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Lower bound on inelasticity in pion-pion scattering
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Assuming that the pion-pion scattering amplitude and its absorptive part are analytic inside an ellipse in

the complex ¢ plane with foci t = 0, u = 0 and right extremity ¢ = 4m2 + ¢, (¢ > 0)—except for cuts
prescribed by the Mandelstam representation for ¢ > 4m2, u > 4m2, and bounded by s" on the boundary of

this domain—we prove that for s — o0, 6iy(s) >
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I. INTRODUCTION

It is well known that if there is no inelasticity, the
scattering amplitude must be zero. However, there is no
quantitative estimate of the amount of inelasticity required.
This is what we try to do. There are various proofs of the
fact that the scattering amplitude must be zero if there is no
inelasticity. A very appealing attempt has been made by
Cheung and Toll [1]. Their idea is to repeatedly use elastic
unitarity at all energies to the point where an absurd
analyticity domain emerges that is much too large.
However, even after the enlargement of the pion-pion
analyticity domain by one of us in 1966 [2], it is not
obvious that they have really succeeded. Dragt [3] pro-
posed a proof that is nice but not quite complete: it uses the
fact that partial-wave amplitudes for very large angular
momenta are dominated by the nearest singularities in the
crossed channel. More analyticity is required than what has
been proved from field theory [2]. For instance, the
Mandelstam representation [4] with a finite number of
subtractions is largely sufficient. In fact, we require much
less than that. Since we shall also use the dominance of the
nearest singularities for large angular momenta, we state at
the same time the assumption he needs and our assumption.
If we use the standard Mandelstam variables s, ¢, u and
choose units such that the pion mass m, = 1, we need
fixed-energy analyticity in an ellipse with foci at t = 0 and
u = 0 and right extremity at t = 4 + ¢, minus the obvious
cuts t >4, u>4 for the amplitude, and >4 + 64/
(s—16), u>4+64/(s—16) for the absorptive part
(see Fig. 1). From field theory we only get, for the
absorptive part, an ellipse with right extremity at ¢ =4
exactly, and for the amplitude a region containing |¢| < 4.
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In fact, for |¢| < 4 fixed- dispersion relations are valid, and
with our assumptions they are valid for |7| < 4 + e¢. With
these assumptions we can prove that there must be
inelasticity at energies such that s > 16 + 64/¢. For
instance, if ¢ = 12 (corresponding to the full 7-channel
elastic strip), we must have inelasticity for s > 22.

For simplicity, we look first at the 7°z° scattering ampli-
tude F(s,t), where 7° is a fictitious isospin-zero neutral
pseudoscalar particle. It has the partial-wave expansion

- 2t
)= _(21+1)f s)Pl(l—F—)
=0 4

fils) =)ol o)==\ 55 ()
with the unitarity constraint
Ima,(s) = |a;(s)]?, 4<s<16,
Ima,(s) > |a,(s)|* s > 16. (2)
The optical theorem gives
O = i—fg(zz T 1)lmay(s) = %’;Fs(s, 0. ()

where F(s,7) denotes the s-channel absorptive part
ImF (s, t). Similar unitarity conditions hold in the 7 and u
channels. The normalization specified by the above choice of
p(s) corresponds to F(4,0) = S-wave scattering length .
For the generalization to real pions of isospin 1, we shall use
the same normalizations as above, with F(s, 1), f;(s), a;(s),
G Ag(5,0), F(4,0), ag being replaced by the correspond-
ing quantities with a superscript 1, e.g., F(s,1),. a,
respectively.

Our strategy will be the following. We write the partial-
wave amplitudes as well as their imaginary parts as contour
integrals along the ellipse mentioned above, and add the
contribution of the cuts (see Fig. 1). Then we try to get an
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Ellipse with foci¢ = 0and u = 0, right extremity ¢ = 4 +32 / (\/s_ -9)

FIG. 1.

