Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

Gino Marceca

Universidad de Buenos Aires

QCD@LHC2017, 1st September 2017

Outline

 Inclusive-jet cross-section at 8 TeV (20.2 fb⁻¹) arXiv:1706.03192 (13th June 2017)
 Inclusive-jet and dijet cross-sections at 13 TeV (3.2 fb⁻¹) ATLAS-CONF-2017-048 (6th July 2017)

2 TEEC measurements and extraction of α_s

arXiv:1707.02562 (9th July 2017)

Overview (Jet cross-sections at 8 and 13 TeV)

- Measurement of the inclusive-jet cross section at 8(13) TeV with an integrated luminosity of 20.2(3.2) fb⁻¹.
- Measurement of the dijet cross section at 13 TeV with an integrated luminosity of 3.2 fb⁻¹.
- Measured cross-sections are compared to NLO QCD calculations corrected for non-perturbative and electroweak effects.
- Level of agreement with NLO predictions is quantified via a χ^2 test.
- Qualitative comparison with the recent NNLO QCD calculations for inclusive-jet cross-section at 13 TeV. (Our first NNLO comparison!)

Event Reconstruction and Selection

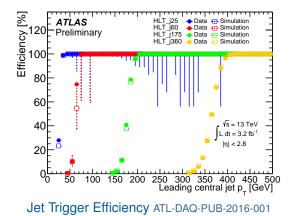
- Jets reconstructed using the anti-k_t algorithm, with a radius parameter value of R=0.4 (8 and 13 TeV) and R=0.6 (8 TeV).
- Jets calibrated using Monte Carlo simulation and data-driven methods.

Analysis	Selection	Phase-space
Inclusive-jet @8 TeV	<i>y</i> < 3.0	<i>y</i> < 3.0
	$ ho_{ m T} >$ 70 GeV	<i>p</i> _T : 70 – 2500 GeV
Inclusive-jet @13 TeV	<i>y</i> < 3.0	<i>y</i> < 3.0
	$p_{ m T} >$ 100 GeV	<i>p</i> _T : 100 – 3500 GeV
Dijet @13 TeV	y* < 3.0	y* < 3.0
	$p_{T2} > 75 \text{ GeV}$	<i>m_{jj}</i> : 300 – 9000 GeV
	$H_{T2} = (p_{T_1} + p_{T_2}) > 200 \text{ GeV}$	-

 $y^* = |y_1 - y_2| \, /2$ where 1,2 subscripts label the highest and second highest p_T jet within |y| < 3.0

Cross-section definition

The **inclusive-jet** cross-section is measured as a function of the jet p_T , in six absolute jet rapidity |y| bins:


$$|y| < 0.5, \quad 0.5 \le |y| < 1.0, \quad 1.0 \le |y| < 1.5,$$

 $1.5 \le |y| < 2.0, \quad 2.0 \le |y| < 2.5, \quad 2.5 \le |y| < 3.0.$

The **dijet** cross-section is measured as a function of the dijet invariant mass, in six y^* bins:

$$y^* < 0.5, \quad 0.5 \le y^* < 1.0, \quad 1.0 \le y^* < 1.5,$$

 $1.5 \le y^* < 2.0, \quad 2.0 \le y^* < 2.5, \quad 2.5 \le y^* < 3.0.$

Trigger

Trigger Data is selected using several jet transverse energy thresholds. Trigger strategy Inclusive combination of single-jet triggers. arXiv:0901.4118

The trigger efficiency is equal to or above 99.9% in the *p*_T range where it was considered.

Pythia, Sherpa, Powheg and Herwig++ MC generators¹ used for:

- Deconvolution of detector effects (unfolding) (Pythia and Sherpa).
- Evaluation of non-perturbative (NP) corrections (Pythia).
- Estimation of NP correction uncertainties (Pythia and Herwig++).
- Propagation of experimental systematic uncertainties (Pythia and Powheg).

