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Summary

In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a
waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of
the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics
and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point
charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then,
to calculate the scattered field due to the boundary conditions in our geometry. By summing the
contribution of the direct or primary field and the indirect field scattered by the boundary, after a
careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric
field, in any transverse position of the elliptical cross section, generated by the charge moving
along the longitudinal axis of the waveguide. The obtained expression is represented in a closed
form, it can be differentiated and integrated, it can be used to fully describe the radiation process
of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any
elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space
charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the
determination of the coupling impedance in different cases involving elliptic vacuum chambers, as,
for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation
of the vacuum chamber due to elliptic step transitions existing in some accelerators.
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1 Introduction

A particle accelerator, from the electromagnetic point of view, can be thought as composed of
several devices (for example RF cavities, magnets, beam diagnostics) connected by a vacuum
chamber. A charged particle beam, travelling inside the accelerator and interacting with the
surrounding environment, generates unwanted self-induced electromagnetic fields, which,
under unfavorable conditions, perturb the beam motion, reduce the accelerator performances
and, in some cases, lead to instabilities. The collective effects of self-induced electromagnetic
fields on the particle beam are generally studied by introducing the concepts of wakefield and
coupling impedance [1]. It is then of paramount importance to have reliable tools that allow
one to evaluate these self-induced fields. The intent of this paper is to derive an analytical
expression able to describe the electromagnetic interaction between a charge travelling with
arbitrary velocity inside a perfectly conducting beam pipe of elliptical cross section, and the
pipe itself. These are called space charge fields. The analysis of this problem is primarily
of interest for proton or ion machines, where space charge is important, and where it is not
unusual to deal with elliptical geometries of the beam vacuum chamber [2, 3, 4]. In electron
machines these effects are usually negligible. However, the expressions that we derive can
also be of interest for them since the study can be extended to include the effects of the
beam pipe finite conductivity [5, 6], and to serve as a Green function for the problem of
the impedance due to the geometrical variation of the vacuum chamber in an elliptic step
transitions. In order to evaluate these electromagnetic fields, we introduce a set of special
functions, useful for studying problems in applied mathematics and physics with elliptic
geometries, called Mathieu functions. Mathieu functions were introduced in the literature in
1868 [7], when the vibrational modes of a membrane with an elliptic boundary were derived
for the first time. In this paper we consider, as fundamental reference works on Mathieu
functions, the books by McLachlan [8]. The computation of Mathieu functions is far from
trivial [9], making the analysis of these functions more difficult than for Bessel functions.
Nevertheless, an available source of software for the computation of Mathieu functions, that
we have used for the field computation presented in this paper, is described in [10].
The paper is organized as follows: in Section 2 we present a short theoretical introduction
on elliptical coordinates and Mathieu functions, the wave equation in elliptical coordinates
generated by a charged particle beam and its general solutions, together with some notations
and normalizations adopted in this paper. In Section 3 we derive the primary field, that is
the field directly generated by a point charge in the free space, and the scattered field, that
is the field reflected by the metallic walls and resulting from the boundary conditions of the
vacuum chamber. Since these fields, which we manage to express with separate variables
of the elliptical coordinates, are given in terms of infinite summations, an optimization
of the numerical convergence of these series has also been performed. In Section 4 we
derive the expression, for an arbitrary transverse position, of the longitudinal electric field
produced by a point charge travelling on the axis of the elliptical beam pipe, and we also show
some numerical computation examples applied to two accelerators of the CERN complex,
the Proton Synchrotron and the Super Proton Synchrotron. In Section 5 and 6 we apply
the expression of the scattered field to obtain the longitudinal and transverse quadrupolar
indirect space charge coupling impedance for any elliptic geometry. Finally, Section 7 is
dedicated to concluding remarks.
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Figure 1: Elliptic coordinates. The ϕ coordinate describes confocal hyperbolas that are
symmetrical about the x-axis. The µ coordinate describes confocal ellipses centered on the
origin of the coordinate system.

2 Wave equation in elliptical coordinates

Unlike in the classical approach of propagation of electromagnetic fields in elliptical waveg-
uides [11, 12], in this paper we take, as field source, a charged particle beam moving with
velocity v = βc, with c the speed of light, along the longitudinal axis (z-axis) of a perfectly
conducting elliptical vacuum chamber. Under this condition, if we consider a transverse
magnetic (TM) mode propagating along z, the wave equation is given by [13]

∇2
tE

0
z + (k2

0 − k2
z)E

0
z = 0, (1)

where ∇2
t is the transverse bi-dimensional Laplacian, E0

z the longitudinal component of the
electric field, k0 the wave number in free space equal to ω/c, and kz the propagation constant,
imposed by the beam velocity and equal to ω/cβ. The above equation is valid for a waveguide
with arbitrary cross-section. The longitudinal dependence of the field with z is of the kind
e−jkzz. In the following we omit this propagation term to simplify notation.

The main difference of Eq. 1 from the common approach of mode propagation in an
elliptic waveguide [11, 12], is that here kz is not an unknown of our problem. The transverse
waves generated by the beam are in “cut off”, namely, by defining k2

t = k2
0 − k2

z , we observe
that this difference is negative, and therefore kt =

√
k2

0 − k2
z is an imaginary quantity.

