

Higgs results from the combination at ATLAS and at CMS.

Jim Lacey on behalf of the ATLAS and CMS collaborations QCD@LHC 2017, Debrecen (Hungary) Aug 29, 2017

Talk focuses on the mass, cross sections and couplings measurements from the ATLAS Run-2 combination and the ATLAS+CMS Run-I combination

- Introduction
- Higgs boson mass combination
- Higgs boson signal strength, cross sections and couplings combination
- Conclusions and outlook

LHC and detector performance.

LHC performed very well during Run-1 and Run-2 Both ATLAS and CMS experiments achieved very *high data taking efficiencies* ~90% of data ready for physics

Data for analysis:

- **◎** 2011: √s=7 TeV: ~5 fb-1
- **◎** 2012: √s=8 TeV: ~20 fb-1
- **◎** 2015 & 2016: √s=13 TeV: ~36 fb-1

CMS Integrated Luminosity, pp

Higgs Discovery: July 2012.

- Crowning achievement of Run 1
- To determine whether the discovered boson is *fully compatible* with the Standard Model Higgs, precise property measurements are required
 - Large effort towards studying its properties and searching for NP

Higgs boson production & decay.

Before making a *statement* on the SM nature of the Higgs, we first need m_H

Once the mass is determined then **all other properties** of the Higgs boson are **set** and **calculable**

Combination: statistical methodology.

Combine measurements and fit for parameters of interest (POI) using a profile likelihood ratio:

$$\Lambda = \frac{L(\vec{\alpha}, \hat{\vec{\theta}}(\vec{\alpha}))}{L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})}$$

• $\vec{\alpha}$: a vector of POI

- $\vec{\theta}$: nuisance parameters (NP), corresponding to systematic uncertainties
- $\vec{\alpha}$, $\vec{\theta}$ are the values of the POI and NP that maximize *L*
- $\vec{\theta}(\vec{\alpha})$ is the value of the NP that maximize *L* for a given $\vec{\alpha}$
- Assume asymptotic approximation to be valid: $f(\Lambda) = \chi^2(ndof)$

Theory uncertainties assumed *uncorrelated between production modes* (*except for VBF+VH*) and *correlated* between the two experiments

QCD, PDF, UEPS, B^f

Experimental uncertainties are *correlated between analysis channels* but *uncorrelated between the two experiments*, *except for part of the luminosity*

Higgs boson mass

Mass combination.

• Combining measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$ decay channels

channels have the best mass resolution

• Neglect interference between $gg \rightarrow \gamma\gamma$ and $gg \rightarrow H \rightarrow \gamma\gamma$:

 $\Delta m_{YY} = -35 \pm 9 \text{ MeV} (ATLAS)$

Use profile likelihood ratio

Source	Systematic uncertainty on m_H [MeV]
LAr cell non-linearity	90
LAr layer calibration	90
Non-ID material	60
ID material	50
Lateral shower shape	50
$Z \rightarrow ee$ calibration	30
Muon momentum scale	20
Conversion reconstruction	20

ATLAS combined mass in *excellent agreement with the LHC Run-1 average*

Higgs boson cross sections, signal strengths and couplings

$H \rightarrow \gamma \gamma + H \rightarrow 4l$ total cross section.

Total cross section based on inclusive yields in each decay channel

- Yields extracted via a *fit to the inclusive mass distributions* $(m_{\gamma\gamma}$ and $m_{4l})$
- Corrections for: detector effects, fiducial acceptances, BR

Individual channel compatibility: p-value = 29%

Compatibility with *SM*: *p-value* = *84*%

Production and decay combination inputs.

