

Measurements of low energy observables in proton-proton collisions with the ATLAS Detector

Miroslav Myska On behalf of the ATLAS Collaboration

Track-based Underlying Event @ 13 TeV

JHEP 03 (2017) 157

https://arxiv.org/abs/1701.05390

Track-based Underlying Event @ 13 TeV

- Measurement of angular distribution of energy and of particle flow with respect to leading particle as a function of p_{T}^{lead} , $\Delta \phi$, and of track multiplicity (33 distributions)
- 2 goals:
 - challenge the Monte Carlo predictions for new energy (average 5% accuracy)
 - provide corrected data for new tuning/UE model development (Rivet)

(highly precise measurement < 1%)

Phenomenology of UE – on top of "hard" process

shower algorithms (initial/final)

- semi-hard MPI
- soft MPI / remnant scattering
- color evolution and reconnection

Generator	Version	Tune	PDF	Focus	From
Рутніа 8	8.185	A2	MSTW2008 LO	MB	ATLAS
Рутніа 8	8.185	A14	NNPDF2.3 LO	UE	ATLAS
Рутніа 8	8.186	Monash	NNPDF2.3 LO	MB/UE	Authors
Herwig 7	7.0.1	UE-MMHT	MMHT2014LO	UE/DPS	Authors
Epos	3.4	LHC	_	MB	Authors

- New measurement of Underlying Event (UE) using the Minimum Bias (MB) data
 - 2015 data, 1.6 nb⁻¹; MBTS trigger (> 1 hit) 99-100% efficient
 - Inner tracking detector $|\eta| < 2.5$ (Run II new pixel "B" layer; r = 25 mm)
 - low luminosity run multiple vertex events removed (> 3 tracks above 100 MeV)
 - track $p_T > 500$ MeV, "primary" (impact parameter below 1.5 mm)
 - 66 M events with at least one track p_T > 1000 MeV

8 segments in the inner octagonal ring, 4 segments in the outer ring

- Connected measurements: Track-based Minimum bias at 13 TeV
 - Eur.Phys.J.C76 (2016) 502, Phys. Lett. B758 (2016) 67
 - corresponding low luminosity measurements of low- p_{T} charged particles ($p_{T} > 500$, later 100 MeV)
 - focus on variables describing the entire event mean p_T , inclusive spectra of track transverse momentum and pseudorapidity

Measurement strategy: divide the phase space to discriminate the UE sources

Regions in the azimuthal plane (track φ wrt leading particle)

- Towards $|\Delta \phi| < 60^{\circ}$
- Away $|\Delta \phi| > 120^{\circ}$

main flow of hard process energy insensitive to UE

- Transverse $60^{\circ} < |\Delta \phi| < 120^{\circ}$
 - sensitive to UE, according to $\sum p_T$ divides into
 - "Trans-max" occasional occurrence of hard emission
 - "Trans-min" only UE (MPI)
 - "Trans-diff" wide angle emissions without UE
 (Trans-min subtracted from trans-max)
- all regions have to be filled to accept event

Classical correction to particle level (N_{ch} , Σp_T , $\langle p_T \rangle$):

- Event weighting:
 - trigger efficiency
 - data-driven vertex reconstruction efficiency ~100%
- Track weighting: (MC based)
 - track matching 65 85 % wrt track η and p_T
 - non-primary track fraction up to 2.3% for $p_T = 500 \text{ MeV}$
 - out-of-kinematic-range fraction

Nucl. Instrum. Meth. A 701 (2013) 17

Correction to particle level – for $|\Delta \phi|$ region dependent observables

- effect of "reorientation" may disrupt the measurement few per-cent level effect
- HBOM method (Hit Backspace Once More):

Smoothly varying observable value in a bin when "track reconstruction" is applied (track reco efficiency is known)

Let's apply it 4 times to data (for each bit each observable) and extrapolate it back to "-1" step (2nd order polynomial) → get the distribution as there would be 100% efficiency

Compared to MC unfolding

- observables insensitive to diffraction (by construction), max 2%
- non-collision background events negligible
- 2D event/track distributions measured \rightarrow mean value 1D distributions (profiles)
 - number of charged particles N_{ch}
 - scalar sum of transverse momenta ∑p_T
 - average transverse momentum of particles <p_⊤>
 - all as densities per $\delta \eta \delta \phi$ unit ($\delta \eta = 5$, $\delta \phi = 2\pi/3$...)