If we consider an elliptical cross section, it is convenient to describe the geometry using
confocal elliptical coordinates. In this coordinate system, shown in Fig. 1, we define the
angular coordinate ϕ, that describes a set of hyperbolas having the same foci, and the radial
coordinate µ which gives a set of confocal ellipses. The elliptic variable ϕ has a domain
0 ≤ ϕ ≤ 2π, and plays a similar role of an angular variable in polar coordinates. The
variable µ, in the domain 0 ≤ µ <∞, behaves like a radial variable.
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The relation between elliptical and Cartesian coordinates is given by [14]{
x = F coshµ cosϕ
y = F sinhµ sinϕ,

(2)

where F is the focal distance of the ellipse, related to the semi-major and semi-minor axes
a and b by

F =
√
a2 − b2. (3)

The line joining the foci corresponds to the case µ = 0 and 0 ≤ ϕ ≤ π, and the origin of
our coordinate system is located in µ = 0, ϕ = π/2. In our notation, the elliptical boundary
of the beam pipe can be written in terms of the eccentricity e of the ellipse by

e =

√
a2 − b2

a
=

1

coshµ0

. (4)

The polar coordinates can be considered a special case of the elliptic coordinates in the
limit F → 0, when the foci collapse into the origin.

The bi-dimensional Laplacian of Eq. 1 in this coordinate system can be written as [15]:

∇2
t =

2

F 2(cosh 2µ− cos 2ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)
. (5)

If we substitute the above Laplacian definition in Eq. 1, we obtain the wave equation in
elliptical coordinates:

2

F 2(cosh 2µ− cos 2ϕ)

(
∂2

∂µ2
+

∂2

∂ϕ2

)
E0
z + k2

tE
0
z = 0, (6)

where k2
t is negative. It is worth noting that Eq. 6 cannot be written as a standard equation of

propagation of electromagnetic modes in an elliptical waveguide, as (18.50) in [8]. However,
if we define

q = −k
2
tF

2

4
> 0, (7)

a formal solution of Eq. 6 can still be obtained by using the same method of variable sep-
aration. This method, in elliptical coordinates, gives two ordinary differential equations,
involving a separation constant a:

d2V

dϕ2
+ (a+ 2q cos 2ϕ)V = 0 (8)

d2U

dµ2
− (a+ 2q cosh 2µ)U = 0. (9)

Equations 8 and 9 are known, respectively, as ordinary and modified Mathieu equations of
the first kind of integral order with changed sign in q (see, e.g., 2.18(1), and 2.31(1) in [8]). In
the limit F → 0, when the foci of the elliptic coordinates collapse into the origin, the angular
and radial Mathieu equations become harmonic and Bessel equations, respectively. It exists
a countably infinite set of characteristic values a(q) which yield even periodic solutions of
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Eq. 8. These solutions can be expressed with four categories of periodic ordinary Mathieu
functions as follows [8]:

ce2n(ϕ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n)
2r cos(2rϕ)

ce2n+1(ϕ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n+1)
2r+1 cos[(2r + 1)ϕ]

se2n+1(ϕ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+1)
2r+1 sin[(2r + 1)ϕ]

se2n+2(ϕ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+2)
2r+2 sin[(2r + 2)ϕ],

(10)

with n defining the order of the Mathieu functions. The expansion coefficients in the above
series, A and B, which are functions of q, are defined in such a way that the angular functions
cen and sen are orthogonal [8]. Furthermore, the Mathieu functions are normalized according
to the following equation:∫ 2π

0

cen(z,−q) cep(z,−q) dz =

{
0 n 6= p
π n = p

. (11)

A similar expression is valid for sen.
The expansion coefficients in Eq. 10 can be obtained by substituting the above series in the
differential equation 8, leading to an infinite homogeneous system of linear equations. For
example, for the coefficients A

(2n)
2m , it is possible to obtain the three-term recursion relations

aA
(2n)
0 − qA(2n)

2 = 0

[a− (2m)2]A
(2n)
2m − q

(
A

(2n)
2m−2 + A

(2n)
2m+2

)
= 0 (m ≥ 2).

(12)

For a fixed q, this becomes a tri-diagonal matrix equation representing an eigenvalue problem
in A with the coefficients A

(2n)
2m , which are the eigenvector components. Since the terms

A
(2n)
2m are negligibly small as m becomes very large, the matrix can be truncated and a finite

eigenvalue problem can then be solved. Similar expressions can also be obtained for the
other coefficients in Eq. 10.

Solutions of Eq. 9 can be obtained from Eq. 8 by setting the change of variable ϕ = jµ,
with j the imaginary unit. The solutions are called radial modified Mathieu functions of the
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first kind, and can be defined as follows [8]:

Ce2n(µ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n)
2r cosh(2rµ)

Ce2n+1(µ,−q) = (−1)n
∞∑
r=0

(−1)rA
(2n+1)
2r+1 cosh[(2r + 1)µ]

Se2n+1(µ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+1)
2r+1 sinh[(2r + 1)µ]

Se2n+2(µ,−q) = (−1)n
∞∑
r=0

(−1)rB
(2n+2)
2r+2 sinh[(2r + 2)µ].

