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Abstract

A new tracking detector is under development for use by the CMS experiment at the High-Luminosity
LHC (HL-LHC). A crucial requirement of this upgrade is to provide the ability to reconstruct all
charged particle tracks with transverse momentum above 2–3 GeV within 4µs so they can be used in
the Level-1 trigger decision. A concept for an FPGA-based track finder using a fully time-multiplexed
architecture is presented, where track candidates are reconstructed using a projective binning algo-
rithm based on the Hough Transform, followed by a combinatorial Kalman Filter. A hardware demon-
strator using MP7 processing boards has been assembled to prove the entire system functionality, from
the output of the tracker readout boards to the reconstruction of tracks with fitted helix parameters. It
successfully operates on one eighth of the tracker solid angle acceptance at a time, processing events
taken at 40 MHz, each with up to 200 superimposed proton-proton interactions, whilst satisfying
the latency requirement. The demonstrated track-reconstruction system, the chosen architecture, the
achievements to date and future options for such a system will be discussed.
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2 2 The CMS Tracker Upgrade

1 The High Luminosity Large Hadron Collider
To fully exploit the scientific potential of the Large Hadron Collider (LHC) [1], it is planned
to operate the machine at a luminosity up to one order of magnitude higher than obtained
with the nominal design. Installation of the High-Luminosity LHC (HL-LHC) upgrade [2] is
expected to occur during a 30 month shut-down starting around 2024, leading to a peak lumi-
nosity of 5–7.5× 1034 cm−2 s−1, corresponding to an average number of 140–200 proton-proton
interactions, named pileup (PU), per 40 MHz bunch crossing. Targeting a total integrated lumi-
nosity of 3000 fb−1, the HL-LHC will enable precision Higgs measurements, searches for rare
processes that may deviate from standard model predictions, and increases in the discovery
reach for new particles with low cross-sections and/or multi-TeV masses.

2 The CMS Tracker Upgrade
The Compact Muon Solenoid detector (CMS) is a large, general purpose particle detector at the
LHC, designed to investigate a wide range of physics phenomena. The apparatus’ central fea-
ture is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T.
Within the solenoid volume, a small silicon pixel Inner Tracker and larger silicon strip Outer
Tracker are surrounded by an electromagnetic and hadronic calorimeter. Forward calorimeters
extend the angular coverage. Gas-ionization detectors embedded in the magnet’s return yoke
are used to detect muons. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found
in [3].

During the shut-down preceding the start of HL-LHC operation, the CMS tracker will need to
be completely replaced. This is primarily due to the expected radiation damage of the silicon
sensors following approximately 15 years of operation. The HL-LHC environment will provide
a significant challenge for the new tracker [4]. The new tracking detector must maintain a
high track reconstruction efficiency and a low misidentification rate under increased pileup
conditions, requiring an increase in sensor channel granularity. The radiation hardness of the
tracker must also be improved in order to withstand the increased fluence.

For the first time, the detector will be designed to allow the provision of limited tracking in-
formation to the Level-1 (L1) trigger system. The L1 trigger, based on custom electronics, is
required to reject events that are deemed uninteresting for later analysis, and it is expected
that data from the Outer Tracker could be used as an additional handle to keep the L1 accep-
tance rate below the 750 kHz maximum, while maintaining sensitivity to interesting physics
processes.

Given the bandwidth implications in transferring every hit off-detector to the L1 trigger at the
LHC bunch crossing rate of 40 MHz, a novel module design is being incorporated into the
Outer Tracker upgrade. The proposed “pT module” [5, 6] will comprise two sensors, separated
by a few millimetres along the track direction, to discriminate on charged particle transverse
momentum (pT) based on the local bend of the track within the magnetic field (B), as shown in
Fig. 1. Pairs of clusters consistent with a track of pT greater than a configurable threshold (typ-
ically 2–3 GeV) are correlated on-detector, and the resulting stubs are forwarded to off-detector
processing electronics, providing an effective data rate reduction of approximately a factor of
ten [7, 8].

Two pT-modules are in development for the Outer Tracker upgrade: 2S strip-strip modules
and PS pixel-strip modules, both shown in Fig. 2. The 2S modules, each with an active area of
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Figure 1: Cluster matching in pT-modules to form stubs [9]. (a) Correlating pairs of closely-
spaced clusters between two sensor layers, separated by a few mm, allows discrimination of
transverse momentum. This is based on the particle bend in the CMS magnetic field and as-
sumes that the particle originates at the beam line. (The z-axis of the coordinate system is paral-
lel both to the field and to the beam-line). Only stubs compatible with tracks with pT > 2–3 GeV
are transferred off-detector. (b) The separation between the two clusters increases with the
module’s distance from the beam line, if the sensor spacing remains unchanged. (c) To achieve
comparable discrimination in the endcap disks, which are orientated perpendicular to the beam
line, a larger sensor spacing is needed, because of projective effects.

Figure 2: The 2S module (left) and PS module (right), described in the text [9].

10.05 cm × 9.14 cm, are designed to be used at radii r > 60 cm from the beam axis, where the
hit occupancies are lower. Both upper and lower sensors in the 2S modules have a pitch of
90 µm in the transverse plane, r-ϕ, and a strip length of 5.03 cm along the direction of the beam
axis, z. The PS modules, each with an active area of 4.69 cm × 9.60 cm, will be used at radii
20 < r < 60 cm where the occupancies are highest. The PS modules consist of an upper silicon
strip sensor and a lower silicon pixel sensor, both with a pitch of 100 µm in r-ϕ, and a strip
length in z of 2.35 cm for the strips and 1.47 mm for the pixels. The finer granularity afforded by
the pixel sensors provides more accurate pointing resolution along the z axis, which is crucial
for identifying interaction vertices under high pileup conditions.

To perform stub correlation in the 2S modules, the signals of the top and bottom sensor are
routed to the same CMS binary chip (CBC), which performs the correlation logic. This is pos-
sible by folding the readout hybrids around a stiffener. In the PS modules, strip signals are
processed by the strip-sensor ASIC (SSA), and macro-pixel signals by the macro-pixel ASIC
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Figure 3: One quadrant of the upgraded Outer Tracker layout, showing the 2S (red) and PS
(blue) module placement. The upper diagram shows the currently proposed layout, known as
the tilted barrel geometry [9, 10]. The tilt of the modules in the three PS barrel layers improves
overall performance and reduces construction costs. The lower diagram shows an older pro-
posal for the layout, known as the flat barrel geometry [4], which was adopted for all the studies
presented in this paper, except where stated otherwise.

(MPA). The strip data is routed from the SSA to the MPA via a folded hybrid, which then per-
forms the cluster correlation. A detailed description of the front-end electronics can be found
in [9].

The upper diagram in Fig. 3 depicts the currently proposed layout of the upgraded Outer
Tracker, known as the tilted barrel geometry [9, 10], indicating the 2S and PS module posi-
tions. It includes six barrel layers, and five endcap disks on each side. Only modules located
at |η| < 2.4 will be configured to send stub data off-detector. This geometry derives its name
from the fact that some modules in the three innermost barrel layers are tilted, such that their
normals point towards the interaction region. This improves stub-finding efficiency for tracks
with large incident angles and reduces the overall cost of the system [9].

During the time in which the demonstrator described in this paper was constructed an older
proposal for the upgraded Outer Tracker layout was in use within CMS. This design, known as
the flat barrel geometry [4], is shown in the lower diagram in Fig. 3. It was adopted for all the
studies presented in this paper, except where stated otherwise. As will be shown in Section 7,
there is reason to believe that performance would improve when adapting to the tilted barrel
geometry.
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3 Track Finding at the Level-1 Trigger
The provision and use of tracking information at L1 in the form of fully reconstructed tracks
with pT > 3 GeV is a necessity if trigger performance is to be maintained or even improved
upon relative to low luminosity running. It is estimated that under a high pileup scenario
(200 PU), with trigger thresholds chosen to give good physics performance, the L1 rate could
be reduced from 4 MHz to below 750 kHz, by using tracks to enhance the discriminating power
of the trigger [4]. Flexibility to reconstruct tracks down to an even lower pT threshold of 2 GeV
may be desirable, if trigger requirements demand it. However, a 3 GeV threshold was used to
obtain the results presented in this paper, except where stated otherwise.

The total L1 latency is limited to at most 12.5 µs, of which it is estimated that the L1 trigger
electronics will require about 3.5 µs to correlate tracks with data primitives from the calorime-
ter and muon systems, and to take a decision as to whether the event is of interest. Propagation
of the L1 decision to trigger the front-end buffers then takes another 1 µs while a further 3 µs
is required as a safety margin [4]. This means that if tracks are to be utilised by the trigger
successfully, stubs must be extracted from the tracker front-end electronics, organised, and
finally processed to reconstruct tracks within approximately 5 µs of the collision. Since approx-
imately 1 µs of this will be required for generation, packaging and transmission of stubs from
the tracker front-end electronics to the first layer of off-detector readout electronics, known as
the Data, Trigger and Control (DTC) system, the processing latency target to reconstruct the
tracks starting from data arriving at the DTC is set at 4 µs [9], as shown in Fig. 4.

Each pT-module will be served by a pair of optical fibres, one upstream and one downstream,
which interface directly to the DTC system. Depending on the module radius, these links will
be capable of transferring data off-detector at either 5.12 or 10.24 Gb/s, providing an effective
bandwidth of between 3.84 and 8.96 Gb/s accounting for error correction and protocol over-
heads [11]. Approximately 75% of this bandwidth will be dedicated to readout of stub data
from bunch crossings every 25 ns. The stub data format itself is dependent on the pT-module
type, but will contain an 11-bit address corresponding to the centroid of the seed cluster in the
stub (in half-strip units) and a 3-bit (PS) or 4-bit (2S) number known as the “bend”, which cor-
responds to the distance in strips between the two clusters in the stub and is related to the local
bend of the particle trajectory. For PS modules only, a 4-bit address describing the z position
of the stub along the sensor is additionally provided. The remaining approximately 25% of the
module readout bandwidth will be dedicated to transmission of the full event data including

DAQ

control
DTC Track Finder

L1 Correlator
FE module

track reconstruction & 
fitting

stub pre-processing

p-p interaction 
@ t0

L1 decision

full data triggered 
(t0 + <12.5μs)

to High Level Trigger

stub data @ 40MHz

L1 accept @ <750kHz

full hit data @ <750kHz

L1 tracks @ 40MHz

stubs arrive at DTC
(t0 + 1μs) tracks arrive at L1 Correlator

(t0 + 5μs)

Figure 4: Illustration of data-flow and latency requirements from pT-modules through to the
off-detector electronics dedicated to forming the L1 trigger decision.
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all hit strips/pixels, triggered by a L1-accept signal [9].

The DTC will be implemented as a custom-developed ATCA (Advanced Telecom Computer
Architecture) blade based on commercial FPGAs and multi-channel opto-electronic transceivers.
Each board can be expected to interface to several modules, depending on overall occupancy
or constraints due to cabling of the tracker fibres, up to a proposed maximum of 72. The DTC
will be required to:

• extract and pre-process the stub data before transmission to the Track Finder layer,

• extract and package the full event data sent from the front-end buffers before trans-
mission to the data acquisition system (DAQ),

• provide timing and control signals to the modules for correct operation during data-
taking, including configuration and calibration commands.

