
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018 9

A Collaborative Citizen Science Platform for
Real-Time Volunteer Computing and Games

Poonam Yadav , Member, IEEE, Ioannis Charalampidis, Jeremy Cohen, John Darlington, and Francois Grey

Abstract— Volunteer computing (VC) or distributed computing
projects are common in the citizen cyberscience (CCS) commu-
nity and present extensive opportunities for scientists to make
use of computing power donated by volunteers to undertake
large-scale scientific computing tasks. VC is generally a nonin-
teractive process for those contributing computing resources to a
project, whereas volunteer thinking (VT) or distributed thinking
allows volunteers to participate interactively in CCS projects
to solve human computation tasks. In this paper, we describe
the integration of three tools, the Virtual Atom Smasher (VAS)
game developed by CERN, LiveQ, a job distribution middleware,
and CitizenGrid, an online platform for hosting and providing
computation to CCS projects. This integration demonstrates the
combining of VC and VT to help address the scientific and
educational goals of games like VAS. This paper introduces the
three tools and provides details of the integration process along
with further potential usage scenarios for the resulting platform.

Index Terms— Citizen cyberscience (CCS), cloud computing,
community grid, crowdsourcing, human computation, middle-
ware, nonprofit sector, online games, parallel computing, real-
time distributed computing, volunteer computing (VC), volunteer
thinking (VT).

I. INTRODUCTION

IN the last few years, citizen cyberscience (CCS) has
evolved as a new way of inspiring and supporting learning

and participation in science. It provides a means for citizens,
who may not have a scientific background, to interact with
and contribute to scientific projects or studies. In many cases,
such interactions are beneficial to both the scientist running the
project and to the participating individuals who can gain new
skills and knowledge in the process of supporting the project.
Existing CCS projects are mainly categorized as volunteer
computing (VC) or volunteer thinking (VT) projects, examples
of this are provided in [1]–[3]. In a VT project, volunteers
use their cognitive skill and knowledge to solve a part of a
scientific problem. This type of project requires volunteers’
active participation. In VC projects, volunteers contribute their

Manuscript received August 23, 2017; accepted September 28, 2017. Date of
publication January 8, 2018; date of current version February 23, 2018. This
work was supported by the European Commission for the Citizen Cyber-
lab project through the Seventh Framework Program under Grant 317705.
(Corresponding author: Poonam Yadav.)

P. Yadav is with the Computer Laboratory, University of Cambridge, Cam-
bridge CB3 0FD, U.K. (e-mail: poonam.yadav07@alumni.imperial.ac.uk).

I. Charalampidis is with CERN, 1211 Geneva, Switzerland (e-mail: ioan-
nis.charalampidis@cern.ch).

J. Cohen and J. Darlington are with the Department of Com-
puting, Imperial College London, London SW7 2AZ, U.K. (e-mail:
jeremy.cohen@imperial.ac.uk; j.darlington@imperial.ac.uk).

F. Grey is with the Citizen Cyberlab, University of Geneva, 1205 Geneva,
Switzerland (e-mail: francois.grey@unige.ch).

Digital Object Identifier 10.1109/TCSS.2017.2771479

computing resources to provide processing power to support
one or more computationally intensive tasks within a project.

Projects generally have specific use cases that are considered
to be ideally suited to either VC or VT. A project may have
significant computational requirements that can best be served
by farming out pieces of computation to the computers of
volunteers, who have opted to take part in the project. This
allows passive volunteering from the user perspective with the
user’s computer becoming available to undertake computation
for the project when the user is not actively using their
machine. Alternatively, a project may be structured to take
advantage of the ability of humans to undertake tasks that are
computationally difficult but very straightforward for a human
to process. Examples might include identifying particular
properties of some data by looking at a graph or spotting
visual anomalies in an image. Such tasks can be quickly and
accurately undertaken by humans, while reliably undertaking
such tasks using code can be challenging and computation-
ally intensive. These tasks are ideally suited to VT, where
volunteers can actively participate in a project and assist the
project owner in achieving their aims. Nonetheless, there are
increasing numbers of use cases, particularly in the realm
of scientific education, where VT tasks can be made more
realistic and more educationally valuable if they make use
of realistic or pseudorealistic data. For example, consider an
online science teaching tool where real-world computation of
scientific data that may be impractical to undertake on a single
user’s machine can be integrated into the project. The data
generation is itself an ideal VC task and can be farmed out
to the computers of one or more participants in the project to
generate the required data to support a user interacting with
the tool.

We therefore believe that integrating VT and VC into a
single project can help to make interesting and engaging use
cases for CCS projects. There are two main deployment sce-
narios for combining VC and VT within CCS projects. These
have been presented in various CCS articles, an overview of
which can be found in [2]–[4]. The first scenario is where
VT tasks are independent of VC tasks or where the two
different types of task do not require real-time interaction
with each other. The second scenario consists of a real-
time interaction between the VT and VC tasks. In the first
scenario where VC and VT tasks do not need to interact
with each other in real time or are completely independent,
implementation is generally fairly straightforward and the
two aspects of the project can be implemented separately,
even though their implementations may ultimately be within

2329-924X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0169-0704

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

the same codebase. The second scenario is more complex
to implement since a common framework must be provided
that can link the task lifecycles of both VT and VC tasks.
By this we mean that when a VT task requires some data
that must be generated to order, this must trigger a related
VC task that must be scheduled such that results are provided
to best support the interactivity requirements of the VT task
the end user is undertaking. To the best of our knowledge,
there is currently no such collaborative platform described in
the existing literature and we refer readers to [2] and [5], which
provide an overview of this paper.

In this paper, we detail the integration of three platforms,
CitizenGrid [4], [6], LiveQ [7], [8], and the virtual atom
smasher (VAS) [7], [9] game, to show an example of a CCS
project, where VT and VC are integrated. In addition to this
specific use case, we look at how the integration of two of
these platforms, CitizenGrid and LiveQ, can provide a more
general platform for developing CCS projects and applications
that integrate VC and VT. In Section II, we discuss the
motivations behind the integration of VC and VT. In Sec-
tions III and IV, we first present a brief overview of the
three target platforms followed by details of the design for
the resulting integrated system. Sections V and VI present
implementation details and a set of usage scenarios for the
integrated system. Section VII presents related work, and
we describe our conclusions and details of future work in
Section VIII.

