresponding to the value ξ = 1/2 in our model. More-
over, this generalized model shares features of bottom-
up thermalization [35] in the sense that decaying parti-
cles will heat up the thermal bath locally (see discus-
sion at Sec. III). Both features appear generically for
ξ > 0 while they are not realized in the exceptional case
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FIG. 1: Analytic structure of the retarded energy momen-
tum correlation function in the shear channel G0x,0x(ω, k)
in the complex frequency plane ω for the kinetic theory (1).
The parts of the cut marked with red crosses correspond to
medium constituent particles with lifetimes longer than the
hydrodynamical decay time and will eventually dominate the
correlation function at late times. The upper complex half
plane is analytic by causality whereas for |Reω| > k the cor-
relation function is analytic by locality of the scattering ker-
nel. The nonanalytic features of the function are confined to
the grey area.

ξ = 0. Other characteristic features of QCD thermaliza-
tion processes are not realized in the simple model (1).
For instance, according to (1), hard particles decay di-
rectly to the thermal bath while this process proceeds in
full QCD via a cascade of intermediate quasi-democratic
splittings [35, 40]. Therefore, we cannot exclude that
additional analytical structures of retarded correlations
functions might arise in full QCD that cannot be illus-
trated in an analysis of (1). However, as the analytic
structures established in this manuscript for the model
(1) arise from generic features of kinetic theory, we ex-
pect them to be realized in more complete descriptions,
too.

The main result of the present paper is to establish
the analytic structure of the retarded correlators of the
energy-momentum tensor for the model (1). This re-
sult is sketched in Figure 1 for the (analytically contin-
ued) shear channel correlation function obtained from the
model. Causality and the stability of thermal equilibrium
make the correlation function analytic in the upper com-
plex half-plane, while the locality of the collision kernels
in the Boltzmann equation makes the correlation func-
tion analytic for |Reω| > k. In addition to the hydro-
dynamic pole, the model exhibits two nonhydrodynamic
cuts whose branch points are located at ω = ±k. For
any k, the cuts extend to smaller imaginary parts than
the hydrodynamic pole; it is these structures that are
responsible for a nontrivial competition between hydro-
dynamics and nonhydrodynamic modes that we discuss
in detail.
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FIG. 2: Diagram of (4) contributing to a retarded correlation
function.

The paper is organized as follows: In section II, we
first provide simple qualitative arguments for the phys-
ical mechanisms and corresponding analytic structures
arising in full gauge theories. For the class of models
(1), section III derives then explicit expressions for the
retarded correlation functions. For the case ξ = 1, these
correlation functions can be expressed in terms of one
single, analytically known generating function H that
largely determines the analytic structure of the corre-
lation functions. A detailed discussion of this analytic
structure, its physical meaning, and its ambiguities is the
focus of section IV, before we turn in section V to a dis-
cussion of the physical response on pre-hydrodynamic,
hydrodynamic and post-hydrodynamic time scales. As
our study provides explicit analytic control over a model
of significant physical complexity, it is also an interest-
ing scholarly playground for understanding how Borel re-
summation techniques can be applied to the asymptotic
hydrodynamic gradient expansion. This will be discussed
in section VI, before we conclude with a short summary
of main results and open questions.

II. GENERIC ANALYTIC PROPERTIES OF
RETARDED CORRELATORS AND THEIR

PHYSICAL ORIGIN

Before analyzing in detail the model (1) in subsequent
sections, we discuss here generic features of the analytic
structure of retarded correlation functions of the energy
momentum tensor. In particular, we aim at providing
physical intuition for the features appearing in kinetic
theory.

A. Analyticity properties of retarded correlation
functions in gauge theories at finite temperature

At weak coupling the analytic structure of the retarded
correlation function for ω � 1/tscat ∼ g4 T has been dis-
cussed in the context of theories with different field con-
tent as well as in terms of different operators [9, 18, 36–
39]. Quite generally, the two point function of composite
operators constructed from two field operators (such as
Tµν or the electromagnetic current Jµ of a charged field)
is given to leading order by the simple one loop diagram
depicted in Fig. 2. In the time domain, this diagram is

of the generic form

GR(t,~k) ∼
∫
p

V (p, k)DR(t, ~p− ~k)Drr(t, ~p),

∼
∫
p

−iV (p, k)

2Ep−kEp
θ(t)

(
eiEp−kt − e−iEp−kt

)
[
1

2
+ n(Ep)]

(
eiEpt + e−iEpt

)
, (4)

where DR stands for the retarded propagator, Drr =

D> + D< is the symmetric one, and Ep =
√
p2 +m2

denotes the energy associated with an excitation of mo-
mentum p. The vertices combine to a function V which
depends on the theory and the particular channel studied

and is a function of momenta ~p and ~k. For specific cases,
see [9, 36] for gauge theories.

The correlator (4) can be decomposed naturally into
two parts

GR(t, k) ∼ C(t, k) +D(t, k) (5)

that contain slowly oscillating modes of frequencies ω =
Ep − Ep+q, and rapidly oscillating modes of frequencies
ω > Ep + Ep+q, respectively,

C(t, k) = θ(t)

∫
p

−iV (p, k)

2Ep−kEp
n(Ep) sin((Ep − Ep−k)t) ,

(6)

D(t, k) = θ(t)

∫
p

−iV (p, k)

2Ep−kEp

(
1

2
+ n(Ep)

)
× sin((Ep + Ep−k)t) . (7)

1. Rapidly oscillating part D(t, k)

The Fourier transform of the rapidly oscillating part

D(ω, k) ∼
∫
p

−iV (p, k)

2Ep−kEp

(
1

2
+ n(Ep)

)
×
[

Ep + Ep−k
(Ep + Ep−k)2 − ω2

]
(8)

has a cut that extends from m +
√
k2 +m2 < ±ω < ∞.

It will be a recurrent theme in this paper that the ana-
lytic structure of retarded correlation functions is am-
biguous in the sense that different analytic continua-
tions in the complex frequency plane can account for
the same physical response in the time domain. In
the present case, this can be illustrated by inserting
for the massless theory the Matsubara representation
n(p) + 1

2 =
∑∞
n=−∞

βp
(2πn)2+(βp)2 into (8) and integrating

over p. It can be seen that by choosing a suitable ana-
lytic continuation of D in the lower complex half-plane,
the cuts m +

√
k2 +m2 < ±ω < ∞ along the real axis

can be exchanged into a series of cuts that are positioned
deep in the negative imaginary region at (for m = 0)
Imω = −4πnT and −k < Reω < k with n ∈ [1, 2, . . .],
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see figure 3 of Ref. [9]. As the nonanalytic structures in
D have a distance O (T ) from the real ω-axis, the contri-
bution D decays on timescale 1/T , and it is insignificant
at late times when fluid dynamic behaviour is expected
to take place.

2. The slowly oscillating part C(t, k) and kinetic theory

As argued in [18], the slowly oscillating part C arises
from contributions that can be written in terms of expec-
tation values of number operators. This suggests that for
small k, the physics contained in C(t, k) can be captured
by kinetic theory. In Fourier space,

C(ω, k) ∼
∫
p

−iV (p, k)

2Ep−kEp
n(Ep)

[
Ep − Ep−k

(Ep − Ep−k)2 − ω2

]
,

(9)

the slowly oscillating nature of C(ω, k) is reflected in a
branch cut that extends along the real axis over the lim-
ited range −k < ω < k (for all masses). For small k, this
expression can be expanded to give

C(ω) ≈
∫
p

V (p, 0)

E2
p

n(Ep)

[
1

iω − i~v · ~k

]
, (10)

where ~v = ∂~pEp is the group velocity and the term
in square brackets is the ballistic propagator of a free
streaming point particle. We shall encounter the same
branch-cut −k < ω < k and the same integral (10) when
we discuss the free kinetic theory in section II B.

The free theory calculation recalled here and pre-
sented, e.g., in [9] is insufficient for ω ∼ 1/tscat ∼ g4 T ,
where interactions change the dynamics qualitatively. It
therefore does not reveal the hydrodynamic pole which is
close to the origin at ω ∼ g4 T . To obtain even at lead-
ing order complete results in this region, a class of ladder
diagrams needs to be resummed [19]. Such resumma-
tion can be dressed in the language of an effective kinetic
theory [20, 21] of nearly massless quasiparticles, where
the resummed diagrams appear in the particular scatter-
ing kernels of the kinetic equation. The effective kinetic
theory is suitable for the computation of correlation func-
tions of the quantum field theory with external momenta
ω, k . 1/tscat, and therefore it is suitable for studying
the vicinity of the slowly oscillating cut of C in more
detail than the unresummed calculation. However, this
resummation fails for larger (negative imaginary) values
of ω and does not capture the physics of cuts of D.

B. Analytic structure of retarded correlation
functions in kinetic theory

In this subsection, we develop an intuitive understand-
ing for the analytic structures accessible via kinetic the-
ory.

1. Massless kinetic theory without interaction

As sketched on the left hand side of Fig. 3, a sound
channel perturbation in an equilibrium system may be
viewed as embedding alternating sheets of overdense and
underdense regions that are separated in the z-direction
by a distance 2π/k. Analogous sketches can be given for
perturbations in other channels. Computing the retarded
response at time t amounts then to studying the state of
the system at some arbitrary point ~x which initially is
on the peak of the overdense region at t = 0 when the
perturbation is introduced.