An aggregated data rate of 600 Gb/s per DTC will be provided to transmit stubs to the Track-
Finder layer, corresponding to ∼36 links at 16.3 Gb/s based on current commercial FPGA tech-
nology. This is expected to be more than sufficient to handle fluctuations even in the highest
occupancy DTCs serving the innermost layers at 200 PU, though the average rate of stubs per
DTC will be much lower. A total complement of approximately 250 DTCs will be required to
service the full Outer Tracker (256 DTCs for the flat barrel geometry described in Fig. 3).

4 An FPGA Based Track Finding Architecture
There is some flexibility when it comes to defining the track finding architecture, including the
choice of how track finding is parallelised across processors. Constraints arise from how the
detector is cabled to the DTC system, and on the number of high speed optical links available
on the DTC and Track Finder boards. In terms of the cabling of the detector to the back-end
system, it is assumed that the DTCs will be arranged such that a set of 32 blades will together
process all data from an approximate octant (i.e. 45 degree ϕ-sector) of the Outer Tracker. These
wedges, referred to here as detector octants, do not have uniform boundaries as an exact eight-
fold symmetry does not occur in the tracker layout.

In this paper we propose the concept of a scalable, configurable and redundant system architec-
ture based on a fully time-multiplexed design [12, 13]. In systems where processing bandwidth
is limited, data from a single event but from multiple sources can be buffered and transmitted
over a longer time period to a single processor node, while processing of subsequent events is
carried out on parallel nodes in a similar fashion. This approach, known as time-multiplexing,
requires at least two processing layers with a switching network between them. The switching
network could, for example, be implemented as a dynamic traffic scheduler, as in the case of
the CMS High Level Trigger (HLT) [14], or alternatively, like the static fixed-packet router used
in the Level-1 Calorimeter Trigger [15]. Provided data are suitably formatted and ordered in
the first layer, the majority of the processing or analysis, such as track finding, can take place
in the second layer. For a fixed time-multiplexing factor of n, one would require n nodes in the
second layer, where each time node processes a new event every n× 25 ns, where 25 ns is the
time interval between events at the LHC.

One advantage of using time-multiplexing in this way is the flexibility it affords to overcome
the regional segmentation of the detector, so that in the case of the track finder, all stub data
consistent with a track can be brought to the same card for processing. Another feature is the
fact that only a limited amount of hardware is needed to demonstrate an entire system, since
each node is carrying out identical processing on different events. By treating the DTC as the
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first layer in a time-multiplexed system, it should be feasible to stream the full set of stubs for
a large fraction of the detector into a time node, or Track Finding Processor (TFP). While in
principle the system could be configured so that a TFP processes data from the entire tracker,
in practice this is prevented by limits on the number of input links and total bandwidth a
single FPGA-based processor could handle. In this paper we consider the division of the time-
multiplexed Track Finder layer into octants, to match the number of regions in the DTC layer.

In order to handle duplication of data across hardware boundaries a simplification can be ap-
plied at the DTC-TFP interface. Defining processing octant boundaries that divide the tracker
into eight 45 degree ϕ-sectors, each rotated by approximately 22.5 degrees in ϕ with respect to
the detector octant boundaries, implies that a DTC handles data belonging to no more than
two neighbouring processing octants (Fig. 5). As such, the first step of the DTC can be to un-
pack and convert the stubs from the front-end links to a global coordinate system. A globally
formatted stub can be described adequately with 48-bits. This can be followed by an assign-
ment of every stub to one of the two regions, or if it is consistent with both, by duplicating
the stub into both processing octants. This duplication would occur whenever a stub could be
consistent with a charged particle in either processing octant, from the knowledge that a track
with pT = 3 GeV defines a maximum possible track curvature. However, the measurement of
the stub local bend as described in Section 3 can also be deployed to minimise the fraction of
stubs duplicated to both octants. The exact logic is identical to that which will be described in
Section 5.1, to assign stubs to sub-sectors.

A baseline system design is illustrated in Fig. 5. As described in Section 3, each DTC will
dedicate∼600 Gb/s of bandwidth for transmission of stub data to the Track Finder layer, corre-
sponding to 36 links at 16.3 Gb/s. By applying the duplication technique described above, the
DTC is expected to send 50% of its data to one processing octant, and 50% to its neighbour, on
average, which can be provided by 18 links per DTC per processing octant. This allows each
DTC to be capable of time-multiplexing its data to up to n=18 time nodes, where one can assign
a single optical link to each node or TFP. A DTC therefore sends its data to 36 independent TFPs
(18 time nodes × 2 processing octants).

Conversely, to ensure that a single TFP receives all data for one processing octant for one event
it should be capable of receiving 64 links (one link from each DTC in two neighbouring detector

Detector octant

18 time slices / octant  (18 TFPs)
64 links in at 16Gb/s

TFPTFPTFPTFPTFPTFPTFPTFP

Detector octant 1 : z+, z- (32 DTCs)
36 links out at 16Gb/s

Detector octant 2 : z+, z- (32 DTCs)
36 links out at 16Gb/s

x 8 Processing octants 
= 144 TFP boards

Processing octant A

DTC

DTC

Processing 
octant

Duplication 
region

Processing octant 
boundaries

Detector octant 
boundaries

Figure 5: Baseline system architecture whereby DTCs in two neighbouring detector octants
time-multiplex and duplicate stub data across processing octant boundaries before transmis-
sion to the Track Finding Processors (TFPs). With 18 time nodes and eight processing octants,
the full track finding system would be composed of 144 TFPs.
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octants), which is feasible using existing FPGA technology. With 18 time nodes and eight pro-
cessing octants, the full track finding system would be composed of 144 TFPs, each processing
a new event every 18×25 ns = 450 ns.

The proposed architecture is easily scalable, as one can adapt the system to different time-
multiplexing factors (by adjusting the number of links from the output of the DTC), or dif-
ferent processing loads on the TFP (by adjusting the link speed and therefore total TFP input
bandwidth). The regional segmentation of the track finding layer can be adapted to match the
final regional segmentation of the DTC layer. Since each TFP operates independently and no
data sharing between boards is necessary (as all relevant data is pre-duplicated at the DTC),
this reduces requirements on synchronisation throughout the entire system. Since all TFPs per-
form identical processing on ϕ-symmetric regions of the detector, the same FPGA logic can be
implemented on every board, simplifying operation of the running system.

One additional advantage of a time-multiplexed design is the possibility, providing a couple
of spare output links on the DTC, to incorporate extra nodes into the system for redundancy
or for parallel development of new algorithms. A redundant node can be quickly switched
in by software if a hardware failure is discovered at one TFP, or in one of its input links, so
that any downtime is minimised. Alternatively, data from 1/n events can be automatically
duplicated into the spare node so that any changes to the algorithm can be verified on real
data, without affecting performance or running of the system. In the baseline architecture only
eight redundant nodes would be required, one per octant.

The Track Finding Processor logic is divided into four distinct components, described in Sec-
tion 5 in further detail:

• Geometric Processor (GP) - responsible for processing of the stub data before entry
into the subsequent stage, including subdividing of the octant into finer sub-sectors
in η and ϕ to simplify the track finding task and to increase parallelisation;

• Hough Transform (HT) - a highly parallelised first stage track finder that identifies
groups of stubs that are coarsely consistent with a track hypothesis in the r-ϕ plane,
so reducing combinatorics in the downstream steps;

• Kalman Filter (KF) - a second stage candidate cleaning and precision fitting algo-
rithm to remove fake tracks and improve helix parameter resolution;

• Duplicate Removal (DR) - final pass filter using the precise fit information to re-
move any duplicate tracks generated by the Hough Transform.

5 The Track Finding Processor
The Track Finding Processor (TFP) logic can be divided into a series of components whose
operations will be described in the following section. An overview of the TFP logic is provided
in Fig. 6 illustrating the main components and their interconnectivity.

5.1 Geometric Processor

Each GP pre-processes the 48-bit DTC stubs from one processing octant, both unpacking the
data into a 64-bit extended format to reduce processing load on the HT, and assigning the stubs
to geometric sub-sectors, which are angular divisions of the octant. The GP firmware consists of
a pre-processing block, which calculates the correct sub-sector for each stub based on its global
coordinate position, followed by a layered routing block. The stubs associated to each sub-
sector are routed to dedicated outputs, such that data from each sub-sector can be processed



5.1 Geometric Processor 9

GP 
FORMATTER KF WORKER

H
T M

U
X

D
U

P
LIC

A
TE R

EM
O

V
A

L
HT 

ARRAY KF WORKER

KF WORKER

KF WORKER

KF WORKER

KF WORKER

KF WORKER

KF WORKER

KF WORKER

KF WORKER

HT 
ARRAY

HT 
ARRAY

HT 
ARRAY

HT 
ARRAY

G
P

 R
O

U
TER

HT 
ARRAY

KF WORKER

GP 
FORMATTER

M
U

X

12

12

12

12

12

12

.

.

.

.

x 24
.
.
.

x 6

KF WORKER

7
2

 LIN
K

S FR
O

M
 D

TC
S

6
 LIN

K
S TO

 L1
 TR

IG
G

ER

Figure 6: An overview of the TFP illustrating the main logic components and their intercon-
nectivity, each described in detail in the following section. Yellow components are part of the
Geometrical Processor, orange components are part of the Hough Transform, red components
are part of the Kalman Filter or Duplicate Removal. The TFP is capable of processing data from
up to 72 input links (one per DTC). This allows for some margin in the exact number of DTCs,
which is yet to be determined.

by an independent HT array.

As depicted in Figure 7, the GP subdivides its processing octant into 36 sub-sectors, loosely
referred to as (η, ϕ) sub-sectors, formed from two divisions in the r-ϕ plane and 18 divisions in
the r-z plane. The division of the octant into sub-sectors simplifies the task of the downstream
logic, so that track finding can be carried out independently and in parallel within each of
the sub-sectors. The use of relatively narrow sub-sectors in η has the added advantage that it
ensures that any track found by the HT stage must be approximately consistent with a straight
line in the r-z plane, despite the fact that the HT itself only does track finding in the r-ϕ plane.

Each sub-sector is used by the TFP to find tracks in different ranges of φT and zS, where φT
(zS) is defined as the ϕ (z) coordinate of a track trajectory relative to the point where it crosses
a cylinder of radius T (S) centred on the beam line. The values of these two parameters are
chosen to be T = 58 cm and S = 50 cm, since this minimises the fraction of stubs that are
consistent with more than one sub-sector. The ranges in φT or zS covered by neighbouring
sub-sectors are contiguous and do not overlap. In the r-ϕ plane, the sub-sectors are all equally
sized, whereas in the r-z plane their size varies so as to keep the number of stubs approximately
equal in each sub-sector. The GP must assign each stub to a sub-sector based on whether the
stub could have been produced by a charged particle with a trajectory within the φT or zS range
of that sub-sector while originating from the beam line. If the stub is consistent with more than
one sub-sector, then the GP duplicates it. This can occur because of the curvature of tracks
within the magnetic field (constrained by the configurable track finding pT threshold, chosen
for the studies presented here to be pmin

T = 3 GeV) or because of the length of the luminous
region along the beam axis (where a configurable parameter w, chosen to be 15 cm, defines
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Figure 7: The segmentation of the tracker volume into ϕ sub-sectors (left) and η sub-sectors
(right). The numbered areas in white represent the regions that are associated to only one
sector, whereas the coloured areas (where there is no difference in meaning between green or
blue) represent the overlap region between neighbouring sectors where stubs may need to be
assigned to both sectors. The two cylinders mentioned in the text of radius T = 58 cm and
S = 50 cm, are indicated by dashes in the left and right-hand figures, respectively.

the half-width of the beam spot along z). Using the algorithm described below, each stub is
assigned to an average of 1.8 sectors.