II. MOTIVATIONS

The design, implementation, and deployment of a citizen
science project are driven by a goal, which is first defined
by considering the project creator’s motivation and intentions.
The volunteers who participate in citizen science projects have
different motivations and goals for their participation [10].
However, the factors that primarily determine their decision
between participating in a VC or VT project depend on their
scientific and educational interests and the time and comput-
ing resources that they have available. Integrating VT and
VC tasks into one project and allowing volunteers to partici-
pate in either or both types of task could make the project
more popular and attract more participation. At the same
time, integrating both VT and computing into a project can
significantly increase the complexity of building and running
the project. Therefore, in this section, we present our three
main motivational goals for the integration of VT and VC in
a single CCS project.

A. Volunteer Engagement

Engaging and retaining volunteers in a project is a chal-
lenging task. In recent years, a number of research studies
have been conducted to understand what motivates volunteers
and what project factors influence their continued partici-
pation [10]–[13]. It is understood from various studies that
gamification of VT tasks1 keeps people more entertained and

1The use of gaming approaches to represent scientific human computation
tasks.

engaged in the project [10], [14], [15]. Therefore, incorpora-
tion of serious VT games with VC projects that generally have
limited interaction will offer another approach to enhance user
participation in VC projects and make them more rewarding
to take part in.

B. Scientific Education

Gamification and VT task interfaces provide great learning
and creativity opportunities for volunteers. CCS game players
and volunteers learn and enhance their project specific scien-
tific knowledge through hands-on experience with real tools.
For example, in the VAS game, the players learn about particle
physics by visualizing simulated results that are generated
using equation parameters that the volunteers can alter. The
simulations correspond to the real-world experiments being
undertaken by physicists at CERN. The game players also
learn about various new computing technologies, for example,
how to work with the VirtualBox [50] virtualization software.
Without the integration of VC, the computation that would be
required to undertake the simulations may be too much for
an individual user’s computer system. This would either mean
that the generation of results would take too long and spoils
the game playing experience or that result generation using
real-world parameters would not be possible at all.

C. Participation Diversity

Previously, VC projects have attracted only volunteers who
wish to contribute spare computing resources to a project,
but are not so interested to interact with the project directly.
The VC platforms [6], [16] offer the ability for volunteers
to gain straightforward access to a range of citizen science
projects registered with them. This, combined with projects
that integrate both VT and VC processes, opens up a range
of opportunities to attract new volunteers who have time
to play games and are also interested to participate in and
gain understanding and knowledge of scientific processes
and challenges. We categorize volunteer participation in two
levels: single-mode participation (either computing or thinking
only), or combined participation. With single-mode partic-
ipation, while a project may integrate both VT and VC,
it is not necessary for a volunteer to participate using both
approaches to take part in the project. However, in combined
participation, a volunteer has to use both approaches to take
part in the project. In the VAS-CitizenGrid scenario, while
the project integrates the aspects of VC and VT and both
are required for the game to operate successfully, individual
game players need not contribute their computing resources
for the VC tasks, but they can still participate in the learning
aspects of the project. Game players can take part in the
project as part of a team where some individuals in the team
may participate only as VC providers, others may participate
from the VT perspective. It is also possible to be both a
VT and VC participant—in this case, the user is considered to
be providing combined participation. If game players are not
contributing their own processing resources when playing the
VAS game, their computing tasks can be processed by other
team members’ computing resources. A survey has shown

YADAV et al.: COLLABORATIVE CITIZEN SCIENCE PLATFORM FOR REAL-TIME VC AND GAMES 11

Fig. 1. VAS game “quantum machine” interface.

that less than 10% of participants in VC projects are women,
whereas, in online games, the participation of women and
men is nearly equal [17], [18]. The survey results further
support our strong motivation to integrate scientific gaming
with VC projects to attract new participants to projects and
ensure the involvement of a diverse range of volunteers.

III. BACKGROUND

In this section, we provide a brief overview of each of the
platforms used in this paper.

A. Virtual Atom Smasher

VAS [7], [9], [19] is a web-based physics game, developed
at CERN, that aims to educate game players about particle
physics through an interactive hands-on web-based environ-
ment. The game is based on the concept of a “Virtual Collider”
that represents a real particle collider. The game front-end
is developed as a web application. The interface contains
interactive videos, rich pop-up explanations, and animations,
which help players to understand the particle physics funda-
mentals, for example, high-energy particle collision. We use
a set of screenshots from the web-based interface of the VAS
application [19] in this section to give the reader an idea of
the highly graphical nature of the game and how it presents
scientific data and concepts to game players.

In Fig. 1, the game user interface shows a “quantum
machine” with a number of locks, in principle it is an attempt
to visualize the sequence of events that occur inside the event
generation software which simulates a particle collision inside
the Virtual Collider. The game player’s goal is to unlock all the
locks on the machine. In order to unlock parts of the machine,
they need to spend science points that they have earned during
the game. They earn science points by choosing and validating
suitable tuning parameters (see Fig. 2).

The VAS game back-end is developed to tune Monto Carlo
simulations of high-energy particle physics. The common
problem in such cases is to find the correct values of a
dozen parameters such that the simulation results match the
observed results from the current and past particle colliders.
Even though, for this classical minimization problem, there
are already automated solutions (see [20]), we considered
that the educational value of an interactive interface was

Fig. 2. VAS game interface showing the parameter setting and validation.

Fig. 3. VAS game interface showing simulation histograms.

much greater than using automated approaches.2 The game
front-end is developed as a web application using the latest
HTML5 technologies for enhancing the educational experience
and providing players with a step-by-step approach toward
understanding the world of particle physics.

When players select and validate a parameter on the game
interface, they request the execution of a Monte Carlo simu-
lation to a set of distributed computer nodes. A player’s task
is to fine-tune the parameters of the CERN Virtual Collider
simulator in such a way that the simulation presents the same
results as those observed in the real experiments. The number
of “science points” or “credits” a player gets depends on two
factors. First, the values of the parameters they choose for the
simulation. Generally, the first value chosen within a provided
range is a random guess. However, in the subsequent steps,
they can adopt a more guided approach, making decisions
based on results provided by their previous chosen values.
Fig. 3 shows a group of histograms that provide the results of
previous simulations. The second factor for gaining credits is
the speed at which simulations are processed. By processing
their simulations more quickly, a user can try and validate
more guesses at possible input values. If they provide a larger
number of computing resources to run their simulations, they
can undertake more simulations in a given period of time
enabling them to gain more credits.

The VAS game provides many opportunities for those
interested in learning about particle physics to gain some
understanding of the field through a fun and competitive game-
based environment. The integration of VC and VT in this
environment offers an incentive for more volunteers to take

2This is one of the reasons why CERN has begun to grant access to the
real scientific software and data that physicists use to anyone interested in the
science of particle physics, via the portal http://opendata.cern.ch/.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 4. VAS game interface showing real-time VC task progress status.

part in the game, and we believe that the approach used offers
opportunities to provide a general educational environment for
those interested in taking part in a variety of CCS games.