In a massless kinetic theory without interactions, par-
ticles move on straight lines at the speed of light. What
determines the state at the point ~x at time t is then the
average over a sphere of radius ct. As the overdense re-
gions are spaced 2π/k apart, the particles moving in -z
direction will give rise to a signal oscillating with fre-
quency ω = k. This corresponds to a pole at k in the
complex ω plane. Particles coming from any other di-
rection with velocity ~v will result in an oscillating signal

with smaller frequency ω = ~k ·~v, corresponding to a pole

at ~k · ~v in the complex ω plane. Integrating over all ori-
entations ~v from which particles reach the point ~x, one
finds a string of poles between −k < ω < k that assemble
to a logarithmic cut∫

dΩ

4π

1

iω − i~v · ~k
=

i

2k
log

(
ω − k
ω + k

)
. (11)

This cut is also well known in the physics of hard ther-
mal loops, where it gives rise to Landau damping [41].
We conclude that the simple picture of a homogeneous
and isotropic free-streaming dynamics explains the loga-
rithmic branch cut found in interaction-free massless ki-
netic theory for retarded correlation functions like, e.g.,
the correlation function in the sound channel calculated
in [31]

G00,00
R (ω, k) = −sT 3ω

2k
log

(
ω − k
ω + k

)
. (12)

2. Massless kinetic theory in the standard RTA

Romatschke [31] has studied the effect of adding inter-
actions to the free kinetic theory in a simplified model of
momentum-independent relaxation time approximation
with collision kernel

CRTA[f ] =
1

tR
(f − feq) , (13)

where feq is the local equilibrium distribution function
to which the system wants to relax, determined by en-
ergy and momentum conservation. The inclusion of these
interactions has two qualitative effects.

First, trivially, the free particle propagator will be
damped at length scales of ∆x ∼ tR, shifting the cut
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FIG. 3: Left hand side: schematic picture of a perturbation in an equilibrium state that displays sheets of overdensity at
wavelength 2π/k. For a massless, free streaming gas at time t, the dynamical response at a position x is given by integrating

contributions along the circle of radius c t. Right hand side: Analytic structure of the retarded correlation functions Gαβ,γδR (ω, k)
in the complex frequency plane. The physics of free streaming particles is reflected in a branch cut along the real axis.

into the negative complex plane by an amount of −i/tR∫
dΩ

4π

1

iω − i~v · ~k − 1
tR

=
i

2k
log

(
ω − k + i/tR
ω + k + i/tR

)
. (14)

A more subtle effect arises as a consequence of energy-
momentum conservation (see eq. (23) for technical de-
tails). As the energy and momentum from the lost parti-
cles need to go somewhere, a new collective excitation is
dynamically created in channels where the conservation
demands it (sound G00,00 and shear G0x,0x). For small k,
the location and residues of these poles are dictated by
the hydrodynamic gradient expansion. We will call this
pole in the following hydrodynamic pole. For k ≥ π/2tR,
the pole crosses the cut and enters the next Riemann
sheet, thus disappearing from the physical plane. There-
fore, the model has two distinct kinematic regimes: one
where the pole is above the cut and the late time be-
haviour of the system is dictated by the hydrodynamic
pole, and the other where the cut dominates the dynam-
ics at all times. This was called the hydrodynamic onset
transition in [31].

3. Massless kinetic theory with scale-dependent RTA

How does the analytic structure of the retarded corre-
lator indicate that the kinetic theory of a free-streaming
gas has been supplemented with the scale-dependent re-
laxation dynamics of (1)? In close analogy to the angular
integrals (11) and (14), we expect that qualitative prop-
erties of the analytic structure of retarded correlation
functions are captured in this case by the integral∫

dpfeq(p)

∫
dΩ

4π

1

iω − i~v · ~k − 1
τR(p)

. (15)

k-k 0

x x x x x x x x x x x x x xx x x

x

Hydrodynamic

pole

Non-hydrodynamic cut

1/t
D

Dk2+...

FIG. 4: Analytic structure of the retarded shear correlation
function G0x,0x

R (ω, k) in the complex frequency plane for the
kinetic theory with scale-independent relaxation time (13).

This indicates that relaxing the assumption of a single re-
laxation time will render the correlation function nonan-
alytic in the entire strip −k < Reω < k, Imω < 0, where
poles at different Reω correspond to different angles of
the particles, and different Imω correspond to different
p. We shall establish this picture in an explicit calcula-
tion in section IV. It implies that the hydrodynamic pole
is always embedded in the nonanalytic structure. The
existence of a clear onset transition of hydrodynamics is
therefore a spurious feature of the simple assumption of
a single relaxation time in (13). As we discuss in the next
subsection, emersing the hydrodynamic pole in a nonan-
alytic strip results in a subtle interplay between hydro-
dynamic and nonhydrodynamic modes that can lead to a
qualitatively novel phenomenon in the long-time behav-
ior.
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C. Dehydrodynamization in kinetic theory

With the simple extension to a scale-dependent re-
laxation time, the notion of a unique Knudsen number
is obscured, as for any arbitrarily small wavenumber k,
physics of different energy scales enters the transport on
different time scales. To illustrate this parametrically,
consider a generic small deformation of the thermal equi-
librium. As by assumption the deformation does not take
the system far from equilibrium, the number of perturbed
modes will be, for large p, proportional to e−βp. Each
of these modes will then evolve toward equilibrium in a
timescale τR(p), such that the overall magnitude of the
nonhydrodynamic part of the perturbation can be esti-
mated at time t by

δTµν(t) ∼
∫
p

e−βpe
− t
τR(p) . (16)

For a given t, the integral is dominated by the decay of
modes at a characteristic scale

p∗(t) ∼ T
(
ξ
t

tR

) 1
1+ξ

, (17)

and the perturbation has then an overall magnitude of

δTµν ∼ e−
(1+ξ)
ξ

p∗(t)
T . (18)

In channels where conservation laws so demand, the de-
formation may also excite modes which relax on hydro-
dynamic time scales

δTµνhydro ∼ e
−Dk2t , (19)

where D ∼ tR is the appropriate diffusion coefficient in
the channel in question. For ξ = 0, corresponding to a
single relaxation time, both contributions turn out to be
exponentials and the origin of the well defined hydrody-
namization scale discussed in the previous subsection is
related to the question which contribution decays faster.
However, for general ξ the situation is obviously more
intricate. Amusingly, for ξ > 0, the contribution arising
from the nonhydrodynamic sector is subexponential, and
dominates the signal at late times t & tout

tout ∼
t
−1/ξ
scat

D
1+ξ
ξ k2(1+ξ)/ξ

, (20)

so that one expects that at some late time a system that
was hydrodynamic, will again lose its universal fluid dy-
namical description and be again described by specific
microscopic physics related to the dynamics of the non-
hydrodynamic modes.

This dehydrodynamization mechanism will be seen at
work in the model (1) of scale-dependent relaxation time,
where hard particles still decay directly to a thermal
bath and hydrodynamic fluctuations of the thermal bath
are ignored. In the full QCD collision kernel, however,

the same process proceeds via a cascade of intermediate
quasi-democratic splittings [27, 28, 35, 40]. Also, due
to the fluctuation-dissipation theorem, there are other
sources of hydrodynamic perturbations and long-time hy-
drodynamic tales [18, 37, 42, 43]. Therefore, while the
mechanism discussed here is part of full QCD, it may not
dominate the late-time behavior of the full theory.

III. THE MODEL: MOMENTUM DEPENDENT
RELAXATION TIME

We consider a kinetic theory of the form (1), coupled
to an external force Fα

pµ∂µf(~x, ~p, t) + Fα∇(p)
α f(~x, ~p, t)

=
pαuα

τR(pαuα)

(
f(~x, ~p, t)− feq(T (~x, t), ~u(~x, t))

)
. (21)

The particle distribution f(~x, ~p, t) fulfils the massless on-
shell condition pαpα = 0, and it is taken to be a function
of spatial momenta only, such that the partial derivative

∇(p)
0 f ≡ 0. We write p = p0 = |~p|, and our metric con-

vention is mostly plus ηµν = diag(−1, 1, 1, 1). τR(pαuα)
is the momentum dependent relaxation time defined in
(2). The local target equilibrium distribution function

feq = eβpαu
α

(22)

depends on four macroscopic variables, the inverse tem-
perature β = 1/T and the flow field ~u, with uau

a = −1
that need to be adjusted locally such that the time evo-
lution conserves energy and momentum locally in the ab-
sence of the external force Fα = 0. According to (21),
the condition ∂µT

µν = 0 implies∫
d3p

(2π)3

pν

p0

[
pαuα

τR(pαuα)
(f − feq)

]
= 0 . (23)

For the case of a scale-independent relaxation time ap-
proximation when ξ = 0, eq. (23) implies that the tar-
get thermal system has the same local energy density
as the perturbed system. In contrast, for ξ = 1 when
τR(pαuα) = tRp

αuα/T , it is the particle number density
that is the same in both systems. For the case ξ = 1/2 it
is something in between. Therefore, for ξ > 0, the evolu-
tion of the perturbed system to the local target equilib-
rium will increase the energy density of the local target
equilibrium system, i.e., it will heat it up. It is in this
sense that the model displays features of bottom-up ther-
malization for ξ > 0.