¹The MC versions and PDF sets used for each generator are detailed in backup slide 27

Bayesian Unfolding

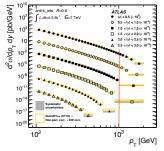
- Iterative Dynamically Stabilised (IDS) method used to correct reconstructed spectra for detector inefficiencies and resolution effects.
- Based on a transfer matrix (TM) constructed using simulated events.
- Inclusive-jet: the TM is filled jet by jet by matching a reco jet with a particle-level jet within a radius of R = 0.3.
- ▶ Dijet: the TM is filled event by event when lying in the same *y** bin.
- Three steps of the unfolding procedure correcting for:
 - Matching impurity at reconstructed level (\mathcal{P}_j).
 - Objective Migrations between neighbour $p_T(m_{jj})$ bins (A_{ij}) .
 - Solution Matching inefficiency at particle-level (\mathcal{E}_i).

$$N_{i}^{ ext{unfolded}} = \sum_{j} N_{j}^{ ext{reco}} \cdot \mathcal{P}_{j} \cdot \mathcal{A}_{ij} \, / \, \mathcal{E}_{ij}$$

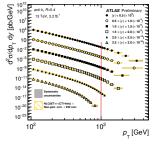
Theoretical Predictions

 QCD calculations: Done with NLOJet++ plus non-perturbative and electroweak corrections

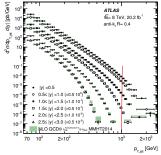
Nominal scale choice:


- leading jet p_T (p_T^{max}).
- PDFs: CT14, NNPDF 3.0, MMHT14, HERAPDF 2.0, ABMP16.
- Uncertainties in the NLO calculation:
 - $(\mu_{\rm R}, \mu_{\rm F})$ scale variations (dominant at low $p_{\rm T}$).
 - PDFs (dominant at high p_T).
 - α_s variation (mostly constant in all p_T and |y| ranges considered).

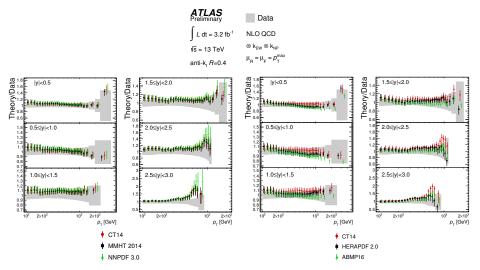
Additional theoretical uncertainty:


- An alternative scale choice based on each jet p_T (p_T^{jet}) was also considered.
- Difference w.r.t to p_T^{jet} was treated as an uncertainty.

Results: Cross-section comparison

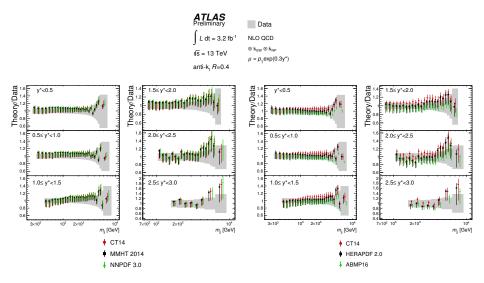

7 TeV (arXiv:1410.8857)

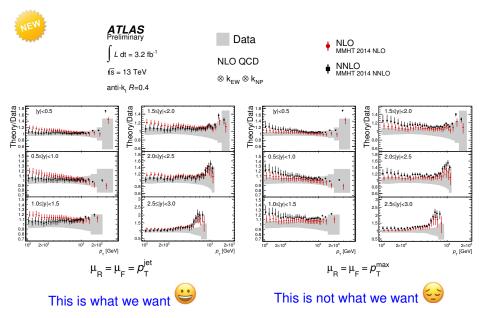
13 TeV (ATLAS-CONF-2017-048)


8 TeV (arXiv:1706.03192)

- 7 TeV result shown as a comparison with 8 and 13 TeV.
- Significant improvement in systematics and range w.r.t 7 TeV measurement.
- Greater p_T range reached by 13 TeV w.r.t 8 TeV.

