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Abstract

Four-lepton production in proton-proton collisions, pp → (Z/γ∗)(Z/γ∗) → 4`,
where ` = e or µ, is studied at a center-of-mass energy of 13 TeV with the CMS detec-
tor at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb−1.
The ZZ production cross section, σ(pp → ZZ) = 17.2 ± 0.5 (stat) ± 0.7 (syst) ±
0.4 (theo)± 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor
lepton pairs produced in the mass region 60 < m`+`− < 120 GeV, is consistent with
standard model predictions. Differential cross sections are measured and are well de-
scribed by the theoretical predictions. The Z boson branching fraction to four leptons
is measured to be B(Z→ 4`) = 4.83+0.23

−0.22 (stat)+0.32
−0.29 (syst)± 0.08 (theo)± 0.12 (lumi)×

10−6 for events with a four-lepton invariant mass in the range 80 < m4` < 100 GeV
and a dilepton mass m`` > 4 GeV for all opposite-sign, same-flavor lepton pairs.
The results agree with standard model predictions. The invariant mass distribu-
tion of the four-lepton system is used to set limits on anomalous ZZZ and ZZγ cou-
plings at 95% confidence level: −0.0012 < f Z

4 < 0.0010, −0.0010 < f Z
5 < 0.0013,

−0.0012 < f γ
4 < 0.0013, −0.0012 < f γ

5 < 0.0013.
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1 Introduction
Measurements of diboson production at the CERN LHC allow precision tests of the standard
model (SM). In the SM, ZZ production proceeds mainly through quark-antiquark t- and u-
channel scattering diagrams. In calculations at higher orders in quantum chromodynamics
(QCD), gluon-gluon fusion also contributes via box diagrams with quark loops. There are no
tree-level contributions to ZZ production from triple gauge boson vertices in the SM. Anoma-
lous triple gauge couplings (aTGC) could be induced by new physics models such as supersym-
metry [1]. Nonzero aTGCs may be parametrized using an effective Lagrangian as in Ref. [2]. In
this formalism, two ZZZ and two ZZγ couplings are allowed by electromagnetic gauge invari-
ance and Lorentz invariance for on-shell Z bosons. These are described by two CP-violating
( f V

4 ) and two CP-conserving ( f V
5 ) parameters, where V = Z or γ.

Previous measurements of the ZZ production cross section by the CMS Collaboration were
performed for pairs of on-shell Z bosons, produced in the dilepton mass range 60–120 GeV [3–
6]. These measurements were made with data sets corresponding to integrated luminosities
of 5.1 fb−1 at

√
s = 7 TeV and 19.6 fb−1 at

√
s = 8 TeV in the ZZ → 2`2`′′ and ZZ → 2`2ν

decay channels, where ` = e or µ and `′′ = e, µ, or τ, and with an integrated luminosity of
2.6 fb−1 at

√
s = 13 TeV in the ZZ → 2`2`′ decay channel, where `′ = e or µ. All of them

agree with SM predictions. The ATLAS Collaboration produced similar results at
√

s = 7,
8, and 13 TeV [7–10], which also agree with the SM. These measurements are important for
testing predictions that were recently made available at next-to-next-to-leading order (NNLO)
in QCD [11]. Comparing these predictions with data at a range of center-of-mass energies
provides information about the electroweak gauge sector of the SM. Because the uncertainty
of the CMS measurement at

√
s = 13 TeV [6] was dominated by the statistical uncertainty of

the observed data, repeating and extending the measurement with a larger sample of proton-
proton collision data at

√
s = 13 TeV improves the precision of the results.

The most stringent previous limits on ZZZ and ZZγ aTGCs from CMS were set using the 7 and
8 TeV data samples: −0.0022 < f Z

4 < 0.0026, −0.0023 < f Z
5 < 0.0023, −0.0029 < f γ

4 < 0.0026,
and −0.0026 < f γ

5 < 0.0027 at 95% confidence level (CL) [4, 5]. Similar limits were obtained by
the ATLAS Collaboration [12], who also recently produced limits using 13 TeV data [10].

Extending the dilepton mass range to lower values allows measurements of (Z/γ∗) (Z/γ∗)
production, where Z indicates an on-shell Z boson or an off-shell Z∗ boson. The resulting sam-
ple includes Higgs boson events in the H → ZZ∗ → 2`2`′ channel, and rare decays of a single
Z boson to four leptons. The Z → `+`−γ∗ → 2`2`′ decay was studied in detail at LEP [13]
and was observed in pp collisions by CMS [6, 14] and ATLAS [15]. Although the branching
fraction for this decay is orders of magnitude smaller than that for the Z → `+`− decay, the
precisely known mass of the Z boson makes the four-lepton mode useful for calibrating mass
measurements of the nearby Higgs boson resonance.

This paper reports a study of four-lepton production (pp → 2`2`′, where 2` and 2`′ indicate
opposite-sign pairs of electrons or muons) at

√
s = 13 TeV with a data set corresponding to

an integrated luminosity of 35.9± 0.9 fb−1 recorded in 2016. Cross sections are measured for
nonresonant production of pairs of Z bosons, pp→ ZZ, where both Z bosons are produced on-
shell, defined as the mass range 60–120 GeV, and resonant pp→ Z→ 4` production. Detailed
discussion of resonant Higgs boson production decaying to ZZ∗, is beyond the scope of this
paper and may be found in Ref. [16].
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2 The CMS detector
A detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found in Ref. [17].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal di-
ameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter, which provide coverage in pseudorapidity |η| < 1.479 in a
cylindrical barrel and 1.479 < |η| < 3.0 in two endcap regions. Forward calorimeters extend
the coverage provided by the barrel and endcap detectors to |η| < 5.0. Muons are measured
in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid in the
range |η| < 2.4, with detection planes made using three technologies: drift tubes, cathode strip
chambers, and resistive plate chambers.