A. Solution for linear perturbations induced by an
external source

The application of an external force Fα reshuffles en-
ergy and momentum such that, at a given point in space,
the local target thermal distribution feq is no longer the
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global equilibrium distribution fgeq but rather the local
thermal distribution given by the local energy and mo-
mentum densities, feq = fgeq + δfeq. Here δfeq accounts
for the change of the target local equilibrium distribu-
tion due to the external force. For a Maxwell distribu-
tion – relevant for the high-momentum particles that we
are concentrating on – the δfeq can be written as a local
perturbation of the global distribution

δfeq(~x, ~p, t) = p
fgeq
T

[
δT (~x, t)

T
+ viδu

i(~x, t)

]
, (24)

with ~v ≡ ~p/p.
In the presence of a small external force Fα, the evo-

lution of linear perturbations δf on top of the global
thermal equilibrium f = fgeq + δf can be expressed by
formulating eq. (21) in Fourier space

δf =

1
pF

α∇(p)
α fgeq − 1

τR(p)δfeq

iω − i~v · k − 1
τR(p)

. (25)

Our convention for the Fourier transform is Q(ω, k) =∫
dtd3keiωt−i

~k·~xQ(t, ~x). In eq.(25), we have used the re-
lation f − feq = δf − δfeq. This relation implies also
that up to linear perturbations, eq. (23) translates into
constraints for four particular integral moments of δfeq

and δf , namely∫
d3p

(2π)3

pν

τR(p)
δf =

∫
d3p

(2π)3

pν

τR(p)
δfeq

=

∫
d3p

(2π)3

(pν)

τR(p)
fgeq

[
p δT

T 2
+
piδui

T

]
. (26)

As a consequence, both sides of eq. (25) depend on δf , the
left hand side explicitly and the right hand side implicitly
through δfeq. The rewritten condition (26) for energy-
momentum conservation makes this implicit dependence
manifest. The task is to solve the four equations (26) self-
consistently for the four local perturbations of the target
temperature δT (~x, t) and target flow fields δ~u(~x, t) that
define δfeq. This is done by inserting (25) into (26), thus
finding a closed set of four equations for the four varia-
tions δT and δui. The solution of this set of equations
is

δT = S0 + δTI2ξ,0,0 + δuzI
2ξ,0,1 , (27)

δuz = 3S0 + 3δTI2ξ,0,1 + 3δuzI
2ξ,0,2 , (28)

δux = Sx +
δux
2
I2ξ,2,0 , (29)

δuy = Sy +
δuy
2
I2ξ,2,0 , (30)

where the integral moments and sources are defined by

Iabc =
−2π2

Γ(5− ξ)T 5tR

∫
d3p

(2π)3
p2
fgeq(p)(T/p)

avb⊥v
c
z

iω − i~v · ~k − T ξ

tRpξ

,

(31)

Sµ =
−2π2

Γ(5− ξ)T 5

∫
d3p

(2π)3

T ξ

pξ
fgeq(p)F

iviv
µ

iω − i~v · ~k − T ξ

tRpξ

, (32)

with v2
⊥ = 1− v2

z . The solutions (27)-(30) for the pertur-
bations of the local target temperature and flow velocity
fully define the deviation δfeq of the local target equilib-
rium distribution from the global equilibrium distribu-
tion. This allows one to write explicit expressions for all
terms on the right hand side of eq. (25). Therefore, in
terms of these solutions, eq. (25) contains now the full
microscopic information of the system.

We note as an aside that the following discussion could
be easily extended to the case of Bose (or Fermi) statis-
tics, replacing (22) by the corresponding sum over expo-
nentials

1

eβp − 1
=

∞∑
n=1

e−nβp . (33)

In particular, the integral moments (31) can be simply
calculated for this statistics, resulting in

IabcBose(T ) =

∞∑
n=1

Iabc(T/n) . (34)

B. Retarded correlation functions

We follow the standard procedure of sourcing the de-
parture of the energy-momentum tensor from equilib-
rium,

δTµν =

∫
d3p

(2π)3

pµpν

p0
δf (35)

by a perturbation of the metric gµν = ηµν + hµν . This
amounts to applying an external force

F ivi = −p2Γiαβv
αvβvi , (36)

where the Γiαβ denote Christoffel symbols. The retarded

correlation functions Gµν,αβR define then the response of
the energy momentum tensor to the metric perturbation,

〈Tµν〉 =
∂Tµνeq

∂hαβ

∣∣∣
h=0

hαβ −
1

2
Gµν,αβR hαβ , (37)

and they can be evaluated in terms of functional deriva-
tives

Gµν,αβR =
δTµν

δhαβ
. (38)

The disturbance δTµν of the energy momentum tensor is
given explicitly in terms of equation (25), with δfeq de-
fined in terms of eqs. (24) and (27)-(30). The evaluation
of the functional derivative δTµν/δhαβ is then straight-
forward and one finds
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Gxy,xyR = −iωsT tR
Γ(5− ξ)

64
I0,4,0 , (39)

G0x,0x
R = iksT tR

Γ(5− ξ)
16

[
−I0,2,1 − 3

2
Iξ,2,0

Iξ,2,1

1− 3
2I

2ξ,2,0

]
, (40)

Gzz,zzR = −iωsT tR
Γ(5− ξ)

8

((
1− 3I2ξ,0,2

)
(Iξ,0,2)2 + 6I2ξ,0,1Iξ,0,3Iξ,0,2 + 3

(
1− I2ξ,0,0

)
(Iξ,0,3)2

−3(I2ξ,0,1)2 − I2ξ,0,0 − 3 (1− I2ξ,0,0) I2ξ,0,2 + 1
+ I0,0,4

)
. (41)

These retarded correlators describe the response in the
spin 2 tensor channel (39) induced by hxy, in the
spin 1 shear channel (40) induced by h0x (or h0y,
hxz, hyz) and in the spin 0 sound channel (41) in-
duced by hzz (or h00, h03, hxx, hyy), respectively.
The remaining components of the correlation functions
can be obtained from relations imposed by energy-
momentum conservation, such as ∂µG

µα,βγ = 0. For

instance, Gxz,xzR (ω, k) = ω
kG

xz,x0
R (ω, k), G0x,0x

R (ω, k) =
k
ωG

0x,xz
R (ω, k) or G00,00

R (ω, k) = k
ωG

0z,00
R (ω, k) ,

G00,00
R (ω, k) = k2

ω2G
0z,0z
R (ω, k). We have explicitly

checked (up to high orders in the gradient expansion)
that the various correlation functions satisfy these non-
trivial Ward identities that are not apparent in the above
calculation. We have also checked explicitly that for the
special case of a momentum-independent relaxation time,
ξ = 0, the retarded correlation functions (39), (40), and
(41) reduce to the results of Ref. [31].

C. The fluid dynamic limit of GR

Up to second order in the gradient expansion in small
ω and k, the form of retarded correlation functions is
dictated by second order fluid dynamics, namely

Gxy,xyR,hyd = −iηω +
1

2

(
κ
(
k2 + ω2

)
+ 2ητπω

2
)

+ . . . ,

(42)

G0x,0x
R,hyd = − ik

2η

ω
+

(
η2k4

sTω2
+ ητπk

2

)
+ . . . , (43)

Gzz,zzR,hyd =
c2ssTω

2

−c2sk2 + ω2
− 4iηω5

3 (−c2sk2 + ω2)
2 + . . . , (44)

where dots indicate terms of higher power in k or ω.
These fluid dynamic expressions depend on entropy s,
temperature T , sound velocity c2s, as well as shear viscos-
ity η, the shear viscous relaxation time τπ and the second
order transport coefficient κ. To determine these fluid
dynamic parameters for the kinetic theory with scale-
dependent relaxation time, we want to compare the gra-
dient expansion of (39), (40) and (41) to the hydrody-
namic expressions (42), (43) and (44). To this end, we
expand the integrand of the integral moments (31) to
arbitrary order N in ω and k, and we perform the p-

integration for each term in this expansion. This leads
to

Iabc ≈
N∑
R=0

(iω)R
√
πΓ(−a+Rξ + ξ + 5)Γ

(
b
2 + 1

)
2Γ(5− ξ)

×

 Γ
(
c+1

2

)
3F̃2

c+1
2 , 1−R2 ,−R2

1
2 ,

1
2 (b+c+3)

(
k2

ω2

)
even c

−kR2ω Γ
(
c
2 + 1

)
3F̃2

c+2
2 , 1−R2 ,1−R2

3
2 ,

1
2 (b+c+4)

(
k2

ω2

)
odd c

,

(45)

where 3F̃2 is the regularized generalized hypergeometric
function. If one of the upper indices of the hypergeomet-
ric function is zero or negative integer, the sum truncates
to a hypergeometric polynomial, which is the case here
when R 6= 0. For example

I040 ≈ 1

Γ(5− ξ)

( 8

15
Γ(5 + ξ) +

8iω

15
Γ(5 + 2ξ)

− 8(k2 + 7ω2)Γ(5 + 3ξ)

105

− 8i(3k2ω + 7ω3)Γ(5 + 4ξ)

105
+ . . .

