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I. INTRODUCTION

The singularity-free cosmological model which incor-
porates inflation [1], and that in which quantum perturba-
tions were first calculated [2], was that based on Rþ R2

gravity. Remarkably, almost four decades later, the pertur-
bation spectrum calculated in this pioneering model of
inflation remains in excellent agreement with the growing
wealth of measurements of the cosmic microwave back-
ground (CMB) radiation and data on a large-scale structure
[3], whereas many more junior models have fallen by the
wayside.
Since we are unabashed fans of supersymmetry at the

TeV scale and above, we have long advocated super-
symmetric models of inflation [4]. Since any cosmological
model must incorporate gravity, we have also long advo-
cated models of inflation based on the framework of local
supersymmetry, i.e., supergravity [5]. In particular, for over
30 years we have been advocating models of inflation [6–9]
formulated within no-scale supergravity [10–12], which
offers a positive semidefinite scalar potential and mitigates
the η-problem [13] that is the bane of generic supergravity
models of inflation [14]. This conclusion is unaffected by
radiative corrections [13,15].
The advent of a new generation of CMB data in the past

few years encouraged us to return to the construction of

no-scale supergravity models of inflation. Imagine our
surprise when we discovered that a simple model of an
inflaton field coupled to SUð1; 1Þ=Uð1Þ no-scale super-
gravity [16] could yield an effective scalar potential that is
identical to that obtained in the original Rþ R2 model after
a conformal transformation [17], a realization that had also
been reached in 1987 [18], though without making the
connection to cosmological inflation. This convergence
betweenRþ R2 gravity and no-scale supergravity was very
intriguing [19], but the nature of any deeper connection
remained obscure.
In this paper we make a simple point that, to our

knowledge, has not been made previously in the way
described here. We consider pure R2 gravity supplemented
by a set of complex scalar fields ϕi with conformal
couplings to R of the form ðPN−1

i¼1 jϕij2ÞR=3. Within this
extended R2 theory, we consider a generalization of the
conformal transformation [20] that rewrites Rþ R2 gravity
as minimal R gravity coupled to a scalar field with a
potential of the form

V ¼ 3M2

4κ2

�
1 − e−

ffiffi
2
3

p
ϕ

�
2

; ð1Þ

which yields successful inflation. The multifield generali-
zation yields a scalar Lagrangian that is identical to that
obtained in a SUðN; 1Þ=SUðNÞ × Uð1Þ no-scale super-
gravity model [11] with Kähler potential

K ¼ −3 ln
�
T þ T† −

�XN−1

i¼1

jϕij2
�
=3

�
; ð2Þ
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when we discard the imaginary parts of the scalar fields.
Within this framework, the inflaton field ϕ in (1) can be
identified (up to a suitable normalization) with either
the combination T þ T† or the real part of one of the
conformal fields ϕi. Moreover, the conformal factor Ω that
transforms the extended R2 theory to the Einstein frame is
identical to the Kähler potential (2), up to a numerical
factor: Ω ¼ −K=6. This identification reinforces the con-
nection between R2 gravity and no-scale supergravity that
emerged in [17] (see also [21]), and was developed further
in [22–30].

II. R2 GRAVITY AND A DE SITTER UNIVERSE

As a preliminary to developing this connection, we first
review the case of pure R2 gravity, which is described by
the action

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
αR2; ð3Þ

where α is an arbitrary dimensionless constant. The pure R2

theory (3) is scale invariant. It may be rewritten in the
following form, using a Lagrange multiplier field Φ:

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð2αΦR − αΦ2Þ: ð4Þ

Note that the field Φ has a noncanonical mass dimension,
½Φ� ¼ 2, not the canonical mass dimension ½Φ� ¼ 1.
In order to rewrite the action (4) in the Einstein-Hilbert

form, one rescales the metric by introducing a conformal
factor Ω as follows:

g̃μν ¼ e2Ωgμν ¼
2αΦ
μ2

gμν; ð5Þ

where μ is a mass scale to be determined. The pure R2

action (3) then becomes

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
e−4ΩαR2; ð6Þ

where

R ¼ e2ΩR̃þ 6□Ωþ 6∂μΩ∂μΩ; ð7Þ

which implies that

e−4ΩαR2 ¼ e−2Ω2αΦR̃þ 12e−4ΩαΦð□Ωþ ∂μΩ∂μΩÞ
− e−4ΩαΦ2: ð8Þ

After rewriting contractions and covariant derivatives in
terms of the new metric g̃, we have

e−4ΩαR2 ¼ μ2R̃þ 6μ2ð□Ω − ∂μΩ∂μΩÞ −
μ4

4α
: ð9Þ

After further eliminating a total divergence, we see that the
action appears now in the Einstein frame