F(s,t) for s > 20 is assumed to be analytic in 7 within the same ellipse except for cuts for > 4 + %, u>4+

t=4+e:

The amplitude F (s, t) is assumed to be analytic in 7 within the ellipse shown except for cuts # > 4, u > 4; its absorptive part

% The truncated

s—16°

Froissart-Gribov formulas for f;(s) [Eq. (20)] and Imf/(s) [Eq. (21)] follow from this. Note that the horizontal and vertical scales in this

figure are not the same.

upper bound on the partial-wave amplitude f; for which we
need an upper bound B(s) on the whole ellipse. We also
seek a lower bound on its imaginary part Imf;, for which
we need a bound on the discontinuity of the absorptive part
which is nothing but the Mandelstam double spectral
function. In fact, this is what was missing in the work
of Dragt [3]. This will be done in the next section.

A. Domain of positivity of the double spectral
function and a lower bound

First, we recall the results of Mahoux and one of us [5]
on the domain of positivity of the double spectral function.
For s > 20, the absorptive part in the s-channel has a cut
beginning at

(4)

From ¢t = 4 to t = 4 + € < 16, the discontinuity across the
cut is given by the Mandelstam form of the #-channel elastic
unitarity condition on one of the double spectral functions

pst(‘g’ t)’

2p(1) / / dz,dz,
Po(s, 1) = —= ————F (51, 1) F(52,1)",
t( ) p \/m ( 1 ) (2 )
(5)
where
t—4 2s 8
= T :1 5 =1 )
pl1) 1 L W=ty
zi=142s)/(t—-4), i=1.2, (6)

H(z,21,2) =22+ +25—-1-2z2212
= (z—z4)(z—z0), (7)

with

ze =z E/(@ -1 -1). (8)
The domain of integration in the z;-z, plane is bounded by
the three lines

> 4. )

21 > 20, 22> 20

If we define

z = cosh 6, z; = cosh@;, i=0,1,2, (10)
then the region (9) becomes just a triangle in the 6;-6, plane
bounded by the lines (see Fig. 2)

6y <6y, 6y < 6,, 0,+6,<6. (11)
These inequalities imply thatfori = 1,2,0, < 0, < 6 — 6,,
ie.,

20<z <zz9— /(2= 1)(F - 1). (12)
They also imply that € > 26, which gives the boundary
curve of the spectral region

16¢
> . 13
=14 (13)
It will be crucial to recall the observation of Mahoux and
Martin [5] that when 6 < 36,, the inequalities (11) imply
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FIG. 2. We show the triangular integration region in the 6;-6, plane in Mandelstam’s continued elastic unitarity equation in the ¢
channel, defined by 8, > 6,, 6, > 6, and 0, + 0, < 0. The subregions A, B, C are used to calculate lower bounds on the double spectral

function.

that only values of §; < 20, for i = 1, 2, i.e., only values of
F,(s;, 1) outside the spectral region for i = 1, 2 are needed
to compute the double spectral function. In this region, the
convergent partial-wave expansion

FAnJ%zii@b+Uhﬁ&@P%}+ 2 ) i=1.2

=0 S;— 4
(14)
the positivity of Imf,(s;), and the inequalities P;(1 + 2¢/

(s; —4)) > 1 imply that F(s;,7) > 0 for i = 1, 2. Hence,
the double spectral function p(s,?) is positive when

0 < 36,, i.e., for
16¢ 3t +4\2
T <s<4 ,
—4-"= (r—4>

ie.4+64/(s—16)<t<4+32/(v5-6). (15

4<tr<16, and

Since p(s, r) is symmetrical in its arguments, it is also
positive for

4<s<16,

16s 3s +4)\2
<t<4 . 16
s—4— (s—4> (16)

II. LOWER BOUND ON INELASTICITY

We shall now obtain a lower bound on p(s,?) in the
domain (15) in terms of the total cross sections oy(s1),
Owi(82), where sy, s, are such that Eq. (12) holds for the
corresponding z;, z,. We then deduce a lower bound on
inelasticity. It will then follow that if there is no inelasticity
at one (and only one) energy in the s-channel (s > 20), the
double spectral function must vanish in the range 7 =
44 64/(s—16) to t =4+ 32/(y/s — 6), and hence there
is an interval of energy given by Eq. (12) in which the total
cross section vanishes. This is impossible, and hence the
scattering amplitude is zero. It must be realized that only a
small fraction of the Mandelstam representation is used.