)
, (46)

which, modulo prefactors, determines the gradient ex-
pansion of the tensor channel Gxy,xyR in (39). We note
that this is an asymptotic series. Comparing these gra-
dient expansions to the hydrodynamic limits, one finds

c2s = 1/3 , (47)

η =
Γ(5 + ξ)

120
sT tR , (48)

τπ =
Γ(5 + 2ξ)

Γ(5 + ξ)
tR , (49)

κ = 0 , (50)

see also Ref. [32]. Given that the retarded correlators
(39), (40) and (41) are those of a kinetic theory of mass-
less particles, the speed of sound takes of course the value
expected for a conformal theory. The expressions for
shear viscosity η, the shear viscous relaxation time τπ,
and κ are genuine kinetic theory results. As the present
evaluation is based on a linearized response to perturba-
tions, it is not sufficient to determine those second order
transport coefficients λ1, λ2, λ3 which depend nonlinearly
on perturbations.
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Hydrodynamic poles arise as a consequence of energy
momentum conservation. In the kinetic theory calcula-
tion of section III B, the structures in the retarded cor-
relators that arise from energy-momentum conservation
are related to the term δfeq on the right hand side of
(25). Inserting the disturbance (25) into (35) and per-
forming the functional derivative δTµν(ω, k)/δhαβ(ω, k),
one finds that it is exactly the nontrivial denominators in
(40) and (41) that arise from the terms proportional to
δfeq. The hydrodynamic poles in (40) and (41) are there-
fore given by the zeroes of the nontrivial denominators
in these two channels that arise from energy momentum
conservation.

To make the pole structure of the fluid dynamic limit
of retarded correlation functions more explicit, one can
write the fluid dynamic limit of the shear and sound chan-
nels as

G0x,0x
R,hyd =

ηk2

iω (1− iτπω)− η
sT k

2
, (51)

and

Gzz,zzR,hyd = sT
c2sω

2 − i 4
3
η
sT ω

3

ω2 − c2sk2 + i 4
3
η
sT k

2ω
. (52)

These expressions agree up to second order in gradient
expansion with (43) and (44), respectively. Higher orders
in the gradient expansion of the full retarded correlators
cannot be expected to be reproduced correctly by (51)
and (52). In this sense, the precise location of fluid dy-
namical poles is beyond the scope of a second order gra-
dient expansion. We shall discuss it in section V without
taking recourse to the gradient expansion.

IV. ANALYTIC STRUCTURE OF THE
RETARDED CORRELATION FUNCTION IN
MOMENTUM DEPENDENT RELAXATION

TIME APPROXIMATION

The full retarded correlation functions are defined in
terms of the integral moments Ia,b,c(ω, k) . To study
these correlation functions beyond the simple gradient
expansion, one needs to evaluate Ia,b,c(ω, k) for nonzero
ω and k. A numerical evaluation of Ia,b,c(ω, k) in (32)
is possible for arbitrary momentum dependencies of the
relaxation time approximation (2), i.e., for arbitrary ξ.
However, analytical control is advantageous for studying
the analytic structure. We therefore focus in the follow-
ing sections on the case ξ = 1 for which explicit analyti-
cal results can be obtained. However, we expect that the
qualitative features found for the case ξ = 1 extend to
the generic case ξ > 0.

The simplification in the case ξ = 1 arises from the
fact that all integral moments can be related explicitly
to a single generating function

Ia,b,c = Ra,b,c1 (ω̄, k̄) +Ra,b,c2 (ω̄, k̄, ∂ρ)H(ρ, ω̄, k̄)|ρ=1 ,
(53)

with

ω̄ ≡ tRω , (54)

k̄ ≡ ktR . (55)

Here, Ra,b,c1 and Ra,b,c2 are simple rational functions of
ω and k, and in R2 the derivative ∂ρ appears only in
the numerator of the rational function. The generating
function reads

H(ω̄, k̄, ρ) =
1

2

∫ 1

−1

dx

∫ ∞
0

dp
pe−ρp

(ω̄ − k̄x)p+ i
. (56)

Appendix A provides details of this reduction. According
to the procedures presented there, a symbolic computa-
tion program for algebraic reduction [45] can be employed
to obtain explicit expressions for the rational functions

Ra,b,c1 and Ra,b,c2 that enter all moments Ia,b,c of interest.
We note as an aside that we have attempted to derive

expressions similar to (53) for other values of ξ. For other
rational values, such as ξ = 1/2, ξ = 1/3 etc, one finds
typically expressions in terms of more than one generat-
ing function, but we were not able to bring all of them
into closed analytical form.

To evaluate H(ω̄, k̄, ρ), we start from the representa-
tion

H(ω̄, k̄, ρ) =
1

2k̄

∫ k̄

−k̄
dx(−∂ρ)G(ω̄ − x, ρ) (57)

in terms of the function

G(ω̄, ρ) =

∫ ∞
0

dp
e−ρp

ω̄p+ i

=
e
iρ
ω̄

ω̄
Γ

(
0,
iρ

ω̄

)
, (58)

Here, the integration contour crosses the pole when ω̄
takes negative imaginary values. The incomplete gamma
function Γ

(
0, iρω̄

)
therefore has a logarithmic branch cut

for negative imaginary ω̄.

A. Analytic structure of the generating function H

The analytic structure of the retarded correlation func-
tions is determined by the analytic structure of the inte-
gral moments Ia,b,c which in turn is mainly determined
by the analytic structure of the generating function H.
We therefore discuss now the properties of H in detail.
To perform the integral in (57), we note that ρG(ω̄, ρ) is
a function of ω̄/ρ only. The derivative with respect to ρ
can therefore be replaced by a derivative with respect to
x,

H(ω̄, k̄, ρ) = − 1

2k̄

∫ k̄

−k̄
dx∂x

[
ω̄ − x
ρ

G(ω̄ − x, ρ)

]
. (59)
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When integrating this total derivative, one needs to note
that for ω̄-values with real part in the range −k̄ < Re ω̄ <
k̄, the x-integration crosses between x = Re ω̄−ε and x =

Re ω̄+ε the branch cut of Γ
[
0, iρ

ω̄−x

]
for all values ω̄ with

Im (ω̄) < 0. The corresponding discrete contribution to
the integral is proportional to[
ω̄ − x
ρ

G(ω̄ − x, ρ)

] ∣∣∣∣Reω̄+ε

Reω̄−ε

=
eρ/Imω̄

ρ

[
Γ

(
0,

iρ

iImω̄ − ε

)
− Γ

(
0,

iρ

iImω̄ + ε

)]
= −e

ρ/Imω̄

ρ

[
log

(
−ρ

(−Im ω̄)
− iε

)
− log

(
−ρ

(−Im ω̄)
+ iε

)]
=
eρ/Im ω̄

ρ
[i2πθ(−Im ω̄)] . (60)

Integrating the total derivative in (59) therefore yields

H(ω̄, k̄, ρ) =
−1

2k

([
ω̄ − x
ρ

G(ω̄ − x, ρ)

] ∣∣∣∣k̄
−k̄

(61)

− 2πi e−ρ/Im ω̄θ(−Im ω̄)θ(k̄2 − (Re ω̄)2)

)
.

The analytic structure of the full retarded correlation
functions inherits the analytic structure of the generat-
ing function H in the sense that where the generating
function is nonanalytic, so is the full correlation function.
The nonanalytic structures seen in eq. (61) can therefore
be related to some of the nonanalytic structures sketched
for the retarded correlation function in the introductory
Fig. 1. In particular, in the first line of eq. (61), the two
terms ∝

(
ω̄ + k̄

)
G(ω̄ + k̄, ρ) and ∝

(
ω̄ − k̄

)
G(ω̄ − k̄, ρ)

have a logarithmic branch cut for negative imaginary val-
ues of ω̄+ k̄ and ω̄− k̄, respectively. This corresponds to
the two nonhydrodynamic cuts depicted in Fig. 1. More-
over, the term in the second line of eq. (61) is nonanalytic
in the entire strip Im ω̄ < 0 and −k̄ < Re ω̄ < k̄ due to
the explicit appearance of Im ω̄. This corresponds to the
grey-shaded area of nonanalyticity in Fig. 1. We note
that this nonanalytic contribution becomes nonpertur-
batively small for small ω̄ due to the factor ∼ e1/Im ω̄ in
G(ω̄, ρ = 1). Therefore, the analytic region at Im ω̄ ≥ 0 is
reached very smoothly, whereas the generating function
is discontinuous when crossing the (Re ω̄)2 = k̄2 lines.
In contrast to poles and branch-cuts, the analyticity in
this strip is also mild in the sense that a contour integral
around a region of area A is proportional to A.

The converse of the above statement is not true: the
full retarded correlation functions can show additional
nonanalytic features that are not visible in the generat-
ing function H. There are singular points, arising from
the zeroes of the denominators of eqs. (40) and (41).
These special points are embedded in the strip of mild
nonanalyticity, but they give rise to pole-like structures
in the sense that they give a finite contribution even when

A goes to zero, provided that the special point lies within
A (see Fig. 1). Some of these correspond to the hydrody-
namical modes in the model. Indeed, the location of such
a special point, in shear channel for example, is given for
small k by

ωshear = −i η
sT

k2 +O(k4) , (62)

as expected from hydrodynamical gradient expansion.
We note that for this result, as for any expression de-
rived in a gradient expansion, the nonanalytic parts of
the generating function H cannot contribute because of
the nonperturbative suppression factor.