To increase sensitivity most analyses split datasets into categories

- Categories have different S/B and background uncertainties
- Many categories provide sensitivity to different production modes

Categories receive contributions from different productions and decay processes and encode information about different couplings

Run-1 ATLAS+	13 TeVATLAS			
	ggF	VBF	VH	ttH
$H o \gamma \gamma$	\checkmark	\checkmark	\checkmark	\checkmark
$H \to ZZ^* \to 4l$	\checkmark	\checkmark	\checkmark	 ✓ ✓
$H \to WW \to 2l2\nu$	√ X	🗸 🗡	🗸 🗡	🗸 🗙
$H \to \tau \tau$	√ X	🗸 🗶	🗸 🗡	🗸 🗙
$H \rightarrow bb$	XX	XX	🗸 🗡	🗸 🗙
$H ightarrow \mu \mu$	🗸 🗡	🗸 🗡	XX	XX

S/B too low in $gg \rightarrow H \rightarrow bb$ ATLAS+CMS Run-1

- ▶ VBF $H \rightarrow bb$ (CMS) not included
- ▶ $H \rightarrow \mu \mu$ N_{sig} too low for *VH ttH*

 $H \rightarrow \mu\mu$ used only in one model

ATLAS Run-2

▶ considering only $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$

Assumptions:

- Single Higgs boson, CP-even, SM kinematics
- Narrow Width Approximation (NWA: Γ_H ~4 MeV)

$$\sigma\left(i \to H \to f\right) = \sigma_i \frac{\Gamma_f}{\Gamma_{tot}}$$

Signal strength measurements.

J. Lacey

 $\begin{aligned} \text{ATLAS+CMS Run-1: } \mu &= 1.09 \pm 0.07(\textit{stat.}) \pm 0.05(\textit{exp.}) \pm 0.03(\textit{th. B}) \pm 0.07(\textit{th. S}) \\ \text{ATLAS 13 TeV: } \mu &= 1.09 \pm 0.09(\textit{stat.}) \pm 0.06(\textit{exp.}) \pm 0.06(\textit{th.}) \\ \text{All production and decay signal strength} \text{ measurements consistent with SM} \end{aligned}$

13 TeV $H \rightarrow \gamma \gamma + H \rightarrow 4l$ production cross sections.

Higgs production is studied further by separating the production mechanism cross sections

Assuming SM branching fractions, a combined fit is performed, to extract the production cross sections (ggF, VBF, VH, and ttH) for $|y_H| < 2.5$ Measurements of ggF and ttH include bbH and tH, respectively Compatibility with SM predictions: p-value = 5%

13 TeV $H \rightarrow \gamma \gamma + H \rightarrow 4l$: VBF vs. ggF cross sections. Υ ATLAS

ggF and VBF cross sections measured with the best precision

Anti-correlated since the VBF selection categories have significant contribution from ggF production

σ(VBF) vs. σ(ggF) likelihood contours for each analysis channel and their combination (*VH* and *ttH* profiled with the data)

13 TeV $H \rightarrow \gamma \gamma + H \rightarrow 4l$ cross section ratios.

VBF, VH, and ttH normalized to ggF and $B^{\gamma\gamma}$ normalized to B^{ZZ}

$$\sigma_i \cdot B^f = \sigma(gg \to H \to ZZ) \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{B^f}{B^{ZZ}}\right)$$

Combined fit to extract the production and decay ratios for $|y_H| < 2.5$ Compatibility with SM predictions: p-value = 3%

STXS framework ($|y_H| < 2.5$).

Simplified template cross sections (STXS) provide a natural evolution of signal strength measurements

Maximize sensitivity of the measurements and reduce the theory dependences that get directly folded into measurements

STXS stage-1 regions ($|y_H| < 2.5$).

bbH is merged with the ggF

13 TeV STXS stage-1 combined measurements.

Results give a *good overall agreement with SM predictions* in a range of kinematic regions of Higgs boson production processes The compatibility of the measurements with the SM expectation corresponds to a *p-value of 9*%

STXS measurement correlations.

gg→H

gg→H

Correlations:

Largest between the **BR ratio and gg**→*H* **o-jet** and $qq \rightarrow Hqq p_T^{j} < 200 GeV$

 $qq \rightarrow Hqq p_T^{j} < 200 \text{ GeV}$ has greater tension between the two channels.