B. LiveQ

LiveQ is a job distribution and monitoring middleware
with real-time interaction capabilities for VC projects. Gen-
erally, VC projects are based on a distributed client-server
model [2] for VC task distribution and management. Instead
of designing the distribution framework from scratch, many
VC projects use generic middleware platforms that are specif-
ically designed and implemented to support VC. For example,
the SETI@Home project [21], a popular VC project, uses the
BOINC [22], [23] middleware for its task distribution and
management.

LiveQ offers real-time feedback and control of tasks and
simplifies the process of managing large numbers of tasks and
the integration of their results. LiveQ maintains a record of all
the VC resources connected to it any time, which makes it a
suitable choice for a game-based integrated project. The VAS
game uses LiveQ for its task management.

Fig. 4 shows the VAS game interface displaying real-time
task progress status. It also shows the number and details of
VC client machines that are undertaking processing of tasks on
behalf of the game player currently logged in to the interface.

C. CitizenGrid

CitizenGrid is a web-based platform that provides the host-
ing, deployment, and management of CCS applications [51].
Scientists or CCS project managers can deploy server images
for their applications onto different cloud platforms or onto
local server resources and also register their application client
images with CitizenGrid so that they are available to end-
users (volunteers) who want to participate in CCS projects.

For volunteers, CitizenGrid provides a CCS application
portal, where they can discover and participate in CCS
applications by launching application clients on their local
machine, or where applicable, on a remote cloud platform,
for example, OpenStack [24] or the Amazon EC2 cloud
infrastructure [25].

While CitizenGrid is intended to be a generic platform,
complex citizen science applications such as VAS can be better
supported and can provide an enhanced user experience by
adding custom application-specific extensions to CitizenGrid.
The integration of VAS, LiveQ, and CitizenGrid provides

Fig. 5. CitizenGrid interface showing details of the VAS game as a registered
VC project.

enhanced accessibility and usability of the VAS game, building
on the capabilities of LiveQ and CitizenGrid to support deploy-
ment, management, and the integration of VT and computing.

In the following sections, we provide an overview of the
integration process used to link VAS, LiveQ, and CitizenGrid
and present implementation details of the resulting platform,
its potential use cases and related work.

IV. PLATFORM INTEGRATION OVERVIEW

We refer to the integration of the VAS citizen science
application [7], the LiveQ job distribution framework [7], [8],
and the CitizenGrid [6], [51] platform as VAS-CitizenGrid.
In this section, we provide an overview of the structure
of the integrated environment then detail the participation
and collaboration that needs to be undertaken by individuals
working within the VAS-CitizenGrid environment.

The VAS game provides an interface for individuals to learn
about particle physics, but it requires underlying computa-
tion to support this process. While volunteers who want to
participate only from a VT perspective can visit the game
website and begin working through the game and learning
about the physics aspects of the “Virtual Collider,” their
interactions will trigger the running of computations and
these need to be carried out somewhere. These computations
could be carried out on central resources run by the game’s
operators, but these computations can be large and this is an
unsustainable approach as user traffic grows and more people
want to take part. Other options might, for example, include
using infrastructure-as-a-service cloud resources to support the
scaling of resource capacity. However, using such publicly
available platforms requires that computation is paid for on a
per-use basis. For an educational tool that is freely accessible,
this is also not a practical solution. VC is an ideal solution for
such a task.

VAS uses the LiveQ job distribution framework to enable
and manage the distribution of jobs to the computing resources
of volunteers. LiveQ deals with the process of registering
users’ resources and keeping track of them so that tasks can
be farmed out to these resources when user interactions within
the VAS game generate them. This explains the reasoning for
the integration of VAS and LiveQ, however, there is still a
challenge. Volunteers who want to provide their computing
resources need a way for these resources to be enabled to

YADAV et al.: COLLABORATIVE CITIZEN SCIENCE PLATFORM FOR REAL-TIME VC AND GAMES 13

Fig. 6. VAS-CitizenGrid collaborative platform. Numbers represent the
participation and interaction steps.

run the VAS simulation software, which can undertake the
jobs that are farmed out by LiveQ. In the case of some
VC projects, the computation done on volunteers’ computers
is relatively simple. This does not necessarily mean that the
software is not computationally intensive, but it does mean
that the code is sufficiently simple that a single small exe-
cutable, perhaps with a small number of dependencies, can be
downloaded to a volunteer’s resource and run. This generally
makes distributing the code very straightforward. In the case
of the VAS simulation software, the code is rather more
complex requiring a specific operating system and stack of
dependencies and complex configuration. The CernVM virtual
machine appliance [26] was developed specifically to address
this challenge and is described in more detail in Section V-C.
For volunteers to make use of the CernVM virtual machine,
it must be deployed and run on their resources and configured
to tell the LiveQ infrastructure to which group a user is a
member of. This ensures that only computations belonging
to that group are distributed to the user’s resource(s). This
is where CitizenGrid provides an ideal environment to link
users with the integrated VAS and LiveQ framework. Users
register with CitizenGrid, which provides group management
allowing users to form themselves into groups that can then
be used within the VAS game. CitizenGrid also provides the
ability to host the CernVM machine image and deploy and
run this on a user’s local machine in a straightforward manner.
This can be done using either CitizenGrid’s legacy setup for
starting VirtualBox virtual machines based on Java Web Start
technology or using the CernVM Web API [5] that provides an
enhanced method of starting and managing virtual machines
running in VirtualBox. CernVM Web API has been integrated
within CitizenGrid, which allows the enhanced management of
CernVM virtual machines running in VirtualBox from within
the CitizenGrid web application.

The linking of these three platforms, therefore, provides a
full end-to-end system allowing end users to find the VAS
application within the application directory in CitizenGrid

(see Fig. 5), join a group or team, and then start one or more
virtual machines capable of running the required CERN soft-
ware stack to enable these machines to undertake simulations
of data used in the VAS game. Once a virtual machine
is running, it registers with the LiveQ infrastructure which
then adds it to the list of machines available to undertake
computations for the target group. The volunteer may then play
the VAS game themselves or provide their compute resource(s)
for others in the same group who are interacting with the game.
When computations are generated by game players in this
group, they are farmed out to available resources and run, pro-
viding feedback to game players within the VAS user interface.

Fig. 6 shows the ordering of the interactions between
VAS, LiveQ, and CitizenGrid. We now describe the different
participants within such an integrated environment and how
they interact with each other. While these descriptions focus
on the VAS-CitizenGrid exemplar, they would also apply in
the context of other integrated VT and VC applications.