B. Ambiguities in the analytical structure

To obtain correlation functions in the time domain, an
inverse Fourier transformation needs to be taken

Gαβ,γδR (t, k) =

∫ ∞
−∞

dω

2π
e−iωtGαβ,γδR (ω, k) . (63)

This expression is typically evaluated by completing the
contour of the ω-integration along a path at negative
complex infinity, and writing the result as the sum of
contour integrals around the nonanalytic structures in
the negative complex half plane. In the present case,
however, this standard strategy seems difficult to follow
as instead of simple cuts and poles, the generating func-
tion H in eq.(62) and, a fortiori, the retarded correlation
functions are nonanalytic in an entire two-dimensional
region as sketched in Fig. 1.

1. The analytically continued generating function Ha

A better strategy for calculating (63), that is more
practical and more physically revealing is to note that
the correlation function is analytic in the upper com-
plex half-plane and along the contour of integration in
eq. (63). Therefore, for the purposes of calculating mea-
surable quantities like (63), we may replace the corre-
lation function in the lower complex half-plane with the
analytic continuation of the function from the upper com-
plex half-plane. The nonanalytic structure of the correla-
tion functions Gαβ,γδ(ω, k) and their generating function
H in the lower complex half-plane are thus ambiguous to
the extent to which the nonanalytic structures arising in
H can be substituted by an analytic continuation from
the upper half-plane.

As the nonanalytic part of the function has already
been separated in eq. (61), an analytic continuation of H
from the upper half plane is found simply by removing
the nonanalytic part form eq. (61),

Ha(ω̄, k̄, ρ) =
−1

4k̄

[
ω̄ − x
ρ

G(ω̄ − x, ρ)

] ∣∣∣∣k̄
−k̄
. (64)
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Here, the subscript a stands for analytic continuation.
The function Ha contains incomplete gamma functions
with logarithmic branch cuts whose paths are arbitrary
as long as their endpoints are fixed to ω̄ = ±k̄ and to
negative complex infinity. Here, we adopt the simplest,
but ambiguous choice of continuing the complex gamma
function to the full complex plane, resulting in branch
cuts at ω̄ = ±k̄ + iȳ, for real ȳ ≤ 0. So, Ha shows the
nonhydrodynamic cuts depicted in Fig. 1, but unlike H,
these cuts do not bracket a two-dimensional strip of mild
nonanalyticity.

FIG. 5: The real (left plot) and imaginary (right plot) part of
the shear channel retarded correlation function, G0x,0x

R (ω̄, k̄),
evaluated for k̄ = 0.4 and plotted as a function of complex ω̄.
The function G0x,0x

R (ω̄, k̄) is calculated according to eq. (40)
with integral moments evaluated according to (53) from the
generating function Ha in (64).

To visualize how the analytic structure of Ha shapes
that of retarded correlation functions, we plot in Fig. 5
the real and imaginary part of the shear channel G0x,0x

R ,
calculated from Ha. This correlation function clearly
shares with Ha the two branch cuts that run in the nega-
tive imaginary half plane along Re (ω̄) = ±k̄ from zero to
complex negative infinity. Closer inspection also reveals
that the discontinuity across these branch cuts is expo-

nentially small for small Im (ω̄), as expected from the
factor exp [iρ/ω̄] in (58). In addition, there is a promi-
nently visible structure of neigboring peak and trough
close to Re (ω̄) = 0 at negative Im (ω̄), whose orientation
is rotated by π/2 between the real and imaginary part

of G0x,0x
R . This is the tell-tale signature of a simple pole

∝ 1/(ω̄ + i const) in the complex plane. The precise lo-
cation of this hydrodynamic pole will be discussed in the
following. In the gradient expansion, it is given of course
by (62).

2. Deforming the branch cuts

The purpose of this section is to show that in gen-
eral, the presence or absence of hydrodynamic poles in
the lower imaginary half plane of Gαβ,γδ(ω, k) is not in-
dicative of the onset or disappearance of fluid dynamic
behavior.

To set the stage of this discussion, we note first that

the same physical response Gαβ,γδR (t, k) in the time do-
main can be encoded in different analytical structures

Gαβ,γδR (ω, k) in the complex frequency domain. This
was illustrated already by showing that constructing
Gαβ,γδ(ω, k) from the generating functionH in eq. (61) or
from Ha in eq. (64) yields physically identical responses

Gαβ,γδR (t, k) while the analytic structure of Gαβ,γδ(ω, k)
is qualitatively different for both cases in the sense that
it has a two-dimensional region of mild nonanalyticity if
constructed from H, but not if constructed from Ha. In
the present section, we consider formulations of the latter

kind, for which Gαβ,γδR (ω, k) is given in terms of branch
cuts and poles only. In particular, the construction of

Gαβ,γδR (t, k) from the generating function Ha is techni-
cally advantageous, since the contour of the integration
(63) can be closed by encircling the branch cuts going
from ±k to ±k− i∞ and encircling any hydrodynamical
poles ωi that may be found in the given channel,

Gαβ,γδR (t, k) = −2πi
∑
i

Res(ωi)e
−iωit (65)

+ 2Im e−ikt
∫ 0

−∞
dyeytDiscGαβ,γδ(k + iy, k),

As we shall illustrate in the following with an explicit
construction, only the sum of the pole and cut contri-
butions on the right hand side of (65) is physical. The
relative weight of both terms depends on the orientation
of the branch cuts in the lower complex half plane, which
is a purely technical choice without unambiguous physi-
cal interpretation.

If calculated from Ha, all integral moments entering

the correlators Gαβ,γδR (ω, k) can be expressed in terms
of rational functions and rational functions times G+ =

e
i

ω̄+k̄

ω̄+k̄
Γ
(

0, i
ω̄+k̄

)
or G− = e

i
ω̄−k̄

ω̄−k̄ Γ
(

0, i
ω̄−k̄

)
. The branch

cuts of Gαβ,γδR (ω, k) are therefore determined by the log-
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k-k

x

0

a)

b)

c)

σ

FIG. 6: A particular deformation of the branch cuts of the
generating function Ha, defined in eq. (66) and the surround-
ing text.

arithmic branch cuts of Γ
(

0, i
ω̄±k̄

)
. To be specific, we

consider now a particular deformation of these branch
cuts, sketched in Fig. 6 and defined by the replacement

Γ

(
0,

i

ω̄ + k̄

)
= Rreg(ω̄ + k̄)− log

(
i

ω̄ + k̄

)
−→ Γ

(
0,

i

ω̄ + k̄

)
+ log

(
i

ω̄ + k̄ + iσ

)
− log

(
−1

ω̄ + k̄ + iσ

)
+ log

(
−1

ω̄ + iσ

)
− log

(
i

ω̄ + k̄ + iσ

)
. (66)

Here, Rreg denotes the regular part of the Γ-function. In
the replacement (66), the logarithm in the second line
of (66) cancels part of the branch cut of the Γ-function,
such that only the segment a) in Fig. 6 remains. The
two logarithms in the third line of (66) combine to the
segment b) in Fig. 6, and the logarithm in the last line
corresponds to segment c). We deform the branch cut of
G− symmetrically (see Fig. 6), so that both branch cuts
meet at ω̄ = −iσ on the imaginary axis, and are then
continued on top of each other up to complex imaginary
infinity. This deformation leaves the generating function
unchanged for Re (ω̄) ≥ 0 and it therefore encodes the
same physics.

In Fig. 7, we plot the real and imaginary parts of the re-
tarded correlation function in the shear channel for this
choice of branch cuts.1 Depending on the depth −iσ
in the complex ω̄-plane at which the two branch cuts

1 We note that our construction of these branch cuts in (66) in-
volves pairs of logarithmic cuts that cancel each other outside a
finite segment. For instance, the two terms in the third line of
(66) extend both to ω̄ = −iσ+∞ but they cancel each other for
Re (ω̄) > k̄. The numerical evaluation shown in Fig. 7 does not

are joined, the shear pole is either clearly visible (left
hand side of Fig. 7), or it disappears under the branch
cut. We emphasize that while both choices of σ lead
to qualitatively different features in the analytical struc-

ture of Gαβ,γδR (ω, k), they are physically equivalent in the
sense that they give rise to identical physical responses

Gαβ,γδR (t, k) in the time domain. In this sense, the ap-
pearance or disappearance of a hydrodynamic-like pole
is related to purely technical and physically ambiguous
choice of branch cut and it therefore cannot be related
to the onset of fluid dynamic behavior.

3. Differences between the cases ξ = 0 and ξ > 0

As explained in Appendix A, eq. (A3), the integral
moments (31) that define retarded correlation functions
for the case of a scale-independent relaxation time, ξ = 0,
can be written in terms of rational functions of ω̄ and k̄,
and in terms of rational functions times the difference of
logarithms

∝ [log (ω − k + i/tR)− log (ω + k + i/tR)] . (67)

[for the case ξ = 0]

This is consistent with the qualitative argument leading
to (14). As a consequence, for ξ = 0, the retarded corre-
lation functions share the nonanalytic structure of (67).

According to the standard definition, the branch cuts
of the logarithms in (67) start at ω = −i/tR±k and they
run parallel to the real axis to ω = −i/tR−∞. Therefore,
they cancel each other outside the range −k ≤ Reω ≤ k,
and this gives rise to the nonanalytic segment sketched in
Fig. 4. However, the two logarithmic branch cuts of (67)
could also be deformed to run parallel to the imaginary
axis from ω = ±k − i/tR to negative complex infinity,
ω = ±k − i∞.