Significant between $gg \rightarrow H$ o-jet and $gg \rightarrow H$ 1*jet* $p_T^H < 60$ *GeV*, due to migrations between experimental jet-bin categories

κ-framework.

$$\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{\rm SM} \frac{\kappa_f^2 \Gamma_f^{\rm SM}}{\kappa_H^2 \Gamma_H^{\rm SM}}$$

Leading-order (LO) framework (limited predictive power) developed by the LHC Higgs Cross Section WG to study Higgs couplings

useful as long as the overall picture is SM-like

Potential deviations from the SM predictions of the Higgs boson couplings to SM bosons and fermions encoded into a set of coupling modifiers:

$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}} \qquad \kappa_f^2 = \frac{B_f}{B_f^{SM}} \qquad \kappa_H^2 = \Sigma_j B_j^{SM} \kappa_j^2 \qquad \Gamma_H = \frac{\kappa_H^2 \Gamma_H^{SM}}{1 - B_{BSM}}$$
production decay Total width

The same couplings are involved in production and decay modes, hence the yield measurements need to be projected onto the individual couplings

• Loops (ggF, $H \rightarrow \gamma \gamma$) either expressed with *effective coupling modifiers* κ_g , κ_γ , or using more *fundamental coupling modifiers* κ_x $g \approx g_{000000}$

$$\sigma_{ggF} = \kappa_g \cdot \sigma_{ggF}^{SM} = (1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b) \cdot \sigma_{ggF}^{SM}$$

t/b

 g_{000000}

H

13 TeV ATLAS couplings modifier results.

Boson vs. fermion couplings

• SM Higgs couplings to fermions and boson very different (*Yukawa* vs $D_{\mu} \rightarrow \kappa_F vs \kappa_V$)

- κ_F , κ_V in agreement with SM
- $\kappa_F < o$ excluded at > 95% CL
- 2D compatibility with SM: *p-value* = *52*%

13 TeV ATLAS couplings modifier results.

Effective couplings for κ_{γ} and κ_{g}

- No BSM decays (BBSM = 0)
- **ggF** and Hyy loops are allowed to be affected by contributions from additional particles
- 2 free parameters κ_{Y} , κ_{g} , all other coupling modifiers fixed to their SM values
- 2D compatibility with SM: *p-value* = 68%

13 TeV ATLAS couplings modifier ratios.

Conversion of signal strength ratios to the κ -framework using: $\lambda_{ij} = \frac{\kappa_i}{\kappa_j}$

Four ratios constructed to probe loop vertices (κ_g , κ_γ), total width κ_H and fermion and vector couplings (κ_f , κ_V)

Run-1 Couplings modifiers (no BSM).

Express $\kappa_{g,H,\gamma}$ with other κs , $BR_{BSM} = o$, $H \rightarrow \mu\mu$ also combined

Coupling modifiers lower than those predicted by the SM when compared to the global signal strength or the fit results of the decay signal strengths

Parameterization derived from the coupling modifiers make the dependence on the particle masses explicit (as in the SM):

linear for the fermion Yukawa couplings and quadratic for the gauge couplings of the Higgs to the V-bosons

Run-1 couplings with BSM loops and new decays.

- Probe new decay channels: **NWA**, **B**_{**BSM**} > 0 and impose $|\kappa_V| < 1$
- upper limit of $B_{BSM} = 0.34$ at 95% CL (expected limit: 0.39)
- The *p-value* of the compatibility between the data and the SM predictions is **11%**, assuming that $B_{BSM} = 0$

Conclusion and outlook.

Run-1 (ATLAS+CMS)

- Mass measured at 0.2% level : $m_H = 125.09 \pm 0.24$ GeV
- Various parameterization explored and were all found in agreement with SM (worst p-value of 11%)

Run-2 (ATLAS: $H \rightarrow \gamma \gamma \& H \rightarrow 4l$)

- $m_H = 124.98 \pm 0.28$ GeV, in agreement with ATLAS+CMS Run-1 result
- Preliminary combination results for coupling modifiers, production mode and total cross sections
- Possible improvements over the kappa-framework being investigated: preliminary results shown from STXS framework, future considerations: EFT and PO

All measurements consistent with SM expectations

- Run-1 ATLAS+CMS combination provides the most accurate measurements in the Higgs sector, though the ATLAS Run-2 combination approaching the same accuracy
- Increased statistics from the final Run-II dataset and improved theory predictions are already providing a significant increase in sensitivity

References

J. Lacey

CMS: <u>JHEP 05.2013</u>, 2013:145, <u>JHEP 09 (2014) 087</u>

Additional material

Production and decay signal strengths.