Now, the question posed to one of us by Miguel F. Paulos
(during a conference organized by Jodo Penedones at
EPFL, Lausanne) was whether the inelastic cross section
could be arbitrarily small. We want to show that—with
some assumptions that are much weaker than the
Mandelstam representation, but slightly stronger than what
has been proved from local field theory—there exists a
lower bound to inelasticity,

Oinelastic ~ Cexp (_ V (S/SO) log(s/SO))' (17)

The strategy we shall use is based on the results of
Mahoux and Martin [5] on the positivity of double spectral
functions, and on the research of Dragt [3], viz., that the
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real and imaginary parts of the partial-wave amplitudes are
dominated by the contributions of the nearby cuts in the
crossed channel:

from t =4 to t =ty(s) for Ref; and f;,, and
64
from t =4 + T to t =1y (s) for Imf,, (18)
5 —
where
32
tM<S) E4+ﬂ (19)

A. Estimates of f;(s) and Imf/(s)

We shall use a truncated Froissart-Gribov representation
for Ref,;(s) and Imf,(s). It follows from the analyticity of
F(s, 1) in ¢ within an ellipse with right extremity 7 = #,,(s)
and foci r = 0 and u = 0, except for the cuts 4 < 7 < 14,(s)
and 4 < u < 1y(s). For [ even,

1[4 2t
W/‘ Ql 1+s—_4 F,(s,t)dt
1 21
tm /r Q,<1 +m)F(s, N, (20)

where I" is an ellipse with fociatr = 0 and u = 0, and right

fi(s)

extremity at t =4 + = (see Fig. 1).
Hence,
1[4+ 2t
Imf(s) = sz o Q1<1 +s_—4)ﬂ(svf)df

1
- 1
+4mk2/r Ql( -

where p(s, t) is given by the Mandelstam equation (5). As
noted earlier, if s is in the Mahoux-Martin domain (15),
p(s, 1) is positive.

Now we postulate that F(s, ¢) and F,(s, t) are bounded
by B(s) in the ellipse I'. The behavior of B(s) for s — oo
will be discussed later. Now we need some estimates on the
Q,’s. We prove that, for z real and > 1 (see the Appendix),

T 1
TR Yy R

- 1 l‘lnz+1
(z+V2-1)2] Jz—1

and for z = cosh((0; + i0,)) (see the Appendix),

%) F(s,t)dt, (21)

(22)

|Qi(cosh((6; +i6)))[ < |Q(cosh((61)))].  (23)

This means that on an ellipse with foci cosd = +1 the
modulus of Q;cos@ is maximum at the right extremity.

PHYSICAL REVIEW D 96, 114014 (2017)

We can get a bound on |f/],
8
fil < k2 Q1+, B(s)L(s), (24)
where L(s) is the perimeter of the ellipse with extremities at

211<2 <4 + \[32_ 6)) (25)

plus 4 times the length of the cuts t =4 to t =4 +
For s > 16,

cosf, =+ (1

\/’6

L(s) < 4s. (26)

Now we need a lower bound for Imf;(s). Imf;(s) is given
by a contour integral including the contribution from the
cuts and the ellipse. We use the fact that Q;() is a
decreasing function for an argument > 1. We arbitrarily
limit the integration on the cuts to

64 + P(s)
4 t<4 28
A T T
where
64 + P 32
P(s) < const, 4+7st 1és) < 4+7\/§—6’ (27)

which is certainly valid for sufficiently large s. A lower
bound on Imf; is given by

1 1
— o1 8
>nk2Q’< * —4( *

4+64;Hl)é\)
X p(s, 1)dt
4

64
+s—l6

_WB(S)L(S)QZ(I +si4 (8+

Imf i

=)

i)

(28)

Notice that, according to Ref. [5], p(s, ) is strictly positive,
as given by the double integral of Mandelstam in the
strip 4 < 1 <4+432/(\/s —6).