These two ways of orienting the branch cuts of (67)
are reminiscent of the two choices of branch cuts for Ha

depicted in Fig. 7 and discussed for ξ = 1 in the pre-
vious subsections. However, there are marked physical
differences between the cases ξ = 0 and ξ > 0:

First, for ξ = 0, the branch cuts can be oriented such
that for sufficiently small k, hydrodynamic poles are the
unique nonanalytic structure closest to the real axis, thus
determining the late-time behavior of retarded correla-
tion functions, see eq.(65). In contrast, for ξ = 1, the
branch cuts start always at ω̄ = ±k̄, and for a gradient
expansion around k̄ = 0, poles and the starting point of
branch cuts are not separated. This observation is re-
lated to the finding that the gradient expansion for the
position of the pole converges for the case ξ = 0 (for in-
stance, ωshear(k)|ξ=0 = −i

tR
+ ik

tan(k̄)
[31]), while it is an

attribute values to these lines along which logarithm contribu-
tions cancel each other, even though the correlation function is
regular there.
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FIG. 7: The real and imaginary part of the retarded correlation function G0x,0x
R (ω̄, k̄ = 1.5), evaluated for choices of the

logarithmic branch cuts depicted in Fig. 6. Left hand side: If the two branch cuts are joined at imaginary depth σ = 1.4, then
the shear pole is clearly visible above the cut. Right hand side: for a different choice of σ = 0.5, the pole moves under the cut
while the physical properties in the time domain remain by construction identical to those defined by the correlation functions
on the left hand side.

asymptotic series for ξ = 1 (see discussion of Fig. 8 be-
low).

Second, for ξ = 0, the branch cuts in (67) can cancel
each other outside a finite segment. As illustrated in
Fig. 8, this is not possible for the case ξ = 1. If one
deforms the branch cuts of Ha so that they lie on top
of each other from ω̄ = −iσ up to ω̄ = −∞, they will
not cancel exactly. Rather, along the line of overlapping
branch cuts, there will be a discontinuity

HRight
a (iIm (ω̄) + ε, k̄)−HLeft

a (iIm (ω̄)− ε, k̄)

=
iπ

k̄

(
exp

[
i

−k̄ + ω̄

]
− exp

[
i

k̄ + ω̄

])
, (68)

where HRight
a , HLeft

a denote analytically continued
branches of Ha as defined in the caption of Fig. 8.

V. RETARDED CORRELATION FUNCTIONS
Gαβ,γδR (t, k) IN THE TIME DOMAIN

In this section, we utilize our understanding of the non-

analytic structures of Gαβ,γδR (ω, k) in the frequency do-

main for a discussion of the physical response Gαβ,γδR (t, k)
in the time domain. The connection between both is
given by eq.(65).

In general, with small but increasing k, the pole con-

tributions to Gαβ,γδR (t, k) in (65) move deeper into the
complex plane and they start being cancelled more effi-
ciently by the discontinuities from the branch cuts. While
only the sum of these nonanalytic contributions has un-
ambiguous physical meaning, the separate determination
of both, the poles and their residues, and the discontinu-
ities along the branch cuts is needed in practice for a
discussion of the full physical response in the time do-
main. In the following, we discuss these nonanalytic con-
tributions separately for the specific choice of the gener-
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FIG. 8: Real and imaginary part of the function Ha, defined
in the Left (Re (ω̄) < −k̄), Middle (−k̄ < Re (ω̄) < k̄) and
Right (k̄ < Re (ω̄)) part of the complex plane and analyti-
cally continued into the other regions of the ω-plane. The red
curves indicate the function for a choice of the two branch
cuts that pass Re (ω̄) = ±1 at Im (ω̄) = −1. Deforming the
branch cuts amounts to varying the positions Re (ω̄) at which
the different analytical patches of Ha are interfaced.

ating function Ha in (64) with branch cuts taken along
ω̄ = ±k̄ + i y tR, y ∈ [0,−∞].

A. The location of the hydrodynamic poles in the
shear and sound channel

1. The pole in the shear channel

The pole ω̄shear(k̄) of the retarded correlation function
G0x,0x(ω̄, k̄) is defined implicitly in terms of the zero of
the nontrivial denominator in eq. (40),

2− 3 I2ξ,2,0
(
−i ω̄shear(k̄), k̄

)
≡ 0 . (69)

This equation can be solved numerically without any re-
course to the gradient expansion. Alternatively, it can
be solved by determining the first N coefficients bi in a
gradient expansion

i ω̄shear(k̄) =

N∑
j=1

bj (k̄)2j . (70)

2

4
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FIG. 9: The pole ω̄shear(k̄) of the shear channel correlator
G0x,0x
R (ω̄, k̄) (red curve) compared to gradient expansions (70)

of ω̄shear(k̄) up to power k̄2N . The integers 2N on the dashed
lines denote the highest power ∝ k2N included in the gradient
expansion.

In Fig. 9, the exact solution is compared with this gra-
dient expansion. With increasing orders ∝ k̄2N , the gra-
dient expansion is seen to deviate from the exact result
at smaller and smaller k̄. This illustrates that the gradi-
ent expansion is an asymptotic expansion that does not
possess a finite radius of convergence.

For large k̄, the hydrodynamic pole moves deep into
the complex plane

ω̄shear ≈ −i
√

2

π
k̄3/2 +

ik̄

2π
+O(k̄1/2) . (71)
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FIG. 10: The location of the two sound poles in the lower
complex plane. The red dots are at values of k̄ = 0, 1, 2, . . ..
For large wavelengths, the location and residue are described
by hydrodynamic gradient expansion. For large k̄ the poles
move to large real frequencies.
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2. The sound channel

In close analogy to the discussion of the pole in the
shear channel, the poles in the sound channel can be
determined in terms of the zeros of the denominator of
(41). While the pole in the shear channel is purely imag-
inary, the pair of sound poles start at finite real values
ω̄sound(k̄ = 0) = ±cs = ± 1√

3
before diving into the nega-

tive imaginary half plane. The full numerical solution is
shown in Fig. 10.

We note that branch cuts can be chosen such that hy-
drodynamic poles disappear below the cut in one channel
while they do not disappear in another channel. Here,
this is the case for the choice of branch cuts in Ha along
the imaginary axis. For this choice, the shear pole will
remain visible for all k̄, while the sound pole disappears
at k̄ = 4, see Fig. 10. This is yet another illustration of
the general statement that there is no unambiguous rela-
tion between the existence of hydrodynamic poles in the
retarded correlator and the persistence of fluid dynamic
behavior.

We further observe with curiosity that the positions of
the sound poles move first away from the real axis, before
they move closer to the real axis again, see Fig. 10. We
note that other cases are known in the literature where a
pole moves closer to the real axis with increasing k, see
e.g. Ref. [44]. The asymptotic large-k behavior is given
by

ω̄sound ≈
1√
π
k̄3/2 −

√
π

6
k̄1/2 − 2i

3
+O(k̄−1/2), (72)

B. Contributions of the branch cuts to Gαβ,γδR (t, k)

We now combine the information gathered about

the nonanalytic structure of Gαβ,γδR (ω, k) to arrive via
eq. (65) at a qualitative understanding of the time-

dependence of the physical response Gαβ,γδR (t, k). For
the shear channel, this time dependence is illustrated
with the numerical results in Fig. 11 that display the
three characteristic stages of hydrodynamization, hydro-
dynamic evolution and dehydrodynamization. The fol-
lowing discussion aims at providing an analytic under-
standing for how these features arise.

For notational simplicity, we work in the following with

Ḡαβ,γδR ≡ 1

sT
Gαβ,γδR . (73)

1. The limit t→ 0 of the retarded correlation functions

In the kinetic theories studied here, the physical re-
sponse at time t = 0 starts always from

Ḡαβ,γδR (t = 0, k) = 0 . (74)

This can be seen by expanding the exponent in the
Fourier transform for small t,

Ḡαβ,γδR (t, k) =

∫ ∞
−∞

dω

2π
(1− iωt+ . . .) Ḡαβ,γδR (ω, k) .

(75)

One checks explicitly for each channel of interest that

Gαβ,γδR (ω, k) falls off like ∝ 1/ω2 or faster for large ω.
Therefore, the first term in the expansion (75) can be ob-
tained by closing the integration contour in the positive
imaginary half plane where integrals along closed con-

tours vanish due to the analyticity of Gαβ,γδR (ω, k). This

implies that the small-t expansion of Gαβ,γδR (t, k) starts
with a positive power of t and that eq. (74) is satisfied.

According to eq. (65), the pole contribution to

Gαβ,γδR (t, k) at time t = 0 is a sum of residues which
is nonzero. To satisfy (74), this pole contribution must
therefore cancel exactly the contribution from the cut at
time t = 0. To see this cancellation explicitly at work,
we consider the shear channel that has one single pole,
and we focus for simplicity on large k. In this limit, the
residue of the shear pole of Ḡ0x,0x

R is

Res(ω̄shear) ≈
−9ik̄3

4π
+O(k̄3/2) . (76)

Therefore, the pole contribution to the retarded correla-
tion function (65) diverges for large k and small t. In
the same limit, the cut contribution is sharply peaked
around the location of the pole

DiscḠ0x,0x
R (k̄ + iȳ, k̄) ≈ 9ik̄4

4π(ȳ + iω̄shear)2 + 4πk̄2

+O(ȳ + iω̄shear)
2 , (77)

such that the contribution from the discontinuity for
large k and small t reads

2Im

∫ 0

−∞
dyDiscḠ0x,0x

R (k̄ + iȳ, k̄) =
9k̄3

2
. (78)

So, indeed, cut and pole contribution cancel exactly for
t = 0. Since both are continuous in t, they weill cancel
partially for short times t > 0.