Results: NLOJet++ vs Unfolded Data (Incl-jet 13 TeV)


(ATLAS-CONF-2017-048)


NNPDF, CT14 and MMHT overestimate the cross-section for the last two |y| bins.

Results: NLOJet++ vs Unfolded Data (Dijet 13 TeV)

(ATLAS-CONF-2017-048)

Results: NNLOJet vs Unfolded Data (ATLAS-CONF-2017-048)

Results: p-values w.r.t NLO (Incl-jets 8 & 13 TeV)

8 TeV

			Pobs	
Rapidity ranges	CT14	MMHT2014	NNPDF3.0	HERAPDF2.0
Anti- k_t jets $R = 0.4$				
y < 0.5	44%	28%	25%	16%
$0.5 \le y < 1.0$	43%	29%	18%	18%
$1.0 \le y < 1.5$	44%	47%	46%	69%
$1.5 \le y < 2.0$	3.7%	4.6%	7.7%	7.0%
$2.0 \le y < 2.5$	92%	89%	89%	35%
$2.5 \le y < 3.0$	4.5%	6.2%	16%	9.6%

13 TeV

			Pobs		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
<i>y</i> < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \leq y < 1.5$	65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \leq y < 3.0$	62%	71%	69%	25%	55%

Consistent results between 8 and 13 TeV.

Results: global fits

8 TeV								
χ^2/ndf	² /ndf		$p_{\rm T}^{\rm jet,max}$			$p_{\mathrm{T}}^{\mathrm{jet}}$		
			R = 0	.4	R = 0.6	5	R = 0.4	R = 0.6
$p_{\rm T} > 70$	GeV							
CT14			349/17	71	398/17	1	340/171	392/171
HERAPD	HERAPDF2.0		415/17	71	424/17	1	405/171	418/171
NNPDF3.	NNPDF3.0		351/17	71	393/17	1	350/171	393/171
MMHT2014		356/17	71	400/17	1	354/171	399/171	
	13 TeV							
χ^2/ndf all $ y $ bins	CT14	MMI	HT 2014	NN	NPDF 3.0	HE	ERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$	419/177	431/177		4	04/177		432/177	475/177
$p_{\rm T}^{\rm jet}$	399/177	405/177		3	84/177		428/177	455/177

- Strong tensions (p-values ≪ 10⁻³) at 8 and 13 TeV observed when considering all jet p_T and |y| regions.
- Numerous studies on the correlation of the systematic sources were done but the tension remains.

Systematic Uncertainties: Correlation Studies at 8 TeV

- To test in a realistic way the sensitivity to the correlations, alternative scenarios were provided for the two-point systematics.
- Different options for splitting the systematics in sub-components as a function of p_T and |y| where studied.
- For the theoretical uncertainties 3 other splitting options were tried as discussed here.
- The χ^2 is reduced by up to 87 units by splitting both the theoretical and experimental uncertainties.
- Despite this, the corresponding p_{obs} values are still $\ll 10^{-3}$

Results: p-values (Dijets 13 TeV)

			Pobs		
y* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \leq y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \le y^* < 2.0$	26%	26%	28%	9.9%	25%
$2.0 \le y^* < 2.5$	43%	35%	31%	4.2%	21%
$2.5 \le y^* < 3.0$	45%	46%	40%	25%	38%
all y [*] bins	8.1%	5.5%	9.8%	0.1%	4.4%

As opposed to the inclusive case, good agreement when considering all y* bins together.

TEEC measurements and extraction of α_s

Motivation

- Transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) leads to precision tests of pQCD.
- NLO calculations corrected by NP and EW effects compared with data.

TEEC:
$$\frac{1}{\sigma'}\frac{d\Sigma'}{d\phi} = \frac{1}{N\Delta\cos\phi} \sum_{A=1}^{N} \sum_{ij} \frac{E_{Ti}^{A} E_{Tj}^{A}}{\left(\sum_{k} E_{Tk}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

- N: Number of events, labelled by index A.
- Indices i and j run over all jets in a given event.
- ϕ_{ij} azimuthal angle between jet i and jet j.