Now, given B(s), L(s), and p(s, 1), it is possible to prove
that [f,|? is strictly less than Imf; for sufficiently large I.
We have

8
|fl|2 (4x k2)2Q1< +m>|B(S)|2|L(S)2, (29)
and so
Imf I 16zk>  Q(x)) 448470)
,1d
AP BEPLE)P Q) / “ p(s. 1)dt
4rk?  Q)(x;)

B)LG) Q) (30)
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where we define

1 128 + 2P(s)
=1
i +s—4<8+ s—16 )’
8
X2:1+m,
1 64
=1 : 1
X3 +S—4<8+\/_—6> (3)

It is convenient to denote

R 23 -1+ /(23 -1)2 -1
! xl—l—\/x%—l '
RZZL Vx%_l (32)
X —|—\/x%—l

Note that x, < x;, and for sufficiently large s,

and x; <2x3 -1,

X < X3
and hence R; > 1,
We now obtain bounds on the relevant Legendre functions.

Using the results (A12) and (A18) from the Appendix,
we have

0i(xy) S 1 0i(xy)
07(x2) ~ 2x,00(x2) 0;(2x3 — 1)
> 1 pgur (34)

T 2x,00(xy) !

Further, Eqs. (A18) and (A3) from the Appendix yield

e T o

and Eq. (A18) gives

0;(x3) 1\
< |(— . 36
0i(x1) ~ \R, (36)
We now have
Imf, 167k? 1 L

AP IBO)PIL()P 25200(x2)

syt
X p(s,1)dt
4

a PO (RN
BOLE V= <R> - 87

without asymptotic approximations.

PHYSICAL REVIEW D 96, 114014 (2017)

For s — oo,

X ):2 8
l+ 1_1N1+$+;+.”’
3 3 - \/E A o

g8 32
23 —1+4/(23 -1 =1~ 4+—+—+-,
s s

7

R ~1+4/\/s, and (1/Ry)~1—16/s. (38)

It is clear that since R, > 1, for large enough [, i.e., for

I > Ly(s) =consts Ins, s — oo,

the contribution of the first term on the right-hand side of
Eq. (37) involving a positive double spectral function is
dominant, and that term implies that

I,
fil?

— 00, [ > constsIns.

Hence the inelastic cross section is dominant and non-
zero for [ > Ly(s). The fact that p(s,7) is different from
zero is essential. We now evaluate the lower bound on Imf,
and hence on the inelastic cross section at high energies.

III. LOWER BOUND ON THE
DOUBLE SPECTRAL FUNCTION

We must get a lower bound on p(s, 7). This is relatively
easy. We return to the Mandelstam equation (5) for 4 <
t < 16 and restrict ourselves to the Mahoux-Martin domain
(15) of positivity of p(s, ). To get a lower bound on p(s, 1)
we shall do rather wild majorizations.

(1) We reduce the domain of integration in the 6,-6,

plane (11) to the union of three regions A, B, C (see

Fig. 2):
A: HOSQISQMEQ/Z, i:1,2,

1
i-e-’ZoSZ,‘SZME e i=1,2

7
B: 0y <0, <01y =(0/4+060/2).
ie.,zg <z < zyy =cosh (0/4+6,/2),
0/2 <0, <0y = (30/4—6,/2),

i.e.,zy <z < 7oy =cosh (30/4 —6,/2);
C:0y<0, <0y,

ie.,zo <2 < 21y

0/2 <0, < Ohy.

ie,zy <71 < 2oy (39)
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Notice that under z; <> z,, the regions B < C
and A < A.