Electron momenta are estimated by combining energy measurements in the ECAL with mo-
mentum measurements in the tracker. The momentum resolution for electrons with trans-
verse momentum pT ≈ 45 GeV from Z → e+e− decays ranges from 1.7% for nonshowering
electrons in the barrel region to 4.5% for showering electrons in the endcaps [18]. Match-
ing muons to tracks identified in the silicon tracker results in a pT resolution for muons with
20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The pT resolu-
tion in the barrel is better than 10% for muons with pT up to 1 TeV [19].

3 Signal and background simulation
Signal events are generated with POWHEG 2.0 [20–24] at next-to-leading order (NLO) in QCD
for quark-antiquark processes and leading order (LO) for quark-gluon processes. This includes
ZZ, Zγ∗, Z, and γ∗γ∗ production with a constraint of m``′ > 4 GeV applied to all pairs of
oppositely charged leptons at the generator level to avoid infrared divergences. The gg → ZZ
process is simulated at LO with MCFM v7.0 [25]. These samples are scaled to correspond to
cross sections calculated at NNLO in QCD for qq → ZZ [11] (a scaling K factor of 1.1) and at
NLO in QCD for gg → ZZ [26] (K factor of 1.7). The gg → ZZ process is calculated to O

(
α3

s
)
,

where αs is the strong coupling constant, while the other contributing processes are calculated
to O

(
α2

s
)
; this higher-order correction is included because the effect is known to be large [26].

Electroweak ZZ production in association with two jets is generated with PHANTOM v1.2.8 [27].

A sample of Higgs boson events is produced in the gluon-gluon fusion process at NLO with
POWHEG. The Higgs boson decay is modeled with JHUGEN 3.1.8 [28–30]. Its cross section is
scaled to the NNLO prediction with a K factor of 1.7 [26].

Samples for background processes containing four prompt leptons in the final state, ttZ and
WWZ production, are produced with MADGRAPH5 aMC@NLO v2.3.3 [31]. The qq → WZ
process is generated with POWHEG.

Samples with aTGC contributions included are generated at LO with SHERPA v2.1.1 [32]. Dis-
tributions from the SHERPA samples are normalized such that the total yield of the SM sample
is the same as that of the POWHEG sample.

The PYTHIA v8.175 [23, 33, 34] package is used for parton showering, hadronization, and the
underlying event simulation, with parameters set by the CUETP8M1 tune [35], for all samples
except the samples generated with SHERPA, which performs these functions itself. The NNPDF
3.0 [36] set is used as the default set of parton distribution functions (PDFs). For all simulated
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event samples, the PDFs are calculated to the same order in QCD as the process in the sample.

The detector response is simulated using a detailed description of the CMS detector imple-
mented with the GEANT4 package [37]. The event reconstruction is performed with the same
algorithms used for data. The simulated samples include additional interactions per bunch
crossing, referred to as pileup. The simulated events are weighted so that the pileup distribu-
tion matches the data, with an average of about 27 interactions per bunch crossing.

4 Event reconstruction
All long-lived particles—electrons, muons, photons, and charged and neutral hadrons—in
each collision event are identified and reconstructed with the CMS particle-flow (PF) algo-
rithm [38] from a combination of the signals from all subdetectors. Reconstructed electrons [18]
and muons [19] are considered candidates for inclusion in four-lepton final states if they have
pe

T > 7 GeV and |ηe| < 2.5 or pµ
T > 5 GeV and |ηµ| < 2.4.

Lepton candidates are also required to originate from the event vertex, defined as the recon-
structed proton-proton interaction vertex with the largest value of summed physics object p2

T.
The physics objects used in the event vertex definition are the objects returned by a jet finding
algorithm [39, 40] applied to all charged tracks associated with the vertex, plus the correspond-
ing associated missing transverse momentum [41]. The distance of closest approach between
each lepton track and the event vertex is required to be less than 0.5 cm in the plane transverse
to the beam axis, and less than 1 cm in the direction along the beam axis. Furthermore, the
significance of the three-dimensional impact parameter relative to the event vertex, SIP3D, is
required to satisfy SIP3D ≡ |IP/σIP| < 10 for each lepton, where IP is the distance of closest
approach of each lepton track to the event vertex and σIP is its associated uncertainty.

Lepton candidates are required to be isolated from other particles in the event. The relative
isolation is defined as

Riso =

[
∑

charged
hadrons

pT + max
(
0, ∑

neutral
hadrons

pT + ∑
photons

pT − pPU
T
)]/

p`T, (1)

where the sums run over the charged and neutral hadrons and photons identified by the PF

algorithm, in a cone defined by ∆R ≡
√
(∆η)2 + (∆φ)2 < 0.3 around the lepton trajectory.

Here φ is the azimuthal angle in radians. To minimize the contribution of charged particles
from pileup to the isolation calculation, charged hadrons are included only if they originate
from the event vertex. The contribution of neutral particles from pileup is pPU

T . For electrons,
pPU

T is evaluated with the “jet area” method described in Ref. [42]; for muons, it is taken to be
half the sum of the pT of all charged particles in the cone originating from pileup vertices. The
factor one-half accounts for the expected ratio of charged to neutral particle energy in hadronic
interactions. A lepton is considered isolated if Riso < 0.35.