(13)

Finally, the solution of Eq. 6 is given by a combination of the above Mathieu functions
of even or odd order [11]:

E0
z (µ, ϕ) =

∞∑
r=0

{
ar cer(ϕ,−q) Cer(µ,−q)

br ser+1(ϕ,−q) Ser+1(µ,−q)

}
. (14)

The solution of the wave equation, in order to satisfy the boundary conditions, has to
be null on the contour of the ellipse: E0

z (µ0, ϕ) = 0, with µ0 defining the elliptical boundary
given by Eq. 4.

In addition to the above equations, it is convenient to introduce here also the radial
modified Mathieu functions of second kind Fek2n(µ,−q) [8]. These functions play a role
in elliptic coordinates similar to the modified Bessel functions of the second kind Kn for
cylindrical coordinates. Indeed, as the pair of Bessel functions I0 and K0, with I0 the zero
order modified Bessel function of the first kind, are used to express the electromagnetic field
generated by a charged particle in cylindrical symmetry [16], the pair Ce2n and Fek2n will
be used here for our case in elliptic coordinates. The functions Fek2n(µ,−q) are defined in
terms of series of the Bessel functions Kn as in 8.20 of [8]:

Fek2n(µ,−q) = (−1)n
ce2n(π

2
, q)

πA
(2n)
0

∞∑
r=0

A
(2n)
2r K2r(2

√
q sinhµ) (15)

Fek2n+1(µ,−q) = (−1)n
se2n+1(π

2
, q)

π
√
qB

(2n+1)
1

cothµ
∞∑
r=0

(2r + 1)B
(2n+1)
2r+1 K2r+1(2

√
q sinhµ) (16)

with the condition | sinhµ| > 1, necessary for absolute and uniform convergence of the expan-
sions [8]. Similar expressions with different coefficients can also be written by using coshµ
as argument of the Bessel functions instead of sinhµ. In addition to the above expressions,
it is possible to demonstrate that the functions Fek2n(µ,−q) can be also expressed in terms
of product series of Bessel functions In(x)Kn(x). For example, we can write [8]:

Fek2n (µ,−q) =
p′2n

πA
(2n)
0

∞∑
r=0

A
(2n)
2r Ir(ν1)Kr(ν2) (17)
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with

p′2n = (−1)n
ce2n(0, q) ce2n(π

2
, q)

A
(2n)
0

, (18)

and ν1 =
√
qe−µ and ν2 =

√
qeµ. The product series 17 converges more rapidly than those

with arguments 2
√
q sinhµ, 2

√
q coshµ, and it converges uniformly in any finite region of

the µ-plane [8]. By virtue of this, the product series is preferable for calculating the values
of the functions Fek2n (µ,−q).

3 The radiation problem in an elliptical waveguide

In this section, we derive an analytical expression of the longitudinal electric field generated
by a Dirac δ-function beam distribution with charge Q travelling in free space. Of course,
this is a well known and solved problem, but, in order to match the elliptical geometry that
we are considering for the beam pipe, we want to express the field in elliptical coordinates
and with separate functions of the variables ϕ and µ. Let us first consider the following wave
equation of the electric field E0

z for a TM mode generated by the charge moving along the
axis of the pipe cross section:

∇2
tE

0
z + k2

tE
0
z = −Gδ(x)δ(y), (19)

where δ is the Dirac delta function and G is a constant that depends on the beam parameters
and can be calculated as [13]

G = jZ0
Qk0

2πβ2γ2
, (20)

where Z0 is the characteristic impedance in free space and γ is the Lorentz factor.
As we have already discussed at the beginning of Section 2, the transverse wave number

kt is an imaginary quantity and it can be written here as

kt = j
k0

βγ
. (21)

The electric field E0
z can be represented as the superposition of a field generated by the

particle beam in free space and a field that is scattered by the boundary of the waveguide
and that acts back on the beam itself. Therefore, we can divide the solution of the wave
equation into two scalar solutions:

E0
z = Es

z + Ei
z. (22)

The first scalar solution Es
z represents the direct (or primary) component of the field. It

has to satisfy the inhomogeneous wave equation in free space

∇2
tE

s
z −

k2
0

β2γ2
Es
z = −Gδ(x)δ(y), (23)

and it has to satisfy the conditions of radiation at infinity. At the origin of the elliptical
coordinates the direct field diverges.
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The second scalar solution in Eq. 22, Ei
z, is called the indirect field, and it is the field

scattered from the boundary, which, in our case, is elliptic. The indirect field has to satisfy
the homogeneous wave equation

∇2
tE

i
z −

k2
0

β2γ2
Ei
z = 0 (24)

and it has a finite value at the origin of the elliptical coordinates.
In the following subsections, we are going to calculate separately the two solutions of

the wave equations 23 and 24 in elliptical geometry, using the condition that the sum of the
direct and indirect field must satisfy the boundary conditions on the contour of the beam
pipe.