As a function of

- leading track p_T
- N_{ch} (in different regions)
- **-** |Δφ|

Transverse region with lower $\sum p_T - MPI$ enhanced

- the strongest pedestal effect among the regions
- Plateau - best Pythia8 Monash and Herwig7
 - Pythia8 A2 and A14 off by 10%; Epos by 20%

30

- Epos stands for 1 GeV but looses for 10 GeV selections
- No model describes both N_{ch} and $\sum p_T$

not as flat as N_{ch} and $\sum p_T$

Best: Epos < 3%

Connections between p_T and N_{ch}

Sensitive to color re-connection

Best: Herwig7 < 1% (above 5 GeV)

submitted to Phys. Lett. B

http://inspirehep.net/record/1615866

https://arxiv.org/abs/1708.04053

- Pure electroweak process in pp collision
- Protons remain unbroken elastic scattering
- Measurement without forward proton detectors
 - exclusive track selection and specific kinematics employed
- Connected ATLAS measurements:
 - exclusive dilepton production @ 7TeV: Phys. Lett. B 749 (2015) 242
 - exclusive WW production @ 8 TeV: Phys. Rev. D 94 (2016) 032011

Signal modeling:

Equivalent Photon Approximation (EPA)

interacting photons \approx quasi-real photons around the proton low virtuality (Q² < 0.01 GeV²) \rightarrow back-to-back muons

Main data sample:

Herwig7 generator as LO $\gamma\gamma \rightarrow \mu^+\mu^-$ using <u>EPA</u> initial photon flux input

Second data sample:

SuperChic2 generator

Background processes:

Proton absorptive effects

- measured via "Survival factor"
- EPA corrected by finite-size parametrization photons have to be outside proton, r > 0.64 fm

Drell-Yan (+ ttbar)

- Powheg-Box + Pythia8 + Photos for FSR QED

Single- and double-proton dissociation

Single: Lpair + JetSet

(Brasse and Suri-Yennie structure functions)

Double: Pythia8

- also include absorptive effects

			Total			Z/γ^*	Z/γ^*		
	Data	Signal	background	S-diss	D-diss	$\rightarrow \mu^+\mu^-$	$ ightarrow au^+ au^-$	Multijet	$tar{t}$
Baseline selection	2933384	5740	2897000	8640	8000	2268000	10 900	590 000	12200
1 mm vertex isolation	14759	4560	11100	6840	300	3900	30	50	0
$m_{\mu^+\mu^-} < 70 \; GeV$	12395	4420	8800	6420	300	2000	30	50	0
$p_{\rm T}^{\mu^+\mu^-} < 1.5 \; GeV$	7952	4370	4300	3550	60	670	7	10	0

Baseline selection: *3M candidate events*

2015 data, 13 TeV, 3.2 fb⁻¹

2 kinematical selections merged into one fiducial region (two triggers)

- $p_T(\mu) > 6 \text{ GeV}$ $\rightarrow 12 < m_{\mu\mu} < 30 \text{ GeV}$
- $p_T(\mu) > 10 \text{ GeV}$ $\rightarrow m_{\mu\mu} > 30 \text{ GeV}$
- $|\eta(\mu)| < 2.4$
- standard muon track quality and isolation requirements applied;

Common di-muon vertex reconstructed

→ both muons have to satisfy:

$$|z_0| * \sin\theta < 0.5 \text{ mm}$$

wrt the dimuon vertex
15k candidate events

Exclusive selection: 12k candidate events

- remove event if there is a track:

$$p_T > 400 \text{ MeV}$$

$$|\eta| < 2.5$$

 $|z_0^{trk}| < 1 \text{ mm}$ - wrt the muon vrtex

 $- m_{\mu\mu} < 70 \text{ GeV}$

DY modeling overestimates the track spectrum correction applied based on control region data

DY control region

signal region

Exclusive selection:

12k candidate events

 signal signature: back-to-back in transverse space

$$\rightarrow p_T^{\mu\mu} < 1.5 \text{ GeV}$$

Acoplanarity: $1-|\Delta \varphi_{\mu\mu}|/\pi$

- used for binned max-log-likelihood fit
- Double-dissociation and DY fixed

(data corrected bin-by-bin)

Integrated fiducial cross section

 $\sigma_{\gamma\gamma\to\mu+\mu-} = 3.12 \pm 0.07 \text{ (stat)} \pm 0.10 \text{ (syst) pb}$ measured: $\sigma_{\gamma\gamma \to \mu + \mu -} = 3.06 \pm 0.05 \ pb$ EPA + corr. x = fractional energy of photon $\sigma_{yy \to u + u^{-}} = 3.45 \pm 0.05 \text{ pb}$ SuperChic2 $\langle x \rangle \approx \langle m_{\mu+\mu-} \rangle / \sqrt{s}$ do / dm $_{\mu^+\mu^-}$ [pb/GeV] **ATLAS** ATLAS $\sqrt{s} = 13 \text{ TeV}, 12 < m_{u^+u^-} < 70 \text{ GeV}$ CMS $\sqrt{s} = 7 \text{ TeV}, \, m_{\mu^{+}\mu^{-}} > 11.5 \, \text{GeV}$ 0.25 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ **ATLAS** ATLAS \sqrt{s} = 7 TeV, $m_{\mu^*\mu^*}$ > 20 GeV ATLAS \sqrt{s} = 8 TeV, $m_{\mu^*\mu^*}$ > 45 GeV Data Stat. uncertainty EPA + finite-size correction Stat. ⊕ syst. uncertainty SuperChic2 0.15 1.1 Stat. uncertainty EPA + finite-size correction Stat.

syst. uncertainty SuperChic2 Theo. uncertainty 0.1 Theory uncertainty 0.05 0.8 **Theo./ Data** 1.2 1.1 0.7 30 40 50 60 5×10⁻³ 10⁻³ 2×10^{-3} 10⁻² 3×10^{-3} $m_{\mu^{+}\!\mu^{-}}[GeV]$ $< m_{\mu^+\mu^-} > / \sqrt{s}$

- Finite-size parametrization describes data
- SuperChic2 overestimates data by 10-20%
- Survival factor = data/bare EPA ≈ 80-90%
- Does exhibit mass dependency

Correlations in ordered hadron chains @ 7 TeV

to be published

Ordered hadron chains - motivation

- How are the early stages of hadronization?
- Is there screwiness at the end of the QCD cascades?
 - B. Andersson et al., JHEP 9809 (1998) 014
 - "emission of soft gluons is constrained to produce an ordered field in the form of a helix"
- e.g. meant as a modification of Lund string fragmentation model
- collinear gluon emissions are absent
- Quantization of the helix string
 - S. Todorova-Nova, Phys. Rev. D 89 (2014) 015002
 - string of tension κ (~1 GeV/fm) is described by radius R and phase ϕ

Quantized helical string fragmentation

- String quantization assumed in transverse coordinate $R \varphi \Rightarrow n R \Delta \varphi \quad (n = 1, 2, 3, ...)$
- Mass spectrum of light mesons (π, η, η') fit

n = 1 for pions $\rightarrow \Delta \phi = 2.82 \pm 0.06$ (analysis focus on "ground state pions" – lack of particle identification)

- Model predicts: minimal momentum difference Q for adjacent hadrons!
 - \rightarrow minimal mass of *n* hadron chain

Quantized helical string fragmentation

Pair rank difference	1	2	3	4	5
Q expected [MeV]	266 ± 8	91 ± 3	236 ± 7	171 ± 5	178 ± 5

Phys. Rev. D 89 (2014) 015002

- Hadron pairs are ordered along the string (ranking)
- Local charge conservation
- → rank 1 pairs always + -
- \rightarrow rank 2 pairs always + + or --
- Helicity conservation
- → momentum difference constrained

Ordered hadron chains - strategy

 Two-particle correlation function of 4-momentum difference Q

$$Q = \sqrt{-(p_i - p_j)^2}$$

showing the average difference between opposite- and same—sign hadron pairs

Subtraction (instead of ratio) eliminates the combinatorial background (distant pairs mostly $\Delta(Q) \sim 0$)