A stub with coordinates (r, ϕ, z) is compatible in the r-z plane with a sub-sector covering range
zmin

S < zS < zmax
S if

r · zmin
S

S
− w ·

∣∣∣ r
S
− 1

∣∣∣ < z <
r · zmax

S
S

+ w ·
∣∣∣ r
S
− 1

∣∣∣ . (1)

To further improve the sector granularity in the TFP without using significant extra FPGA re-
sources, each of these η sub-sectors can be further divided by an additional factor of two in
the r-z plane, with this division positioned at the mid-point between the sub-sector’s bound-
aries (zmin

S , zmax
S ). Whenever a stub is assigned to a sub-sector, the GP checks the consistency

of the stub with each of these sub-sector halves, allowing for some overlap, and stores this
information as two bits within the stub data, for subsequent use by the HT.

The corresponding equation for the compatibility in the r-ϕ plane of the stub with a sub-sector
is

|∆ϕ| < 0.5 · 2π

Nϕ
+ ϕres, (2)

where ∆ϕ is the difference in azimuthal angle between the stub and the centre of the sub-sector
and Nϕ is the number of ϕ sub-sectors and is always a multiple of eight (due to the track-finder
division into octants), currently set to 16. The azimuthal angle of the centre of sub-sector i is
ϕi =

2πi
Nϕ

, where 1 ≤ i ≤ Nϕ. The parameter ϕres accounts for the range of track curvature in ϕ

allowed by the threshold pmin
T , and is equal to
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ϕres =
0.0015 qB

pmin
T

· |rT|, (3)

where rT = r − T, q is the particle charge in units of e, and the variables pT, B, and rT are
measured in units of GeV, Tesla and cm respectively. With the chosen value of Nϕ = 16, no
individual stub can be compatible with more than two neighbouring ϕ sub-sectors, providing
that pmin

T is not reduced below 2 GeV.

However, the stub can also be tested against a second condition in the r-ϕ plane, to reduce the
number of stubs that need to be duplicated. This test exploits the stub bend measurement b,
measured in units of the strip pitch, which is provided by the pT-modules. The bend fur-
ther constrains the allowed q/pT range of the track to lie in the range (q/pT)min < (q/pT) <
(q/pT)max where:

(q/pT)max/min =
(b± kb) ρ

0.0015 rB
, (4)

ρ = (p/s) for barrel stubs and ρ = (p/s) · (z/r) for endcap stubs, and p and s are the pitch and
separation of the two sensors in a module, respectively. As there are only eight possible values
of (p/s), this quantity is retrieved from a look-up table in firmware. This equation assumes that
the resolution in the bend, when measured in units of the sensor pitch, is the same everywhere
in the tracker. Simulations confirm this assumption to be valid and indicate an approximate
value of

√
2/12 for the resolution. The true bend is assumed to lie within kb of the measured

value, where kb is a configurable cut parameter whose value is chosen to be 1.25 (approximately
three standard deviations).

This constraint on q/pT leads to the condition:

|∆ϕ′| < 0.5 · 2π

Nϕ
+ ϕ′res (5)

where

∆ϕ′ = ∆ϕ + bρ
rT

r
(6)

and ϕ′res, which allows for the resolution in the stub bend, is given by

ϕ′res = kbρ
∣∣∣ rT

r

∣∣∣ . (7)

The GP routing block is implemented as a three-stage, highly pipelined mesh. It can route stubs
from up to 72 inputs, one per DTC (with up to 36 DTCs assumed in each of the two detector
octants from which the GP receives data), to any of 36 outputs, where each output corresponds
to a sub-sector. The first layer organises stubs into six groups of three sub-sectors in η, which in
turn are each arranged according to their final η sub-sector in the second layer. The third layer
routes the stubs by ϕ sub-sector. Each arbitration block in this router is highly configurable,
and can easily be adapted for alternative sub-sector boundaries.

The GP for a processing octant can be implemented within a single Xilinx Virtex-7 XC7VX690T
FPGA. The FPGA resource usage is shown in Table 1. Running at 240 MHz, the latency (de-
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Table 1: Resource utilisation of each pre-processing block (with 48 needed per TFP) and the
entire routing block of the GP as implemented in the Xilinx Virtex-7 XC7VX690T FPGA. The
usage as a percentage of the device’s available resources are shown in parenthesis. Four types
of FPGA resources are given: look-up tables (LUTs); digital signal processors (DSPs); flip-flops
(FFs); and block RAM (BRAM), a dedicated two-port memory module containing 36 Kb of
RAM each. A description of the FPGA and each type of logic resource can be found in [16].

LUTs DSPs FFs BRAM (36 Kb)
Pre-processing block 1942 (0.4%) 22 (0.6%) 2416 (0.3%) 1 (0.0%)
Routing block 27700 (6.4%) 0 (0.0%) 89531 (10.3%) 174 (11.8%)

fined as the time difference between first stub received and first stub transmitted) of the pre-
processing and routing blocks is 58 and 193 ns, respectively. A version of the GP router has
been developed to run at 480 MHz. In this version, additional registers were required to meet
timing constraints, leading to an overall latency reduction of 60 ns.

5.2 Hough Transform

5.2.1 Algorithm Description

The Hough Transform is a widely used method of detecting geometric features in digital im-
ages [17]. As such, it is well suited to the task of recognising tracks from a set of stubs. Here,
it is used to reconstruct primary charged particles with pT > pmin

T , using data from the Outer
Tracker in the r-ϕ plane. An independent Hough Transform is used for track finding in each of
the 36 sub-sectors defined by the GP within each processing octant.

Charged particles are bent in the transverse plane by the homogeneous magnetic field (B), and
their radius of curvature R (in cm) expressed as a function of the particle’s pT and charge q is

R =
pT

0.003 qB
. (8)

Particles originating at or close to the interaction point are of most relevance to the L1 trigger.
The trajectory of such particles in the transverse plane is described by the following equation.

r
2 R

= sin (ϕ− φ) ≈ ϕ− φ . (9)

Here φ is the angle of the track in the transverse plane at the origin [6], and the small angle
approximation used is valid for tracks with transverse momentum above about 2 GeV (large R).
Furthermore, the (r,ϕ) coordinates of any stubs produced by the particle will be compatible
with this trajectory, if one neglects effects such as multiple scattering and bremsstrahlung.

Combining the two previous equations, one obtains

φ = ϕ− 0.0015 qB
pT

· r . (10)

This equation shows that a single stub with coordinates (r,ϕ) maps onto a straight line in the
track parameter space (q/pT, φ), also known as Hough-space. If several stubs are produced by
the same particle, then the lines corresponding to these stubs in Hough-space will all intersect
at a single point, neglecting effects such as detector resolution and multiple scattering for the
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Figure 8: Illustration of the Hough Transform. On the left-hand side is a sketch of one quarter
of the tracker barrel in the x-y plane, showing the trajectory of a single particle together with
the stubs it produces, shown as dots, in the six barrel layers. On the right-hand side, the same
six stubs are now shown in Hough-space, where the axes correspond to track parameters (q/pT,
φT). Each stub is represented by a straight line, and the point where several such lines intersect
both identifies a track and determines its parameters (q/pT, φT).

time being. This intersection of stub-lines can be used to identify track candidates. Further-
more, the coordinates of the intersection point provide a measurement of the track parameters
(q/pT, φ). This is illustrated in Fig. 8.

In this Hough-space, the gradient of each stub-line is proportional to the radius r of the stub, so
is always positive. It is preferable to instead measure the radius of the stub using the variable
rT, defined in Section 5.1. This transforms the previous equation into

φT = ϕ− 0.0015 qB
pT

· rT , (11)

where the track parameters are now (q/pT, φT), with φT defined in Section 5.1. In this new
Hough-space, the stub-line gradient is proportional to rT, so can be either positive or negative,
as was assumed when drawing Fig. 8. The larger range of stub-line gradients improves the pre-
cision with which the intersection point can be measured, resulting in fewer misreconstructed
or duplicate tracks.

To implement the HT algorithm, the Hough-space can be subdivided into an array of cells,
bounded along the horizontal axis by |q/pT| < q/pmin

T , where pmin
T = 3 GeV is used for the

results presented in this paper, and along the vertical axis by the range in φT covered by the
individual sub-sector. An array granularity of 32× 64 cells in q/pT × φT is chosen as a com-
promise between tracking performance and FPGA resource use, although the cell size could
not be reduced significantly further without making the HT sensitive to deviations from Eq. 11
caused by multiple scattering or detector effects. Stubs are added to any cell that their stub-line
passes through.

Each stub also contains the bend information, which can be used to estimate an allowed range
in q/pT of the particle that produced the stub, as given by Eq. 4. Each stub need therefore only
be added to those cells in the HT array, whose q/pT column is compatible with this allowed
range. This substantially reduces the probability of producing combinatorial fake candidates.
The compatible q/pT column range is precalculated by the GP.

A track candidate is identified if stubs from a minimum number of tracker barrel layers or
endcap disks accumulate in an HT cell. Primary charged particles with pT > 2 GeV and |η| <
2.4 are usually expected to traverse at least six of these stations. However, to allow for detector
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Figure 9: Firmware implementation of one HT array, as used within an individual sub-sector.
In each of the twelve pages visible in the figure, a ‘Book Keeper’ is connected to a daisy chain of
two to three ‘Columns (Col.)’ (8 Book Keepers × 3 Columns and 4 Book Keepers × 2 Columns
= 32 Columns). Internal components are shown as boxes and data paths as lines, where arrows
indicate the direction of data flow.

or readout inefficiencies, and for geometric coverage, the threshold criteria used to identify a
track candidate only demands stubs in at least five different tracker barrel layers or endcap
disks, and this requirement is reduced to four in the region 0.89 < |η| < 1.16 to accommodate
a small gap in acceptance between the barrel and the endcaps.

5.2.2 Implementation

The HT track-finder has been implemented in FPGA firmware where each TFP employs 36 HT
arrays running in parallel. Each individual HT array processes data from one input channel,
corresponding to the stubs consistent with a single geometric sub-sector, as defined by the GP.

The design of each HT array can be split into two fully pipelined stages: the filling of the array
with stubs; and the readout of the track candidates it finds. Each stage processes one stub at
240 MHz.

The firmware design of each independent HT array is shown in Fig. 9. It consists of 32 firmware
blocks named ‘Columns’, each corresponding to one of the q/pT columns in the HT array, and
a number of firmware blocks named ‘Book Keepers’, each responsible for managing a subset
of Columns. In the current design, there are twelve Book Keepers, each of which communicate
with between two and three daisy-chained Columns.