Combine categories and **fit** for **cross sections (** σ_i **)** or **signal strength of** different **production processes (i)** and **final states (f)**

$$\mu_i = \frac{\sigma_i}{\sigma_{i,SM}} \qquad \mu^f = \frac{B^f}{B^f_{SM}} \qquad \qquad \mu^f_i = \frac{\sigma_i \cdot B^f}{(\sigma_i \cdot B^f)_{SM}}$$

Analyses extract signal yields:

$$\nu^{\text{sig}} = \mathcal{L}\Sigma_i \Sigma_f \left(\sigma_i A_{i,\text{SM}}^f \epsilon_{i,\text{SM}}^f B^f \right)$$
$$= \mathcal{L}\Sigma_i \Sigma_f \left(\mu_i \sigma_{i,\text{SM}} A_{i,\text{SM}}^f \epsilon_{i,\text{SM}}^f \mu^f B_{\text{SM}}^f \right)$$

where \mathcal{L} is the luminosity, $\boldsymbol{\varepsilon}$ efficiencies, \boldsymbol{A} the detector acceptance and $\boldsymbol{\mu}_i, \boldsymbol{\mu}^f$ are production and decay signal strengths

STXS signal composition by production mode

The expected composition of the selected Higgs boson events, in terms of the different production modes, for each reconstructed category

J. Lacey

STXS signal fractions ($|y_H|$ < 2.5).

ATLAS Preliminary $H \rightarrow \gamma \gamma$, $m_{H} = 125.09$ GeV

J. Lacey

Analysis categories entering the combination.

$H \to \gamma \gamma$	$H \to Z Z^* \to A \ell$
$\frac{1}{t\overline{t}H+tH}$ leptonic (two tHX and one $t\overline{t}H$ categories)	$\frac{11}{t\bar{t}H}$
$t\bar{t}H+tH$ hadronic (two tHX and four BDT $t\bar{t}H$ categories)	VH leptonic
VH dilepton	2-iet VH
VH one-lepton, $p_{\rm T}^{\ell+{\rm MET}} > 150 {\rm ~GeV}$	2-jet VBF. $p_{\pi}^{j1} > 200 \ GeV$
VH one-lepton, $p_{T}^{\ell+MET}$; 150 GeV	2-iet VBF. p_{T}^{j1} :200 GeV
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$	1-jet ggF. $p_{\rm T}^{4\ell} > 120 \ GeV$
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ $= 150 {\rm GeV}$	1-jet ggF, 60 GeV; $p_T^{4\ell}$;120 GeV
$VH + VBF p_T^{j\bar{1}} > 200 \text{ GeV}$	1-jet ggF, $p_T^{4\ell}$;60 GeV
VH hadronic (BDT tight and loose categories)	0-jet ggF
VBF, $p_{\rm T}^{\gamma\gamma jj} \geq 25 \text{ GeV}$ (BDT tight and loose categories)	0 00
VBF, $p_{T}^{\gamma\gamma jj}$; 25 GeV (BDT tight and loose categories)	
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200 {\rm GeV}$	
ggF 2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$;200 GeV	
ggF 2-jet, 60 GeV $\leq p_{\rm T}^{\gamma \gamma}$ j120 GeV	
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} < 60 {\rm ~GeV}$	
ggF 1-jet, $p_{\rm T}^{\dot{\gamma}\gamma} \ge 200 { m ~GeV}$	
ggF 1-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	
ggF 1-jet, 60 GeV $\leq p_{\mathrm{T}}^{\gamma \bar{\gamma}}$;120 GeV	
ggF 1-jet, $p_{\mathrm{T}}^{\gamma\gamma}$; 60 GeV^{-1}	
ggF 0-jet (central and forward categories)	

ATLAS 13 TeV: STXS kinematic regions.