The lepton reconstruction, identification, and isolation efficiencies are measured with a “tag-
and-probe” technique [43] applied to a sample of Z → `+`− data events. The measurements
are performed in several bins of p`T and |η`|. The electron reconstruction and selection effi-
ciency in the ECAL barrel (endcaps) varies from about 85% (77%) at pe

T ≈ 10 GeV to about 95%
(89%) for pe

T ≥ 20 GeV, while in the barrel-endcap transition region this efficiency is about 85%
averaged over all electrons with pe

T > 7 GeV. The muons are reconstructed and identified with
efficiencies above ∼98% within |ηµ| < 2.4.
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5 Event selection
The primary triggers for this analysis require the presence of a pair of loosely isolated leptons
of the same or different flavors [44]. The highest pT lepton must have p`T > 17 GeV, and the
subleading lepton must have pe

T > 12 GeV if it is an electron or pµ
T > 8 GeV if it is a muon. The

tracks of the triggering leptons are required to originate within 2 mm of each other in the plane
transverse to the beam axis. Triggers requiring a triplet of lower-pT leptons with no isolation
criterion, or a single high-pT electron or muon, are also used. An event is used if it passes
any trigger regardless of the decay channel. The total trigger efficiency for events within the
acceptance of this analysis is greater than 98%.

The four-lepton candidate selections are based on those used in Ref. [45]. A signal event must
contain at least two Z/γ∗ candidates, each formed from an oppositely charged pair of isolated
electron candidates or muon candidates. Among the four leptons, the highest pT lepton must
have pT > 20 GeV, and the second-highest pT lepton must have pe

T > 12 GeV if it is an electron
or pµ

T > 10 GeV if it is a muon. All leptons are required to be separated from each other by
∆R (`1, `2) > 0.02, and electrons are required to be separated from muons by ∆R (e, µ) > 0.05.

Within each event, all permutations of leptons giving a valid pair of Z/γ∗ candidates are con-
sidered separately. Within each 4` candidate, the dilepton candidate with an invariant mass
closest to 91.2 GeV, taken as the nominal Z boson mass [46], is denoted Z1 and is required to
have a mass greater than 40 GeV. The other dilepton candidate is denoted Z2. Both mZ1 and mZ2

are required to be less than 120 GeV. All pairs of oppositely charged leptons in the 4` candidate
are required to have m``′ > 4 GeV regardless of their flavor.

If multiple 4` candidates within an event pass all selections, the one with mZ1 closest to the
nominal Z boson mass is chosen. In the rare case of further ambiguity, which may arise in less
than 0.5% of events when five or more passing lepton candidates are found, the Z2 candidate
that maximizes the scalar pT sum of the four leptons is chosen.

Additional requirements are applied to select events for measurements of specific processes.
The pp→ ZZ cross section is measured using events where both mZ1 and mZ2 are greater than
60 GeV. The Z → 4` branching fraction is measured using events with 80 < m4` < 100 GeV,
a range chosen to retain most of the decays in the resonance while removing most other pro-
cesses with four-lepton final states. Decays of the Z bosons to τ leptons with subsequent decays
to electrons and muons are heavily suppressed by requirements on lepton pT, and the contri-
bution of such events is less than 0.5% of the total ZZ yield. If these events pass the selection
requirements of the analysis, they are considered signal, while they are not considered at gen-
erator level in the cross section unfolding procedure. Thus, the correction for possible τ decays
is included in the efficiency calculation.

6 Background estimate
The major background contributions arise from Z boson and WZ diboson production in associ-
ation with jets and from tt production. In all these cases, particles from jet fragmentation satisfy
both lepton identification and isolation criteria, and are thus misidentified as signal leptons.

The probability for such objects to be selected is measured from a sample of Z+ `candidate events,
where Z denotes a pair of oppositely charged, same-flavor leptons that pass all analysis require-
ments and satisfy |m`+`− −mZ| < 10 GeV, where mZ is the nominal Z boson mass. Each event
in this sample must have exactly one additional object `candidate that passes relaxed identifica-
tion requirements with no isolation requirements applied. The misidentification probability for
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each lepton flavor, measured in bins of lepton candidate pT and η, is defined as the ratio of the
number of candidates that pass the final isolation and identification requirements to the total
number in the sample. The number of Z + `candidate events is corrected for the contamination
from WZ production and ZZ production in which one lepton is not reconstructed. These events
have a third genuine, isolated lepton that must be excluded from the misidentification prob-
ability calculation. The WZ contamination is suppressed by requiring the missing transverse
momentum pmiss

T to be below 25 GeV. The pmiss
T is defined as the magnitude of the missing

transverse momentum vector ~pmiss
T , the projection onto the plane transverse to the beams of

the negative vector sum of the momenta of all reconstructed PF candidates in the event, cor-
rected for the jet energy scale. Additionally, the transverse mass calculated with ~pmiss

T and the
~pT of `candidate, mT ≡

√
(p`T + pmiss

T )2 − (~p `
T + ~pmiss

T )2, is required to be less than 30 GeV. The
residual contribution of WZ and ZZ events, which may be up to a few percent of the events
with `candidate passing all selection criteria, is estimated from simulation and subtracted.