(2) Using Egs. (7) and (8), we shall replace H(z, z;, z)
in the denominator by simple upper bounds on it in
the three regions:

A: H(z,21,20) £ (z = 1)%
B,C: H(z,21,22) < (z—z.)* < (z— z3)%
3= COSh(9/4 - 90/2). (40)

It will be convenient to define

(SM7 S1MsSoMms S3)

(41)

(2> 21> 2o, 23) = 1+

(3) Since we are in the Mahoux-Martin domain in which
F(sy,1) and F(s,, 1) have convergent partial-wave
expansions with positive partial waves, and 7 is
positive, the absorptive parts obey the bounds

kin/si

Fy(s; 1) > Fy(s;,0) = 67 Oior (i)

i=1.2.
(42)

They also obey stronger bounds in terms of 6(s;)
(originally derived by Martin [2]) or 0 < t < 4, but
they are also valid for 4 <t <4+ \/— ¢ under the
present assumptions. At high energies they have the
simple form

21 (x;
Fylsint) > Fi(s;, 0) 2

(14+0(1/V/5)),

x; =\ to(si))/(4n), i=12. (43)

Using the majorizations (1) and (2) and the weaker
bound (42) in 3), we obtain

4 LP(sw) + %I(SIM)I(SZM)] ’

p(s. 1) Zm B

(44)

where the first term in the brackets on the right is the
contribution of region A and the second term is that of
regions B and C,

Sm dS] kl \/ﬂatot(sl)
1 = T 14 4
(sm) A 167 ’ (43)

and I(syy) and I(s,),) are defined similarly by replacing
Sy by 1) and 5,4, respectively. Note that s,,,5,,, and s,
depend on s, . E.g.,

PHYSICAL REVIEW D 96, 114014 (2017)

25y =/ (t—4)(t—4+5)—(t—4). (46)

A simple bound is obtained by retaining only the region A.
In addition to the above results for general P(s), we shall
evaluate bounds on I(s,,), p(s, t) and the integral over ¢ of
p(s, 1), for two simple choices of P(s).
(i) P(s) independent of s: Let P; < p < P,; then, we
can get a lower bound on the integral over ¢ of p(s, f)
by restricting to the interval

64+ P))/(s—16) < 1 —4 = (64 + p)/(s — 16)
< (64+ P,)/(s — 16). (47)

Then,

(64 + Py)(4s + Py)
(s —16)?

t(r—4) <

For a large enough fixed s, sy, is an increasing
function of ¢, and hence its minimum value is at the
lowest value of ¢,

> (SM)min
A\ (644P))[64+ P +5(s—16)] — (64+P,)
B 2(s—16)
(48)
and
1(sp) 2 (1) min- (49)
Finally, we have the bound
/4+6?+;2p(s, Nt > 4(P, — P)I*((sy) min) ,
4% ws\/ (64 + Py)(4s + Py)
(50)
which is positive definite and > consts~>/2 unless

the total cross section vanishes identically at all
energies up to (Sy)min-
(ii) P(s) — 0 for s — oo: In this case, we integrate over

the region

64+ pi(s) ., (644 p(s))
B T e

- 4+—<6‘<‘j_ ”f‘é;”, (s1)

where p;(s) and p,(s) — 0, for s — oo, and we get
sy—4~p(s)/32 > 0. In the integral defining
I(sy;) we can therefore replace

114014-6



LOWER BOUND ON INELASTICITY IN PION-PION ...

O = 87a3, (52)
where a is the S-wave scattering length, and obtain

(p(5)/32)*a3/9 > (pi(s)/32)%ag/9.
(53)

IZ(SM) -

Finally, for s — oo, p;(s) and p,(s) — 0 as slowly
as we like, we obtain

64+4-po (s)
4+ .x—]zﬁ
48 P

16

(s, t)dt > o

pa(s) = pils) (Pi(s))?
S6ns 2 ( B ) “

(54)

This bound is of interest as it shows that the
asymptotic inelastic cross section cannot vanish if
the S-wave scattering length is nonzero. However,
the bound (50) is preferable as it does not need any
asymptotic approximation.