3.1 Direct field or Green function in free space

An expression of the direct field in free space generated by a Dirac δ distribution in cylindrical
geometry, that is a solution of Eq. 23, is given by [13]

Es
z = GK0

(
k0r

βγ

)
, (25)

where r is the radial coordinate and K0 is the zero order modified Bessel function of second
kind. This expression allows us to calculate the Green function at any position in free space.
We want to derive an equivalent expression in elliptical coordinates. To do that, we first
substitute the radial polar coordinate r with Eq. 2, and then obtain the argument of the
Bessel function:

K0

(
k0F

βγ

√
sinh2µ+ cos2ϕ

)
= K0

(
k0F

2βγ

√
e2µ + e−2µ − 2 cos(2ϕ+ π)

)
. (26)

Then, by using the Gegenbauer’s addition theorem [17], it is possible to expand the
modified Bessel function K0 as [18]:

K0

(
k0F

2βγ

√
e2µ + e−2µ − 2 cos(2ϕ+ π)

)
=
∞∑
n=0

(−1)nεnIn(z1)Kn(z2) cos(2nϕ), (27)

where εn = 2
1+δn,0

, with δn,0 the Kronecker delta and

z1 =
k0F

2βγ
e−µ; z2 =

k0F

2βγ
eµ. (28)

It is worth noting that, by the use of Eq. 27, we have now provided an expansion of Es
z

in separate functions of µ and ϕ. However, the equation needs to be further manipulated in
order to express the electric field in terms of Mathieu functions, which represent a natural
expression of the fields in elliptical geometry.

Following the procedure described in [19], applying the method of Ritz-Galerkin [20]
and the orthogonality properties of Mathieu’s functions, it is possible to expand the cosine
function in Eq. 27 as

εn cos(2nϕ) = 2(−1)n
∞∑
l=0

(−1)lA
(2l)
2n ce2l(ϕ,−q) = 2(−1)n

∞∑
l=0

A
(2l)
2n ce2l(

π

2
− ϕ, q), (29)
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with an arbitrary value of q. By changing q, both the coefficients A
(2l)
2n and the periodic

ordinary Mathieu functions change accordingly, and the equation remains satisfied. If we
now introduce Eq. 29 in Eq. 27, the electric field is given by:

Es
z = 2G

∞∑
l=0

ce2l(
π

2
− ϕ, q)

∞∑
n=0

A
(2l)
2n In(z1)Kn(z2). (30)

Eq. 30 is an alternative representation of Eq. 25, and, written in this form, q is still
arbitrary. If q is defined as

q =

(
k0F

2βγ

)2

, (31)

the inner sum in Eq. 30 is proportional to the radial modified Mathieu functions of second
kind Fek2l(µ,−q) of Eq. 17 . We can therefore express the Green function in compact form
as:

Es
z = 2πG

∞∑
l=0

A
(2l)
0

p′2l
ce2l

(π
2
− ϕ, q

)
Fek2l(µ,−q). (32)

Equation 32 is our result for the direct electric field as solution of Eq. 23. It is expressed
in terms of a product of Mathieu functions with separate elliptical coordinates ϕ and µ. Since
we have derived the expression directly from the Green function in free space, it satisfies
all the properties of the Green function. Written in this form, it is possible to verify that
it is rapidly convergent because the coefficients A

(2l)
0 go rapidly to zero. Since the electric

field must exhibit the same configuration independently from the coordinate system that
has been adopted, we can compare Eq. 32, expanded in elliptical coordinates, with Eq. 25,
written in terms of cylindrical coordinates.

Figures 2 and 3 show the numerical comparison between the two expressions of the electric
field at ϕ = 0 (r = x ≥ F ) and ϕ = π/2 (r = y > 0) as a function of the distance from
the origin. The relations between r (x or y) and µ are given by Eq. 2. For the numerical
computation, we considered a focal distance F=1, but any value of F can be used. In both
cases, we summed 120 terms, for which the calculation is almost immediate on an ordinary
desktop PC. These two examples show that the two curves agree very well.
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Figure 2: Comparison between the Green function in free space computed with Eq. 25 (blue
line) and Eq. 32 (red dashed line) with 120 summation terms, as a function of the radial
coordinate and ϕ = 0, for a focal distance F=1.
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Figure 3: Comparison between the Green function in free space computed with Eq. 25 (blue
line) and Eq. 32 (red dashed line) with 120 summation terms, as a function of the radial
coordinate and ϕ = π/2, for a focal distance F=1.

3.2 Indirect field (scattered field)

The indirect field has to satisfy the homogeneous wave equation 24. Since we are dealing
with elliptical geometry, in order to simplify the application of the boundary conditions, it
is better to represent the component of the indirect electric field Ei

z directly as expansion of
Mathieu radial and angular functions, as in Eq. 14, that is:

Ei
z = 2πG

∞∑
l=0

M2l(−1)lce2l (ϕ, −q)Ce2l (µ,−q) = 2πG
∞∑
l=0

M2lce2l

(π
2
− ϕ, q

)
Ce2l (µ,−q),

(33)
with M2l the unknown amplitude of the field. The constant 2πG and the term (−1)l have
been introduced here to simplify the final expression of the total electric field. It is important
to underline the similarity of Eq. 33 with Eq. 32. The total field E0

z of Eq. 22, representing
the electric field produced by a charged beam in an elliptical vacuum chamber, is, therefore,
given by the sum of the direct and indirect field:

Es
z + Ei

z = 2πG
∞∑
l=0

A
(2l)
0

p′2l
ce2l

(π
2
− ϕ, q

)
Fek2l (µ,−q)

+ 2πG
∞∑
l=0

M2l ce2l

(π
2
− ϕ, q

)
Ce2l (µ,−q). (34)

In order to satisfy the boundary conditions, we have to impose, in the above equation, a
zero value electric field E0

z on the elliptic surface µ0, expressed by Eq. 4, for any value of ϕ.
This gives a condition for the unknown amplitudes M2l, which must be such that:

2πG

[
∞∑
l=0

A
(2l)
0

p′2l
ce2l

(π
2
− ϕ, q

)
Fek2l (µ0,−q) +

∞∑
l=0

M2l ce2l

(π
2
− ϕ, q

)
Ce2l (µ0,−q)

]
= 0.

(35)
The above relation has to be satisfied independently for each term of the summation.
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Therefore, the unknown amplitude coefficients of the indirect field can be calculated as:

M2l = −A
(2l)
0

p′2l

Fek2l(µ0,−q)
Ce2l(µ0,−q)

. (36)

By considering the previous condition on the amplitudes M2l, we can now fully describe
the indirect (scattered) field in terms of a combination of periodic ordinary and radial mod-
ified Mathieu functions of first kind:

Ei
z = −2πG

∞∑
l=0

A
(2l)
0

p′2l

Fek2l(µ0,−q)
Ce2l(µ0,−q)

ce2l

(π
2
− ϕ, q

)
Ce2l(µ,−q). (37)

4 Total field in elliptical coordinates

The total field E0
z excited by a Dirac δ beam distribution in a beam pipe of elliptic cross

section is finally expressed in terms of product series of periodic ordinary Mathieu functions
ce2l and radial modified Mathieu functions Fek2l and Ce2l. Combining Eqs. 32 and 37, the
expansion of the total field is given by

E0
z = 2πG

∞∑
l=0

A
(2l)
0

p′2l
ce2l

(π
2
− ϕ, q

)(
Fek2l (µ,−q)−

Fek2l (µ0,−q)
Ce2l (µ0,−q)

Ce2l (µ,−q)
)
, (38)

that satisfies the boundary conditions on the contour of the ellipse representing the beam
vacuum chamber. Equation 38 is our final result, expressed in a compact form, to calculate
the longitudinal electric field, at any frequency and transverse position, produced by a point
charge in an elliptic vacuum chamber of any dimension and aspect ratio. An equivalent
expression could also be obtained by using an expansion of the eigenmodes in the elliptic
waveguide. In Appendix 8 we show the procedure that should be used, and we explain the
reasons why we did not follow that method.

It is important to observe that Eq. 38 is formally very similar to the well known longitu-
dinal electric field generated by a point charge travelling on the axis of a perfectly conducting
beam pipe of radius r0 [13]:

E0
z = G

K0

(
k0r

βγ

)
−
K0

(
k0r0
βγ

)
I0

(
k0r0
βγ

) I0

(
k0r

βγ

) , (39)

with the pair of modified Bessel functions of first and second order I0 − K0 replacing the
pair of modified Mathieu functions of first and second order Ce2l − Fek2l. The equation
can therefore be used to fully describe and rapidly compute the longitudinal electric field
produced by a charge moving along the z-axis of a beam vacuum chamber having elliptical
cross sections.

For completeness, we show in Appendix 8 that Eq. 39 can be derived from Eq. 38 in the
limit of q → 0 (or k0 → 0). An alternative way of deriving the low frequency limit of Eq. 39
and Eq. 38, based on field decomposition in terms of eigenfunctions and eigenvalues of a 2D
boundary problem, is discussed in [21].
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Using an expression containing the radial modified Mathieu functions of second kind
Fek2l presents several advantages. The field is expressed in a compact analytical form
that can be used as a first step to obtain more complicated fields in elliptic geometry, as,
for example, including finite resistivity of the beam vacuum chamber. In addition, formal
expressions for the derivative and the integral of the electric field can be easily written.
Moreover, it is worth noting that the summation in Eq. 38 converges very rapidly.

A different expression of the electric field in an elliptical vacuum chamber, with and
without losses, has already been derived in [22]. Nevertheless, a different approach consid-
ering a Gaussian beam distribution (not a point charge) has been used, leading to a more
complicated formulation of the field.

In order to validate Eq. 38, we have compared our results with those obtained from the
electromagnetic code CST Particle Studio [23]. With CST, we can define an elliptic vacuum
chamber with perfectly conducting pipe, and compute the electromagnetic interaction be-
tween a Gaussian beam of a fixed charge and energy, travelling along the longitudinal axis of
the pipe, and its surrounding environment. The CST frequency monitor allows to compute
the electric or magnetic field along any user defined curve or inside a volume, at a given
frequency. By the use this monitor, we computed the longitudinal electric field along an
arbitrary ellipse inside the geometry. The field computed by CST is given by the sum of the
direct and the indirect field, and therefore it is not possible to separate the two contributions.
In addition to that, the use of CST for this type of computation is not very suited in case of
non-relativistic energies (β < 1), since the computation can result very time consuming and
the low value of the resulting electric field can, in some cases, be altered by numerical noise.