A. Project Participants

A CCS project, such as VAS, that uses integration with
CitizenGrid and LiveQ to provide its operational platform to
make games available and deploy VC tasks, involves a number
of participants. We categorize these participants as project
creator teams, game players, and CCS volunteers.

1) Project Creator Team:

a) Scientists: Scientists define scientific game require-
ments, specifications, descriptions, and designs.
They provide scientific data, procedures, and the
methods that support VC tasks.

b) Educators: Educators develop the educational
material based on the scientific processes involved
and refine game designs from the learning and
creativity perspective.

c) Developers: The developers may include individu-
als from a range of different development roles—
server-side/back-end developers, mini-game devel-
opers, and UI developers. These developers imple-
ment and test the various software components of
the game and the VC tasks that will be deployed
to volunteers’ computers.

d) CitizenGrid Application Provider: The application
provider is the individual in the project creator
team who registers the project with the Citi-
zenGrid environment by providing project details
and uploading the project’s VC client virtual
images (worker nodes) that will be downloaded by
volunteers’ computers.

2) Thinking Volunteers—Game Players: These are the indi-
viduals who play a scientific game in order to learn about
both the scientific processes or domain represented in the
game and to support the game operators in undertaking
some scientific task.

3) Computing Volunteers—Citizen Science Volunteers:
Computing volunteers contribute to the CCS project by
donating their computing resources. This is achieved
by downloading and running VC client images on

14 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 7. CitizenGrid application directory showing an example of available
CCS projects that users can choose to participate in, including the examples
of third-party publicly available CCS projects from other groups.

their local computer. Alternatively, they may choose
to support the project by providing their own cloud
infrastructure resources or funding remote, public cloud
resources, that run the project’s VC images (see Fig. 7).

Note that an individual may fall into more than one of the
above roles when participating in an integrated VT/VC project.

B. Participation and Interaction Steps in the
VAS-CitizenGrid Platform

We now look at the steps shown in Fig. 6 detailing the
collaboration between the project creator team, game players,
and citizen science volunteers. The steps in the diagram are
numbered and the corresponding descriptions are provided as
follows.

1) The project team creates and deploys scientific learning
games.

2) The project team sets up a VC infrastructure using
LiveQ for the real-time distribution and management of
VC tasks.

3) The project team configures game and VC components
to interact with each other.

4) The project team registers/hosts the VC client
images (worker nodes) on the CitizenGrid platform.

5) The game players register their team with the VAS game
via the VAS web-based interface and are assigned a team
identifier.

6) The game players create a team with their VAS team
identifier on CitizenGrid.

7) The volunteers register with the CitizenGrid platform
and join a team.

8) The volunteers participate in the VC project by down-
loading the VC worker node to their local com-
puter and running it via the VirtualBox virtualization
software, or by running a worker node on a cloud
infrastructure.

Fig. 8. VAS game and LiveQ interactions.

9) A running worker node receives tasks directly from the
VC infrastructure (server).

10) As a game player interacts with the game interface,
the VC server updates the interface with new game
information and generates new VC tasks to be sent to
volunteers’ computers for processing.

V. IMPLEMENTATION

The particular scenario of integrating VT and VC is enabled
in the system described in this paper by linking the Citizen-
Grid, LiveQ, and VAS platforms. As in Section IV, we again
refer to CitizenGrid-VAS as the collaborative platform that
combines the functionalities of CitizenGrid, LiveQ, and VAS.
By replacing the VAS game with other CCS games or appli-
cations which require real-time interaction between VT and
VC tasks, the platform has the ability to offer support for a
variety of CCS use cases. In this section, we provide technical
details of the integration of the platform components in the
CitizenGrid-VAS environment.

A. Integration Between the VAS Game Interface and LiveQ

The integration of the VAS game and the LiveQ frame-
work is shown in Fig. 8. When the game player chooses a
parameter and clicks on the “validate the parameter” button,
the back-end functionality requests the execution of a Monte
Carlo simulation. These simulations will be carried out by
one or more distributed computer nodes. This request is routed
through the LiveQ framework, which handles the control of
the connected VC resources and overseeing the simulation
process. The framework is designed in such a way to minimize
the overall run time and to keep the user informed throughout
the simulation process, providing as much information as
possible. This is an important requirement to keep the overall
experience interactive since every simulation can take up to
half an hour to complete.

The LiveQ framework [8] uses a multivariate interpolation
mechanism to estimate the outcome of the simulation and
sends a “guess” to the user within a few seconds of their
request. In the meantime, it dispatches the job to as many
VC worker nodes as possible. The LiveQ framework is fully
aware of the entire network of worker nodes, and therefore,

YADAV et al.: COLLABORATIVE CITIZEN SCIENCE PLATFORM FOR REAL-TIME VC AND GAMES 15

Fig. 9. CitizenGrid interface showing the VAS worker node launch using
the team-alias.

it can pick the most appropriate ones or force some of them
to discard their current work and start a new task. The job-
manager component communicates with the worker network
using the Jabber/XMPP protocol that offers flexibility and scal-
ability, even in environments with a slow network or firewall
restrictions.

The simulation process used in VAS is highly parallelizable
and it is very easy to merge results as they arrive from
different worker nodes meaning that the process can easily
be handled by multiple independent, distributed computing
resources. This is particularly important since the use of real
scientific data sets means that significant computation may be
required and this can be speed up through the use of larger
numbers of compute nodes. Therefore, after a fixed number of
events, each worker node sends back its intermediate results,
gradually optimizing the results presented in the GUI. When
all the workers have completed their tasks, their results are
merged into a final results record. The LiveQ framework also
takes care of comparing these results against the experimental
results and giving a “Goodness of fit” score [27]. The LiveQ
framework calculates the X2 test score between the histograms
produced by the simulation and the histograms obtained by
the experiments. Therefore, it is possible for the system to
automatically understand if the user has succeeded in finding
a good solution, and to give the appropriate credit.

B. Integration Between CitizenGrid and VAS

CitizenGrid [6] has been implemented using the Django
framework [28]. CitizenGrid is intended to provide a unique
one-stop environment for volunteers to search for their favorite
VC and gaming projects and to set up and manage game teams
through which they would like to contribute their resources.
For example, a volunteer signs up to the CitizenGrid platform
in order to begin taking part in a CCS project. For team-
based projects, the user needs to select their chosen project and
become a part of a team. There are two possible approaches
in doing this: either they find and select their favorite project
and then join a team that is already participating in that
project or they first join a team and then select a project
to participate in from those that the team is involved with.
This creates a resource pool for the team. The advantage of
contributing resources through CitizenGrid is that volunteers
have an option of contributing their resources to many projects
at the same time and can use a common environment to
manage their project participation. In addition to their local
resources, volunteers can also contribute resources from a
public cloud infrastructure.