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
μ2R̃ − 6μ2∂μΩ∂μΩ −

μ4

4α

�
ð10Þ

or equivalently

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
μ2R̃ −

3μ2

2

∂μΦ∂μΦ
Φ2

−
μ4

4α

�
: ð11Þ

Finally, in order to write the scalar kinetic term in canonical
form, we introduce ϕ≡ ffiffiffi

6
p

μΩ, leading to

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
μ2R̃ − ∂μϕ∂μϕ −

μ4

4α

�
: ð12Þ

We see now that the mass scale μ can be identified with the
Planck scale: Newton’s constant 8πG2

N ¼ κ2 ¼ 1=μ2.
Thus we have recovered the well-known result [21,31]

that pure R2 gravity is equivalent to the conventional
Einstein-Hilbert theory with a massless scalar field ϕ
and a cosmological constant Λ ¼ μ4=8α. The dimension-
less parameter α in (3) specifies the magnitude of Λ in
Planck units, and we see that α ≫ 1 is required.

III. THE STAROBINSKY MODEL
OF INFLATION

Next we recall the Starobinsky model of inflation [1],
which is derived by adding to the pure R2 action (3) the
conventional linear Einstein-Hilbert term

A ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ α̃R2Þ; ð13Þ

where we have introduced the dimensionful constant
α̃ ¼ κ2α. As is well known, after rewriting αR2 → 2αΦR −
αΦ2 and making a conformal transformation analogous to
that in the pure R2 case

g̃μν ¼ e2Ωgμν ¼ ð1þ 2α̃ΦÞgμν; ð14Þ

one finds

A¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃−

6α̃2

ð1þ 2α̃ΦÞ2
�
∂μΦ∂μΦþΦ2

6α̃

��
:

ð15Þ

Setting κϕ≡ ffiffiffiffiffiffiffiffi
3=2

p
ln ð1þ 2α̃ΦÞ, (13) may be written as

follows in the Einstein frame:
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A¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃− κ2∂μϕ∂μϕ−

1

4α̃

�
1−e−

ffiffi
2
3

p
κϕ

�
2
�
:

ð16Þ

Thus one recovers the successful inflationary potential (1)
with α̃ ¼ 1=6M2 [1]. The scale invariance of the pure R2

theory (3) is broken explicitly by the Einstein-Hilbert term
in (13) and leads to an effective potential (1) with a con-
stant, scale-invariant asymptotic limit that is approached
exponentially at a rate controlled by the Planck scale κ.

IV. GENERALIZATION WITH ADDITIONAL
CONFORMALLY COUPLED FIELDS

With a view to the later comparison with generalized no-
scale supergravity models [11], we now consider adding to
the R2 action (13) N − 1 additional complex fields ϕi with
conformal couplings to R,

A ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
δRþ α̃R2

− 2κ2
XN−1

i¼1

�
∂μϕi∂μϕ

†
i þ

1

3
jϕij2R

��
; ð17Þ

where δ ¼ 0 corresponds to the R2 theory and we allow
δ ¼ 1 to describe the Rþ αR2 Starobinsky model. As
previously, we introduce a Lagrange multiplier field Φ and
replace αR2 in (17) by 2αΦR − αΦ2, as in (4). In order to
transform to the Einstein frame, we must now rescale the
metric by the modified conformal factor Ω,

g̃μν ¼ e2Ωgμν ¼
�
δþ 2α̃Φ −

κ2

3

XN−1

i¼1

jϕij2
�
gμν: ð18Þ

Thus we arrive at the following generalization of (10):

A ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃ − 6∂μΩ∂μΩ −

XN−1

i¼1

2κ2∂μϕi∂μϕ
†
i

ðδþ 2α̃Φ − κ2

3

P
N−1
i¼1 jϕij2Þ −

α̃Φ2

ðδþ 2α̃Φ − κ2

3

P
N−1
i¼1 jϕij2Þ2

�
ð19Þ

that we compare below with the effective action of
SUðN; 1Þ=SUðNÞ × Uð1Þ no-scale supergravity [17].