In Fig. 4, a comparison between the field per unit of charge computed with Eq. 38 and
by CST, at a frequency of 100 MHz and µ = 0.1, is shown as a function of ϕ. In this
example, we considered the CERN Proton Synchrotron (PS) machine, that is designed with
an elliptic beam pipe [2] with a=7.3 cm and b=3.5 cm, and β=0.91. The two results are in
very good agreement, and the formula converges to the simulation result with 40 summation
terms, taking just a few seconds of calculation. By testing different geometries and beam
characteristics, we observed an excellent agreement between the analytical formula and the
simulation results in a variety of cases.

In Fig. 5, an example of the total longitudinal electric field per unit of charge, calculated
as a function of the coordinate ϕ for µ = 0.1 at a frequency of 100 MHz, is shown for the
CERN Super Proton Synchrotron (SPS). The SPS is designed with an elliptic beam pipe
having a=7.8 cm and b=2.1 cm [24] and an injection energy γ=27. We can observe that the
amplitude of the longitudinal electric field in the SPS is much lower when compared to that
of the PS, as a consequence of the increased beam rigidity.

5 THE LONGITUDINAL INDIRECT SPACE CHARGE

IMPEDANCE AND THE FORM FACTOR

The indirect field given by Eq. 37 can also be seen as the field produced by the image
currents moving inside the pipe wall. In this way, Eq. 37 is useful to evaluate the so called
longitudinal indirect space charge coupling impedance, which, for low energies, can represent
a very important contribution to the total impedance of a machine [2]. Its value per unit of
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Figure 4: Comparison between the longitudinal electric field per unit of charge computed
with Eq. 38 (blue line) and by CST (red dashed line) with 40 summation terms, calculated
in µ = 0.1 at 100 MHz as a function of ϕ.

Figure 5: Longitudinal electric field per unit of charge in the elliptic beam pipe of the SPS
accelerator at the injection energy, calculated in µ0 = 0.1 at 100 MHz as a function of ϕ.

length can be written as [13]

dZ//
dz

= −
Ei
z

(
µ = 0, ϕ = π

2

)
Q

. (40)

This impedance is purely imaginary and it can be used to evaluate the effect of indirect
space charge for any elliptical geometry. In Fig. 6 we have compared Eq. 40, as a function
of frequency, with the results given by the code IW2D [18], which has been developed to
obtain the wall impedance (taking into account also the conductivity of the pipe wall) for
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circular and flat (parallel plates) geometries. For IW2D we have used a very low resistivity,
while, for Eq. 38, we have considered two cases. In the first case, we assumed a less than
2% difference between the two axes of the ellipse (for approximating the round case, left
side). In the second case, we assumed the ellipse major axis ten times larger than the minor
one (for approximating the case of parallel plates, right side). In both cases we considered
120 summation terms, and we used b=3.5 cm and β=0.9, which are of interest for the PS
machine. As we can see from the two figures, the agreement between the two methods is
very good.

Equation 40 has also been used to evaluate the ratio between the longitudinal impedance
as a function of qr = (a− b)/(a + b), and the impedance of the corresponding circular pipe
(qr → 0). In Fig. 7 we show this form factor for different frequencies at the PS and the SPS
injection energies. The black vertical lines correspond to the machines beam pipe geometries
(for PS qr=0.35, for SPS qr=0.58). It is important to observe that the form factor depends
on both the beam energy and the frequency. If, from Eq. 39, we take into account only
the indirect space charge contribution, the longitudinal impedance at low frequency for a
circular pipe can be written as [13]

dZ//
dz

= −G
Q

[
log

(
k0r0

βγ

)
+ γe

]
, (41)

with γe the Euler’s constant.
It is also possible to compare Eq. 40, in case of low frequency, with the results presented

in [4]. In order to extend Eq. 41 to the elliptical case, we can substitute the pipe radius r0

with the longitudinal equivalent radius defined in [4] as:

req = b
4
√
qr

(qr − 1) ϑ2
2(0, qr)

, (42)

with ϑ2 the Jacobi theta function. In Fig. 8, a comparison between the impedance given by
Eq. 40 with that of Eq. 41 by using the equivalent radius 42 at low frequency (100 kHz) for
the PS injection energy at different qr, is shown. As we can see, the agreement is very good.

6 THE TRANSVERSE INDIRECT SPACE CHARGE

QUADRUPOLAR IMPEDANCE

From the indirect longitudinal electric field of Eq. 37, it is possible to obtain also the trans-
verse indirect space charge quadrupolar coupling impedance in elliptic geometry. In our
notation, dipolar and quadrupolar impedances have the following definitions: the dipolar
impedance is computed displacing the source particle and considering the wakefield effect on
the test particle in the center. The quadrupolar impedance is computed displacing the test
particle keeping the source particle in the center. In both cases, the dipolar or quadrupolar
wakefield effect is linear with the source or test particle displacement [25]. Let us consider,
as example, the vertical plane. The vertical impedance is defined as

Z⊥,y =
j

Q∆y

∫ ∞
−∞

(Ei
y + vBi

x) dz, (43)
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Figure 6: Longitudinal indirect space charge per unit of length for b=3.5 cm and β=0.9 as
a function of frequency. Comparison between IW2D and Eq. 38 for circular pipe (left) and
parallel plates (right).