Fig. 10. CitizenGrid “Group management” interface showing the list of
existing groups and options of starting a new group and joining an existing
group owned by another volunteer.

Fig. 11. CitizenGrid “group management” interface showing the VAS
application “attachment” to the group using the team-id (labeled as Tag ID).

In the case of the VAS game, each player belongs to a
team and the team uses computing resources donated to it for
running simulations. The game players use CitizenGrid as a
middleware for requesting the computing resources for their
team from the volunteers that are registered with CitizenGrid.
VAS and CitizenGrid link game players’ worker nodes to vol-
unteers’ resources using a team-id. This is a unique identifier
for a team that is shared between game players and volunteers.
CitizenGrid provides a feature for game players to create a
group and then attach the VAS application to this group using
their unique VAS team-id and team-alias (see Figs. 10 and 11).
Once this has been done, other volunteers joining the same
group can see the group’s details including the attached VAS
application. When volunteers launch the VAS application, they
see a drop-down menu for selecting a team-alias as shown
in Fig. 9. Selecting a team alias from the list results in the
contextualization of the VAS worker node (see Section V-C),
so that it registers itself as belonging to the specified team and
is, therefore, made available to undertake computations for that
team. Fig. 12 shows the VAS interface displaying details of a
team including the list of team members and the credits they
have earned.

The integration of VAS and CitizenGrid was enabled
through the addition of group creation and management fea-
tures that are compatible with the approach used by VAS.
We consider that these features are a valuable addition to
CitizenGrid since they are likely to be applicable to other
VC and VT applications that providers may want to register
with CitizenGrid.

C. Integration Between CitizenGrid and LiveQ

Because of the complex stack of dependencies that the
experimental software run by VAS requires, it is not possible
to cross-compile the software for every operating system.
Therefore, the VAS project team decided to use virtualization
for worker nodes, using the micro-CernVM [26] as the base
virtual appliance. This small virtual machine image provides
the basis for a tailored OS distribution for VC projects because

16 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 12. VAS interface showing game players within a team and the credits
earned by the computation carried out by the CitizenGrid team’s computing
resources.

it minimizes the overall data footprint by transferring the
absolute minimum required data over the network. Micro-
CernVM is derived from the full CernVM [26] virtual appli-
ance, which is a well-established distribution for experimental
software. One of the big advantages for using CernVM is
its file system (CVMFS) [29] that offers a high-performance
remote file store providing a reliable way of delivering soft-
ware and data to distributed computer nodes. Nodes mount the
CVMFS filesystem and file data are only transferred across
the network to the compute nodes when files are requested.
This ensures that the absolute minimum required data are
transferred across the network to the compute node. Finally,
CernVM does not require modifications to the base image to
run a given application. Instead, it uses a “contextualization”
mechanism to define its boot behavior. This contextualization
process determines the functionality that a CernVM instance
will provide when it starts up. The required software, already
deployed in the CVMFS, can be pulled to the instance at
startup time. The worker nodes make use of the LiveQ
agent scripts that are already available in CVMFS, and are
directed to provide resources for a particular group through
the contextualization process. CitizenGrid allows different
project teams to advertise, host, and deploy worker nodes
for their VC applications. The project team registers the VAS
project within CitizenGrid and uploads a VAS contextualized
micro-CernVM as the image to be used for the VAS worker
node. CitizenGrid has been extended to include the option
to personalize worker nodes by automatically embedding the
team-id into the contextualization process that takes place
when starting a VAS compute node.

VI. USAGE SCENARIOS

Through the integration of the CitizenGrid, LiveQ, and VAS
platforms, we have demonstrated how VC and VT can be

integrated within a single application. This integration benefits
both the users of the VAS game and the community of
VC providers who can join groups through CitizenGrid and
target their computing power to help the corresponding teams
within VAS. However, this is just one example of how the
integration of these tools can help volunteers contributing both
thinking and computational power. In this section, we look at
three different usage scenarios facilitated through the integra-
tion of the tools described in this paper. In particular, we look
at examples of how the integration of CitizenGrid and LiveQ
can provide a generic platform for managing applications,
groups of volunteers, and the distribution of computational
tasks to computing volunteers.

A. Aggregation of Donated Resources

In citizen science, volunteers can choose different ways
to contribute their knowledge or computing resources to a
wide range of available scientific projects. In the case of
VC, this requires that VC projects are set up in such a way
that they can take advantage of using a number of distrib-
uted computational resources to service their computational
requirements, for example, their local machine(s) or remote
cloud computing resources. The existing VC projects generally
rely on volunteers’ personal computers and do not make use
of cloud computing infrastructure. However, CitizenGrid offers
volunteers the ability to use their local machine(s) or remote
cloud computing resources to undertake VC tasks for a project
of their choice. CitizenGrid allows the use of any distributed
task management middleware such as BOINC or LiveQ for
results aggregation at the application’s server. Fig. 13 shows
the CitizenGrid interface displaying the application details for
the VAS game. It shows two registered cloud images targeting
either the OpenStack private cloud or Amazon EC2 public
cloud platforms. The user can choose to start one or more
instances on one of these platforms depending on what plat-
forms they have access to.

Additionally, by integrating CitizenGrid and LiveQ, we can
provide a comprehensive framework for enabling users to
offer their resources in a targeted manner and for application
providers to efficiently aggregate a potentially large pool of
geographically distributed resources to service their project’s
computational requirements. The group capabilities within Cit-
izenGrid that allow “team-based” participation in projects offer
further capabilities for the CCS projects to use team-based
approaches and team-focused incentives within their applica-
tions. Volunteers may join different teams and contribute their
resources to different projects collaboratively or individually
giving them flexibility in how their resource capacity is used,
via a single interface.