Stage 0 process	Measurement region	Stage 1 region
$gg \to H$	0-jet	0-jet
	1-jet, $p_{\mathrm{T}}^{H} < 60 GeV$	1-jet, $p_{\mathrm{T}}^{H} < 60 GeV$
	1-jet, $60 \le p_{\rm T}^H < 120 GeV$	1-jet, $60 \le p_{\rm T}^H < 120 GeV$
	1-jet, $120 \le p_{\rm T}^H < 200 GeV$	1-jet, $120 \le p_{\rm T}^H < 200 GeV$
	≥ 1 -jet, $p_{\mathrm{T}}^H > 200 GeV$	1-jet, $p_{\rm T}^H > 200 GeV$
		≥ 2 -jet, $p_{\mathrm{T}}^H > 200 GeV$
	≥ 2 -jet, $p_{\rm T}^H < 200 GeV$ or VBF-like	≥ 2 -jet, $p_{\mathrm{T}}^H < 60 GeV$
		≥ 2 -jet, $60 \leq p_{\mathrm{T}}^{H} < 120 GeV$
		≥ 2 -jet, $120 \leq p_{\rm T}^H < 200 GeV$
		VBF-like, $p_{\rm T}^{Hjj} < 25 GeV$
		VBF-like, $p_{\rm T}^{Hjj} \ge 25 GeV$
$qq \rightarrow Hqq$	$p_{\rm T}^j \ge 200 GeV$	$p_{\rm T}^j \ge 200 GeV$
	$p_{\rm T}^j < 200 GeV$	$p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF}$ -like, $p_{\mathrm{T}}^{Hjj} < 25 GeV$
		$p_{\mathrm{T}}^{j} < 200 GeV, \mathrm{VBF}\text{-like}, p_{\mathrm{T}}^{Hjj} \geq 25 GeV$
		$p_{\rm T}^j < 200 GeV, \text{VH-like}$
		$p_{\rm T}^j < 200 GeV, {\rm Rest}$

ATLAS Run-2 cross section correlations.

Simplified template cross section measurements

Mass vs. μ .

Run-1 ATLAS+CMS mass combination.

Results from the *Run-1 ATLAS+CMS mass combination:*

Systematic uncertainty breakdown given in backup **Dominant uncertainties**:

non-linearity, material in front of ECAL, muon calibration

Mass systematic uncertainties.

Couplings: compatibility with SM.