Full-event MC do not even indicate the enhanced production of same-sign pairs over the opposite-sign pairs at low Q (<200 MeV)

Well, rank is not known – what to do?

nicely confirmed qualitative predictions for rank 1 and 2 hadron pairs

Ordered hadron chains - strategy

• Novel approach: let's measure pairs within hadron triplets: $\pi^+\pi^-\pi^+$ or $\pi^-\pi^+\pi^-$

triplets are designed to best correspond to the hadron chain from the same string breakup = powerful probe of the correlation between particles (ranks 1 or 2)

 \rightarrow small 3h chain mass expected: $m_{3h} < 570 \pm 20$ GeV ($m_{nh} < n \kappa R \Delta \phi$)

How much $\Delta_{3h}(Q)$ describes the inclusive $\Delta(Q)$?

- actually it agrees fully up to 200 MeV
- -> fitted to get the 3h chain mass limit

Rivet routine provided!

Ordered hadron chains - measurement

Event selection

- 7 TeV Minimum Bias 2010 data, 7μb⁻¹, low luminosity run
- Low- p_T enhanced track selection: $p_T > 100$ MeV, $|\eta| < 2.5$, $n_{ch} > 1$
- HBOM semi-data driven unfolding
- Additional correction (+ systematics) for track pairs reconstructed with small opening angle (low Q)
- MC: 86% pions, 9.5% kaons, 4% protons/antiprotons, 0.5% leptons. ~ 2.3% non-primary particles

Ordered hadron chains - results

triplet hadron chain (3h) measurement does reproduce the observed abundance of same-sign hadron pairs when upper mass (m_{3h}^{cut}) of the chain is adjusted!

(by interpolation from 0.58, 0.59 and 0.60 values)

Existence of these thresholds is a fundamental feature of the quantized helical model of fragmentation!

Ordered hadron chains

New measurement connections:

"Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector"

- Phys. Rev. D 86 (2012) 052005

$$S_E(\omega) = 1 + \frac{1}{N_{\text{ev}}} \sum_{\text{event}} \frac{1}{n_{\text{ch}}} \sum_{i \neq j} \cos(\omega \Delta X_{ij} - \Delta \phi_{ij})$$

• Data 2010
• Data 2010
• Data 2010
• PHOJET
• PYTHIA8 4C
• PYTHIA6 AMBT2b
• HERWIG++ UE7-2
• UGeV-1

X along the chain $X_j = 0.5E_j + \sum_{k=0}^{k < j} E_k$

low p_⊤ enhanced sample

 $\sqrt{s} = 7 \text{ TeV}$

power spectrum; hadron with azimuth ϕ and position X along the chain $X_j = 0.5E_j + \sum_{k=0}^{k< j} E_k$

"Two-particle Bose–Einstein correlations in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV measured with the ATLAS detector"

- Eur. Phys. J. C 75 (2015) 466
- incoherence/chaoticity parametrized model
- the very same data as new measurement compared

$$R_2(Q) = \frac{\rho(++,--)}{\rho(+-)} / \frac{\rho^{MC}(++,--)}{\rho^{MC}(+-)}$$

<u>Summary</u>

Track-based UE @ 13 TeV:

- new track-based measurement reaching lower p $_{
 m T}^{
 m lead}$ and higher precision (1%)
- roughly 20% increase in UE activity wrt 7 TeV
- MC predictions within total 5% accuracy systematic mismodeling shown

• Exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ @ 13 TeV

- production cross section measured integrated & differential in dimuon mass
- survival through additional QCD interaction approx. 80-90%, tend to decrease with dimuon mass

Helical string fragmentation @ 7 TeV

- two-particle correlation spectra in Minimum Bias data
- unique observation of "adjacent" hadrons via 3h mass restriction
- 4mom. difference: same-sign pairs at 89.7 MeV, oposite-sign pairs at 266 MeV

Back-up

Ordered hadron chains - Dalitz plots

$$T_i$$
 = kinetic energy of *i*-th hadron in the 3h chain

Ordered hadron chains - Dalitz plots

Ordered hadron chains - ratios

Identical data – two different physics interpretations

Quantized Helical sting fragmentation

- causal coherent production
- model predicts momentum thresholds

Bose-Einstein interference

- incoherent probabilistic production