B. Meeting the Demand for Real-Time Computation

In games such as VAS, real-time computation is important
to ensure that players receive feedback in a reasonable time
when the underlying system is undertaking tasks that are
computationally intensive. The VAS game interface could be
replaced by a range of other computationally intensive scien-
tific applications which require real-time computing responses,

YADAV et al.: COLLABORATIVE CITIZEN SCIENCE PLATFORM FOR REAL-TIME VC AND GAMES 17

Fig. 13. CitizenGrid: VAS application client details.

e.g., a disaster model mapping application that requires huge
computing resources in a short span of time to generate a
real-time disaster map based on real-time data to predict and
understand the effects of a disaster. Two very popular citizen
science human computation projects, Foldit [30], [31] and
Eyewire [32], [33], that currently attract up to 4000 volunteers
every day, are an ideal example of the challenges of managing
the demand for real-time computation. The computational
resources required in these games are significant and the
projects currently use dedicated servers. In such an environ-
ment, handling a sudden increase in demand from users is
a major challenge. Game operators face their resources not
being able to stand up to the requirements for computation
and ultimately crashing under an unmanageable load from the
increased user requirements. On the other hand, when usage
is low, if a dedicated resource pool is being used to operate
the game, resource capacity is likely to be wasted. While
cloud computing infrastructure is one possible way of handling
changes in demand, this is likely to be costly over a long
period of time and impractical for a freely available scientific
game. By integrating with a VC environment, game operators
can take advantage of contributed resources made available by
VC providers. An environment like CitizenGrid offers a way
to pool VC providers and build a community of volunteers
who can respond when an application has a need for more
computing power. This is something that can be challenging
to handle in an open environment, where it may be difficult
to get access to volunteers’ resources at the times when they
are needed.

C. Platform for Promoting STEM

The final area where we see the integration of CitizenGrid,
LiveQ, and VAS as an ideal model to support other VC and
VT applications is in the promotion of science and technology
education. The CitizenGrid-VAS platform can be used as a
teaching tool in schools and universities for informal learning.
In recent years, a number of do-it-yourself open-source game
frameworks, such as RedWire [34], have been designed and
implemented and these could be used in place of the VAS
game to offer alternative game environments to volunteers.
Such platforms can be used to design scientific or educational
games and can take advantage of the CitizenGrid and LiveQ
integrated platform to offer a way to promote their games
to potential users and access VC power to handle any

computationally intensive aspects of the games. Using such
tools, researchers/game developers can also write exciting
standalone educational games which can subsequently be
integrated with VC projects using the standard interfaces
provided by the CitizenGrid and LiveQ platforms.

VII. RELATED WORK

The concept of combining volunteer gaming along with
VC, where volunteers donate their computing resources to
run simulations or other tasks, has been suggested in the
literature [35], [36]. However, these games solve only specific
problems and are tightly coupled with volunteers’ human
computation tasks. In the last decade, the importance of
games in human computation (VT) has been confirmed by
many studies [37], [38], [52]. There have been a number of
human computation games that have been implemented to
solve some complex problems [39], for example, the Wild-
fire Wally game was designed to solve graph search prob-
lems [40]. These games are casual games, and there are no
scientific and technical learning components associated with
them [40]–[43]. However, there is a significant complexity
involved in the design of these games to make the most
of the potential of human computation [41]. In addition to
this, the complexities increase when these games are inte-
grated with VC tasks. In the current literature, only a small
number of platforms exist that act as directories to host
VC projects [6], [16], [22]. A popular platform with users is
the IBM World Community Grid [16], which currently hosts
five active projects that use the BOINC [22] middleware for
distributed task management. There are a number of client-
server-based VC middleware platforms that have been devel-
oped in the last two decades, e.g., BOINC [22], Co-pilot [44],
Cosm [45], and Bayanihan [46]. A few successful projects, for
example, Folding@home [47], [48] and Distributed.net [49],
use the Cosm networking libraries for distributed networking.
However, the majority of VC projects that have started in the
last few years use BOINC [22]. BOINC is a distributed batch
processing system. BOINC clients, which run on volunteers’
computers, can pull tasks from the BOINC server when they
are idle in order to process them locally. The volunteer’s com-
puter stores a batch of processed tasks before sending them
back to the project server. Co-pilot [44] is another distributed
task management system that is designed for CERN distributed
computing projects, which acts as a gateway between CERN’s
grid-infrastructure and volunteer resources. Co-pilot allows
the distribution of CERN worker nodes onto both cloud
infrastructure and volunteers’ computers. However, none of
the above-mentioned distributed task management systems is
designed for real-time interaction, making them unsuitable
for an interactive game environment where a player’s next-
move depends on the outcome of their previous move. To
the best of our knowledge, interactive games where real-time
VC task distribution and management are combined are not
described in the CCS literature. The model of integrating Cit-
izenGrid with the LiveQ framework for handling distribution
of VC tasks to volunteers’ machines provides the flexibility of
integrating a wide variety of scientific games to a distributed

18 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

computing infrastructure which requires real-time computation
to be carried out by volunteers’ resources.

VIII. CONCLUSION

In this paper, we have presented a CCS deployment scenario
which combines VC and thinking tasks within a single project.
We have also shown how the three existing platforms Citizen-
Grid, LiveQ, and VAS can be linked to form an integrated
CCS environment. CitizenGrid is a middleware platform for
deploying VC clients either using virtual machine images
on volunteers’ computers or on cloud infrastructures such as
Amazon EC2. The VAS is an online particle physics game and
LiveQ is a real-time task distribution and management system.

CitizenGrid-VAS, the platform resulting from the integration
of these three tools, demonstrates how a game-based collab-
orative VC platform can be integrated with a citizen science
game. The platform allows the easy deployment of a scientific
and educational game that requires the use of volunteers’
donated computing resources (free CPU cycles) in real time.
The CitizenGrid and LiveQ aspects of the integrated platform
are flexible and could be used in a variety of other CCS project
scenarios. As part of our future work, we are planning to
extend this collaborative platform to include the following new
functionality: 1) a resource request management interface on
the CitizenGrid platform, which allows game players to initiate
a request for volunteer resources. Volunteers then decide to
choose to provide their computing resources to a particular
game player and 2) decoupling of LiveQ, CERN VM, and the
VAS game interface. This will provide more flexibility to a
game designer to use LiveQ and VAS with other platforms.

ACKNOWLEDGMENT

The authors would like to thank the members of the VAS,
LiveQ, and CitizenGrid teams for their support of this paper.

REFERENCES

[1] M. Haklay, Crowdsourcing Geographic Knowledge, Volunteered Geo-
graphic Information (VGI) in Theory and Practice, D. Sui, S. Elwood,
and M. Goodchild, Eds., 1st ed. The Netherlands: Springer, 2013,
doi: 10.1007/978-94-007-4587-2.

[2] P. Yadav and J. Darlington, “Computation platform deployment
scenarios,” Imperial College London, London, U.K., Citizen
Cyberlab (FP7-317705) Project Rep. D3.3, 2014, accessed:
Apr. 12, 2015. [Online]. Available: http://citizencyberlab.
eu/research/publications-and-reports/

[3] P. Yadav and J. Darlington, “Conceptual frameworks for building online
citizen science projects,” J. Human Comput., vol. 3, no. 12, pp. 213–223,
2016.