Parameterisation	<i>p</i> -value DO	F	Parameters
Global signal strength	40%	1	μ
Production processes	24%	5	$\mu_{ggF}, \mu_{VBF}, \mu_{WH}, \mu_{ZH}, \mu_{ttH}$
Decay modes	65%	5	$\mu^{\gamma\gamma}, \mu^{ZZ}, \mu^{WW}, \mu^{\tau\tau}, \mu^{bb}$
Decay modes with $H - \mu\mu$	→ 75%	6	$\mu^{\gamma\gamma}, \mu^{ZZ}, \mu^{WW}, \mu^{\tau\tau}, \mu^{bb}, \mu^{\mu\mu}$
μ_V and μ_F per decay	90% 1	0	$\mu_V^{\gamma\gamma}$, μ_V^{ZZ} , μ_V^{WW} , $\mu_V^{\tau\tau}$, μ_V^{bb} , $\mu_F^{\gamma\gamma}$, μ_F^{ZZ} , μ_F^{WW} , $\mu_F^{\tau\tau}$, μ_F^{bb}
μ_V/μ_F ratio	75%	6	μ_V/μ_F , $\mu_F^{\gamma\gamma}$, μ_F^{ZZ} , μ_F^{WW} , $\mu_F^{\tau\tau}$, μ_F^{bb}
$\sigma_i \cdot \mathbf{B}^f$ product	20% 2	3	$ \begin{array}{l} (\sigma \cdot \mathbf{B})_{ggF}^{\gamma\gamma} (\sigma \cdot \mathbf{B})_{ggF}^{ZZ} (\sigma \cdot \mathbf{B})_{ggF}^{WW}, (\sigma \cdot \mathbf{B})_{ggF}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{VBF}^{\gamma\gamma}, \\ (\sigma \cdot \mathbf{B})_{VBF}^{ZZ}, (\sigma \cdot \mathbf{B})_{VBF}^{WW}, (\sigma \cdot \mathbf{B})_{VBF}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{WH}^{\gamma\gamma}, \\ (\sigma \cdot \mathbf{B})_{WH}^{ZZ}, (\sigma \cdot \mathbf{B})_{WH}^{WW}, (\sigma \cdot \mathbf{B})_{WH}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{WH}^{bb}, \\ (\sigma \cdot \mathbf{B})_{ZH}^{\gamma\gamma}, (\sigma \cdot \mathbf{B})_{ZH}^{ZZ}, (\sigma \cdot \mathbf{B})_{ZH}^{WW}, (\sigma \cdot \mathbf{B})_{ZH}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{DH}^{bb}, \\ (\sigma \cdot \mathbf{B})_{ZH}^{\gamma\gamma}, (\sigma \cdot \mathbf{B})_{ZH}^{ZZ}, (\sigma \cdot \mathbf{B})_{ZH}^{WW}, (\sigma \cdot \mathbf{B})_{TH}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{DH}^{bb}, \\ (\sigma \cdot \mathbf{B})_{ttH}^{\gamma\gamma}, (\sigma \cdot \mathbf{B})_{ttH}^{ZZ}, (\sigma \cdot \mathbf{B})_{ttH}^{WW}, (\sigma \cdot \mathbf{B})_{ttH}^{\tau\tau}, (\sigma \cdot \mathbf{B})_{ttH}^{bb} \end{array} $
Ratios of σ and BR relative to $\sigma(gg \rightarrow H \rightarrow ZZ)$	e 16%	9	$ \begin{aligned} \sigma(gg \to H \to ZZ), \sigma_{\text{VBF}} / \sigma_{ggF}, \sigma_{WH} / \sigma_{ggF}, \sigma_{ZH} / \sigma_{ggF}, \\ \sigma_{ttH} / \sigma_{ggF}, B^{WW} / B^{ZZ}, B^{\gamma\gamma} / B^{ZZ}, B^{\tau\tau} / B^{ZZ}, B^{bb} / B^{ZZ} \end{aligned} $
Ratios of σ and BR relative to $\sigma(gg \rightarrow H \rightarrow ZZ)$ and 7/8 TeV	e 26% 1 1	4	$ \begin{array}{l} \sigma(gg \rightarrow H \rightarrow ZZ), \sigma_{\rm VBF}/\sigma_{ggF}, \sigma_{\rm WH}/\sigma_{ggF}, \sigma_{ZH}/\sigma_{ggF}, \\ \sigma_{ttH}/\sigma_{ggF}, {\rm B}^{\rm WW}/{\rm B}^{ZZ}, {\rm B}^{\gamma\gamma}/{\rm B}^{ZZ}, {\rm B}^{\tau\tau}/{\rm B}^{ZZ}, {\rm B}^{bb}/{\rm B}^{ZZ}, \\ \sigma_{ggF}^{7{\rm TeV}}/\sigma_{ggF}^{8{\rm TeV}}, \sigma_{\rm VBF}^{7{\rm TeV}}/\sigma_{\rm VBF}^{8{\rm TeV}}, \sigma_{WH}^{7{\rm TeV}}/\sigma_{WH}^{8{\rm TeV}}, \sigma_{ZH}^{7{\rm TeV}}/\sigma_{ZH}^{8{\rm TeV}}, \\ \sigma_{ttH}^{7{\rm TeV}}/\sigma_{ttH}^{8{\rm TeV}} \end{array} $
Coupling ratios	12%	7	$\kappa_{gZ}, \lambda_{Zg}, \lambda_{tg}, \lambda_{WZ}, \lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{bZ}$
Couplings, SM loops	74%	6	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu$
Couplings vs mass	55%	2	Μ, ε
Couplings, BSM loops	11%	7	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_g, \kappa_\gamma$
BSM loops only	87%	2	κ_g, κ_γ
Fermion and vector cou plings	- 64%	2	$\lambda_{FV}, \kappa_{VV}$
Up vs down couplings	72%	3	$\lambda_{du}, \lambda_{Vu}, \kappa_{uu}$
Lepton vs quark cou plings	- 79%	3	$\lambda_{lq}, \lambda_{Vq}, \kappa_{qq}$

J. Lacey

κ-framework parameterization.

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	_	_	C C	$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	_	_		κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	_	_		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	—	-		κ_t^2
$\sigma(gb \to tHW)$	_	t–W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	—	t–W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	—	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{ au au}$	_	_		κ_{τ}^2
Γ^{bb}	_	_		κ_b^2
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^2
Total width ($B_{BSM} = 0$)			
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z\gamma)}^2 +$
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_u^2$

Run-1 Cross section and BR ratio correlations.