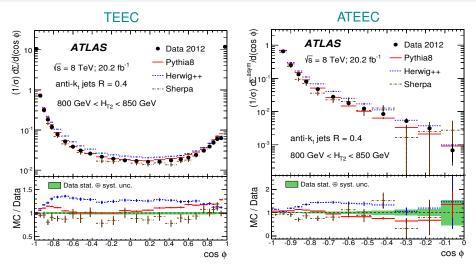
ATEEC:
$$\frac{1}{\sigma'} \frac{d\Sigma'^{\text{asym}}}{d\phi} \equiv \frac{1}{\sigma'} \frac{d\Sigma'}{d\phi} \Big|_{\phi} - \frac{1}{\sigma'} \frac{d\Sigma'}{d\phi} \Big|_{\pi-\phi}$$

- Determination of α_s(m_Z) is performed in different energy regimes, testing the running of α_s predicted by the QCD β-function.
- New coloured fermions would imply modifications to the β -function.

MC Generators and Selection

MC Pythia, Herwig++, and Sherpa were used for the description of jet production.

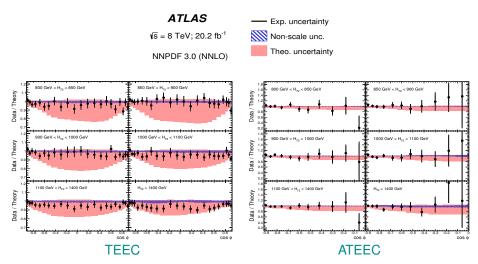
Trigger Data collected using a single-jet trigger with $E_T > 360$ GeV.


Selection Jets with $p_T > 100$ GeV, $|\eta| < 2.5$ and $H_{T2} > 800$ GeV.

• To study the running of α_s , the data was binned in H_{T2} :

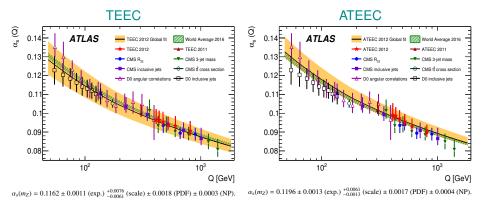
<i>H</i> _{T2} range [GeV]	Number of events	$\langle Q \rangle = \langle H_{\rm T2} \rangle / 2 [{\rm GeV}]$
[800, 850]	1 809 497	412
[850, 900]	1 240 059	437
[900, 1000]	1 465 814	472
[1000, 1100]	745 898	522
[1100, 1400]	740 563	604
[1400, 5000]	192 204	810

Distributions were unfolded with an iterative Bayesian method.


Measured observables (arXiv:1707.02562)

• Peak at $\cos \phi = -1$: back-to-back configuration in dijet events.

• Peak at $\cos \phi = +1$: self-correlations of one jet with itsef (i = j).


Results: NLOJet++ vs Unfolded Data (arXiv:1707.02562)

pQCD correctly describes the data within uncertainties.

Results (arXiv:1707.02562)

- The global fit is done by considering all H_{T2} bins into a single one.
- Partial and global fits are in agreement with previous measurements.
- The uncertainty due to normalization scales is the dominant one.

Conclusions: Inclusive-jet and dijet analyses

- The measurements of the inclusive jet and dijet cross-sections at 8 and 13 TeV was presented.
- The Data were collected with the ATLAS detector during 2012(2015) corresponding to an integrated luminosity of 20.2(3.2) fb⁻¹.
- Quantitative(Qualitative) comparisons between data and NLO(NNLO) pQCD calculations, corrected by NP and EW effects, were performed.
- ► Fair agreement when considering jet cross-sections in individual |y|,y* bins independently.
- Tensions between data and theory observed when considering data from all jet p_T and |y| regions.
- ► No significant deviations between data and NNLO when using p_T^{jet} scale.
- ▶ NNLO overestimates the cross-sections when using p_T^{max} scale.