[4] P. Yadav and J. Darlington, “Design guidelines for the user-centred
collaborative citizen science platforms,” J. Human Comput., vol. 3,
no. 11, pp. 205–211, 2016.

[5] I. Charalampidis et al., “CernVM WebAPI—Controlling virtual
machines from the Web,” in Proc. 21st Int. Conf. Comput. High Energy
Nucl. Phys., Okinawa, Japan, Apr. 2015, p. 8.

[6] P. Yadav, J. Cohen, and J. Darlington. “CitizenGrid: An online middle-
ware for crowdsourcing scientific research.” Accessed: Aug. 12, 2017.
[Online]. Available: https://arxiv.org/abs/1707.09489

[7] I. Charalampidis and P. Skands, “Initial prototype of a virtual atom
smasher game,” CERN, Eur. Org. Nucl. Res., Citizen Cyberlab
(FP7-317705) Project Rep., 2014, accessed: Apr. 12, 2015. [Online].
Available: http://citizencyberlab.eu/research/

[8] I. Charalampidis. LiveQ: An Interactive Volunteering Computing Batch
System Source-Code (GitHub). Accessed: May 26, 2015. [Online].
Available: https://github.com/wavesoft/LiveQ

[9] I. Charalampidis. Virtual Atom Smasher Source-Code (GitHub).
Accessed: May 26, 2015. [Online]. Available: https://github.com/
wavesoft/virtual-atom-smasher

[10] A. Bowser et al., “Using gamification to inspire new citizen sci-
ence volunteers,” in Proc. 1st Int. Conf. Gameful Design, Res., Appl.
(Gamification), 2013, pp. 18–25. [Online]. Available: http://doi.acm.org/
10.1145/2583008.2583011

[11] C. Jennett and A. L. Cox, “Eight guidelines for designing virtual citizen
science projects,” in Proc. Citizen + X, Volunteer-Based Crowdsourc-
ing Sci., Pub. Health, Government, Papers HCOMP Workshop, 2014,
pp. 16–17.

[12] I. Iacovides, C. Jennett, C. Cornish-Trestrail, and A. L. Cox, “Do
games attract or sustain engagement in citizen science?: A study of
volunteer motivations,” in Proc. CHI Extended Abstracts Hum. Factors
Comput. Syst. (CHI EA), 2013, pp. 1101–1106. [Online]. Available:
http://doi.acm.org/10.1145/2468356.2468553

[13] P. Darch and A. Carusi, “Retaining volunteers in volunteer computing
projects,” Philos. Trans. Roy. Soc. London A, Math. Phys. Sci., vol. 368,
no. 1926, pp. 4177–4192, 2010.

[14] A. Shahri, M. Hosseini, R. Ali, and F. Dalpiaz, “Gamification for
volunteer cloud computing,” in Proc. IEEE/ACM 7th Int. Conf. Utility
Cloud Comput. (UCC), Dec. 2014, pp. 616–617.

[15] Y. Zhao and Q. Zhu, “Evaluation on crowdsourcing research: Cur-
rent status and future direction,” Inf. Syst. Frontiers, vol. 16, no. 3,
pp. 417–434, Jul. 2014. [Online]. Available: http://dx.doi.org/10.1007/
s10796-012-9350-4

[16] World Community Grid. Accessed: Apr. 10, 2015. [Online]. Available:
http://www.worldcommunitygrid.org/

[17] F. Raoking, J. M. Cohoon, K. Cooke, M. Taufer, and T. Estrada, “Gender
and volunteer computing: A survey study,” in Proc. IEEE Frontiers Edu.
Conf. (FIE), Oct. 2014, pp. 1–5.

[18] T. Estrada, K. L. Pusecker, M. R. Torres, J. Cohoon, and M. Taufer,
“Benchmarking gender differences in volunteer computing projects,” in
Proc. IEEE 9th Int. Conf. eSci., Oct. 2013, pp. 342–349.

[19] Virtual Atom Smasher. Accessed: Jun. 20, 2015. [Online]. Available:
http://test4theory.cern.ch/vas/

[20] Professor: Tuning Tool for Monte Carlo Generator. Accessed:
Apr. 10, 2015. [Online]. Available: https://professor.hepforge.org

[21] Seti@home: An Astronomy Citizen Science Project. Accessed:
Apr. 23, 2014. [Online]. Available: http://seti.berkeley.edu/setiathome

[22] Boinc Middleware Supported Projects List. Accessed: Apr. 23, 2014.
[Online]. Available: http://boinc.berkeley.edu/projects.php

[23] S. Yi, E. Jeannot, D. Kondo, and D. P. Anderson, “Towards real-time,
volunteer distributed computing,” in Proc. 11th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., May 2011, pp. 154–163.

[24] OpenStack. Open Source Cloud Computing Software. Accessed:
Apr. 23, 2014. [Online]. Available: http://www.openstack.org

[25] Amazon Web Services (AWS) Elastic Compute Cloud (EC2). Accessed:
Apr. 25, 2015. [Online]. Available: http://aws.amazon.com/ec2/

[26] µCernVM: CERN Micro Virtual Machine Image. Accessed:
Apr. 23, 2014. [Online]. Available: http://cernvm.cern.ch/portal/ucernvm

[27] G. K. Smyth, “Pearson’s goodness of fit statistic as a score test
statistic,” in Statistics and Science: A Festschrift for Terry Speed
(Lecture Notes-Monograph Series), vol. 40. Beachwood, OH, USA:
Institute Mathematical Statistics, 2003, pp. 115–126. [Online]. Available:
http://projecteuclid.org/euclid.lnms/1215091138

[28] Django. (2014). Django Software Foundation (2013) the Web Framework
for Perfectionists With Deadlines. Accessed: Apr. 25, 2014. [Online].
Available: https://www.djangoproject.com

[29] J. Blomer, P. Buncic, D. Dykstra, and R. Meusel, “The CernVM file
system,” CERN, Geneva, Switzerland, Tech. Rep. 2.1-6, CernVM-FS
2.1.20, Mar. 2015. [Online]. Available: https://ecsft.cern.ch/dist/cvmfs/
cvmfstech-2.1-6.pdf

[30] F. Khatib et al., “Algorithm discovery by protein folding game players,”
Proc. Nat. Acad. Sci. USA., vol. 108, no. 47, pp. 18949–18953, 2012.

[31] Foldit: Online Protein Folding Game. Accessed: Jul. 10, 2015. [Online].
Available: https://fold.it/

[32] J. S. Kim et al., “Space–time wiring specificity supports direction
selectivity in the retina,” Nature, vol. 509, pp. 331–336, May 2014.