$\sigma_i \cdot B^f$ for each channel ($i \rightarrow H \rightarrow f$).

The sensitivity of the Run-I combination allows six of the $\sigma i \cdot B^f$ to be measured with a precision better than 40%

ggF

 $H \rightarrow \gamma \gamma, H \rightarrow ZZ, H \rightarrow WW$ VBF

 $H \rightarrow \gamma \gamma, H \rightarrow WW, H \rightarrow \tau \tau$

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \to \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

Factor of $\sqrt{2}$ improvement in sensitivity from ATLAS+CMS combination

- Combined >5σ significance provides observation of VBF production and H→ττ decay
- >3σ significance for VH production
- **4.4** σ significance for *ttH* (**2.3** σ excess relative to SM)

Cross section and branching fraction ratios.

$$\sigma_i \cdot B^f = \sigma(gg \to H \to ZZ) \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{B^f}{B^{ZZ}}\right)$$

 $\frac{\sigma_{ttH}}{\sigma_{qqF}}$ ratio of **3.3±1.0** (**3** σ excess) relative to SM (mainly from multi-lepton)

 $\frac{\sigma_{ZH}}{\sigma_{ggF}}$ ratio of **3.2±1.7** relative to SM (slightly milder excess)

 $\frac{B^{bb}}{B^{ZZ}} \sim 2.5\sigma \text{ deficit relative to SM (in current} \\ \text{parameterization, high values for } \sigma_{ttH} / \sigma_{ggF} \\ \text{and } \sigma_{ZH} / \sigma_{ggF} \text{ induce a low } H \rightarrow bb)$

Production *µ* by decay channel.

$$u_i^f = \frac{\sigma_i \cdot B^f}{\sigma_i^{SM} \cdot B^f_{SM}}$$

Parameterization using two production signal strengths (i), one for fermions and one for bosons:

 $\mu^{f}_{ggF+ttH}$ vs. μ^{f}_{VBF+VH}

Good agreement with SM prediction for all decay channels Couplings with BSM loops and new decays (II). **COUPLINE**

$$\Gamma_H = \frac{\kappa_H^2 \Gamma_H^{SM}}{1 - B_{BSM}}$$

- No BSM decays (BBSM = 0)
- All the couplings to SM particles are the same as in the SM
- Only the *ggF* production and *yy* decay loops are allowed to be affected by the presence of additional particles
- Only free parameters κ_γ and κ_g, with all other coupling modifiers fixed to their SM values

p-value of the compatibility between the data and the SM predictions is 82%

Couplings modifier ratios.

Conversion of signal strength ratios into κ-framework using:

$$\lambda_{ij} = \frac{\kappa_i}{\kappa_j}$$

Cross section times branching fraction for the $gg \rightarrow H \rightarrow ZZ$ channel is parameterized as a function of:

$$\kappa_{gZ} = \frac{\kappa_g \kappa_Z}{\kappa_H}$$

J. Lacey

Negative ranges allowed for λ_{WZ} and λ_{tg} to illustrate possible interference effects due to ggZHor tH production

Best fit >0, but limited sensitivity to interference terms

48

Boson vs. fermion couplings.

- SM Higgs couplings to fermions and boson very different Yukawa vs $D_{\mu} \rightarrow \kappa_F$ vs κ_V
- κ_F , κ_V in agreement with SM
- $\kappa_F \times \kappa_V < 0$ excluded at almost 5σ

$\kappa_F vs \kappa_V$.

Likelihood contours at 68% CL in the $(\kappa_F{}^f, \kappa_V{}^f)$ plane for the combination and for the individual decay channels as well as for their global combination, all κ 's are assumed to positive Likelihood contours at 68% and 95% CL in the (κ_{F} , κ_{v}) plane for the individual decay channels and also the combination, with no assumption about the sign of the coupling modifiers

Lepton-quark and up-down symmetry.

u-type & *d-type* quarks could couple to different fields
 Test potential variations of λ_{ud} = κ_d/κ_u
 Charged leptons have same couplings as d-quarks for λ_{ud}
 test the variation of coupling to leptons vs quarks λ_{lq} = κ_l/κ_q
 All ratios consistent with unity

Couplings with BSM loops and new decays.

J. Lacey