IV. ASYMPTOTIC BEHAVIOR OF THE LOWER
BOUND ON THE INELASTIC CROSS SECTION,
AND DISCUSSION OF THE ASSUMPTIONS

Now we know that, above a certain energy, the inelastic
cross section cannot be zero. A lower bound can be
obtained if we know something about B(s) and if we
accept the postulated analyticity. If we believe in the
validity of the Mandelstam representation with a finite
number of subtractions, then B(s) = sV. In fact, we tend to
believe that B(s) = s2/s3, because we postulate an ellipse
(with cuts) which in the limit of high energy coincides with
the ellipse with foci t =0, u = 0 and extremities ¢ = 4,
u = 4. Inside this ellipse the absorptive part F(s,t) is
maximum for real ¢, 0 < ¢t < 4, and the integral

/Fs(s,;)ds . (55)

s

which means that F (s, t) is almost everywhere less than
5. Concerning the dispersive part—which is, modulo
subtractions, the Hilbert transform of the absorptive
part—we have a rather tricky argument to show again that
it is almost everywhere bounded by s>*¢, with € arbitrarily
small, for any # for which dispersion relations are valid. But
we shall not use that result here.

Using the lower bound on the integral of the double
spectral function, and B(s) = sV, we deduce that the ratio
of the contributions of the cut term and the elliptical
contour (I') term to Imf; goes to infinity if

(N+5/2)

> Ly(s) = T

slns. (56)

PHYSICAL REVIEW D 96, 114014 (2017)

The ratio of the contribution of the cut term to Imf; to the
upper bound on |f;|* goes to infinity for a much smaller
value, viz., if

?(2N+5/2) Ins. (57)

[ > LI(S) =
Hence, summing the contributions of partial waves with
[ > Ly(s), we see that for s — oo

t
Ginel (5) >Csos%exp —g(N—f—S/Z) Ins|. (58)

V. REAL PIONS OF ISOTOPIC SPIN 1

Let F (’)(s,t, u) denote the zx — zz amplitudes with
total isospin 7 in the s channel, I = 0, 1, 2, and F(’)(t, S, u)
the amplitudes with isospin / in the ¢ channel. They are
related by the crossing matrix Cy,,

F(0>(t, s, u) F(O)(s, t,u)
FO(t,s,u) Cy | FD(s,t,u) |,
F(2>(t, s, u) F(z)(s, t,u)

13 1 5/3
Co=|1/3 1/2 =5/6|. (59)
1/3 -1/2 1/6

We do not assume the unsubtracted Mandelstam
representation,
s',t)ds'dr
FU (s, t,u) p”
S —S t —t

//pm s’ u')ds'du

(s" —s)(t — u)

_//pmtudtdu' (60)
(U —u)

However, we use the definitions

F (s, 1,u) = pi (s,1),

P
F (s, t.u) = plf) (s, u),

Fi (s.t.u) = pi (1.u), (61)
and Eq. (59) then implies that
F.(Yi)<t’ s, u) /)S[ Z C_ly{/pst S t (62)

=0,1.2

Note that in pﬁ?(z‘, s) and pg) (s, 1), the superscripts 1, I’

denote isospins in the channel specified by the first
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argument, viz., t channel and s channel, respectively. The
Mandelstam unitarity equations for the z-channel isospin 7,
and 4 <t <16, is given in Ref. [5],

dz,dz,0(z — z+)
Z 21,Z2

s)FY (1, 55). (63)

(1) (

p (1.51.52),

GO(1,5),5,) = (—1)’F£ (¢,

Crossing, Eq. (59) immediately yields

GO(ts1s)= > chuF (s F (s50)",
1,0"=0,12
G = (=D)CC (64)
where
[1/9 1/3 5/9
O=11/3 1 5/3 |,
| 5/9 5/3 25/9
[—-1/9 -1/6 5/18 ]
l=1-1/6 -1/4 5/12 |,
| 5/18 5/12  —25/36 |
[ 1/9 -1/6 1/18 ]
2=1-1/6 1/4 -1/12{, (65)
| 1/18  —=1/12 1/36 |

which are identical to the values obtained in Ref. [5] and we
quote them again for reference. We now have

(1 2p //dzldzzé Z—24)
\/ Z Z],ZQ
x 3 P s 0 (5,07 (66)

