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DAMPE is a space-based mission designed as a high energy particle detector measuring cosmic-
rays and γ−rays which was successfully launched on Dec.17, 2015. The BGO electromagnetic
calorimeter is one of the key sub-detectors of DAMPE for energy measurement of electromagnetic
showers produced by e±/γ. Due to energy loss in dead material and energy leakage outside the
calorimeter, the deposited energy in BGO underestimates the primary energy of incident e±/γ.
In this paper, based on detailed MC simulations, a parameterized energy correction method using
the lateral and longitudinal information of electromagnetic showers has been studied and verified
with data of electron beam test at CERN. The measurements of energy linearity and resolution are
significant improved by applying this correction method for electromagnetic showers.
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I. INTRODUCTION

The DArk Matter Particle Explorer (DAMPE), an orbital mission supported by the strategic priority science and
technology projects in space science of the Chinese Academy of Science [1], has been successfully launched into a sun-
synchronous orbit at the altitude of 500 km on Dec.17 2015. By measuring cosmic rays and γ−rays in a wide energy
range, the DAMPE offers a new opportunity for advancing our knowledge of dark matter, propagation mechanisms of
cosmic rays and high energy astronomy. The scientific payload of DAMPE consists of four sub-detectors[2] including a
Plastic Scintillator strip Detector (PSD), a Silicon-Tungsten tracKer-converter (STK), a Bismuth-Germanium Oxide
(BGO) imaging Energy CALorimeter (ECAL), and a NeUtron Detector (NUD) (see Fig.1). All sub-detectors work
together to measure particle-id, track and energy information of the incident cosmic-ray particles.

The BGO-ECAL is the main sub-detector for energy measurement, covering a large energy range from 5 GeV to 10
TeV with an energy resolution better than 1.5% at 800 GeV [3]. The BGO-ECAL is designed as a total-absorption
electromagnetic calorimeter of about 31 radiation-length, composed of 14 layers, each layer consists of 22 BGO crystals
(25 × 25 × 600mm3) placed in a hodoscopic configuration [4]. Apart from measuring the energy depositions due to
the electromagnetic showers produced by e±/γ , the ECAL images their shower development profiles, thereby serving
as an important hadron/lepton discriminator.

The overall raw energy is taken to be the sum of the deposited energy in each crystal of the calorimeter. However,
the total deposited energy in the BGO-ECAL cannot be straightforwardly taken as the primary energy of incident
particle, due to non-negligible energy losses because of dead material and leakage outside the calorimeter. In previous
work, it has been studied that the energy loss in the gaps between BGO crystals is sensitive to the impact of the
particle with respect to the boundaries of each cell[5]. In this paper, a parameterized correction method based on the
electromagnetic shower developments in ECAL is studied to estimate the primary energies of incident particles.

II. DAMPE SIMULATION

The DAMPE simulation is based upon the GEANT4 toolkit [6], a Monte-Carlo (MC) simulation software widely
used in high energy physics experiments, to handle particle generation, propagation and interaction through the
instrument with certain physical models. The whole simulation package is implemented in a GAUDI-like software
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FIG. 1: The scientific payload of DAMPE, which consists of four sub-detectors including PSD, STK, BGO-ECAL
and NUD from up to down.

framework [7, 8], which would produce collections of energy hits for each sensitive detector. A digitization algorithm
has been developed and used for converting energy hits into Analog-to-Digital Converter (ADC) counts which have
same format as the raw flight data. To reflect the electronic response of each sub-detector, the digitization algorithm
takes into account the on-orbit calibration results such as pedestal noise, PhotoMultiplier Tube (PMT) gains, non-
uniformities etc. With the on-orbit calibration of trigger threshold, real data trigger logic is then applied to the MC
data. In this way, the MC data can be processed by the same reconstruction algorithms as the real data.

Before the MC simulation can be used for analysis, the physical processes and the geometry implementation have
to be validated by comparing the simulation results with flight data. On orbit, the cosmic-ray proton Minimum
Ionizing Particle (MIP) events at low latitudes (±20◦N , discarding the South Atlantic Anomaly (SAA) region) has
been selected to calibrate the ADC-Energy response for each BGO crystal. By comparing the proton MIPs spectrum
of flight-data with simu-data, the BGO-ECAL simulation package can be proved to be reliable. A cosmic-ray proton
flux model at low latitudes, including primary protons and secondary ones measured by AMS-01 experiment [9] , has
been used as the input spectrum in the MIPs simulation. In Fig.2, the comparisons of the proton MIPs spectrum
show good agreement between flight-data and simu-data. More details about the validation of the DAMPE simulation
will be published elsewhere.