Figure 7: Longitudinal form factor as a function of qr = (a− b)/(a+ b) for the PS (left) and
the SPS (right) injection energies at different frequencies. The vertical black lines correspond
to the machines beam pipe geometries.

where v is the beam velocity.
The indirect fields in the above equation are generated by a point charge moving on the

axis of the beam pipe, and they are evaluated in (ϕ = π/2, µ = ∆µ), that is in (x = 0, y =
∆y = F sinh ∆µ) with ∆µ � µ0 [25]. From the Faraday law in the frequency domain, by
considering the longitudinal dependence of the electric field with z, as stated at the beginning
of Section 2, we have

Bi
x =

j

ω

(
∂Ei

z

∂y
+ jkzE

i
y

)
, (44)

that, substituted in Eq. 43, gives

Z⊥,y = − 1

Q∆ykz

∫ ∞
−∞

∂Ei
z

∂y
dz, (45)

from which we obtain the transverse indirect space charge quadrupolar impedance per unit
of length

dZ⊥,y
dz

= − 1

Q∆ykz

∂Ei
z

∂y
. (46)
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Figure 8: Longitudinal indirect space charge impedance as a function of qr = (a− b)/(a+ b)
for the PS accelerator for a frequency of 100 kHz. Comparison between Eq. 40 and Eq. 41
by using the equivalent radius defined in Eq. 42.

An analogous expression can be found also for horizontal plane. Since we are using the
elliptic coordinates, we have

∂Ei
z

∂y
=
∂Ei

z

∂µ

∂µ

∂y
+
∂Ei

z

∂ϕ

∂ϕ

∂y
. (47)

The derivatives have to be done with constant x, so that, from Eqs. 2, we have

∂µ

∂y
=

coshµ sinϕ

F (sinh2 µ+ sin2 ϕ)
(48)

∂ϕ

∂y
=

sinhµ cosϕ

F (sinh2 µ+ sin2 ϕ)
. (49)

Since in ϕ = π/2 the second of the above equations is zero, we remain only with the
derivative in µ. By using for the field Eq. 37, we finally obtain

dZ⊥,y
dz

=
2πG

Qkz

1

F 2 sinh ∆µ cosh ∆µ
·[

∞∑
l=0

A
(2l)
0

p′2l
ce2l(0, q)

Fek2l(µ0,−q)
Ce2l(µ0,−q)

dCe2l (µ,−q)
dµ

∣∣∣∣
µ=∆µ

]
. (50)

For the horizontal plane the field has to be evaluated in (ϕ = π
2
−∆ϕ, µ = 0) with ∆ϕ� 1,
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and, by following the same procedure, we obtain

dZ⊥,x
dz

=
2πG

Qkz

1

F 2 sin ∆ϕ cos ∆ϕ
· ∞∑

l=0

A
(2l)
0

p′2l
Ce2l(0,−q)

Fek2l(µ0,−q)
Ce2l(µ0,−q)

dce2l

(
π
2
− ϕ, q

)
dϕ

∣∣∣∣∣
ϕ=π

2
−∆ϕ

 . (51)

As in the longitudinal case, the transverse quadrupolar impedance is purely imaginary.
In Fig. 9 we have compared Eq. 50, as a function of frequency, with the results given by
IW2D under the same assumptions as in the longitudinal plane of Fig. 6. We have also
represented the impedance at different values of qr. When qr > 0.8, we retrieve the flat
chamber case. We also observe that the PS quadrupolar impedance due to space charge, for
which qr = 0.35, can be much higher and not negligible with respect to the circular case.
Also in this case, we find that the agreement between our method and IW2D is very good.
It is important to highlight that at high frequency, the quadrupolar impedance of a circular
pipe is different from zero. Only when β → 1 this contribution disappears. In the same
figure, we have also represented the quadrupolar transverse impedance obtained by using
the Laslett coefficients for an elliptic pipe. The expression, valid only at low frequencies,
gives a constant imaginary impedance that can be written as [26]

dZ⊥,y
dz

=
jZ0

πγ2βb2
ε1,γ (52)

where

ε1,γ =
b2

12F 2

[
(1 + k′2)

(
2K(k)

π

)2

− 2

]
(53)

with K(k) the complete elliptic integral of the first kind, k =
√

1− k′2, and k′ the comple-
mentary modulus given by

k′ =

(
1 + 2

∑∞
s=1(−1)sqs

2

r

1 + 2
∑∞

s=1 q
s2
r

)2

. (54)

Equation 53 is not suited to evaluate the impedance when the pipe geometry tends to be
flat. Indeed, when qr → 1, k′ → 0 and then k ' 1. Both K(k) and F tend to infinity and
the evaluation of the equation needs particular care. This happens already when qr ≥ 0.8.
However, the agreement with Eq. 50 at low frequency is very good.