The Book Keeper receives one stub per clock cycle from the input channel, which it stores
within a 36 Kb block memory. The Book Keeper then sends the stub data to the first Column
that it is responsible for in the HT array. However, as the stub’s z coordinate is not needed
for the HT, only a subset of the stub information is sent to the Column, consisting of the stub
coordinates in the transverse plane (rT,φT) with reduced resolution, an identifier to indicate
which tracker layer the stub is in, the range of q/pT columns that are compatible with the stub
bend, and a pointer to the full stub data stored in the Book Keeper memory. On each clock
cycle a stub propagates from one Column to the next Column along the daisy chain managed
by the Book Keeper. The components of a Column are shown in Fig. 10.

The stub propagation from Column to Column is based on Eq. 11, where the value of φT at the
right-hand boundary of the nth Column is given by the following calculation, which is carried
out in the component labelled ‘Hough Transform’ in Fig. 10,
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Figure 10: Firmware implementation of one Column, which corresponds to a single q/pT col-
umn in the HT array. A number of Columns are daisy-chained together, starting and ending
with the Book Keeper.

φT(n) = φT(0) + n · ∆q/pT · rT . (12)

Here, ∆q/pT is the fixed width of a q/pT column, which must be multiplied by an integer n,
defining the q/pT column index. The value φT (0) is given by the ϕ coordinate of the stub. In
the firmware algorithm, both φT (n) and ϕ are measured relative to the azimuthal angle of the
centre of the sub-sector. Furthermore, the constants appearing in Eq. 11, such as the magnetic
field, are absorbed into the definition of q/pT.

Since the range of q/pT columns compatible with the stub bend is pre-calculated in the GP, only
a comparison is needed to check column compatibility with the bend. Two DSPs are required
to carry out the Hough Transform calculation described in Eq. 12, since the φT(n) values of
both the left- and right-hand boundaries of the Column are needed for the next step.

In each q/pT column, the array has 64 φT cells. Stubs with a steep stub-line gradient can cross
more than one (but by construction, never more than two) of these cells within a single column.
Such cases are identified by comparison of the values of φT, from the Hough Transform calcu-
lation, at the left- and right-hand boundaries of the column. If a stub is consistent with two
cells in the column, then it must be duplicated and buffered within the ‘φT Buffer’, from where
the second entry will be processed at the next available gap in the data stream. The ‘Track
Builder’ places each stub it receives into the appropriate φT cell, where it implements the 64
φT cells using a segmented memory. This uses one 18 Kb block memory, organised as two sets
of 64 pages of memory, where the two sets take it in turn to process data from alternate LHC
collision events. Each page corresponds to a single φT cell and has the capacity to store up to
16 stub pointers, so this is the maximum number of stubs that can be declared consistent with
an individual cell.

In each φT cell in the Column, the Track Builder maintains two records of which barrel layers
or endcap disks were hit by the stubs stored in the cell. The reason that two records are used
rather than one is to profit from the fact that, as described in Section 5.1, the GP sub-divides
each sub-sector into two halves in rapidity, and records the consistency of each stub with each
of these halves. If the threshold criterion on the number of hit layers/disks is met in either of
these two records, then a track candidate has been found, so the cell will be marked for readout.
The use of half sub-sector information provides the equivalent to an additional factor of two in
η segmentation in terms of the number of track candidates per event, obtained without the cost
of doubling the parallelisation, and therefore logic. On the other hand, the fraction of correct
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Table 2: Resource utilisation of one Column (in the HT array) and of one entire HT array, as
implemented in the Xilinx Virtex-7 XC7VX690T FPGA [16]. The usage as a percentage of the
device’s available resources are shown in parenthesis. The entire TFP needs 36 HT arrays. The
resources needed to implement the multiplexer are not included here, but are relatively small
in comparison.

LUTs DSPs FFs BRAM (36 Kb)
One Column 188 (0.0%) 2 (0.1%) 204 (0.0%) 1 (0.1%)
One HT array 6014 (1.4%) 64 (1.8%) 6718 (0.8%) 33 (2.2%)

stubs on track candidates is unchanged as all the stubs stored in cells meeting the threshold
criteria are read out, rather than only those compatible with just one of the sub-sector halves.

The ‘Hand Shake’ component is responsible for shifting the track candidate stubs from Column
to Column, until there are no more stubs in the pipeline. It then enables read out of the Track
Builder, such that a contiguous block of stubs from matched track candidates will be created.
A track candidate stub now contains a record of the track parameters, φT and q/pT (as Hough
array indices), and a stub pointer, which is used to extract the full stub information from the
Book Keeper memory.

To minimise the number of Book Keeper outputs, a multiplexer groups the candidates from six
Book Keepers onto a single output, resulting in a total of 72 outputs from the HT per TFP. At
this stage load balancing is applied across sub-sectors so that if an excessive number of tracks
is found in a single HT array, typically within dense jets, candidates are assigned to different
outputs to ensure all data is passed on to the next stage efficiently.

Table 2 shows the resource utilisation of one Column (in the HT array), and of one HT array.
Through use of common memory structures it is possible to map the complex Hough Transform
array into the FPGA in an extremely compact way. Division of the array into daisy-chained
Columns is particularly advantageous, as it enables highly flexible placement and routing pos-
sibilities.

5.3 Kalman Filter

5.3.1 Algorithm Description

A Kalman filter was chosen to fit and filter the track candidates produced by the Hough Trans-
form. The filter begins with an estimate of the track parameters and their uncertainties, also
referred to as the state. Stubs are used, iteratively, to update the state following the Kalman for-
malism, decreasing the uncertainty in the state with each measurement. A weighting derived
from the relative uncertainties in the state and measurement, and termed the Kalman gain, con-
trols the adjustment of the track parameters. The choice of a Kalman filter for the track fitting
was guided by the features of the track candidates presented by the HT.

In simulation, over half of the track candidates identified by the HT that match a genuine track
contain at least one stub from another particle. Any fit to a stub collection containing incorrect
measurements will adversely affect the fitted parameters, so removal of such stubs is desirable.
Furthermore, simulations indicate that approximately half of the tracks found by the HT do
not correspond to genuine tracks. Discarding these fake tracks, without significant loss of
efficiency, is also desirable. The KF is capable of rejecting these incompatible stubs (in addition
to fake tracks) ‘on the fly’, to get the best possible estimate of the track parameters. In addition
to the advantages of the Kalman filter for track reconstruction discussed by Frühwirth in [18],
the algorithm has several aspects making it suitable for implementation on FPGAs compared
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to global track fitting methods:

• The matrices are small, and their size is independent of the number of measure-
ments, meaning logic usage is minimised.

• The only matrix inversion is of a small matrix.

The iterative procedure required by the filter adds some complication, but iteration is not
unique to the KF method of track fitting.

The track parameters used in this implementation of the KF are shown in Eq. 13

s = (1/2R, φ, cot θ, z0), (13)

where R is the track radius of curvature and related to q/pT according to Eq. 8, φ is the az-
imuthal angle of the track in the transverse plane at the beam line, θ is the polar angle and z0 is
the longitudinal impact parameter.

Assuming that tracks originate at r = 0, the track equations expressed in terms of stub radius r
are as follows:

ϕ =
r

2R
+ φ, (14)

z = cot θ · r + z0, (15)

where it is evident that these equations are linear in r.

The track equations naturally suggest using the radius r as the stepping parameter in the KF.
This is an appropriate choice for the tracker barrel, where modules are arranged in layers of
approximately constant radius. However in the detector endcaps the modules have an orthog-
onal orientation to those in the barrel and this naturally leads to using the z coordinate as the
stepping parameter. Since most tracks will pass through modules in the barrel before reaching
the endcap, they would preferably be described by two different parametrisations along their
trajectory. However, transforming the state across this boundary would require operations on
the state vector s and its covariance matrix, and distinct processing blocks for the update of
barrel and endcap states would also be needed. For a fast and lightweight FPGA implemen-
tation of the KF, this would not be desirable, so instead r is used as the stepping parameter
throughout, and the uncertainty in r due to the strip length in endcap modules is folded into
the z uncertainty using σ2

z = σ2
r (cot θ)2.

Figure 11 shows the fitting procedure for an example candidate, which is now described. A
seeded estimate for the state is obtained from the HT array index (q/pT,φT) and sub-sector in
which the track candidate was found. Starting with the seed state and its covariance matrix,
stubs are used to update the state, ordered by radius from inside-out. To allow for detector
inefficiencies or for the possibility that no compatible stub is found on a given layer, up to two
non-consecutive layers may be skipped. In the case that a track candidate contains more than
one stub on a given detector layer (when only one is realistic, or occasionally two when detector
elements overlap), each combination of stub and incoming state is propagated separately. This
eliminates any possibility of the incorrect stub affecting the fit of the genuine combination. The
resulting states are ordered, giving preference first to states with fewer missing layers, and then
with the smallest χ2. Only the best state according to this measure is obtained from the filter,
so no extra duplicates are introduced.

5.3.2 Implementation

The algorithm itself can be separated into two parts,
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Figure 11: An example of the Kalman Filter fitting procedure for an HT candidate in the barrel,
shown in the r-z plane. Genuine stubs are those associated with the same simulated charged
particle, and fake stubs are those which are not. Line segments represent the fitted track trajec-
tory at that point of the fit, updating with increasing radius, with the shaded area around the
line showing one standard deviation of the track parameter estimate. Dashed track segments
highlight the different result after fitting with stub 2a or 2b. The state that includes stub 2b is
rejected after propagation to stub 4, due to failing a χ2 cut in two consecutive layers.

• a ‘data-flow’ part consisting of the State Update block to carry out the matrix opera-
tions described by the Kalman formalism. This logic updates the state, including the
track parameters, the covariance matrix, and the χ2, along with additional parame-
ters to be used for selection or filtering;

• a ‘control-flow’ part which must gather stub and state information to present it to
the State Update block, store and select on updated states, and handle the iterative
nature of the algorithm.

The State Update block is implemented in fixed-point arithmetic, which uses fewer resources
and clock cycles than floating-point operations. Profiling of the parameters in a C++ simulation
was used to tune bit sizes and precision in the design of the firmware. The high level synthesis
language MaxJ [19] was used for the implementation of the calculations, and the design benefits
from the built-in fixed-point support and pipeline scheduling provided by the tool.

With the Xilinx Virtex 7 series, an 18-bit and 25-bit quantity can be multiplied in a single DSP
unit, while two units can be used to multiply one 35-bit and one 25-bit quantity for higher
precision. Matrix multiplications are implemented, performing all required multiplications in
parallel in separate DSP instances, with a balanced adder tree used for the sums. The higher
precision multiplier variant is predominantly used in the covariance matrix update path, while
the track parameter update is implemented with single DSPs.

A custom division algorithm was devised for the matrix inversion, which is fast and lightweight,
requiring one lookup and one multiplication. Consider the inversion of the 2× 2 diagonal ma-
trix X. This matrix is simple enough to invert using the analytic solution:

X−1 =

[
a 0
0 b

]−1

=
1
ab

[
b 0
0 a

]
=

[
1/a 0

0 1/b

]
. (16)
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Figure 12: Connection of logical elements within a Kalman Filter worker.

The final expression requires fewer processing steps than the intermediate solution, and allows
for finer control over the precision of the two non-zero elements. An implementation of the
function 1/x is therefore required, which is usually an expensive operation in an FPGA. The
algorithm must also be fast, in order to meet the latency requirement. A lookup would be the
fastest possible algorithm, but since the divisor is a 25-bit quantity, the cost in memory is too
large. As a result, an algorithm using a single 36 Kb memory for a lookup has been developed.