To account for all sources of background events, two control samples are used to estimate the
number of background events in the signal regions. Both are defined to contain events with
a dilepton candidate satisfying all requirements (Z1) and two additional lepton candidates
`′+`′−. In one control sample, enriched in WZ events, one `′ candidate is required to satisfy
the full identification and isolation criteria and the other must fail the full criteria and instead
satisfy only the relaxed ones; in the other, enriched in Z+jets events, both `′ candidates must
satisfy the relaxed criteria, but fail the full criteria. The additional leptons must have opposite
charge and the same flavor (e±e∓, µ±µ∓). From this set of events, the expected number of back-
ground events in the signal region, denoted “Z + X” in the figures, is obtained by scaling the
number of observed Z1 + `′+`′− events by the misidentification probability for each lepton fail-
ing the selection. It is found to be approximately 4% of the total expected yield. The procedure
is described in more detail in Ref. [45].

In addition to these nonprompt backgrounds, ttZ and WWZ processes contribute a smaller
number of events with four prompt leptons, which is estimated from simulated samples to be
around 1% of the expected ZZ→ 4` yield. In the Z→ 4` selection, the contribution from these
backgrounds is negligible. The total background contributions to the Z → 4` and ZZ → 4`
signal regions are summarized in Section 8.

7 Systematic uncertainties
The major sources of systematic uncertainty and their effect on the measured cross sections are
summarized in Table 1. In both data and simulated event samples, trigger efficiencies are eval-
uated with a tag-and-probe technique. The ratio of data to simulation is applied to simulated
events, and the size of the resulting change in expected yield is taken as the uncertainty in the
determination of the trigger efficiency. This uncertainty is around 2% of the final estimated
yield. For Z→ 4e events, the uncertainty increases to 4%.

The lepton identification, isolation, and track reconstruction efficiencies in simulation are cor-
rected with scaling factors derived with a tag-and-probe method and applied as a function of
lepton pT and η. To estimate the uncertainties associated with the tag-and-probe technique, the
total yield is recomputed with the scaling factors varied up and down by the tag-and-probe fit
uncertainties. The uncertainties associated with lepton efficiency in the ZZ→ 4` (Z→ 4`) sig-
nal regions are found to be 6(10)% in the 4e, 3(6)% in the 2e2µ, and 2(7)% in the 4µ final states.
These uncertainties are higher for Z→ 4` events because the leptons generally have lower pT,
and the samples used in the tag-and-probe method have fewer events and more contamination
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Table 1: The contributions of each source of systematic uncertainty in the cross section mea-
surements. The integrated luminosity uncertainty, and the PDF and scale uncertainties, are
considered separately. All other uncertainties are added in quadrature into a single systematic
uncertainty. Uncertainties that vary by decay channel are listed as a range.

Uncertainty Z→ 4` ZZ→ 4`
Lepton efficiency 6–10% 2–6%
Trigger efficiency 2–4% 2%
Statistical (simulation) 1–2% 0.5%
Background 0.6–1.3% 0.5–1%
Pileup 1–2% 1%

PDF 1% 1%
µR, µF 1% 1%

Integrated luminosity 2.5% 2.5%

from nonprompt leptons in this low-pT region.

Uncertainties due to the effect of factorization (µF) and renormalization (µR) scale choices on
the ZZ → 4` acceptance are evaluated with POWHEG and MCFM by varying the scales up and
down by a factor of two with respect to the default values µF = µR = mZZ. All combinations
are considered except those in which µF and µR differ by a factor of four. Parametric uncer-
tainties (PDF+αs) are evaluated according to the PDF4LHC prescription [47] in the acceptance
calculation, and with NNPDF3.0 in the cross section calculations. An additional theoretical
uncertainty arises from scaling the POWHEG qq → ZZ simulated sample from its NLO cross
section to the NNLO prediction, and the MCFM gg→ ZZ samples from their LO cross sections
to the NLO predictions. The change in the acceptance corresponding to this scaling procedure
is found to be 1.1%. All these theoretical uncertainties are added in quadrature.

The largest uncertainty in the estimated background yield arises from differences in sample
composition between the Z + `candidate control sample used to calculate the lepton misidentifi-
cation probability and the Z + `+`− control sample. A further uncertainty arises from the lim-
ited number of events in the Z+ `candidate sample. A systematic uncertainty of 40% is applied to
the lepton misidentification probability to cover both effects. The size of this uncertainty varies
by channel, but is less than 1% of the total expected yield.

The uncertainty in the integrated luminosity of the data sample is 2.5% [48].

8 Cross section measurements
The distributions of the four-lepton mass and the masses of the Z1 and Z2 candidates are shown
in Fig. 1. The expected distributions describe the data well within uncertainties. The SM pre-
dictions include nonresonant ZZ predictions, production of the SM Higgs boson with mass
125 GeV [49], and resonant Z→ 4` production. The backgrounds estimated from data and sim-
ulation are also shown. The reconstructed invariant mass of the Z1 candidates, and a scatter
plot showing the correlation between mZ2 and mZ1 in data events, are shown in Fig. 2. In the
scatter plot, clusters of events corresponding to ZZ → 4`, Zγ∗ → 4`, and Z → 4` production
can be seen.