7 Conclusions

In this paper, we have obtained a novel formula that describes the radiation process of a
particle beam travelling along the longitudinal axis of a beam vacuum chamber of elliptical
cross section. By using a convenient expansion of the Mathieu functions, we first obtained
the longitudinal Green function in free space with elliptical coordinates, and then derived
the indirect field due to the boundary elliptic geometry. The combination of the two fields,
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Figure 9: Transverse indirect space charge per unit of length for b=0.35 cm and β=0.9 as
a function of frequency for different qr = (a − b)/(a + b) compared with the circular and
flat beam pipe given by IW2D, and with theory which uses the Laslett coefficients at low
frequency.

representing the total field, is expressed in terms of product series of periodic ordinary
Mathieu functions ce2n and radial modified Mathieu functions Fek2n and Ce2n, and the final
expression allows for an immediate computation of the longitudinal electromagnetic field
inside the vacuum chamber when traversed by a particle beam. The equation, which can
be evaluated for any elliptical geometry, for a test particle at any transverse position, and
for any velocity of the charge, is written in closed form, thus allowing to be differentiated or
integrated for further studies of electromagnetic interaction of a particle beam in an elliptic
geometry. Theoretical results are in excellent agreement with those obtained with numerical
simulations performed with CST Particle Studio in a variety of cases. This formula has
been applied successfully to different realistic geometries of vacuum chambers installed in
the CERN accelerator complex. By using the field in terms of Mathieu functions, we have
also obtained the indirect space charge longitudinal and transverse quadrupolar coupling
impedances for any elliptic geometry and frequency, and we have compared them with other
existing analytical models, valid only at low frequency, and with the code IW2D for a
circular pipe and parallel plates. The expression of the Green function is useful since, from
the knowledge of the fields in elliptical coordinates, the theory can be further developed to
give, for example, the impedance due to the finite resistivity of an elliptic beam pipe wall, or
to serve as a basis for an analytical model for the computation of the electric field generated
by a point charge passing through a step transition between to confocal elliptical waveguides.
The above problems are under investigation.
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Appendix 1

If we consider the eigenmodes in the elliptic waveguide, they satisfy the modal wave equation

∇2
tE

r,s
z + k2

r,sE
r,s
z = 0, (55)

with k2
r,s the corresponding eigenvalues. These eigenmodes, which satisfy the homogeneous

boundary conditions, allow to write the Green function as

E0
z =

∞∑
r,s=0

Cr,sE
r,s
z , (56)

with Cr,s the unknown coefficients. By introducing this equation in Eq. 19, and by using the
orthonormal properties of the eigenmodes, it is possible to obtain, for the coefficients Cr,s,
the expression

Cr,s = − G

(k2
t − k2

p,t)
Ep,t
z (0). (57)

It is important to observe that, since k2
t is negative, we will never obtain the resonance

condition. Finally, the Green function can be expressed as:

E0
z = −

∞∑
r,s=0

G

(k2
t − k2

r,s)
Er,s
z (0)Er,s

z . (58)

However, in the problem discussed in this paper, this expansion would result more cum-
bersome because of the additional complexity of finding the eigenvalues of the Mathieu
functions. Nevertheless, it is important to underline that this type of expansion can be
extremely useful when it is necessary to use the orthogonality properties in order to solve
some particular problems, as, for example, that of a step transition [28].

Appendix 2

If we consider the elliptic pipe with b → a = r0, that is F → 0, from Eq. 31 we also have
that q → 0. The coefficients A

(2l)
0 , when q = 0, are all zero [8] except A

(0)
0 = 1/

√
2, so that

in Eq. 38 the summation over l disappears, and the field becomes

Ei
z = 2πG

A
(0)
0

p′0
ce0

(π
2
− ϕ, 0

)(
Fek0(µ, 0)− Fek0(µ0, 0)

Ce0(µ0, 0)
Ce0(µ, 0)

)
. (59)

The ordinary Mathieu function of first kind ce0(ϕ, 0) has to be equal to A
(0)
0 . Moreover, by

using Eq. 15, we can write

Fek0(µ, 0) =
p′0

πA
(0)
0

∞∑
r=0

A
(0)
2r Ir(ν1)Kr(ν2). (60)

Since also A
(0)
2r are all zero except the one with r = 0, the summation over r disappears, and

we obtain

Fek0(µ, 0) =
p′0

πA
(0)
0

I0(ν1)K0(ν2). (61)
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Being

ν1 =
√
qe−µ → 0, ν2 =

√
qeµ → k0r

βγ
, (62)

we obtain

Fek0(µ, 0) =
p′0

πA
(0)
0

K0

(
k0r

βγ

)
. (63)

Analogously, we can write

Fek0(µ0, 0) =
p′0

πA
(0)
0

K0

(
k0r0

βγ

)
. (64)

Finally, we can express the radial modified Mathieu functions of the first kind in terms of
product series of Bessel functions [8], as

Ce0(µ, 0) =
p′0

A
(0)
0

∞∑
r=0

(−1)rA
(0)
2r Ir(ν1)Ir(ν2) =

p′0

A
(0)
0

A
(0)
0 I0(ν1)I0(ν2) = p′0I0

(
k0r0

βγ

)
, (65)

and

Ce0(µ, 0) = p′0I0

(
k0r

βγ

)
. (66)

If we substitute Eqs. 63-66 in Eq. 38, we obtain the longitudinal electric field generated by
a point charge travelling on the axis of a perfectly conducting circular beam pipe of radius
r0, as given by Eq. 39.
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