[33] M. SengLab. EyeWire: The Citizen Science Project. Accessed:
Apr. 23, 2014. [Online]. Available: http://eyewire.org

[34] Redwire: A Mixing Game Platform. Accessed: Apr. 19, 2015. [Online].
Available: http://redwire.io/game/list

[35] C. Cusack, C. Martens, and P. Mutreja, “Volunteer computing using
casual games,” in Proc. Future Play Int. Conf. Future Game Design
Technol., 2006, pp. 1–8.

http://dx.doi.org/10.1007/978-94-007-4587-2

YADAV et al.: COLLABORATIVE CITIZEN SCIENCE PLATFORM FOR REAL-TIME VC AND GAMES 19

[36] C. A. Cusack, E. Peck, and M. Riolo, “Volunteer computing games:
Merging online casual gaming with volunteer computing,” in Proc. Acad.
Conf. Meaningful Play, 2008, pp. 1–34.

[37] M.-C. Yuen, L.-J. Chen, and I. King, “A survey of human computation
systems,” in Proc. Int. Conf. Comput. Sci. Eng. (CSE), Aug. 2009,
pp. 723–728.

[38] A. Bowser, D. Hansen, and J. Preece, “Gamifying citizen science:
Lessons and future directions,” in Proc. Gamification Res. Netw. CHI,
2013, pp. 1–4.

[39] V. Curtis, “Online citizen science games: Opportunities for the biological
sciences,” Appl. Transl. Genomics, vol. 3, no. 4, pp. 90–94, 2014.

[40] E. Peck, M. Riolo, and C. Cusack, “Wildfire wally: A volunteer
computing game,” in Proc. Conf. Future Play, 2007, pp. 241–242.

[41] S. Cooper et al., “The challenge of designing scientific discovery
games,” in Proc. 5th Int. Conf. Found. Digit. Games (FDG), 2010,
pp. 40–47. [Online]. Available: http://doi.acm.org/10.1145/1822348.
1822354

[42] D. Toth, “Volunteer computing with video game consoles,” in Proc.
6th WSEAS Int. Conf. Softw. Eng., Parallel Distrib. Syst. (SEPADS),
2007, pp. 102–106. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1353801.1353820

[43] J. Šimko and M. Bielikov, “Games with a purpose: User generated valid
metadata for personal archives,” in Proc. 6th Int. Workshop Semantic
Media Adaptation Pers. (SMAP), Dec. 2011, pp. 45–50.

[44] P. Buncic and A. Harutyunyan, “Co-pilot: The distributed job execu-
tion framework,” Portable Anal. Environ. using Virtualization Technol.
(WP9), CERN, Geneva, Switzerland, Tech. Rep., Mar. 2011.

[45] Cosm Software Stack. Accessed: Jul. 27, 2015. [Online]. Available:
http://www.mithral.com/cosm/

[46] L. F. G. Sarmenta and S. Hirano, “Bayanihan: Building and studying
Web-based volunteer computing systems using java,” Future Generat.
Comput. Syst., vol. 15, nos. 5–6, pp. 675–686, 1999.

[47] Stanford University. Folding Home. Accessed: Jul. 27, 2015. [Online].
Available: https://folding.stanford.edu/home/the-software/

[48] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande,
“Folding home: Lessons from eight years of volunteer distributed com-
puting,” in Proc. Int. Workshop High Perform. Comput. Biol. (IPDPS),
May 2009, pp. 1–8.

[49] Volunteer Distributed Computing Platform. Accessed: Jul. 27, 2015.
[Online]. Available: http://www.distributed.net/

[50] VirtualBox. Accessed: Jul. 27, 2015. [Online]. Available: https://www.
virtualbox.org/

[51] CitizenGrid—Open Source Github Repository. Accessed: Jan. 5, 2016.
[Online]. Available: https://github.com/ImperialCollegeLondon/
citizengrid

[52] N. Oliveira, E. Jun, and K. Reinecke, “Citizen science opportunities
in volunteer-based online experiments,” in Proc. Conf. Hum. Factors
Comput. Syst. (CHI), May 2017, pp. 6800–6812.

Poonam Yadav (GS’09–M’11) received the
M.Tech. degree from the Indian Institute of
Information Technology, Allahabad, India, in 2007,
and the Ph.D. degree in computing from Imperial
College London, London, U.K., in 2011.

She is currently a Research and Teaching
Associate with the Computer Laboratory, University
of Cambridge, Cambridge, U.K. She has authored
over 30 papers in distributed systems, social
computing, sensor systems, and Internet of Things.

Dr. Yadav was a recipient of the U.K.–India
Education and Research Initiative Ph.D. Award. She was involved in various
NERC, TSB, EU, EPSRC, IBM, and Microsoft funded research projects. She
is currently the Chair of ACM-W U.K. professional chapter and a member
of ACM and BCS.

Ioannis Charalampidis was an OpenLab Fellow
with CERN, Geneva, Switzerland, where he was an
Architect and Software Engineer with the PH/TH
Group. He is the Lead Developer of virtual atom
smasher game prototype. He has been a Frontend
Engineer with Mesosphere, Inc., San Francisco, CA,
USA since 2016. He has authored a number of
research papers on CernVM, cloud computing, and
virtualization.

Jeremy Cohen received the Ph.D. degree in
computer science from Imperial College London,
London, U.K.

He is currently a Research Fellow with the Depart-
ment of Computing, Imperial College London. His
current research interests include e-Science and the
development of tools, services, and applications to
simplify access for domain scientists to a range of
different computational infrastructure.

John Darlington is currently a Professor and the
Head of the Social Computing Group with the
Department of Computing, Imperial College Lon-
don, London, U.K. He has a long and distinguished
track record both in the development of novel soft-
ware technologies and in the creation of facilities
to improve the accessibility and ease of use of
computational resources. He was involved in pio-
neering developments in functional programming
languages, program transformation, functional skele-
tons, co-ordination forms (later adopted by Google

as map/reduce), and component-based application development frameworks.
His current research interests include the use of cloud computing to support a
variety of public and civic Internet services and applications and the economic
and social issues surrounding their successful use.

Francois Grey has been an Invited Professor
with the University of Geneva, Geneva, Switzer-
land, since 2014. He is a Co-ordinator of the
Citizen Cyberlab, Geneva, a partnership between
CERN, the United Nations Institute for Training and
Research and the University of Geneva. He is cur-
rently a Physicist with the University of Geneva with
a passion for citizen science. He has co-authored
over 100 scientific publications in peer-reviewed
international journals and holds seven patent appli-
cations (five granted).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