The four-lepton invariant mass distribution below 100 GeV is shown in Fig. 3 (left). Figure 3
(right) shows mZ2 plotted against mZ1 for events with m4` between 80 and 100 GeV, and the
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Figure 1: Distributions of (left) the four-lepton invariant mass m4` and (right) the dilepton
invariant mass of all Z/γ∗ bosons in selected four-lepton events. Both selected dilepton can-
didates are included in each event. In the m4` distribution, bin contents are normalized to a
bin width of 25 GeV; horizontal bars on the data points show the range of the corresponding
bin. Points represent the data, while filled histograms represent the SM prediction and back-
ground estimate. Vertical bars on the data points show their statistical uncertainty. Shaded
grey regions around the predicted yield represent combined statistical, systematic, theoretical,
and integrated luminosity uncertainties.
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Figure 2: (Left): the distribution of the reconstructed mass of Z1, the dilepton candidate closer
to the nominal Z boson mass. Points represent the data, while filled histograms represent the
SM prediction and background estimate. Vertical bars on the data points show their statistical
uncertainty. Shaded grey regions around the predicted yield represent combined statistical,
systematic, theoretical, and integrated luminosity uncertainties. (Right): the reconstructed mZ2

plotted against the reconstructed mZ1 in data events, with distinctive markers for each final
state. For readability, only every fourth event is plotted.
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observed and expected event yields in this mass region are given in Table 2. The yield of
events in the 4e final state is significantly lower than in the 4µ final state because minimum pT
thresholds are higher for electrons than for muons, and inefficiencies in the detection of low-pT
leptons affect electrons more strongly than they affect muons.
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Figure 3: (Left): the distribution of the reconstructed four-lepton mass m4` for events selected
with 80 < m4` < 100 GeV. Points represent the data, while filled histograms represent the
SM prediction and background estimate. Vertical bars on the data points show their statistical
uncertainty. Shaded grey regions around the predicted yield represent combined statistical,
systematic, theoretical, and integrated luminosity uncertainties. (Right): the reconstructed mZ2

plotted against the reconstructed mZ1 for all data events selected with m4` between 80 and
100 GeV, with distinctive markers for each final state.

Table 2: The observed and expected yields of four-lepton events in the mass region 80 < m4` <
100 GeV and estimated yields of background events, shown for each final state and summed in
the total expected yield. The first uncertainty is statistical, the second one is systematic. The
systematic uncertainties do not include the uncertainty in the integrated luminosity.

Final Expected Background Total Observed
state N4` expected
4µ 224± 1± 16 7± 1± 2 231± 2± 17 225
2e2µ 207± 1± 14 9± 1± 2 216± 2± 14 206
4e 68± 1± 8 4± 1± 2 72± 1± 8 78

Total 499± 2± 32 19± 2± 5 518± 3± 33 509

The reconstructed four-lepton invariant mass is shown in Fig. 4 (left) for events with two on-
shell Z bosons. Figure 4 (right) shows the invariant mass distribution for all Z boson candidates
in these events. The corresponding observed and expected yields are given in Table 3.

The observed yields are used to evaluate the pp → Z → 4` and pp → ZZ → 4` production
cross sections from a combined fit to the number of observed events in all the final states. The
likelihood is a combination of individual channel likelihoods for the signal and background
hypotheses with the statistical and systematic uncertainties in the form of scaling nuisance
parameters. The fiducial cross section is measured by scaling the cross section in the simulation
by the ratio of the measured and predicted event yields given by the fit.
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Figure 4: Distributions of (left) the four-lepton invariant mass mZZ and (right) dilepton can-
didate mass for four-lepton events selected with both Z bosons on-shell. Points represent the
data, while filled histograms represent the SM prediction and background estimate. Vertical
bars on the data points show their statistical uncertainty. Shaded grey regions around the pre-
dicted yield represent combined statistical, systematic, theoretical, and integrated luminosity
uncertainties. In the mZZ distribution, bin contents are normalized to the bin widths, using a
unit bin size of 50 GeV; horizontal bars on the data points show the range of the corresponding
bin.

Table 3: The observed and expected yields of ZZ events, and estimated yields of background
events, shown for each final state and summed in the total expected yield. The first uncertainty
is statistical, the second one is systematic. The systematic uncertainties do not include the
uncertainty in the integrated luminosity.

Decay Expected Background Total Observed
channel N4` expected
4µ 301± 2± 9 10± 1± 2 311± 2± 9 335
2e2µ 503± 2± 19 31± 2± 4 534± 3± 20 543
4e 205± 1± 12 20± 2± 2 225± 2± 13 220

Total 1009± 3± 36 60± 3± 8 1070± 4± 37 1098
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The definitions for the fiducial phase spaces for the Z→ 4` and ZZ→ 4` cross section measure-
ments are given in Table 4. In the ZZ → 4` case, the Z bosons used in the fiducial definition
are built by pairing final-state leptons using the same algorithm as is used to build Z boson
candidates from reconstructed leptons. The generator-level leptons used for the fiducial cross
section calculation are “dressed” by adding the momenta of generator-level photons within
∆R (`, γ) < 0.1 to their momenta.

Table 4: Fiducial definitions for the reported cross sections. The common requirements are
applied for both measurements.