The divisor x can be expressed as the sum of individual powers of two as: x = Σnxn2n where
xn can be 0 or 1. This sum can in turn be expressed as the sum of two smaller sums:

x =
∞

∑
n=m

xn2n +
m−1

∑
n=0

xn2n = xH + xL (17)

where m bits are used to encode xL. Then:

1
x
=

1
xH + xL

=
1

xH

(
1 + xL

xH

) ≈ xH − xL

x2
H

(18)

where a binomial series, truncated after the second term, was used for the last step. The value
of m, that is the number of bits used for xL, is chosen such that xH uses 11-bits, and therefore one
36 Kb memory is used to lookup 1/x2

H. In the implementation a shift is performed such that the
most significant bit of x has value 1, thereby giving the best precision of xH. A corresponding
shift is performed on the result. After the quantity xH − xL is calculated, the result is multiplied
by

(
1/x2

H
)

using DSPs.

The control-flow part of the design manages the stub and state data to produce filtered tracks
from the KF. Figure 12 shows the connection of the logical elements within a KF worker, and
their operation is described below:

• Stubs for a set of track candidates arrive in packets from the HT. Since the algorithm
is iterative and an iteration takes many clock cycles, the stubs are immediately stored
in memory for later retrieval.

• The Seed Creator outputs the state of Eq. 13 in the required format. As any given HT
array index for a given sub-sector can only produce one track candidate, the array
index and sub-sector is used as a unique ID for the candidate, providing a reference
to the stubs stored in memory at the first step.

• Only one state can enter the State Update block on each clock cycle, and there may be
competition between partially worked states and a new candidate arriving into the
worker. The State Control block multiplexes the incoming states, giving preference
to new candidates.
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• The State-Stub Associator block uses the IDs stored with the state to retrieve associ-
ated stubs, in order to update the current state. The block determines which iteration
the current state is on and passes any stubs within the candidate assigned to the next
layer, or even the next-to-next layer in the case of a skipped layer, one per clock cycle.
Stubs from the next-to-next layer can only be forwarded to the State Update block if
the current state indicates that it has not skipped two layers already.

• The Kalman filter is run in the State Update block using the current state in associ-
ation with the stub. The track parameters, covariance matrix, χ2 value, and other
status information are all updated for the next iteration.

• At the output of the State Update block, any states that fail a set of configurable
cuts are immediately discarded. The State Filter is able to select against states based
on pT, χ2, z0, sub-sector compatibility and a minimum requirement on number of
stubs from PS modules. Additionally the State Filter is capable of preserving the
best N output states, by χ2, for a given state from the previous iteration. On the first
iteration the best four states are kept, on subsequent iterations this is reduced to one.
This helps minimise the total number of states circulating in the worker at any point
in time.

• The surviving states are written into a FIFO, to complete further iterations of the
Kalman filter. A completed track is one where a state has finished four iterations of
the KF, after which the state is no longer re-inserted into the FIFO.

• The surviving states are also presented to the State Accumulator where the best state
for each candidate is stored until an accumulator time-out signal is propagated, and
the fitted tracks are read out. In the accumulator, preference is given to states with
fewer missing layers, and then with the smallest χ2. This block allows readout of
partially filtered states on receipt of the time-out, which may occur in particularly
dense jets with many candidates and many stubs per candidate.

The resource usage of a single KF worker is summarised in Table 3. As the resource usage is
small compared to the total available, multiple filter workers can be used in parallel.

Each logical element in Fig. 12 is implemented with a fixed latency. The latency of a single KF
iteration is dominated by the matrix operations involved in the State Update block, which takes
55 clock cycles. With a 240 MHz clock frequency this is 230 ns. At each iteration, multiple stubs
go into, and (after a 55 clock cycle delay) come out of, the State Update block on subsequent
clock cycles. Allowing independent propagation of multiple stubs on a layer slightly increases
the total latency compared to just four passes of the single iteration latency. An accumulation
period of 1550 ns before time-out is set, after which point all tracks, completed or uncompleted,
for one event are output. Measurements (as described in Section 7) show that fewer than 0.1%
of tracks in tt events with 200 PU fail to be fully reconstructed within this accumulation period.
Since the state keeps track of the current iteration (identical to the number of stubs on the
state), quality cuts can be placed on the final tracks, if, for example, only completed KF tracks

Table 3: Resource utilisation of the Kalman Filter state update block, and one full Kalman Filter
worker, as in the Xilinx Virtex-7 XC7VX690T FPGA [16]. The usage as a percentage of the
device’s available resources are shown in parenthesis. For a single TFP, a total of 72 workers
processing data from 36 HT arrays are used.

LUTs DSPs FFs BRAM (36 Kb)
State Update block 4014 (0.9%) 70 (1.9%) 3094 (0.4%) 6 (0.4%)
One Kalman worker 5520 (1.3%) 71 (2.0%) 4370 (0.5%) 24.5 (1.7%)
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are required.

5.4 Duplicate Removal

The Duplicate Removal algorithm is the last element in the Track Finding Processor chain. At
the input to the DR, over half the track candidates are unwanted duplicate tracks created by
the HT, and the purpose of the DR is to eliminate these.

The DR algorithm is based on an understanding of how duplicate tracks form within the HT.
This is illustrated in Fig. 13, where in the example shown, five stubs (blue lines) from a single
particle produce three track candidates in the green and yellow HT cells. Since these three
tracks contain the same stubs, when they are fitted they will all yield identical fitted track
parameters. These fitted parameters should correspond to the yellow cell, where the lines
intersect.

• Algorithm:	after	track	fitter,	kill	any	tracks	if	their	fitted	helix	parameters	do	not		correspond	to	
the	same	HT	cell,	as	the	HT	originally	found	the	track	in.	
(i.e In	example,	kill	the	green	cells	and	keep	the	yellow	one).

• Advantage:	The	algorithm	finds	duplicates	by	looking	at	individual	tracks	
=>	No	need	to	compare	pairs	of	tracks	to	see	if	they	are	the	same	with	each	other.

“Simple” Duplicate Track Removal Algorithm

3312/10/2016Ian Tomalin

• In the Hough transform shown, the 5 stubs (blue lines) from a single particle 
produce 3 track candidates in the green & yellow HT cells.

• These three tracks contain the same stubs, so when they are fitted, they all 
yield identical fitted helix parameters.

• These fitted helix parameters should correspond to the yellow cell, where the 
lines intersect. (Although resolution effects may change this …)

Innermost  stub

Outermost  stub

Middle  stub

Algorithm	description

Kostas	Manolopoulos	 (RAL)	TMTT 4

Figure 13: r-ϕ Hough Transform showing formation of duplicates. The yellow cell represents
the genuine track-candidate, whereas the green cells depict duplicate track candidates gener-
ated within the HT by the same set of stubs.

Based on the above, the DR algorithm can be described as follows: after the track fitter, any
track whose fitted parameters do not correspond to the same HT cell as the Hough Transform
originally found the track in, is eliminated. Hence, in the example of Fig. 13 the green cells
will be eliminated and the yellow cell will be kept. The advantage of this algorithm is that it
identifies duplicates by looking at individual tracks. As a result, there is no need to compare
pairs of tracks in order to find out if they are similar. There is however a small subtlety: the
described algorithm loses a few percent of efficiency due to resolution effects. The efficiency
can be recovered by performing a second pass through the rejected tracks. During that pass,
tracks whose fitted parameters do not correspond to the HT cell of a track from the first pass
are probably not duplicates, so they are rescued.

5.4.1 Implementation

The implementation of the duplicate removal algorithm is shown in Fig. 14. The DR block
shown in that figure processes the tracks found by the KF in six sub-sectors, so six such DR
blocks must be instantiated to process tracks from all 36 sub-sectors in the processing octant.
Designing the DR block to process six sub-sectors instead of one minimises the resource usage.

Within the DR block, a ‘Matrix’ representing the HT arrays of the six sub-sectors is imple-
mented in a 18 Kb memory, and is addressed using the sub-sector number and (q/pT, φT) cell
location within the HT array. Any KF track that is flagged as ‘consistent’ (i.e., its fitted helix pa-
rameters correspond to the same HT cell as the HT originally found the track in) is forwarded
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R_FIFO

MatrixA

Input
Output

MatrixB

Output
Logic

Figure 14: Architecture of the Duplicate Removal algorithm implementation. A single DR logic
block is shown, which processes the KF tracks from six sub-sectors (which arrive via ‘input’).
Therefore, six such blocks are needed to process all 36 sub-sectors in the processing octant.

to the output channel, and in addition, the corresponding Matrix address is marked. In con-
trast, tracks which are ‘inconsistent’ are added to a FIFO (named ‘R FIFO’). After all tracks have
arrived from the KF, the inconsistent tracks are read out from R FIFO, and if one has fitted track
parameters corresponding to an HT cell location not yet marked in the Matrix, the track is res-
cued by forwarding it to the output channel, and marking the corresponding address in the
Matrix.

A complete reset of the Matrix is required before processing tracks from another LHC bunch
crossing, so two Matrices (labelled ‘Matrix A’ and ‘Matrix B’ in Fig. 14) are instantiated, which
take it in turn to process alternate LHC events. There are thus always one active Matrix and
one resetting Matrix. Along with them, two ‘clear’ FIFOs are used, one for each matrix, to store
the addresses that were marked and hence need to be cleared in readiness for a new event.
Each Matrix plus its corresponding clear FIFO occupy one 36 Kb memory block.

The FIFO in which the ‘inconsistent’ tracks are temporarily stored uses two 36 Kb block RAMs.
Therefore, a total of four 36 Kb block RAMs are used for the entire DR block design, which
handles six sub-sectors. As well as being a lightweight design, it also has a low latency of only
four clock cycles. The total resource utilisation, including other types of resources, is reported
in Table 4.

Table 4: Resource usage of a single Duplicate Removal block for six sub-sectors, as imple-
mented in the Xilinx Virtex-7 XC7VX690T FPGA [16]. The usage as a percentage of the devices’
available resources are shown in parenthesis. The entire TFP needs six of these DR blocks.

LUTs DSPs FFs BRAM (36 Kb)
One Duplicate Removal block 291 (0.1%) 0 (0.0%) 496 (0.1%) 4 (0.3%)

6 The Hardware Demonstrator Slice
A demonstrator system has been constructed in order to implement a slice of the proposed L1
track finder on real hardware, and to measure and validate its performance within the latency
constraints. Input data to the demonstrator, in the form of stubs, is generated using CMS
simulation software (CMSSW) for the tracker geometry illustrated in the lower diagram of Fig. 3,
using Monte Carlo physics events generated under HL-LHC conditions.

The track finder slice corresponds to one Track Finding Processor as described in Section 5
and is designed to allow the demonstration of the concept using currently available technol-
ogy. While the slice processes data from 1/8 of the tracker in ϕ, and all of the tracker in η,
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since each TFP operates independently from the other, one can run data for all eight ϕ-octants
sequentially, allowing the entire event to be reconstructed in hardware.