I'1"=0.1.2

Mahoux and Martin [5] have noted that all of the matrix
elements of

CO’ CO - Z:27 CO + Cl’ Z:O - 26:1 ) and CO + 28.:2 (67)
are positive, and for s, ¢ in the Mahoux-Martin domain (15)

the F{" (s;, 1), i = 1,2 are positive for the relevant values of
s; due to unitarity. From Eq. (66), it follows that

> Bilh >0, forall 1" = > pipD(t.s) > 0.
1 1

Hence,
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PO (t.5).p 0 (2,5) = p@)(2,5),p0 (t,5) +p(1.5),
pO(t,5)=2p(t,s), and pO(1,5)+2p?)(t,s) (69)

are positive in the Mahoux-Martin domain. We can exploit
these results to get bounds on inelastic cross sections for
real pions (of isospin 1).

A. New results
The truncated Froissart-Gribov formula will enable us to

obtain lower bounds on imaginary parts of s-channel partial
waves of the following five amplitudes:

1
(5 FO 4 pO) 4 §F<2>) (5.1) = FO(z.5),

E(Fm F)

<§F<>+ F( )
(=370 + 5P 5.0 = (FO = 270)1.5),

(FO 4 2F@)(s5,1) == (FO +2F®)(z,5),
(70)

s.1) = (FO = FP)(1.5),

0+ F) (1, ),

W] =
b.)l»—k

where the right-hand sides correspond to the #-channel
isospin combinations in Eq. (69), and the left-hand sides are
the corresponding linear combinations of s-channel isospin
amplitudes. These equations are of the form

> o F(s.t) =Y pFD(t.s), (71)

where the coefficients a; and f; can be read from Eq. (70).

E.g., (o)) :ﬂo = 1/3, [25) :ﬁz = 2/3, a :ﬂl = (0 for the

last amplitude, which is just the 7%2° — 7z°2° amplitude,
1

FO = 3 (FO +2F®), (72)

The partial waves given by the truncated Froissart-Gribov
formula are then, for even [ + I,

> afis)

1
= 4ix k2/ < 4>Zﬁ’ (1, s)dr
1 [475
+W . Q1<1 +—s_4)21:ﬂ1F51)(t s)di

(73)

and

114014-8



LOWER BOUND ON INELASTICITY IN PION-PION ...

Za,lmff(s)
1
1 2
=g [ 01+ 2 2) S ey
1 ;
) Gf Q1(1+—>Zﬁ1p (1.5)d

(74)

As before, I' is an ellipse with foci att =0and u = 0, and
right extremity at =4+ \/— ¢ As for pions without

isospin, if we only use the region A in Fig. (2), we can
prove that the combinations >_,5,0)(¢,s) on the right-
hand side are not only positive, but also have a lower
bound,

Zﬁlﬂ (t.s) ﬁZﬁlé’p o7 (sa) 1" (syr)

(75)

provided that 4, > 0, for all I, I”, and

()
) su dsiky/S1010¢ (81)
I - M A3k tot ) 76
(su) = [ (76)
We can now obtain lower bounds on the cut contribu-

tions to linear combinations of imaginary parts of s-channel
partial waves,

137+ 15307 3208+ 1),
2/310 w3721 w5767, 1731 +10/3f,.
1311 +2/3f (77)

from lower bounds, respectively, on the combinations
of p(t,s) given in Eq. (69). The contributions to
these imaginary parts from the elliptical contours I" are
negligible for / > Ly(s); the elastic pion-pion cross sec-
tions (including 7z°z° — 77~ cross sections) are negli-
gible for /> L,(s), and hence also for [/ > Ly(s). On
summing the contributions of / > Lg(s) lower bounds on
Im[3/2(f1" + £*)] and Im[1/3£\” + 2/3f\] to inelastic
cross sections, we obtain the three inequalities

(2) 0,0
1nel(s)’ 1nel( )’Gﬁleﬂi S)

t
> S exp VSN sms|. (78)
s 4

N
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APPENDIX: BOUNDS ON ASSOCIATED
LEGENDRE FUNCTIONS

We derive bounds on Q,(x) for real / and complex x
using the integral representation,

0 dt
= . Al
2:(x) A (x +Vx? = 1 cosht)*! (A1)
1. Upper bound
For real x > 1,
0i(x) < (x+ Va? = 1)7 Qg (). (A2)

This is obvious because x + Vx> — 1cosht> (x + Vx> —1).