2. Hydrodynamization

In applications of hydrodynamics, it is often assumed
that hydrodynamic behavior dominates the evolution of
near-equilibrium perturbations on time scales t > τπ. In
the kinetic model studied here, this hydrodynamic shear
relaxation time (49) is τπ = 6tR.

According to eq. (65), the timescale over which the cut
contribution dies out exponentially is inversely propor-
tional to the depth y in the complex plane where the dis-
continuity becomes sizeable. The physics is particularly
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FIG. 11: The full physical response G0x,0x
R (t, k) as a function of time for k̄ = 0.4 (blue line) and the individual pole (green

dashed line) and cut (red dotted line) contributions that determine G0x,0x
R (t, k) according to eq. (65). The dashed vertical line

indicates the time-scale τπ = 6 tR where hydrodynamization is estimated to be accomplished, see eq.(49).

clear in the limit k → 0, where one is dealing with one
single cut and avoids issues related to the partial cancel-
lation between different cut contributions. In this limit,
the shear viscous correlation function takes the form

ω̄

k̄2
Ḡ0x0x
R (ω̄, k̄)|k̄=0 =

24ω̄5 − 6iω̄4 − 2ω̄3 + iω̄2 + ω̄

120ω̄6

−
iei/ω̄Γ

(
0, iω̄

)
120ω̄6

. (79)

(We note as an aside that the first nontrivial order of the
shear correlator is ∝ k2 as a homogeneous shear pertur-
bation corresponds to a boost and does not create shear
flow.) In Fig. 12, we have plotted the suitably normal-

ized imaginary part of the discontinuity DiscḠ0x,0x
R (k̄ +

iȳ, k̄)/k2|k=0 as a function of negative Im (ω). One finds
that this function peaks indeed close to 1/τπ, thus in-
dicating that the cut contribution to the retarded cor-
relation function (65) will be governed initially by an
exponential decay time close to τπ.

In summary, simple physics arguments, the numerical
inspection of the imaginary part of the cut discontinuity,
and the numerical calculation of the retarded correlation
function shown in Fig. 11 all indicate that the physical
response to perturbations starts being dominated by hy-
drodynamics on time scales t > τπ = 6tR. We emphasize,
however, that it is difficult to make this numerical obser-
vation analytically precise. The kinetic theory studied

τπ
-1
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FIG. 12: The suitably normalized imaginary part of the dis-
continuity Im DiscḠ0x,0x

R (k̄ + Im (ω̄), k̄)/k2|k̄=0 as a function
of Im ω̄ along the cut at Re ω̄ = 0.

here allows for physics on different momentum scales to
relax on different time scales.

3. Late time limit of the correlation function

The late time behaviour of the correlation function is
determined by the nonanalytic structures closest to the
real axis which are the cuts running to the real axis at

ω̄ = ±k̄. In the physical response Ḡαβ,γδR (t, k̄) in eq. (65),
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the cut discontinuity DiscḠαβ,γδR (k̄ + iȳ, k̄) at distance
ȳ = y tR from the real axis is weighted with an exponen-
tially suppression eȳt/tR . For the study of the late time
behavior t � 1/k and for sufficiently long wavelengths
1/k � tR, i.e. k̄ � 1, it is therefore sufficient to expand
this discontinuity around the “on-shell” point ω̄ = k̄.

To be specific, let us consider the shear channel corre-
lation function Ḡ0x,0x

R where the expansion of the branch
cut discontinuity around the on-shell point yields

DiscḠ0x,0x
R (k̄ + iȳ, k̄) ≈ −πe

1/ȳ

8k̄ȳ2
(1 +O (ȳ)) . (80)

The corresponding contribution to the retarded correla-
tion function (67) in the time domain reads

2Im e−ik̄ t/tR
∫ 0

−∞
dyeȳt/tRDiscḠ0x,0x

R (k̄ + iȳ, k̄)

≈ −Im
π
√
t/tRe

−ik̄t/tRK1

(
2
√
t/tR

)
2k̄

≈ π3/2(t/tR)1/4

4k̄
e−2
√
t/tR sin

(
k̄ t/tR

)
. (81)

This contribution to the retarded correlation function is
clearly nonhydrodynamic. It is an oscillating function
with subexponential decay, and it will therefore dominate
at late times over any contribution from hydrodynamic
poles. Eq. (81) confirms in an explicit calculation for
ξ = 1 the parametric estimates obtained for arbitrary
ξ in section II B, see eq.(18). To estimate the scale at
which this dehydrodynamization takes place, we require
that the negative exponent of the pole contribution in
(65) is much larger than the nonexponential factor in

(81), tIm (−ωi) & 2
√
t/tR. Since the imaginary part

of the fluid dynamic poles ωi starts ∝ k2 for small k, we
therefore conclude that in the scale-dependent relaxation
time approximation investigated here, the kinetic theory
dehydrodynamizes for arbitrarily small k at sufficiently
late times,

t &
1

Im [−ωi(k)]
2
tR

. (82)

This dehydrodynamization is visible in an oscillatory sub-
exponential late-time decay of retarded correlation func-
tions, as can be seen in Fig. 11.

According to eq.(82), the timescale at which dehydro-
dynamization occurs varies strongly with the momen-
tum k. While Fig. 11 shows a wide window of close-to-
hydrodynamic evolution for k̄ = 0.4, this window closes
if k̄ is increased to values larger than unity. As seen in
Fig. 13, already for k̄ = 2, the oscillatory late-time be-
havior is visible at all time-scales and a window of close-
to-hydrodynamic behavior does not exist.
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FIG. 13: Same as Fig. 11, but now for a larger momen-
tum scale k̄ = 2 for which the hydrodynamic pole does not
dominate the time evolution on any timescale.

261014

481216

0.05 0.10 0.15 0.20
ω

-1.0

-0.5

0.5

1.0

Re
ω

k2
GR
0 x,0 x

FIG. 14: The real part of the shear channel correlation func-
tion (79) (red line) compared to gradient expansions (83).
The integers N on the dashed lines denote the highest power
∝ ω̄N included in the gradient expansion. The blue dashed
line on top of the red line is the 25th order Padé approximant.

VI. ASYMPTOTIC NATURE OF GRADIENT
EXPANSION AND BOREL SUMMABILITY

We discuss now the use of Borel techniques to resum
the divergent gradient series of the correlation functions.
To simplify the discussion and to arrive at analytical ex-
pressions, we consider the shear channel correlation func-
tion (79) in the limit of vanishing k as an explicit exam-
ple. Its hydrodynamical gradient expansion corresponds
to a Taylor expansion in ω

ω̄

k̄2
Ḡ0x0x
R (ω̄, k̄)|k̄=0 ≈

N∑
i=0

bjω̄
j . (83)

Comparing the full expression to different orders of this
gradient expansion, one sees from Fig. 14 that the expan-
sion in powers of ω is an asymptotic. For a given value of
ω̄, inclusion of higher order terms does not improve the
approximation but instead makes it worse. This poor
convergence of the series is caused by a factorial growth
in the Taylor coefficients and is a consequence of the cut
of the Γ-function extending to the expansion point ω̄ = 0.

A standard trick for improving the convergence of the
series near non-analytic structures is to replace the Tay-
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lor series by a Padé approximant

ω̄

k̄2
Ḡ0x0x
R (ω̄, k̄)|k̄=0 ≈

∑
i ciω̄

i∑
j djω̄

j
, (84)

which as a rational polynomial can account for non-
analytic structures. Indeed, as is evident from Fig. 14,
the 25th order Padé approximant (that is, approximating
the function with rational polynomial whose numerator
and denominator are 25th order polynomials in ω, and
whose Taylor expansion coincides with that of the origi-
nal function up the ω̄50) performs vastly better numeri-
cally.

Whereas the non-analytic structure of the correlation
function is a cut, the only non-analytic structures present
in the Padé approximant are poles. The way the cut
is mimicked by the Padé approximant is in term of an
alternating string of poles and zeroes where the original
cut lies, such that the poles become denser as the order
of approximation is increased, see Fig. 15.

In order to gain further improvement, one may try to
use Borel’s trick of writing factorials in integral represen-
tation, j! =

∫∞
0
sj e−s ds,

ω̄

k̄2
Ḡ0x0x
R (ω̄, k̄)|k̄=0 =

n∑
j=1

bj ω̄
j

=

∫ ∞
0

e−s

 ∞∑
j=1

bj
j!