Located at the CERN Tracker Integration Facility (TIF), the demonstrator consists of one cus-
tom dual-star MicroTCA [20] crate, equipped with a commercial NAT MicroTCA Carrier Hub
(MCH) for Gigabit Ethernet communication via the backplane, and a CMS specific auxiliary
card known as the AMC13 [21] for synchronisation, timing and control. The TFP algorithms
are implemented on a set of five Imperial Master Processor, Virtex-7, Extended Edition (MP7-
XE) double width AMC cards [22].

Designed for the CMS L1 time-multiplexed calorimeter trigger, each MP7 is equipped with a
Xilinx Virtex-7 XC7VX690T FPGA, and twelve Avago Technologies MiniPOD optical transmit-
ters/receivers, providing 72 optical link pairs each running at up to 12.5 Gb/s, for a total optical
bandwidth of 0.9 Tb/s in each direction. For the demonstrator, the links are configured to run
at 10.0 Gb/s with 8b/10b encoding for an effective 8 Gb/s transfer rate. As a result the system
bandwidth is a factor of two smaller than that defined in Section 4 where a 16.3 Gb/s system is
required (assuming 64b/66b encoding). This is accommodated in the demonstrator by using a
time-multiplexed factor of 36 instead of 18. A discussion of how the hardware and algorithms
would scale to the full system is provided in Section 8.

Infrastructure tools are provided with the MP7, including core firmware to manage transceiver
serialisation/deserialisation, data buffering, I/O formatting, board and clock configuration as
well as external communication via the Gigabit Ethernet interface. Any algorithms deployed
are segregated from the firmware responsible for these tasks, allowing a system such as the
demonstrator to be built up of processing blocks, each running on a single MP7-XE, daisy-
chained together with high-speed optical fibres. Division of the demonstrator in this way al-
lows firmware responsibilities to be easily divided between personnel, provided I/O formats
between the processing blocks are defined. By parallelising or daisy-chaining of algorithms
across multiple boards the ability to estimate final system performance, without limitations in
the resources available in the technology used, is achievable. As such an upper limit on the total
FPGA logic requirements for a future processing card can be extracted from the demonstrator.

The firmware components and the connections between them are shown in Fig. 15 and relate
to the components described in Section 5. Eight MP7-XE boards are currently used for the
demonstrator chain. Two boards, named sources, each represent data from a set of up to 36
DTCs. Each source board is implemented as a large buffer for the storage of stub data from a
detector octant, where the data is loaded directly from simulation via IPBus [23]. Each output
stream from the source boards represents a separate DTC injecting pre-formatted 48-bit stubs
into the Geometric Processor and is capable of playing up to 30 consecutive events through
the demonstrator. Two sources are required to emulate how data from two adjacent detector
octants can feed a single TFP for tracks that cross the detector boundary. The TFP itself is
implemented on five boards: one being used for the GP, two for the HT, and two more for the
KF and DR. One additional board, the sink, is used to capture the track-finder output from up
to 30 simulated physics events before being read out, again with IPBus. For standalone testing
of firmware blocks, or parallel data taking alongside the full chain, an additional three boards
are also installed in the demonstrator crate. The demonstrator crate is shown in Fig. 16.

7 Demonstrator Results
Simulated physics events (typically top quark pair-production, tt) with a PU of up to 200
proton-proton interactions per bunch crossing were produced with the CMS simulation soft-
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Figure 15: The demonstrator system consists of five layers of MP7s; source, Geometric Pro-
cessor (GP), Hough Transform (HT), Kalman Filter + Duplicate Removal (KF+DR), and sink.
A total of eight MP7-XE boards are used, each indicated by a separate coloured block in the
diagram.

data	flow	

Src	 Src	 GP	 HT		 HT		 KF	+	
DR	
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Figure 16: The demonstrator crate is equipped with 11 MP7-XE boards, an AMC13, MCH and
the required optics.

ware (CMSSW), including modelling of particle interactions with the detector and the genera-
tion of stubs.

Software developed to study the performance of the hardware slice is used to inject stubs from
these samples into the demonstrator chain, converting them to a text file format before trans-
mission over IPBus. Tracks reconstructed by the demonstrator using these stubs are retrieved
via IPBus at the end of the chain and are stored for later analysis.

An emulation of the hardware chain has also been developed in software, which is able to pro-
cess the same integer formatted stub data used as input to the demonstrator to produce tracks,
for offline validation with hardware output. The emulator uses fixed-point mathematical oper-
ations where appropriate and simulates the logic implemented within the FPGAs as closely as
possible in order to model time-dependent effects. However, as it is not a clock-cycle accurate
emulation, small differences between hardware and emulation are occasionally expected. The
emulator software can be optionally configured to use full floating-point precision for com-
parison. Both emulated and hardware tracks are analysed by a comparison software package,
which checks for consistency on an event-by-event basis.
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7.1 Track Reconstruction Efficiency

The track reconstruction efficiency is measured relative to all generated charged particles from
the primary interaction that produce stubs in at least four layers of the tracker, and lie within
the kinematic acceptance (pT > 3 GeV, |η| < 2.4, |z0| < 30 cm and Lxy < 1 cm, where Lxy is the
transverse distance from the beam line to the particle vertex). A charged particle is defined to
be successfully reconstructed and contributes to the efficiency if:

• a reconstructed track has stubs associated to the particle in at least four different
tracker layers;

• this reconstructed track has no incorrect stubs (i.e. all its stubs were produced by the
same particle).

However, the second of these two matching requirements is only imposed when quoting results
from the entire demonstrator (i.e, the ‘full chain’), since it is natural that some incorrect stubs
are present if only part of the chain is used. Successfully reconstructed tracks are also known
as matched tracks. Unmatched reconstructed tracks are also known as fake tracks. If a charged
particle matches more than one reconstructed track, subsequent tracks are labelled duplicates.

Table 5 shows how tracking performance evolves as data progresses through the reconstruction
chain, with these results obtained without imposing the second of the two matching require-
ments mentioned above. It can be seen that the HT finds tracks with high efficiency, but many
of the tracks are either fake or duplicate tracks. The KF eliminates the majority of the fake
tracks whilst the duplicate removal algorithm removes almost all the duplicates. For the full
chain, 100.0% of the tracks satisfying the first of the two matching criteria above also satisfy the
second one, mainly due to the ability of the KF to reject incorrect stubs.

Table 5: Track finding performance on simulated tt events at a PU of 200, after each stage of the
demonstrator chain. The track finding efficiencies at each stage are listed using the efficiency
definitions given in the text. Also quoted are the mean numbers of reconstructed tracks per
event in the entire tracker, and the subset of these tracks that are unwanted as they are either
fake or duplicate tracks.

Stage Efficiency [%] Total # of tracks # of fakes # of duplicates
HT 97.1 331 139 126
KF 95.1 190 27 103
DR 94.4 79 16 3

Full chain 94.4 79 16 3

The mean tracking efficiency (over all applicable |η|), in tt events with 200 PU, as measured in
hardware, is 94.5%. This number agrees to within 99.5% with the results generated by emula-
tion. The agreement when studied as a function of the particle kinematic properties is shown in
Fig. 17. The tracking efficiency from emulation is identical regardless of whether floating-point
or integer precision stub data are used.

The efficiency to reconstruct leptons in the tt events exceeds 97% for muons over the entire
acceptance, but is somewhat lower for electrons, as shown in Fig. 18. The loss of electron
efficiency is expected and is mainly due to bremsstrahlung effects, which cause the particle
trajectory to deviate from the helix assumed by the tracking algorithm. Some recovery of this
efficiency loss should be possible. For example, the KF algorithm can be modified to allow
for multiple scattering. The agreement between hardware and emulation is equally good for
leptons.
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Figure 17: Track reconstruction efficiency, measured in both hardware and emulation, for tracks
originating from the primary interaction in tt events with 200 PU, as a function of pT (left) and
η (right).
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Figure 18: Track reconstruction efficiency, for electrons and muons from tt events with 200 PU,
as a function of pT (left) and η (right). These results are obtained from emulation.
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Figure 19: Track reconstruction efficiency as a function of η, for all tracks originating from the
primary interaction (black dots), or for only the tracks contained within a primary jet that has a
total transverse momentum exceeding 100 GeV (red open circles), for tt events at 200 PU. Either
no incorrect stubs are allowed on the track (left), or one incorrect stub is allowed on the track
at most (right). These results are obtained from emulation.
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The quality of tracks in the core of dense jets is slightly degraded due to the increased like-
lihood of incorrect stubs being included in the track candidate. This can be seen even in our
default sample of tt at 200 PU. Figure 19 shows that when selecting on charged particles in
jets which have total transverse momentum exceeding 100 GeV, there is a small efficiency loss,
particularly in the region |η| > 1. As shown in Fig. 19, when adjusting the second matching
requirement to allow reconstructed tracks with at most one incorrect stub to contribute to the
efficiency this effect is reduced. This indicates that much of the loss in the region |η| > 1 comes
from the reduced track purity in these high-energy jets. Better rejection of these incorrect stubs
by the KF should help improve the overall performance of the track-finder.

7.2 Track Parameter Resolution

Figure 20 shows the resolutions of the four track parameters (pT, φ, cot θ, z0) for reconstructed
primary tracks from both hardware and emulation in tt events at PU of 200. The fifth track
parameter, d0, is not currently reconstructed by the KF, but may be in the future (see Section 8
for further discussion). The resolutions compare well to those obtained with offline track re-
construction [9], and good enough to ensure that the tracks will be useful to the L1 trigger. The
level of agreement between hardware and emulation is reasonable, with remaining differences
due to the use of floating-point arithmetic in parts of the emulator code. The degradation in
resolution with increasing pseudorapidity is expected, due to a combination of the shorter ef-
fective lever arm available, the reduced effective precision for hits in the endcap and the impact
of increasing material traversed by particles.
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Figure 20: Relative pT resolution, φ resolution, z0 resolution and cot θ resolution measured for
tracks originating from the primary interaction in tt events at PU of 200 as determined from
both hardware and emulation.

It is also instructive to compute the parameter resolutions for particles with different transverse
momenta. The resolution of the track parameters for single isolated muons, as measured using
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the emulator only, is provided in Fig. 21. Multiple scattering effects dominate at low transverse
momenta and this is particularly evident in the estimate of the φ parameter, where the reso-
lution is better than 0.4 mrad for muons with 15 < pT < 100 GeV and between 0.7 mrad and
1.5 mrad for muons with 3 < pT < 5 GeV. Similar effects are observed for the cot θ resolution
at large pseudorapidities. The relative precision of the transverse momentum for muons with
pT < 15 GeV is limited by multiple scattering, but conversely degrades with increasing pT due
to the decreasing radius of track curvature.
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Figure 21: Relative pT resolution, φ resolution, z0 resolution and cot θ resolution measured for
single isolated muons with 3 < pµ

T < 5 GeV, 5 < pµ
T < 15 GeV, and 15 < pµ

T < 100 GeV. These
results are obtained from emulation.

The resolution of the four parameters in Fig. 21 also compares well with offline simulation [9],
which is able to utilise all available information from the tracking system and more sophisti-
cated reconstruction algorithms. In offline simulations, for 10 GeV muons passing through the
centre of the tracker barrel, the φ resolution is approximately 0.2 mrad while the pT resolution
is ∼0.5%. On the other hand, mostly due to the inclusion of hit information from the pixel
detector, the precision of the remaining two parameters is more than an order of magnitude
better in offline simulations compared to the demonstrator.