Cross section measurement Fiducial requirements
Common requirements p`1

T > 20 GeV, p`2
T > 10 GeV, p`3,4

T > 5 GeV,

|η`| < 2.5, m`` > 4 GeV (any opposite-sign same-flavor pair)

Z→ 4` mZ1 > 40 GeV
80 < m4` < 100 GeV

ZZ→ 4` 60 < (mZ1 , mZ2) < 120 GeV

The measured cross sections are

σfid(pp→ Z→ 4`) = 31.2+1.5
−1.4 (stat)+2.1

−1.9 (syst)± 0.8 (lumi) fb,

σfid(pp→ ZZ→ 4`) = 40.9± 1.3 (stat)± 1.4 (syst)± 1.0 (lumi) fb.
(2)

The pp→ Z→ 4` fiducial cross section can be compared to 27.9+1.0
−1.5 ± 0.6 fb calculated at NLO

in QCD with POWHEG using the same settings as used for the simulated sample described in
Section 3, with dynamic scales µF = µR = m4`. The uncertainties correspond to scale and
PDF variations, respectively. The ZZ fiducial cross section can be compared to 34.4+0.7

−0.6 ± 0.5 fb
calculated with POWHEG and MCFM using the same settings as the simulated samples, or to
36.0+0.9

−0.8 computed with MATRIX at NNLO. The POWHEG and MATRIX calculations used dy-
namic scales µF = µR = m4`, while the contribution from MCFM was computed with dynamic
scales µF = µR = 0.5m4`.

The pp → Z → 4` fiducial cross section is scaled to σ(pp → Z)B(Z → 4`) using the accep-
tance correction factor A = 0.125 ± 0.002, estimated with POWHEG. This factor corrects the
fiducial Z → 4` cross section to the phase space with only the 80–100 GeV mass window and
m`+`− > 4 GeV requirements, and also includes a correction, 0.96± 0.01, for the contribution
of nonresonant four-lepton production to the signal region. The uncertainty takes into account
the interference between doubly- and singly-resonant diagrams. The measured cross section is

σ(pp→ Z)B(Z→ 4`) = 249± 11 (stat)+16
−15 (syst)± 4 (theo)± 6 (lumi) fb. (3)

The branching fraction for the Z → 4` decay, B(Z → 4`), is measured by comparing the cross
section given by Eq. (3) with the Z→ `+`− cross section, and is computed as

B(Z→ 4`) =
σ(pp→ Z→ 4`)

C60–120
80–100 σ(pp→ Z→ `+`−)/B(Z→ `+`−)

, (4)

where σ(pp → Z → `+`−) = 1870+50
−40 pb is the Z → `+`− cross section times branching

fraction calculated at NNLO with FEWZ v2.0 [50] in the mass range 60–120 GeV. Its uncertainty
includes PDF uncertainties and uncertainties in αs, the charm and bottom quark masses, and
the effect of neglected higher-order corrections to the calculation. The factor C60–120

80–100 = 0.926±
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0.001 corrects for the difference in Z boson mass windows and is estimated using POWHEG. Its
uncertainty includes scale and PDF variations. The nominal Z to dilepton branching fraction
B(Z→ `+`−) is 0.03366 [46]. The measured value is

B(Z→ 4`) = 4.83+0.23
−0.22 (stat)+0.32

−0.29 (syst)± 0.08 (theo)± 0.12 (lumi)× 10−6, (5)

where the theoretical uncertainty includes the uncertainties in σ(pp → Z)B(Z → `+`−),
C60–120

80–100 , andA. This can be compared with 4.6× 10−6, computed with MADGRAPH5 aMC@NLO,
and is consistent with the CMS and ATLAS measurements at

√
s = 7, 8, and 13 TeV [6, 14, 15].

The total ZZ production cross section for both dileptons produced in the mass range 60–
120 GeV and m`+`′− > 4 GeV is found to be

σ(pp→ ZZ) = 17.5+0.6
−0.5 (stat)± 0.6 (syst)± 0.4 (theo)± 0.4 (lumi) pb. (6)

The measured total cross section can be compared to the theoretical value of 14.5+0.5
−0.4 ± 0.2 pb

calculated with a combination of POWHEG and MCFM with the same settings as described for
σfid(pp → ZZ → 4`). It can also be compared to 16.2+0.6

−0.4 pb, calculated at NNLO in QCD
via MATRIX v1.0.0 beta4 [11, 51], or 15.0+0.7

−0.6 ± 0.2 pb, calculated with MCFM at NLO in QCD
with additional contributions from LO gg→ ZZ diagrams. Both values are calculated with the
NNPDF3.0 PDF sets, at NNLO and NLO, respectively, and fixed scales set to µF = µR = mZ.

This measurement agrees with the previously published cross section measured by CMS at
13 TeV [6] based on a 2.6 fb−1 data sample collected in 2015:

σ(pp→ ZZ) = 14.6+1.9
−1.8 (stat)+0.3

−0.5 (syst)± 0.2 (theo)± 0.4 (lumi) pb. (7)

The two measurements can be combined to yield the “2015+2016 cross section”

σ(pp→ ZZ) = 17.2± 0.5 (stat)± 0.7 (syst)± 0.4 (theo)± 0.4 (lumi) pb. (8)

The combination was performed once considering the experimental uncertainties to be fully
correlated between the 2015 and 2016 data sets, and once considering them to be fully uncor-
related. The results were averaged, and the difference was added linearly to the systematic
uncertainty in the combined cross section.

The total ZZ cross section is shown in Fig. 5 as a function of the proton-proton center-of-mass
energy. Results from CMS [3, 4] and ATLAS [7, 8, 10] are compared to predictions from MATRIX

and MCFM with the NNPDF3.0 PDF sets and fixed scales µF = µR = mZ. The MATRIX prediction
uses PDFs calculated at NNLO, while the MCFM prediction uses NLO PDFs. The uncertainties
are statistical (inner bars) and statistical and systematic added in quadrature (outer bars). The
band around the MATRIX predictions reflects scale uncertainties, while the band around the
MCFM predictions reflects both scale and PDF uncertainties.