In this paper, several isotropic electron sources with kinetic energies from 1 GeV to 5 TeV have been simulated and
digitized by the DAMPE simulation package. The simulation data were then reconstructed and selected by the same
algorithms used in flight-data analysis. The selected electron datasets were used for studying the energy response of
electromagnetic showers in BGO-ECAL.

III. ENERGY CORRECTION METHOD

As mentioned above, for e±/γ, the electromagnetic shower is well contained by the 31 radiation-length calorimeter
in most cases and most of incident energy would be deposited in the calorimeter. The energy underestimation is
mainly due to energy loss in the dead material of BGO-ECAL, such as the carbon-fibers and rubbers used as the
calorimeter support structure. Also, the deposited energy in materials in front of the calorimeter (PSD, STK and the
tungsten that used to convert the gamma-rays) cannot be neglected. For the incident e±/γ with energy higher than
hundreds of GeV, the rear energy leakage must be taken into account as well.
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FIG. 2: The spectrum of proton MIPs events measured by DAMPE. It is evident that the on-orbit flight-data
(black) match well with the simu-data(red). The spectra of primary protons and secondary protons used in

simulations are shown for reference.

A. Lateral Correction

To correct for energy loss in the gaps between BGO crystals, a method called S1/S3 from [10] has been frequently
used in some other similar experiments [11]. This method takes into account the dead material in small gaps between
neighboring crystals. Given the large size of single BGO crystal used in DAMPE, we constructed a correction variable
called CoreEneRatio adapted from the S1/S3 method: the ratio of the sum of the maximum energy in each layer to
the residual deposited energy multiplied by a angle factor, defined as the following:

CoreEneRatio =∑
MaxBarEi∑

LayerEi −
∑
MaxBarEi

· 1

cosθ

(1)

where MaxBarEi is the maximum energy of layer i, LayerEi is the total energy of layer i and θ is the measured
angle with z-axis. Fig.3 shows the dependance of the energy deposition ratio (the ratio of the deposited energy to
the primary energy) with CoreEneRatio for 10GeV, 100GeV and 1000GeV MC electrons. It suggests that smaller
CoreEneRatio indicates more energy loss in the gaps between BGO crystals. This good linear relationship can be
used to correct the energy loss in the dead material which is related to the particle injecting position.

B. Longitudinal Correction

The longitudinal segmentation of the ECAL allows a fit of the longitudinal shower profile, which provides a good way
to correct the longitudinal energy leakage when the shower is not fully contained in the calorimeter. The longitudinal
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FIG. 3: The variations of EdepRatio along with CoreEneRatio for (a)10GeV, (b)100GeV and 1000GeV MC
electrons. The linearity relation between EdepRatio and CoreEneRatio are fitted as red line.

shower profile can be well described by a gamma-distribution function [12] as the following:

dE(t)

dt
= E0 ·

(βt)α−1 · β · e−βt

Γ(α)
(2)

where t is the shower depth in units of radiation length X0, α is the shape parameter and β is the scaling parameter.
The depth of the shower maximum depends on α and β according to:

Tmax =
α− 1

β
TmaxRatio =

Tmax
Ttotal

(3)

Tmax is the depth of the shower maximum and Ttotal is the total length that the particle travels through. Note that
here we just need to obtain a correct estimation of Tmax by fitting each individual profile with the gamma distribution.
Fig.4 shows the fit results of typical longitudinal shower profiles for 5GeV, 50GeV, 500GeV and 5TeV MC electrons.
It is clear that the particle with larger incident energy would have deeper shower maximum, which indicates that the
rear energy leakage becomes more and more important with the increase of incident energy. For the electrons with
a certain incident energy, TmaxRatio shows significant uncertainty form event to event (see Fig.5) and it is found
that TmaxRatio has a good correlation with the energy deposition ratio. The bigger TmaxRatio suggests the particle
produces a posterior shower, which could cause more energy loss in gaps between the layers and indicate more rear
energy leakage from backend of the calorimeter.