V. FROM R2 GRAVITY TO SUð1;1Þ=Uð1Þ
NO-SCALE SUPERGRAVITY

The pure R2 supergravity model was constructed in [26].
Here we compare the action in (11) and (12) with that of the
simplest SUð1; 1Þ=Uð1Þ no-scale supergravity model [16]
(see also [21]).
We recall that, in addition to the supergravity multiplet,

which contributes the bosonic term A ¼ 1
2κ2

R
d4x

ffiffiffiffiffiffi−gp
R to

the effective action, the structure of the matter sector of a
supergravity theory is characterized by the Kähler function

G ¼ K þ ln jWj2; ð20Þ
where the Kähler potential K is a Hermitian function of the
complex scalar fields, andW is the superpotential, which is
a holomorphic function of these fields. The simplest
SUð1; 1Þ=Uð1Þ no-scale supergravity model can be written
in terms of a single complex field T with Kähler potential

K ¼ −3 ln κðT þ T†Þ; ð21Þ
whose Lagrangian takes the very simple form

L ¼ −
3

ðT þ T†Þ2κ2 ∂
μT∂μT† ¼ −

1

12κ2
ð∂μKÞ2

−
3

4
e2K=3j∂μðT − T†Þj2; ð22Þ

with vanishing potential.

In order to establish the correspondence with R2 gravity,
we consider a superpotential of the form [16,28]

W ¼ T3 −
μ3

12α
; ð23Þ

which generates a scalar potential of the form

VðT; T†Þ ¼ μ4

4α

T2 þ T†2

ðT þ T†Þ2 : ð24Þ

We restrict our attention initially to the real direction in
field space.1 With this restriction, the last term in (22) can
be discarded, and the effective potential (24) is constant
along the real T þ T† direction, à la de Sitter. Comparing
with the action (12), which is equivalent to the pure R2

theory (3), we see that there is a direct correspondence and
that we can identify

K ¼ −6Ω: ð25Þ

Thus we have made the association 2α̃Φ ¼ κðT þ T†Þ and
Ω ¼ 1

2
ln κðT þ T†Þ. It is striking that this correspondence is

realized with a superpotential (23) that is a simple combi-
nation of trilinear and constant terms.

1As noted in [28], this theory is unstable in the imaginary
T − T† direction, but could be stabilized by some suitable
mechanism such as quartic terms in the Kähler potential, as
considered in [11,22].
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We note that the relation (25) holds in general when one
matches to supergravity any theory whose gravitational
kinetic term can be written in the form ΦR, including R2

gravity. The supergravity Lagrangian can be written as [32]

LSG ¼ −
1

6
ΦR −

∂2Φ
∂ϕi∂ϕ�

j
ð∂μϕ

i∂μϕ�
jÞ

−
1

4Φ

�∂Φ
∂ϕi ∂μϕ

i −
∂Φ
∂ϕ�

j
∂μϕ

�
j

�
2

þ � � � ; ð26Þ

where the � � � represent terms containing gauge fields and
fermions, as well as potential terms. Here, Φ is a real
function of the scalar components of chiral superfields.
Upon transformation to the Einstein frame via a conformal
transformation with e2Ω ¼ −κ2Φ=3, we recover the stan-
dard kinetic terms for supergravity with

L ¼ 1

2κ2
R̃ −

1

κ2
Kj

ið∂μϕ
iÞð∂μϕ�

jÞ; ð27Þ

where Ki ≡ ∂K=∂ϕi and Ki ≡ ∂K=∂ϕ�
i and we have the

same relation (25) between K and Ω. We further note that,
since the pure R2 gravitational theory contains no kinetic
term for scalar fields, i.e., the middle term in Eq. (26)
vanishes, the kinetic term of the scalar degree of freedom in
the Einstein frame arises solely from the conformal trans-
formation [16], and we can write −κΦ=3 ¼ T þ T†, i.e.,
K ¼ −3 ln κðT þ T†Þ, without loss of generality, thus
pointing to the root of the R2 conformal equivalence to
no-scale supergravity.
The correspondence between the kinetic terms for the