In comparing the z0 resolution of single isolated muons in Fig. 21 with earlier simulation stud-
ies of the track finder [4], the demonstrator appears to show approximately half the expected
precision in the barrel. This degradation of resolution in the demonstrator system comes as a
result of choosing to encode the r and z stub coordinates too coarsely (using 10 and 12 bits,
respectively) and therefore reducing the ultimate precision of the track parameters. Figure 22
shows that improving the encoding of the stub coordinates by assigning an additional two
extra bits to both r and z recovers the lost precision, meaning that the z0 resolution reaches
∼1 mm for muons with 5 < pT < 15 GeV and |η| < 2. A small improvement can also be
observed for the cot θ resolution as well. This change can be implemented without degrading
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the performance elsewhere in the demonstrator system. Figure 22 also shows that with this
improved encoding scheme, the precision of all four parameters approaches that obtained by
the floating-point simulation of the demonstrator.
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Figure 22: Relative pT resolution, φ resolution, z0 resolution and cot θ resolution measured for
single isolated muons with 5 < pµ

T < 15 GeV obtained from emulation, using different levels of
precision in simulation: default encoding (10-bit r, 12-bit z, 15-bit φ stub coordinates); improved
encoding (12-bit r, 14-bit z, 15-bit φ stub coordinates); and full floating-point simulation.

7.3 Data Rates

As shown in Fig. 23, the number of tracks reconstructed per event increases with increasing
pile-up. On average, 79 tracks/event are reconstructed in tt events with 200 PU.

The demonstrator system can cope comfortably with the high data rates present in these events.
Figure 24 (left) shows the distribution of the number of stubs per event transmitted from the
GP to the HT in each sub-sector. Truncation of data would occur if these stubs could not all be
sent within the 900 ns period that is defined by the time-multiplexed factor in the demonstrator.
As stubs from each sector are transmitted at 240 MHz, this corresponds to a theoretical limit of
216 stubs per sub-sector, although in the current system the limit is actually about 175, due to
gaps between the output stubs. This limit exceeds the average data rate by almost a factor two,
so truncation effects in this part of the system are small: 0.3% of stubs are lost in tt events at 200
PU, which in turn leads to a 0.5% loss of tracking efficiency.

Figure 24 (right) shows the number of reconstructed tracks in each sector output by the HT per
event. It is striking that 70% of sectors contain no reconstructed tracks, which occurs because
the 3 GeV pT threshold used for track reconstruction is very effective at suppressing tracks from
PU interactions, while 97.5% of sectors contain fewer than ten reconstructed tracks. Since on
average each track is assigned about seven stubs by the HT, there is usually no difficulty in



30 7 Demonstrator Results

Reconstructed tracks / event

0 50 100 150 200 250 300

F
ra

ct
io

n 
of

 e
ve

nt
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

With truncation
Without truncation

<PU>=0
<PU>=140
<PU>=200

Figure 23: Total number of reconstructed tracks per event reconstructed in the tracker when
processing tt events superimposed with 0, 140, and 200 PU events. These results are obtained
from emulation, and are shown for when effects of truncation, caused by excess data flow
through the system, are both included and excluded.

outputting tracks from the HT within the time-multiplexed limit. The only challenging case is
due to collimated, high-energy jets from the tt system itself, which produce many particles and
stubs in a narrow angular region, accounting for the tails seen in Figure 24. The load-balancing
introduced at the back-end of the HT, as discussed in Section 5.2.2, addresses this challenge.
The loss in tracking efficiency due to truncation at the output of the HT is below 0.1% when
processing tt events at 200 PU.
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Figure 24: Illustration of data rates in key parts of the system when processing tt events with
200 PU. The left-hand plot shows the number of stubs transmitted from the GP to the HT per
sub-sector per event. Truncation effects occur when this number exceeds about 175. The right-
hand plot shows the number of reconstructed tracks from the HT per sub-sector per event.

As mentioned in Section 5.3.2, the latency of the KF track fitter is set at a value such that it has
time to assign stubs from four tracker layers to almost all tracks. When processing tt events at
200 PU less than 0.1% of efficiency is lost in the KF when selecting on these four stub tracks.
Again, this loss occurs mainly within particularly high-energy jets.

The loss in tracking efficiency from truncation effects of the tracking chain is determined to be
less than 0.6% when processing tt events at 200 PU, as shown in Fig. 25.
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Figure 25: Track reconstruction efficiency for tracks originating from the primary interaction in
tt events with 200 PU, as a function of pT (left) and η (right). These results are obtained from
emulation both including and excluding truncation effects.

Table 6: Total resource usage for the demonstrator TFP (with time-multiplexed factor of 36), as
implemented in the Xilinx Virtex-7 XC7VX690T FPGA [16]. The resources needed to construct
a complete TFP correspond to the sum of the numbers from the three rows labelled GP, HT,
and KF and DR.

LUTs [103] DSPs FFs [103] BRAM (36 Kb)
GP 121 1056 205 222
HT 244 2304 299 1188
KF and DR 398 5112 316 1776
Infrastructure per MP7 90 0 91 291
TFP Total (excl. infrastructure) 763 8472 820 3186
Virtex 7 690 433 3600 866 1470

7.4 FPGA Resource Usage

Constructing the hardware demonstrator out of many MP7 boards avoids the logic constraints
of a single, currently available, FPGA processing board. On the other hand, it is important to
keep the total resource usage realistic such that a final system could be built at a reasonable
cost, using FPGAs expected to be available on the timescale for production. Table 6 shows the
total FPGA resource usage for each demonstrator component (where the numbers given for the
HT and KF implementations are summed across the two boards used for each component). The
combined total for the three components gives the resources used to demonstrate the function-
ality of one entire TFP with a time-multiplexed factor of 36. Each FPGA in the demonstrator
also runs the MP7 core infrastructure firmware, which is required for board configuration, link
buffering and error checking. This firmware was developed for the CMS calorimeter trigger,
and while it does not constitute a significant fraction of logic in the TFP (as shown in Table 6),
it is expected that with some optimisation it could be reduced in size and still deliver the func-
tionality needed for the track-finder. In order to meet timing and routing constraints in the
Virtex-7, the designs often prioritised the use of block RAM over LUT based distributed mem-
ory. This balance could be readdressed in the future, as the design is adapted to newer FPGAs.

7.5 Latency

Latency measurements of the full demonstrator chain have been made for each block indepen-
dently and also for the total chain. These are shown in Table 7. Measurements include optical
transmission delays and serialisation/de-serialisation (SERDES) latency on the links. The en-
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tire demonstrator chain of source to sink and the sum of each individually measured layer give
identical results. The latency of the complete system is fixed, regardless of PU or the number of
events occupying the sector. In addition to the time difference between the first stub entering
the system and the first track leaving it, the table also shows the time difference between the
first stub entering and the last track leaving. Both these latency definitions are of interest to the
L1 trigger, which will sit downstream of the track-finder system.

Table 7: Measured latency of the demonstrated components of the track reconstruction chain,
including the serialisation/de-serialisation (SERDES) and optical transmission delays between
each board.

System latency Latency [ns]
SERDES + optical length 1 143
Geometric Processor 251
SERDES + optical length 2 144
Hough Transform 1025
SERDES + optical length 3 129
Kalman Filter + Duplicate Removal 1658
SERDES + optical length 4 129
Total: First out - First in 3479
Last out - First out 225
Total: Last out - First in 3704

7.6 Flexibility and Robustness of the System

The exceptionally low truncation rates at each stage of the demonstrator chain under challeng-
ing conditions, as reported in Section 7.3, are an indication of the margin in the system.

The latitude in the HT and KF stages to increased data flow in the system can be illustrated
by reducing the threshold criteria in the HT from five hit layers (four in specific regions) to
four hit layers over the entire tracking acceptance. Reducing this requirement would provide a
significant level of robustness to detector inefficiencies or failures but at the cost of increasing
the number of track candidates output by the HT by a factor 3.6, to 1190 candidates for tt at 200
PU. The demonstrator chain is able to process this much larger data rate, whilst keeping the
tracking efficiency loss due to truncation to about 1.7%, as shown in Fig. 26 (left). This small
additional loss of ∼1% with respect to the nominal configuration does not occur in the HT, but
is caused by the lack of time for the KF to add stubs from four layers to all tracks. Increasing
the accumulation period in the KF would recover this loss if required, at the expense of latency,
although other optimisations to the design should mean that this is not necessary (Sec. 8).
Alternatively, using the nominal threshold criteria, this significant margin could instead be
sacrificed to extract latency or FPGA resource savings, or a balance between the two.

In the nominal configuration, to understand the level of performance in a situation where a
fraction of modules in the tracker does not produce stubs, the demonstrator was tested on
samples that emulated this scenario. Figure 26 (right) illustrates the localised loss in efficiency
expected when all modules on barrel layer four, in the region −1 < η < 0 and 0 < ϕ < π, are
prevented from generating stubs in simulation. As shown in Fig. 26 (right), this efficiency loss
can be recovered by relaxing, in the affected (η, ϕ) sub-sectors only, the threshold criterion on
the number of hit layers in the HT from five to four. This threshold change leads to only a small
increase in data rate, as shown in Table 8. The increase is caused by extra fake tracks, which
occur as a result of the looser threshold.
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Figure 26: Left: track reconstruction efficiency as a function of η, measured in both hardware
and emulation, when processing tt events with 200 PU, where a global threshold criterion of
four hit layers in the HT has been applied. To demonstrate the total efficiency loss due to
truncation in hardware, the emulation result does not include truncation effects. Right: track
reconstruction efficiency as a function of η, measured in emulation, when processing tt events
with 200 PU, where the tracker is affected by a failure of all modules in the region −1 < η < 0
and 0 < ϕ < π of barrel layer 4. Results are compared before (black dots) and after (red
open circles) relaxing the threshold criterion on number of hit layers in the affected region, as
described in the text.

Table 8: Study of a module loss scenario. The mean number of tracks from the HT per event is
shown, when processing tt events with 200 PU.

No module loss With module losses
Before recovery After recovery

330 304 347

The CMS collaboration has recently developed a new proposal for the layout of the upgraded
Outer Tracker, known as the tilted barrel geometry, which is described in Section 2. Preliminary
Monte Carlo samples with the new geometry were made available to evaluate the impact of
the design change on the track finding demonstrator. Results indicate that the use of the tilted
barrel geometry substantially reduces the data rate out of the HT, as shown in Table 9. This is
mainly due to the fact that the average number of stubs in the innermost three barrel layers,
per event, is lower in the tilted case. The table also demonstrates that performance at the
end of the full chain is similar for the two geometries. This suggests that the margin in the
system when applied to the new geometry will become considerable, meaning that significant
savings in FPGA resources, latency, and overall system scale should be achievable. Thus far, no
optimisation of the tracking algorithm has been made for the tilted barrel geometry, so these

Table 9: Performance comparison between flat and tilted barrel tracker geometries using events
containing a single muon (pT(µ) = 10 GeV) superimposed on a PU of 200, reconstructed using
the tracking algorithms optimised for a flat barrel geometry. The mean number of tracks found
and the tracking efficiency are provided.

Flat geometry Tilted geometry
# of tracks after HT 229 161
# of fakes after HT 92 35
# of tracks after full chain 55 48
# of fakes after full chain 9 4
Efficiency after full chain 97.3% 97.3%
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results could improve further.