C. Parameter Analysis

Based on the lateral variable CoreEneRatio and the longitudinal variable TmaxRatio mentioned above, a bivariate
function used for energy correction is proposed as the following:

EdepRatio =
Edep
Einc

= p0 + p1 · CoreEneRatio+ p2 · TmaxRatio
(4)

where Edep is the total deposited energy in the calorimeter and Einc is the incident energy. By fitting the EdepRatio
with the bivariate function for MC electrons with different incident energies, the correction parameters can be obtained.
Fig.6 shows how the parameters vary with the average deposited energy. They are parameterized by different energy-
dependent empirical functions as the following:

p0(E) = k0 +
k1√
E

+ k2ln(E)

p1(E) = k0 +
k1√
E

p2(E) = k0 +
k1√
E

+ k2ln(E)

(5)
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(b) 50 GeV MC electron

Shower Depth (radiation length)
0 5 10 15 20 25 30

E
ne

rg
y 

pe
r 

ra
di

at
io

n 
le

ng
th

 (
M

eV
)

0

5000

10000

15000

20000

25000

30000

35000

40000 p0         1037± 4.673e+05 

p1        0.01136± 9.717 

p2        0.001535± 0.4914 

p0         1037± 4.673e+05 

p1        0.01136± 9.717 

p2        0.001535± 0.4914 

Longitudinal Shower Profile

Electron_500GeV

FitTmax = 9.717

(c) 500 GeV MC electron
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FIG. 4: Typical longitudinal shower profiles of (a)5GeV, (b)50GeV, (c)500GeV and (d)5TeV MC electrons. The
profiles are fitted by the gamma-distribution function and the Tmax in units of radiation length is displayed on each
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FIG. 5: The variations of EdepRatio along with TmaxRatio for (a)10GeV, (b)100GeV and 1000GeV MC electrons.
The linearity relation between EdepRatio and TmaxRatio are fitted as red line.

The energy correction process for each electromagnetic shower can be described as the following: firstly calcu-
lating CoreEneRatio with the energy deposition in each crystal and the measured incident angle, then fitting
the longitudinal shower profile to obtain TmaxRatio, and finally estimating the incident energy with Equation.4,
Ecor = Edep/EdepRatio.

To check this correction method’s dependence with the energy and direction of incident particles, an isotropic
electron sample with a power-law spectrum of E−1 has been generated with the DAMPE simulation package. Fig.7
and Fig.8 show the variation of EcorRatio (Ecor/Einc) with incident energy and incident angle respectively. The
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FIG. 6: The parameterized results of three correction parameters. The three parameters are fitted by Equation.5

EcorRatio remains around 1.0 with the variation of energy or angle, indicating that our method is independent of
these two quantities.
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FIG. 7: The relation between EcorRatio and the incident energies, which indicates that the correction method has
weak dependence with particle’s energy.

IV. PERFORMANCE STUDIES FOR ELECTRON BEAM TEST

The electron beam test of DAMPE was carried out at CERN-PS T9 and CERN-SPS H4 from October to November
of 2014 for the energy range from 0.5 GeV to 243 GeV [13]. The beam test data were reprocessed applying the latest
reconstruction and selection algorithms which are same as used in flight-data analysis. Fig.9 shows the results of
the correction method applied to the normal-incident electron beams of different incident energies (1 ∼ 243 GeV). It
is evident that the energy resolutions for electron beams above 5 GeV are all significant improved after correction.
Meanwhile, the bias of the deposited energy distribution has been adequately corrected as well, thereby optimizing
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FIG. 8: The relation between EcorRatio and the incident angles, which indicates that the correction method has
weak dependence with particle’s direction. Theta means the angle between the incident track and the z-axis.

the energy measurement.
Fig.10 shows the energy ratios (left) and the energy resolutions (right) before and after correction.The energy

ratio is defined as Edep/Ebeam or Ecor/Ebeam (Edep or Ecor means the peak value of the energy distribution). The
Ecor/Ebeam shows slight fluctuation around 100% and the linearity is kept within 1% in the energy range from 1 to
243 GeV. The energy resolution is defined from the energy distribution as the half width of the smallest window that
contains the 68% of the events [14]. The energy resolutions after correction, varying between 5.38% at 1GeV and
0.87% at 197GeV, show evident improvement compared with raw deposited energy.

V. CONCLUSIONS

Based on the detailed MC simulation package of DAMPE (see section.2), a parameterized energy correction method
for the electromagnetic showers produced by e±/γ in BGO-ECAL has been studied. The lateral and longitudinal
information of the shower development is used to construct the correction function, simultaneously taking into account
energy losses due to dead material and longitudinal energy leakage. The correction parameters are parameterized
by different energy-dependent empirical functions in the energy range from 1 GeV to 5 TeV. The energy correction
method shows no dependence on the primary energy or direction of incident particle. In principle, this correction
method could be not only applied to DAMPE, but extended to any other experiment equipped with a electromagnetic
calorimeter. The results of this correction method applied to data from an electron beam test at CERN show
encouraging improvements of the energy linearity and resolution. The correction has been applied in flight-data
analysis for electron cosmic-rays and γ-rays.
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