conformal scalar field in the Starobinsky model (16) and
the no-scale field in (22), namely δþ 2α̃Φ ¼ κðT þ T†Þ,
was already noted in [22]. This identification reflects the
partial invariance of both theories under the noncompact
U(1) scale transformations t → αt, which are included in
the SU(1,1) group of isometric transformations as dilations,
though neither K nor W are themselves invariant, and the
analogous transformation for the scalar kinetic term in the
Starobinsky model (16). The potential of the Starobinsky
model or the corresponding no-scale SUð1; 1Þ=Uð1Þ model
is, however, not invariant under this rescaling of the
corresponding scalar field, as this scale invariance is
explicitly broken by the Einstein-Hilbert term, which is
linear in the curvature R, or by the superpotential, causing a
deviation from pure de Sitter.
The kinetic term for the imaginary part of T can also be

accounted for if we extend the gravitational action to
include an auxiliary field, bμ, coupled as follows in the
Einstein frame

ΔA ¼ −
1

κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
1

3
bμbμ − bμJμ

�
ð28Þ

to a current Jμ:

Jμ ¼ −2ðΩT∂μT −ΩT�∂μT�Þ ¼ 1

3
ðKT∂μT − KT�∂μT�Þ:

ð29Þ

The field bμ satisfies the equation of motion bμ ¼ 3
2
Jμ, so

that the action becomes

ΔA ¼ 3

4κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
ðJμJμÞ ¼ −

3

4κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
jJμj2;

ð30Þ

which corresponds to the final term in (22); see also [16].
Before generalizing the SUð1; 1Þ=Uð1Þ theory, we return

to the question of flat potentials and the SU(1,1) invariance.
It was argued in [16] that, in order to solve the hierarchy
problem, the theory should have constant Kähler curvature,
R ¼ 2=3 which is guaranteed by the choice of Kähler
potential given in (21). As was also shown in [16], the SU
(1,1) invariance also allows, more generally, any space with
Kähler curvature given by R ¼ 2=3a which is obtained
when (21) is generalized to

K ¼ −3a ln κðT þ T†Þ: ð31Þ

This theory will also produce a flat potential [12,16,28]
when (i) WðTÞ ¼ 1 leading to zero cosmological constant,
or (ii) when WðTÞ ¼ T3a=2 leading to an anti–de Sitter
solution [22], or (iii) whenWðTÞ¼T3a=2ðT−3

ffiffi
a

p
=2−T3

ffiffi
a

p
=2Þ.

The latter corresponds to the choice (23) for a ¼ 1 and is
stable for a > 1 [28]. It can be used for single-field inflation
as in the so-called α-attractor models [33]. We note that
this class of maximally symmetric models can also be
matched to the R2 theory withK ¼ −6aΩ, with the special
case of a ¼ 1 corresponding to the no-scale models we
discuss here.

VI. GENERALIZATION TO SUðN;1Þ=SUðNÞ × Uð1Þ
NO-SCALE SUPERGRAVITY

We now show that the generalization (17) of the R2

theory with additional conformally coupled fields corre-
sponds in a similar way to the SUðN; 1Þ=SUðNÞ × Uð1Þ no-
scale supergravity model [11] with Kähler potential (2).
In this model, the relevant scalar-bosonic kinetic terms

can (after some simple algebraic manipulations) be
written as

−
1

12κ2
ð∂μKÞ2 − eK=3j∂μϕ

ij2 − 3

4
e2K=3

����∂μðT − T†Þ

þ
XN−1

1

1

3
κðϕ�

i ∂μϕ
i − ϕi∂μϕ

�
i Þ
����
2

: ð32Þ
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Comparing (32) with (19), we can make the same iden-
tification as in (25), after identifying δþ2α̃Φ¼ κðTþT�Þ.
As in the SUð1; 1Þ=Uð1Þ case, we assume that the imagi-
nary component of T is stabilized as well as the imaginary
parts of ϕi, in which case the last term in (32) can be
discarded, and the correspondence to the kinetic terms in
(19) is direct.
The remaining kinetic terms associated with the imagi-

nary parts of the scalar fields can be mirrored by making the
same addition to the action as in (30), with an extension of
the current to include the remaining N − 1 fields,