2. Lower bound

For real x > 1,

> (x + Va2 = 1)~ T
Proof: It is obvious that
o dt
Oi(x) = (x+ -1~ /0 (cosh )T (A4)
because (x + Vx% — 1 cosh?) < (x + vx% — 1) cosh 7. The

integral on the right-hand side is exactly known [6],

r (l; 1), (AS)

but we shall only need a lower bound on it. Using
cosht < exp (£2/2), we have

Am(cosﬁﬁz Amdtexp (=2 (1+1)/2)

- . (A6)

/oo a2
o (coshr)*!'  T(1+1)

Inserting this into Eq. (A4), we obtain the quoted lower
bound (A3).
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3. Upper bound on an ellipse in the complex z plane

We prove that for real values of 6, 6,,

|Qi(cosh (0, + i6,))| < Qy(cosh ;). (A7)
i.e., geometrically, for z on an ellipse with foci —1 and 1
and right extremity z, = cosh#é,

|0i(2)| < Qi(z9) for z=cosh (6; +i6,). (AS8)
The denominator in the integral representation of Q,(z) is
|D(z,1)|"*!, where

D(z,t) = cosh (6, + i6,) + coshzsinh (6, + i6,). (A9)
It suffices to prove that
ID(z,1)| > D(z.1)]g,~o- (A10)

Trigonometric identities yield
1
|D(z,1)|*> = D(z,1)D(z,1)* = Ecosh291(1 + cosh?7)

1
+ cosh#sinh 20, — 508 20,sinh’t.  (All)

Minimizing over €, now yields the desired result,
Eq. (A10).

4. Upper bound on Q;(x) in terms of Qy(x)
and Q;(2x*-1) for x > 1

We prove that

for x > 1.

07 (x) < 2xQ0(x)Qy(2x* — 1), (A12)

(i) The integral representation of Q,(x) and the Schwarz
inequality yield
07 (x) < Qo(x)Q(x). (A13)

Hence, to prove Eq. (A12) it will be sufficient to prove that

0n(x) < 2xQ(2x* — 1), (A14)
Using
(x+ Vx*—=1cosht)? =2x* - 1
+1/(2x* = 1)?> = 1 cosh t + (x> — 1)sinh?¢
>2x* —1+44/(2x*> = 1)> — 1 cosht, (A15)

PHYSICAL REVIEW D 96, 114014 (2017)

and

2x* —1+4/(2x> = 1)> = 1 cosht

=2x(x+ Vx*—1cosht) — 1,
we have the required result
Q()</wm@ : )

x) < X —
. 0 x+ Vx?>—1cosht

1
x
(2x* =1+ /(2x* = 1)> = 1 cosh ¢)"*!

<2xQ,(2x* - 1).

(A16)

(A17)

5. Upper bound on Q;(x)/Q(z)
forx >z>1

We prove that for x > z > 1

0,(x) < (Z+Vz2—1>l+1 - (@)m
0(2) " \x+vir—1) T \1+2G-1)/)

(A18)

Using the integral representation, we obtain

L+ VE-110,(2)
<

[+1
= - X(z+ V2 -1)

V2 -1

» /00 dt(coshr—1)
0 (z+4Vz>—1coshr)!*?
<0, (A19)

which implies the left-hand side of the inequality (A18).
The right-hand side now follows if

<z+m> < <1+m>, (A20)

x+ Vi1 1+/2(x-1)
or if
2+ Vi -1 x+Vxr-1
(1 +/2(z - 1)) : (1 +/2(x - 1))’ (a21)

for x > z > 1. This holds since the left-hand side of the
above inequality is an increasing function of z for z > 1.
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