Conclusions: Measurement of α_s

- The measurement of α_s based on energy-energy correlation observables (TEEC & ATEEC) was presented.
- ► The Data was collected with the ATLAS detector during 2012 corresponding to an integrated luminosity of 20.2 fb⁻¹.
- NLO calculations, corrected by NP and EW effects, are compared to the measurement.
- The result shows excellent agreement between data and theory.
- Determination of \(\alpha_s\) was done by a \(\chi^2\) fit to the theoretical predictions for different \(\lambda Q\) values.
- Global fits were performed in TEEC and ATEEC observables, leading to:

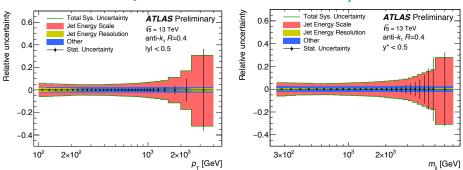
 $\alpha_{\rm s}(m_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} \stackrel{+0.0076}{_{-0.0061}} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)},$ $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0013 \text{ (exp.)} \stackrel{+0.0061}{_{-0.0013}} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0004 \text{ (NP)},$

Good agreement with previous experiments and current world average.

back-up slides

Inclusive-jet and dijet cross-sections analyses

Monte Carlo Generators @8TeV & @13TeV

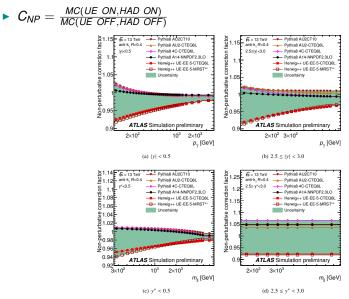

- Simulated events using the Pythia v8.160(v8.186) MC generator with CT10(NNPDF 2.3) LO PDF and AU2(A14) tune.
- Evaluation of non-perturbative uncertainties: Pythia v8.186 and Herwig++ v2.7.1.

Experimental uncertainties @13 TeV (ATLAS-CONF-2017-048)

The Jet Energy Scale, Jet Energy Resolution and Luminosity uncertainties were estimated and taken into account using MC and data-driven techniques.

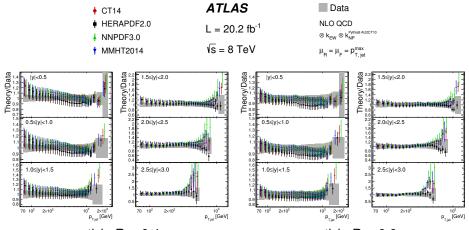
dijet

The JES is the dominating uncertainty.


inclusive-jet

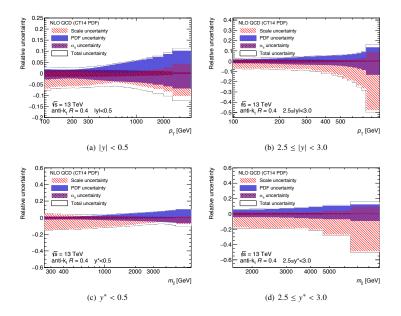
Systematic uncertainties Correlation Studies at 8 TeV

Splitting option	Sub-component(s) definition(s), completed by complementary		
1	$L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5))$ · uncertainty		
2	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot 0.5 \cdot \text{uncertainty}$		
3	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5)$ · uncertainty		
4 5	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5) \cdot 0.5 \cdot$ uncertainty		
5	$L((\ln(p_{\rm T}[{\rm TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2)$ uncertainty		
6	$L((\ln(p_{\rm T}[{\rm TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2) \cdot 0.5 \cdot \text{uncertainty})$		
7	L(y , 0, 3)· uncertainty		
8	$L(y , 0, 3) \cdot 0.5 \cdot$ uncertainty		
9	$L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3)$ uncertainty		
10	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2}$ uncertainty		
11	$L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}$		
12	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2} \cdot 0.5 \cdot \text{uncertainty}$		
13	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1.5)^2} \cdot \text{uncertainty}$		
	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1.5, 3)$ uncertainty		
	$\int 0$ if $x < min$		
L(x, m	$(in, max) = \begin{cases} \frac{x - min}{max - min} & if min < x < max \end{cases}$		
	1 if $x > max$		