The availability of tracking information down to 2 GeV may be of use to the L1 trigger, and
the impact of this potential requirement on the proposed track-finder system has been studied.
Lowering the minimum pT threshold from 3 GeV to 2 GeV requires modifying the GP parame-
ters to ensure adequate duplication in ϕ, and modifying the HT configuration by increasing the
number of columns along the q/pT by 50% to take into account the increased pT range, while
preserving the precision of the estimate. This increase in the q/pT range consequently increases
the required FPGA resources by 50% and results in a larger output data rate from the HT by
a factor of 2.2. In comparison to the track reconstruction efficiency for pT >3 GeV, a loss of
tracking efficiency is observed in the range 2 < pT < 2.7 GeV, mainly due to multiple scat-
tering where stubs do not always intersect within a single HT cell and therefore fail to exceed
the threshold criteria and generate track candidates. To mitigate this problem, it is possible
to reduce the precision of the HT along q/pT and φT, for the range 2 < pT < 3 GeV only, by
a factor of two. This variable precision HT, which has been implemented in firmware sepa-
rately, is able to recover some of the loss (increasing efficiency from 65% to 75% in the range
of 2 < pT < 2.15 GeV) in simulation. Further improvements to the HT, such as pT dependent
threshold criteria, should be able to regain any remaining losses if necessary. Optimisation of
the KF to the new minimum pT threshold could also yield improvements.

The performance and use of the bend filter cut applied within the HT has also been studied. The
assumed bend resolution can be easily adjusted in firmware, via a single parameter. Alterna-
tively the filter can be turned off entirely in the unlikely scenario that the stub bend information
became unreliable. Disabling the bend filter would increase the rate of misreconstructed and
duplicate track candidates produced by the HT, but does not lose efficiency, or cause truncation
in the HT processing as shown in Table 10. The performance of the full system is similar to that
described by Fig. 26.

Table 10: The mean number of tracks found and the tracking efficiency after the HT, with and
without application of the bend filter, for tracks originating from the primary interaction in tt
events with 200 PU

Bend filter No bend filter
Tracking efficiency after Hough Transform 97.1 97.9
Track candidates after Hough Transform 331 1285

8 Future Developments and Improvements
One advantage of a fully time-multiplexed, all-FPGA approach is the inherent flexibility to
adapt and evolve the algorithm choices and implementation. These improvements can come
in two forms: changes that fit within the current technological boundaries, and changes that
utilise and exploit newly emerging, or available, technologies. So far, the project has benefited
greatly from the former, as the exact algorithm and implementation has evolved greatly over
the past two years. We expect to soon benefit from the latter.

8.1 Improvements to the Hough Transform Algorithm

The radial offset parameter, T, was fixed at 58 cm in the demonstrator for the entire tracker
solid angle. However, this choice is not optimal at high pseudorapidities, where particles will
not traverse the full radial extent of the tracker. At these high |η| values, a smaller value of T
would be preferred, as it would spread the gradients of the stub lines in Hough space equally
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between positive and negative values. Reducing the value of T down to 47 cm in the highest
|η| sectors reduces the rate of track-candidates produced by the HT in these sectors by a factor
of two. This change would be trivial to implement in firmware, without additional latency or
significant resource usage.

The effect of using a grid of hexagonal or diamond cells in the HT instead of a conventional,
rectilinear grid has also been studied, and indicates that reduction in the rate of track candi-
dates by ∼20% may be possible, whilst maintaining the track finding efficiency. It is believed
that such designs would be straight-forward to implement in firmware.

8.2 Improvements to the Kalman Filter Algorithm

The Kalman Filter used in the demonstrator is in some respects a minimal version of the full
Kalman Filter algorithm that could be applied to the task of track reconstruction. This served
to simplify the implementation of the KF in the FPGA at the expense of some tracking perfor-
mance, although it is expected that some of these extensions could be added without significant
redesign of the existing firmware. The first of these is the addition of the transverse impact pa-
rameter to the fit which will help identify and improve fitting performance for particles which
don’t originate from the beam line, such as those from B hadron decay. The change requires
a small adjustment to the parameterisation. A fifth parameter would require some additional
resources, since the matrix dimensions increase with the number of parameters.

Accounting for the effect of multiple scattering has also been investigated. An additive contri-
bution to the forward prediction of the state, and its covariance matrix, is required and could
easily be accommodated with the existing design. Since the magnitude of multiple scattering
depends on the amount of material traversed, and the particle momentum, some additional
computation is required. The resource usage for this is small compared to the other matrix
calculations (one additional BRAM per KF worker), and can be executed in parallel. In this
scenario, a scattered track, as found by the KF (stepping in increasing r), would point towards
its multiple scattering point, rather than its origin. The net result could be a more efficient track
finder, but with a potentially reduced resolution. Solutions to this issue could be to modify the
algorithm to step in decreasing r, or to include a smoothing stage, which would re-fit the track
in decreasing r. A smoothing stage would take four additional Kalman iterations of latency,
but no additional FPGA resources.

8.3 Move to the Ultrascale platform: from demonstrator to baseline system

The next step in the development of the demonstrator project is to transition from the Xilinx
Virtex-7 FPGA to a modern Xilinx Ultrascale device, with transceivers capable of data trans-
mission speeds of at least 16.3 Gb/s. A system architecture that makes use of this increased
link bandwidth would allow the demonstrator to scale to a time-multiplexed factor of 18, our
baseline design, as described in Section 4. In this design, each TFP board covers the same re-
gion of the detector as the demonstrator slice, for a total of 8 x 18 = 144 boards. The number
of FPGAs per TFP board is flexible (typically 1-3) and will depend on the extent to which the
firmware can be optimised, alongside a compromise between latency and cost, and the only
requirement is that the FPGA supports the necessary input bandwidth of about 1 Tb/s. The
additional features described in the previous section are expected to have a small impact on
system resources, in comparison with the firmware optimisations described below.
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8.3.1 FPGA Resources

With the baseline design requiring a time-multiplexed factor of 18, each TFP would have to
process the same volume of data at twice the rate of the demonstrator slice described in this
paper. Naively, therefore, one may set an upper bound on the amount of logic needed at twice
the requirement of the demonstrator, in order to handle this doubling in processing bandwidth.
As shown in Table 11, a doubling of the FPGA resources would require a minimum of three
Kintex Ultrascale 115 (KU115) FPGAs per TFP.

On the other hand, the reduction in the number of candidates out of the HT when using the
tilted barrel geometry should mean that a 30% reduction in the number of KF workers is feasi-
ble without incurring losses due to truncation. It was also noted in Section 7.6 that the demon-
strator suffers from significant under-utilisation of processing resources, even in the high oc-
cupancy conditions of tt events with a PU of 200. As was shown in Section 7.3, the HT input
is idling around 50% of the time; and the HT output, which was designed to handle the chal-
lenging, but infrequent case of a sub-sector containing a jet without efficiency losses due to
truncation, is usually idling because no jet is present. In addition, even in the centre of very
high pT jets, the State Update block of the KF containing the majority of the processing logic of
the algorithm is idling more than 75% of the time. It is expected that by optimising the data-
flow throughout the design, taking into account the gains from adapting to the tilted geometry,
it should be possible to halve the logic resources required while maintaining performance.

Similarly, while all fabric on the current demonstrator is clocked at 240 MHz, parts of the system
have been tested at increased speeds. The GP router runs successfully at 480 MHz on the MP7,
while the HT is capable of running at 300 MHz in the KU115 and results indicate that this will
improve with continued optimisation. The architecture of the Kalman Filter is such that there
are very few fan-outs and the design is heavily pipelined, lending itself towards operation
at higher clock frequencies. Preliminary studies indicate that the Ultrascale and particularly
Ultrascale+ FPGAs are much better adapted to running large-scale single clock domain designs
across the device, and this can be taken advantage of. Therefore, by targeting a clock speed of
480 MHz for most parts of the system, it should be possible to double the processing bandwidth
of the design and halve the resources required per TFP, with respect to Table 11.

Considering the combined savings from maximising the processing bandwidth, through both
optimising the design to minimise under-utilisation and running the algorithms at higher fre-
quencies, it is highly feasible that a final TFP could be constructed with no more than two
Kintex Ultrascale 115 FPGAs, or one Virtex Ultrascale+ 11P FPGA.

8.3.2 Latency

In comparison to the current demonstrator, the latency of the track finding system would be re-
duced when scaled to the baseline design with 16.3 Gb/s links. The data accumulation periods
in the KF and HT, where the FPGA must wait for all the data to arrive before it can continue

Table 11: The upper limit of FPGA resources required per TFP for the baseline system (with
time-multiplexed factor n=18), inclusive of infrastructure logic. The available resources for a
number of compatible Xilinx Ultrascale FPGAs are shown for comparison [24].

LUTs [103] DSPs FFs [103] BRAM (36 Kb)
Upper limit per TFP 1629 16944 1742 6570
Kintex Ultrascale 115 633 5520 1266 2160
Virtex Ultrascale+ 9P 1182 6840 2364 2160
Virtex Ultrascale+ 11P 1296 9216 2592 2016
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processing, would be reduced by 450 ns each. A conservative estimate of the latency of the
baseline system, from input of stub data at the DTC, to input of tracks at the Level-1 correlator,
is given in Table 12. The overall latency of the unpacking, formatting and regional assignment
steps in the DTC is conservatively estimated to be 250 ns. An additional latency of <150 ns is
incurred for the transfer of data from DTC to TFP.

If the entire design could be run faster than the currently assumed 240 MHz, further latency
savings could be targeted. If running at 480 MHz, a conservative estimate of the maximal
latency (first stub in to first track in) has been placed at 2.2 µs.

Table 12: Latency table for the baseline system, extrapolated from the existing demonstrator.
Note that extrapolation to 480 MHz assumes that additional registers are necessary, meaning
that rather than a 50% reduction in latency, a 30% reduction is assumed throughout. This
number is based on what was achieved with the GP router at 480 MHz. Two SERDES stages
internal to the TFP are also assumed, to cover the worst case scenario (for latency) of three
daisy-chained FPGAs.

Latency [ns] 240 MHz 480 MHz
DTC 250 250
DTC→ TFP (SERDES & fibre) 150 150
GP 251 176
HT 575 403
KF 1220 854
DR 38 27
Two internal SERDES stages 240 240
TFP→ L1 (SERDES & fibre) 150 150
TFP First out→ Last Out 225 225
Total: First in DTC→ First in L1 2784 2243
Total: First in DTC→ Last in L1 3025 2468

9 Conclusions
A hardware demonstrator has been assembled in order to prove the feasibility of a track-finder
at Level-1 for CMS at the High Luminosity LHC. The demonstrator implements a Hough Trans-
form algorithm for coarsely identifying track candidates and a Kalman Filter to clean and fit
them, on FPGA-based hardware, along with corresponding emulation software. The hardware
slice has successfully shown that track finding and fitting for charged particles with transverse
momentum exceeding 3 GeV is possible at 40 MHz, and within 4 µs, in the challenging high
occupancy conditions of the HL-LHC. This has been accomplished using currently in-hand
technology (MP7 processing boards), and one can expect the latency and projected scale of the
system to be reduced as algorithms are optimised and refined, and new technology becomes
available.
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