The measurement of the differential cross sections provides detailed information about ZZ
kinematics. The observed yields are unfolded using the iterative technique described in Ref. [52].
Unfolding is performed with the RooUnfold package [53] and regularized by stopping after
four iterations. Statistical uncertainties in the data distributions are propagated through the
unfolding process to give the statistical uncertainties on the normalized differential cross sec-
tions.

The three decay channels, 4e, 4µ, and 2e2µ, are combined after unfolding because no differ-
ences are expected in their kinematic distributions. The generator-level leptons used for the
unfolding are dressed as in the fiducial cross section calculation.
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Figure 5: The total ZZ cross section as a function of the proton-proton center-of-mass energy.
Results from the CMS and ATLAS experiments are compared to predictions from MATRIX at
NNLO in QCD, and MCFM at NLO in QCD. The MCFM prediction also includes gluon-gluon
initiated production at LO in QCD. Both predictions use NNPDF3.0 PDF sets and fixed scales
µF = µR = mZ. Details of the calculations and uncertainties are given in the text. The ATLAS
measurements were performed with a Z boson mass window of 66–116 GeV, and are corrected
for the resulting 1.6% difference. Measurements at the same center-of-mass energy are shifted
slightly along the horizontal axis for clarity.
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The differential distributions normalized to the fiducial cross sections are presented in Figs. 6–8
for the combination of the 4e, 4µ, and 2e2µ decay channels. The fiducial cross section defini-
tion includes p`T and |η`| selections on each lepton, and the 60–120 GeV mass requirement, as
described in Table 4 and Section 4. Figure 6 shows the normalized differential cross sections
as functions of the mass and pT of the ZZ system, Fig. 7 shows them as functions of the pT of
all Z bosons and the pT of the leading lepton in each event, and Fig. 8 shows the angular cor-
relations between the two Z bosons. The data are corrected for background contributions and
compared with the theoretical predictions from POWHEG and MCFM, MADGRAPH5 aMC@NLO

and MCFM, and MATRIX. The bottom part of each plot shows the ratio of the measured to the
predicted values. The bin sizes are chosen according to the resolution of the relevant variables,
while also keeping the statistical uncertainties at a similar level in all bins. The data are well
reproduced by the simulation except in the low pT regions, where data tend to have a steeper
slope than the prediction.
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Figure 6: Differential cross sections normalized to the fiducial cross section for the combined
4e, 4µ, and 2e2µ decay channels as a function of mass (left) and pT (right) of the ZZ system.
Points represent the unfolded data; the solid, dashed, and dotted histograms represent the
POWHEG+MCFM, MADGRAPH5 aMC@NLO +MCFM, and MATRIX predictions for ZZ signal, re-
spectively, and the bands around the predictions reflect their combined statistical, scale, and
PDF uncertainties. PYTHIA v8 was used for parton showering, hadronization, and underlying
event simulation in the POWHEG, MADGRAPH5 aMC@NLO, and MCFM samples. The lower
part of each plot represents the ratio of the measured cross section to the theoretical distribu-
tions. The shaded grey areas around the points represent the sum in quadrature of the statistical
and systematic uncertainties, while the crosses represent the statistical uncertainties only.

Figure 9 shows the normalized differential four-lepton cross section as a function of m4`, subject
only to the common requirements of Table 4. This includes contributions from the Z and Higgs
boson resonances and continuum ZZ production.



14 8 Cross section measurements

pZ
T (GeV)

0 50 100 150 200 250 300

D
at

a
/T

he
o.

0.5

1

1.5
MG5_aMC@NLO+MCFM+Pythia8

D
at

a
/T

he
o.

0.5

1

1.5
POWHEG+MCFM+Pythia8

D
at

a
/T

he
o.

0.5

1

1.5
MATRIX

1 σ
fid

dσ
fid

dp
Z T

(
1

G
eV

)

10−3

10−2 Data + stat. unc.

Stat. ⊕ syst. unc.

MATRIX

MG5_aMC@NLO+MCFM+Pythia8

POWHEG+MCFM+Pythia8

35.9 fb−1 (13 TeV)CMS

p`1
T (GeV)

0 20 40 60 80 100 120 140 160 180 200 220

D
at

a
/T

he
o.

0.5

1

1.5
MG5_aMC@NLO+MCFM+Pythia8

D
at

a
/T

he
o.

0.5

1

1.5
POWHEG+MCFM+Pythia8

D
at

a
/T

he
o.

0.5

1

1.5
MATRIX

1 σ
fid

dσ
fid

dp
`

1
T

(
1

G
eV

)

10−4

10−3

10−2

Data + stat. unc.

Stat. ⊕ syst. unc.