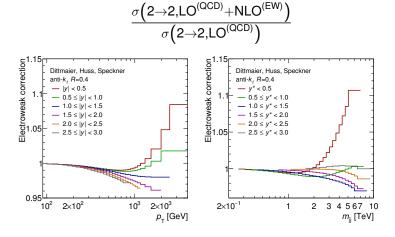

NP corrections at 13 TeV (ATLAS-CONF-2017-048)

Considers effects from underlying-event and hadronisation.

Results: NLOJet++ vs Unfolded Data (8 TeV)

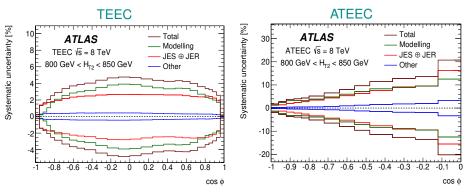

(arXiv:1706.03192)

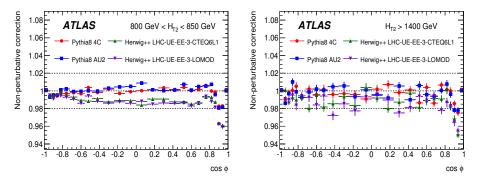
anti- $k_t R = 0.4$


anti- $k_t R = 0.6$

NLO QCD uncertainties at 13 TeV (ATLAS-CONF-2017-048)

EW corrections at 13 TeV (ATLAS-CONF-2017-048)


- NLO pQCD predictions are corrected for the effects of γ and W[±]/Z interactions at the tree and 1-loop level
- The correction is defined as the ratio


Measurement of α_s analysis

Experimental uncertainties (arXiv:1707.02562)

- The Jet Energy Scale, Jet Energy Resolution and Luminosity uncertainties were estimated and taken into account using MC and data-driven techniques.
- The MC modelling is the dominanting uncertainty.
- It was obtained from the difference in the unfolded distributions between Pythia and Herwig++.

NP corrections (TEEC) (arXiv:1707.02562)

Pythia8 with the AU2 tune is used for the nominal corrections.

Determination of α_s

• The evaluation of α_s is obtained by minimizing a χ^2 function:

$$\chi^{2}(\alpha_{s},\vec{\lambda}) = \sum_{\text{bins}} \frac{(x_{i} - F_{i}(\alpha_{s},\vec{\lambda}))^{2}}{\Delta x_{i}^{2} + \Delta \xi_{i}^{2}} + \sum_{k} \lambda_{k}^{2}$$
$$F_{i}(\alpha_{s},\vec{\lambda}) = \psi_{i}(\alpha_{s}) \left(1 + \sum_{k} \lambda_{k} \sigma_{k}^{(i)}\right)$$

- x_i : data points in each distribution (TEEC or ATEEC).
- $\Delta x_i (\Delta \xi_i)$: Statistical uncertainty in data (theory).
- $-\sigma_k^i$: k-th source of systematic uncertainty in the bin i.
- ψ_i(α_s) are analytical expressions parametrizing the dependence with α_s obtained by fitting the predictions for each bin as a function of α_s(m_z):

$$\psi_i(\alpha_s) = a_i \alpha_s^2 + b_i \alpha_s + c_i$$

• The obtained values of $\alpha_s(m_Z)$ are then evolved to $\alpha_s(Q)$ using:

$$\alpha_{\rm s}(Q^2) = \frac{1}{\beta_0 \log x} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log\left(\log x\right)}{\log x} \right]; \quad x = \frac{Q^2}{\Lambda^2},$$

where Λ is the QCD scale, obtained in each case from the fitted value of $\alpha_s(m_Z)$.