(sω̄)j

 . (85)

The art is then to perform the Borel sum in the integrand
of (85) which can be convergent since it has factorially
suppressed coefficients. As typically one has information
only of finite set of Taylor coefficients bj , the standard
practice is to again approximate the Borel transform

B(s) =

∞∑
j=1

bj
j!
sj (86)

using a Padé approximant.
In our case it turns out that the Borel transform is

itself a rational function, and therefore the Padé approx-
imation is exact once a required amount of terms are
taken into account

B(s) =
i

(i+ s)6
. (87)

Of course, if we had access only to a finite number of
Taylor coefficients, we could not know for sure that we
have fully reconstructed the Borel transform. But in our
case, we may simply compute the inverse transformation
of eq. (85), and indeed we recover back the original ex-
pression (79). It is remarkable how using the Borel re-
summation we have been able to recover the non-analytic
features of the correlation function with only perturba-
tive information about the gradient series.

It has been suggested that the non-analytic fea-
tures in the Borel transform arise from physics of non-
hydrodynamical modes. In the example at hand, it is
easy to see that the essential singularity at the origin
arises from the residue of the only pole of the Borel trans-
form ∮

dse−s
i

(i+ s)6
= − ei/ω̄

240πω̄6
. (88)

We find it curious that the exponent in the previous equa-
tion, or the location of the nonanalyticity of the Borel
transformation are not directly related to the location
of the nonhydrodynamic mode with the smallest imag-
inary part. This is in contrast to the analogous prob-
lem in an expanding background, where the system is
driven out of equilibrium because of longitudinal expan-
sion instead of a external metric source. It has been sug-
gested in [1, 2, 4] that in this case the location of the first
nonanalytic structure in the Borel plane is given by the
slowest decaying nonhydrodynamic mode. In our case,
the nonhydrodynamic mode with the smallest imaginary
part has always vanishing imaginary part, and indeed the
nonanalytic behaviour arises from the combined effect of
all nonhydrodynamic modes.

To contrast this picture with a case where the nonhy-
drodynamic modes are well separated from the expansion
point of ω̄ = 0, consider the correspoding shear channel
correlation function at vanishing k̄ in the case of ξ = 0

ω̄

k̄2
Ḡ0x0x
R (ω̄, k̄)|k̄=0 =

1

5

1

ω̄ + i
. (89)

In this trivial case the gradient expansion is well behaved
and the pole located at ω̄ = −i sets the radius of conver-
gence. In this case the Borel transformation reads

B(s) =
e−is

5
, (90)

which is a complete function with only an essential sin-
gularity at large s.

We also note that, from the point of view of Borel
summation, the cases xi = 0 and ξ = 1 are both speacial.
For ξ = 0, the gradient expansion is convergent series.
For 0 < ξ ≤ 1, its Borel sum is convergent while the
gradient expansion itself is asymptotic. As seen, e.g.,
from eq. (46), the coefficients of the gradient expansion
for ξ > 1 grow faster than factorial, making also the Borel
sum nonconvergent.

VII. CONCLUSIONS

Generically, the path to equilibration in relativistic
systems described by Boltzmann transport is governed
by an interplay of collective hydrodynamic and non-
collective particle excitations. The present study allowed
us to expose this interplay in detail. Generically, there
is no sharp onset of hydrodynamic behavior. On all
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FIG. 15: Poles and zeros of 25th order Padé approximant
of the shear channel correlation function. The cut of the Γ-
function is mimicked by a string of poles and zeros.

time and length scales, both hydrodynamic and non-
hydrodynamic modes are present. To which extent the
one dominates over the other can be at best a quantita-
tive statement that changes gradually with scale. Also,
the appearance of poles in the first (physical) Riemann
sheet of retarded correlation functions is a matter of
choosing a particular analytical continuation and thus
cannot be related unambiguously to the onset of fluid
dynamic behavior. Still, even if the pole can be made dis-
appear from the physical Riemann sheet by utilizing the
ambiguity in analytic continuation, its weight is trans-
lated unambiguously to other non-analytic structures in
that sheet. In this sense, the relative closeness of hy-
drodynamic poles to the real axis carries quantitative
information about the onset of hydrodynamic behavior
irrespective of whether they are visible.

The hydrodynamic behavior is fully characterized by
the coefficients of a gradient expansion. As we showed
for a generic kinetic theory, this expansion is asymptotic
already for retarded correlation functions, since the start-
ing point of the branch cut approaches the origin for
small k. This is in marked different to results obtained
for strong coupled field theories and in the standard
scale-independent relaxation time approximation, where
the gradient expansion for retarded correlation functions
converges. Remarkably, however, the latter theories if
pushed out of equilibrium by longitudinal expansion ex-
hibit a time-dependent energy density whose gradient ex-
panion (in powers of inverse time) is asymptotic. We note
that non-linear transport coefficients appear in this ex-
pansion, while the above-mentioned gradient expansions
of retarded correlation functions involve linear transport
coefficients only. It would be interesting to understand
the relation between the analytic structures of the higher
n-point functions that give rise to non-linear transport
coefficients, and the qualitatively different convergence
properties of the above-mentioned gradient expansions.

Borel summation is employed in attempts to extract
physically meaningful information from non-convergent

asymptotic series. This technique is often advocated with
the seemingly contradictory claim that it can reveal non-
perturbative information from analysis of purely pertur-
bative input. By explicitly resumming the Borel series
of the gradient expansion of a retarded correlator, we
demonstrated in section VI how this can function. To
the best of our knowledge, this is the first time that an
explicit Borel transformation of a hydrodynamizing non-
equilibrium system has been fully performed.

Our study could be extended on several fronts. The
present discussion remained limited to linear response
and it could be extend within the present set-up to non-
linear response and, in line with the remarks above, to
systems undergoing expansion. It may also be interest-
ing to supplement the kinetic theories studied here with
thermal fluctuations that via the fluctuation-dissipation
theorem are known to give rise to characteristic long-time
hydrodynamical tails. Furthermore, it would be interest-
ing to observe, e.g., in numerical simulations, the features
identified here in kinetic theories whose collision kernels
are derived directly from quantum field theory. Finally,
as mentioned in the introduction, a full quantum field
theoretical treatment contains interference effects that
go beyond simple kinetic theory and become relevant at
higher orders in perturbation theory.

Appendix A: Calculation of the integral moments
Iabc for ξ = 1

In this appendix, we provide further information on
how to evaluate the integral moments Iabc of eq. (31),
which can be written for ξ = 1 in the form

Ia,b,c =
1

24

∫
dp p5−a e−p

∫
dφ

2π
sinb φ

×
∫ 1

−1

dx

2

(
1− x2

)(b/2)
xc

1 + p (−iω̄ + ik̄x)
. (A1)

Here, ω̄ ≡ tRω, k̄ ≡ tRk and x denotes the cosine of

the angle between ~v and ~k. The φ-integration leads to
trivial prefactors. Only integral moments with even in-
teger index b are non-vanishing. To bring the p- and
x-integrations into a simpler form, we proceed as follows:
We first observe that for b = c = 0, the elementary x-
integral returns a logarithm∫ 1

−1

dx

2

p

1 + p(−iω̄ + ik̄x)
= − i

2k̄
log

[
i− p k̄ + pω̄

i+ p k̄ + p ω̄

]
≡ − i

2k̄
L . (A2)

For arbitrary positive integers b, c, the corresponding
integral can be shown to be of the form∫ 1

−1

dx

2

p
(
1− x2

)(b/2)
xc

1 + p(−iω̄ + ik̄x)

∫
dφ

2π
sinb φ

= T b,c1 (k̄ p, ω̄ p) + T b,c2 (k̄ p, ω̄ p)
−i
2k̄
L . (A3)
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For the components relevant for our calculation, we have

tabulated the functions T b,c1 (k̄p, ω̄p) and T b,c2 (k̄p, ω̄p) in
Table I. To obtain the moments Ia,b,c in (A1), it then
remains to perform the integral

Ia,b,c(k̄, ω̄)

=
1

24

∫
dp p4−a e−p

(
T b,c1 (k̄p, ω̄p) + T b,c2 (k̄p, ω̄p)

−i
2k̄
L

)
.

(A4)

For all moments that enter the retarded correlation func-
tions (39), (40) and (41), the products p4−a T b,c1 (k̄p, ω̄p)

and p4−a T b,c2 (k̄p, ω̄p) in the integrand of eq.(A4) are ex-
plicitly known polynomials in p that include only positive
powers up to p4. The first term in (A4) is then easily in-
tegrated, using ∫

dp pn e−p = Γ[n+ 1] . (A5)

The second term in (A4) requires calculating for n =
0, 1, 2, 3, 4 the expression

1

24

∫
dp pn e−p

−i
2k̄
L

=
i

24

∫
dp pn e−p

∫ 1

−1

dx

2

p

(ω̄ − k̄x)p+ i

=
i

24
(−1)

n
∂nρ

∫ 1

−1

dx

2

∫ ∞
0

dp
p e−ρ p

(ω̄ − k̄x)p+ i

∣∣∣
ρ=1

=
i

24
(−1)

n
∂nρ H(ω̄, k̄, ρ)

∣∣∣
ρ=1

, (A6)

where H(ω̄, k̄, ρ) is the analytically known generating
function defined in (56), or an analytically continued
function Ha that agrees with H along the real axis and
the positive imaginary ω̄-half plane.

In this way, somewhat lengthy but explicit expressions
for all relevant integral moments Ia,b,c(ω̄, k̄) are obtained
by inserting into (A4) the explicit terms given in table I,
writing these terms in powers of p, and performing the
p-integrals with the help of eqs.(A5) and (A6).
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