MATRIX

MG5_aMC@NLO+MCFM+Pythia8

POWHEG+MCFM+Pythia8

35.9 fb−1 (13 TeV)CMS

Figure 7: Normalized ZZ differential cross sections as a function of the pT of (left) all Z bosons
and (right) the leading lepton in ZZ events. Other details are as described in the caption of
Fig. 6.
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Figure 8: Normalized ZZ differential cross sections as a function of (left) the azimuthal separa-
tion of the two Z bosons and (right) ∆R between the Z-bosons. Other details are as described
in the caption of Fig. 6.
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Figure 9: The normalized differential four-lepton cross section as a function of the four-lepton
mass, subject only to the common requirements of Table 4. SM gg → H → ZZ∗ production is
included, simulated with POWHEG. Other details are as described in the caption of Fig. 6.
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9 Limits on anomalous triple gauge couplings
The presence of aTGCs would increase the yield of events at high four-lepton masses. Figure 10
presents the distribution of the four-lepton reconstructed mass of events with both Z bosons
in the mass range 60–120 GeV for the combined 4e, 4µ, and 2e2µ channels. This distribution
is used to set the limits on possible contributions from aTGCs. Two simulated samples with
nonzero aTGCs are shown as examples, along with the SM distribution simulated by both
SHERPA and POWHEG.
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Figure 10: Distribution of the four-lepton reconstructed mass for the combined 4e, 4µ, and
2e2µ channels. Points represent the data, the filled histograms represent the SM expected
yield including signal and irreducible background predictions from simulation and the data-
driven background estimate. Unfilled histograms represent examples of aTGC signal predic-
tions (dashed), and the SHERPA SM prediction (solid), included to illustrate the expected shape
differences between the SHERPA and POWHEG predictions. Vertical bars on the data points
show their statistical uncertainty. The SHERPA distributions are normalized such that the SM
sample has the same total yield as the POWHEG sample predicts. Bin contents are normalized
to the bin widths, using a unit bin size of 50 GeV; horizontal bars on the data points show the
range of the corresponding bin. The last bin includes the “overflow” contribution from events
at masses above 1.2 TeV.

The invariant mass distributions are interpolated from the SHERPA simulations for different
values of the anomalous couplings in the range between 0 and 0.015. For each distribution, only
one or two couplings are varied while all others are set to zero. The measured signal is obtained
from a comparison of the data to a grid of aTGC models in the ( f Z

4 , f γ
4 ) and ( f Z

5 , f γ
5 ) parameter
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planes. Expected signal values are interpolated between the 2D grid points using a second-
degree polynomial, since the cross section for the signal depends quadratically on the coupling
parameters. A binned profile likelihood method, Wald Gaussian approximation, and Wilk’s
theorem are used to derive one-dimensional limits at a 95% confidence level (CL) on each of the
four aTGC parameters, and two-dimensional limits at a 95% CL on the pairs ( f Z

4 , f γ
4 ) and ( f Z

5 ,
f γ
5 ) [46, 54, 55]. When the limits are calculated for each parameter or pair, all other parameters

are set to their SM values. The systematic uncertainties described in Section 7 are treated as
nuisance parameters with log-normal distributions. No form factor is used when deriving
the limits so that the results do not depend on any assumed energy scale characterizing new
physics. The constraints on anomalous couplings are displayed in Fig. 11. The curves indicate
68 and 95% confidence levels, and the solid dot shows the coordinates where the likelihood
reaches its maximum. Coupling values outside the contours are excluded at the corresponding
confidence levels. The limits are dominated by statistical uncertainties.
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Figure 11: Two-dimensional observed 95% CL limits (solid contour) and expected 68 and 95%
CL limits (dashed contour) on the ZZZ and ZZγ aTGCs. The left (right) plot shows the exclu-
sion contour in the f Z

4(5), f γ
4(5) parameter planes. The values of couplings outside of contours

are excluded at the corresponding confidence level. The solid dot is the point at which the
likelihood is at its maximum. The solid lines at the center show the observed one-dimensional
95% CL limits for f γ

4,5 (horizontal) and f Z
4,5 (vertical). No form factor is used.

The observed one-dimensional 95% CL limits for the f Z,γ
4 and f Z,γ

5 anomalous coupling param-
eters are:

−0.0012 < f Z
4 < 0.0010, −0.0010 < f Z

5 < 0.0013,

−0.0012 < f γ
4 < 0.0013, −0.0012 < f γ

5 < 0.0013.
(9)

These are the most stringent limits to date on anomalous ZZZ and ZZγ trilinear gauge boson
couplings, improving on the previous strictest results from CMS [5] by factors of two or more
and constraining the coupling parameters more than the corresponding ATLAS results [10].

One way to impose unitarity on the aTGC models is to restrict the range of four-lepton invariant
mass used in the limit calculation. The limits will then depend on the “cutoff” value used. The
computation of the one-dimensional limits is repeated for different maximum allowed values
of m4`, and the results are presented in Fig. 12 as a function of this cutoff.
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Figure 12: Expected and observed one-dimensional limits on the four aTGC parameters, as a
function of an upper cutoff on the invariant mass of the four-lepton system. No form factor is
used.

10 Summary
A series of measurements of four-lepton final states in proton-proton collisions at

√
s = 13 TeV

have been performed with the CMS detector at the CERN LHC. The measured pp→ ZZ cross
section is σ(pp → ZZ) = 17.2± 0.5 (stat)± 0.7 (syst)± 0.4 (theo)± 0.4 (lumi) pb for Z boson
masses in the range 60 < mZ < 120 GeV. The measured branching fraction for Z boson decays
to four leptons is B(Z → 4`) = 4.83+0.23

−0.22 (stat)+0.32
−0.29 (syst)± 0.08 (theo)± 0.12 (lumi)× 10−6 for

four-lepton mass in the range 80 < m4` < 100 GeV and dilepton mass m`` > 4 GeV for all
oppositely charged same-flavor lepton pairs. Normalized differential cross sections were also
measured. All results agree well with the SM predictions. Improved limits on anomalous ZZZ
and ZZγ triple gauge couplings were established, the most stringent to date.
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Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon,
C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le
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