Jμ ¼
1

3

X
a

ðKa∂μΦa − Ka∂μΦ�
aÞ; ð33Þ

where the index a runs over the fields T and the ϕi. The
current-current interaction in (30) corresponds to the final
term in (32) when the current is defined as in (33).
In order to complete the correspondence with the

generalized R2 gravity theory (17), we must introduce
an effective scalar potential term corresponding to the last
term in (19). This is easily done by including the same
superpotential term as in (23), which yields the scalar
potential

VðT;ϕÞ ¼ μ2

4α

T2 þ T†2

ðκðT þ T†Þ − κ2

3

P
N−1
i¼1 jϕij2Þ2 : ð34Þ

This reproduces the last term in Eq. (19) for δ ¼ 0 when we
restrict our attention to the real direction in T, as per our
previous assumption that the imaginary direction in T is
stabilized.
To summarize this part of our paper, the conformal

factor that transforms the generalized scale-invariant R2

theory with multiple conformally coupled scalar fields (17)
to the Einstein frame is identical with the Kähler potential
of SUðN; 1Þ=SUðNÞ × Uð1Þ no-scale supergravity. The
kinetic term for Ω in (19) matches exactly the first term
in the no-scale scalar kinetic term (32), and the second term
in (32) also exactly matches the kinetic term for the ϕi in
(19). When we restrict our attention to the real parts of the
complex fields T and ϕi, the last term in (32) vanishes, and
the identification is complete. This final term can also be
mirrored by introducing into the gravity theory a suitable
interaction of the current (33).

VII. INTRODUCING A STAROBINSKY-LIKE
INFLATIONARY POTENTIAL

We now discuss how a potential V̂ for the fields ϕi may
be introduced into the multifield R2 action (17), i.e.,

ΔA ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
2κ2V̂ðΦ;ϕiÞ; ð35Þ

which corresponds to a term of the form

ΔA ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g̃

p 2κ2V̂ðΦ;ϕiÞ
ðδþ 2α̃Φ − κ2

3

P
N−1
i¼1 jϕij2Þ2

ð36Þ

in the Einstein frame.
We recall that the effective potential in no-scale super-

gravity takes the following form for general W:

V ¼ V̂

ðκðT þ T†Þ − κ2

3

P
N−1
i¼1 jϕij2Þ2 ; ð37Þ

where

V̂ ≡XN−1

1

���� ∂W∂ϕi

����
2

þ κ

3
ðT þ T�ÞjWT j2

þ κ2

3

�
WT

�XN−1

1

ϕ�
i W

�
ϕi
− 3W�

�
þ H:c:

�
: ð38Þ

The following specific, separable form for W,

W ¼ T3 −
μ3

12α
þ fðϕiÞ; ð39Þ

yields the following form for the scalar potential V̂:

V̂ðT;ϕiÞ ¼ ðκ2ðϕifϕi
− 3fÞT†2 þ H:c:Þ þ jfϕi j2

þ κ
μ3

4α
ðT2 þ T†2Þ: ð40Þ

We note that the last term in (40) is precisely that in (34)
and does not contribute to the construction of V̂ðϕ;ϕiÞ
in (36).
In order to realize inflation in this framework, we restrict

our attention, for simplicity, to a single matter field ϕ1 in
addition to the modulus T in the no-scale picture. This
corresponds to a noncompact SUð2; 1Þ=SUð2Þ × Uð1Þ
coset structure, which we have argued previously is the
minimal structure required to construct a suitable infla-
tionary model [17]. We consider two forms of the super-
potential which can accommodate the Starobinsky model
of inflation.
The first is a Wess-Zumino model in which the inflaton is

identified with ϕ1. It is described by the ϕ1-dependent
superpotential [17]

WWZ ¼ M

�
ϕ12

2
−
κϕ13

3
ffiffiffi
3

p
�
: ð41Þ

As discussed in [17], if we assume that T is constrained
by Planck-scale dynamics to have the specific value
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κT ¼ 1=22, the resulting no-scale model yields the
Starobinsky potential (1), as we now show.
Restricting to real fields as discussed previously, we can

match this theory with the potential

V̂ ¼ M2ϕ12ð1 − κϕ1=
ffiffiffi
3

p
Þ2 − 1

2κ2
α̃Φ2; ð42Þ

where the last term in (42) is needed to cancel the last term
in (19). Then, assuming that the value of Φ is fixed,
δþ 2α̃Φ ¼ 1, and combining with (19), we find the
following scalar potential for ϕ1:

Vðϕ1Þ ¼ V̂ þ ð1−δÞ2
8α̃κ2

ð1 − κ2

3
jϕ1j2Þ2 ¼

M2ϕ12ð1 − κϕ1=
ffiffiffi
3

p Þ2
ð1 − κ2

3
jϕ1j2Þ2 ; ð43Þ

when one recalls that α̃ ¼ 1=6M2, and remembers that the
last term in (42) cancels. Finally, making the transformation

ϕ1 ¼
ffiffiffi
3

p
tanhðϕ=

ffiffiffi
6

p
Þ; ð44Þ

one recovers the standard form of the Starobinsky potential
(1) as a function of this ϕ field.
The second route to a Starobinsky-like model of inflation

is the Cecotti model [18],

WC ¼
ffiffiffi
3

p
Mϕ1ðT − 1=2Þ; ð45Þ

where the inflaton is identified with T. This offers a simpler
realization of inflation, since it does not require any
additional superpotential term as in Eq. (23). In terms of
Φ and ϕ1, the theory is equivalent (when fields are again
taken to be real) to

2κ2α̃ V̂ ¼ 1

4
−
δþ 2α̃Φ

2
þ δ2 þ 4δα̃Φ

4

þ 2

3
κ2ϕ12

�
1 −

δþ 2α̃Φ
2

�
: ð46Þ

When ϕ1 is constrained to have vanishing expectation value
and when combined with (19), this yields the following
scalar potential for Φ:

VðϕÞ ¼ V̂ þ ðα̃Φ2=2κ2Þ
ðδþ 2α̃ΦÞ2 ¼ 3M2

16κ2t2
−
3M2

4κ2t
þ 3M2

4κ2
; ð47Þ

where we have defined 2t ¼ δþ 2α̃Φ. Making the trans-
formation κϕ≡ ffiffiffi

6
p

Ω ¼ ð ffiffiffi
6

p
=2Þ ln 2t we recover once

again the Starobinsky potential as a function of this ϕ field.

VIII. SUMMARY

We have explored in this paper the connection between
R2 gravity and minimal SUð1; 1Þ=Uð1Þ no-scale super-
gravity [17]. The supersymmetric completion of pure R2

was considered in [26], and we have shown that by an
extension of the theory to include many conformally
coupled scalar fields can be matched to more general
SUðN; 1Þ=SUðNÞ × Uð1Þ no-scale supergravity theories
(see also [21]). In the R2 frame, we are able to perform
a conformal transformation eΩ to the Einstein frame which
introduces a dynamical real scalar degree of freedom, Ω. In
the pure R2 theory, the field is massless and there is a
nonzero cosmological constant characterized by the cou-
pling of the R2 term in the action. In either the Rþ R2

theory, or one with conformally coupled scalar fields, the
scalar potential is nontrivial and possesses a second-order
pole, whereas the kinetic terms of the conformally coupled
scalars contain a first-order pole. The presence of this pole
leads to the asymptotically flat feature at large field values
that is characteristic of the Starobinsky model [1]. In the no-
scale supergravity theory, due to the logarithmic structure
of the Kähler potential and the definition of the kinetic and
potential terms in terms of derivatives of K, these terms (in
the real directions) possess exactly the same pole structure,
leading to the asymptotical flatness so useful for inflation.
We have shown that the parts of the action involving the

real components of the scalar fields are identical in R2

gravity and no-scale supergravity, and we have shown how
this correspondence can be extended to the imaginary
components by adding a suitable current-current interaction
to the R2 gravity theory. Our analysis deepens under-
standing of the connection between no-scale supergravity
and scale-invariant extensions of Einstein’s theory of
gravity. Our interest in this connection was triggered by
the observational success [3] of the Starobinsky model of
inflation [1], and we have reviewed briefly above two
examples for how a Starobinsky-like inflationary potential
can emerge in simple ways from the SUð2; 1Þ=SUð2Þ ×
Uð1Þ no-scale supergravity theory. We think that this is the
most promising avenue for eventually constructing a
complete theory of everything below the Planck scale,
connecting inflationary model building to accessible phys-
ics beyond the Standard Model [23,29,30,34,35].
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