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Abstract. CMS has developed a strategy to efficiently exploit the multicore architecture of the
compute resources accessible to the experiment. A coherent use of the multiple cores available
in a compute node yields substantial gains in terms of resource utilization. The implemented
approach makes use of the multithreading support of the event processing framework and
the multicore scheduling capabilities of the resource provisioning system. Multicore slots are
acquired and provisioned by means of multicore pilot agents which internally schedule and
execute single and multicore payloads. Multicore scheduling and multithreaded processing are
currently used in production for online event selection and prompt data reconstruction. More
workflows are being adapted to run in multicore mode. This paper presents a review of the
experience gained in the deployment and operation of the multicore scheduling and processing
system, the current status and future plans.

1. Introduction
The experimental collaborations taking data at the Large Hadron Collider (LHC) have begun
transitioning to multi-core aware application frameworks and scheduling systems capable of
executing multi-threaded applications across multiple cores[1, 2, 3]. This transition has been
driven by an ever increasing volume of complex data resulting from the higher energy and
luminosity delivered by the LHC compared to Run 1. The increase of intensity results in a
higher number of concurrent collisions per event (pile-up). Figure1(a) shows a high pile-up
event from CMS data with 78 reconstructed vertices. These busy events lead to a higher per-
event processing time and memory usage. On the hardware side, the evolution of multicore
technology has been driven by the power limitations on increasing the density of transistors on
single core processors to enhance its performance, and as a result, the need to look for alternative
solutions to increase CPU performance.

Utilizing multicore CPU capability requires software changes to transition from sequential
programming to parallel processing. The multicore applications developed to adapt the code to
this new architecture design offer several advantages. In a threaded process, memory is shared
between threads and this reduces the memory consumption per core[4], thereby avoiding running
into memory limitations as depicted in Fig.1(b). Another advantage concerns the experiment’s
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(a) High pileup CMS event with 78 reconstructed
vertices

(b) Memory use of a multi-threaded application
compared to n simultaneous single-threaded tasks

Figure 1. Drivers motivating use of multicore

Workload Management System (WMS). The number of jobs to be handled by the system is
reduced and the output files produced are of larger sizes, which then requires less managing and
merging operations. The software evolution to utilize multicore CPUs scattered across the Grid
has required the modification of the applications themselves as well as the development of new
resource allocation, scheduling tools and procedures.

For the LHC Run 2 data taking period that began in early 2015, the initial CMS priority in
the deployment of multicore processing and scheduling was the provision of sufficient computing
power to perform multithreaded prompt data reconstruction tasks. In 2015 it was expected to
use 100% of the Tier-0 and 50% of the Tier-1’s available CPUs. Thus, for the first phase of
multicore deployment, the focus has been on T0 and T1s sites (see [5, 6] for a description of
CMS tiered computing model and mesh configuration). Multicore resources are also starting
to be deployed at CMS Tier-2 sites, with the objective of switching simulation and digitization
tasks to multithreaded algorithms as well during 2016. Single core and multicore jobs will
coexist during Run 2 and therefore, a strategy for scheduling both types of job is mandatory.
Eventually, the use of multicore pilots by CMS will expand to manage majority of the resources
at the supporting computing sites.

2. CMS model for multicore resource provisioning
The CMS workload management system (WMS) employs software agents (WMAgents[7]) to
manage centralized workflows populating job queues, assigning job priorities, handling errors,
job retries, merging output files and log collection. The allocation of execution nodes and the
scheduling of jobs is done through GlideinWMS[8, 9, 10]. Resources are allocated at the grid
sites by means of pilot submission as a result of job pressure. Jobs are matched to resources by
managing a transient pool of computing resources controlled by pilot jobs, whose function is to
schedule user jobs.

The model for the integrated scheduling of CMS jobs with different core count requests is
the use of multicore pilots capable of internal partitioning of the resources into dynamic slots.
A single pilot will run multiple payloads, as shown in Fig. 2 for the example of a 4-core pilot.
Two multicore jobs are initially run by creating two slots of two cores each, followed by two
additional single core jobs by further fragmenting one of the slots after the first 2-core job is
finished, This continues until the pilots approaches the end of its defined lifetime. As a result,
running multicore partitionable pilots on CPU resources allows managing all CMS workflows
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with a simplified model.

Figure 2. Schematic of a multicore partitionable pilot

Additional advantages of this model are: a total control of job scheduling priorities by
CMS, as opposed to the scheduling at site level; avoiding competition of single and multicore
pilots for resources at sites and for matching jobs once running, which simplifies the scheduling
optimization; a reduction in the number of pilots needed to run the global pool of resources,
which contributes to the scalability of the system.

The main disadvantages are the inherent inefficiency coming from the draining of retiring
pilots and the potentially slow ramp up of allocated resources (in the case of irregular pilot
submission patterns) in multi-VO sites with policies to protect their compute farms from
excessive resource draining. A previous study[11] observed however negligible inefficiencies when
pilot lifetimes are about ten times or longer than the average job length.

A potential limitation in the model is the inability to pull new multicore jobs once the pilot
has internally fragmented the resource. However, the pool of pilots is continuously renewed
(since pilots have a finite lifetime). Therefore providing fresh non-fragmented pilots (see Fig.
3). This avoids the costly need of induced defragmentation inside running pilots, which however
could still be applied in case of urgency in executing a particular multi-threaded workflow.

Figure 3. Schema of CMS model for multicore resource provisioning

The dynamic behaviour of the system with a dependence on a number of parameters (e.g.
pilot and average job lifetimes, pilot and payload core counts, etc.) implies that its tuning is
essential in order to achieve optimal performance.

3. Results for 2015
CMS has successfully deployed and tested its multicore architecture at the T0 and T1 computing
sites during 2015. We present here four main results:

• Deployment at T1 sites. The multicore resource provisioning model has been
incrementally deployed at T1s as they joined the pool of multicore-capable sites and tuned
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their batch systems to optimal performance when handling multicore requests. Figure 4(a)
shows the monthly average number of cores allocated to running multicore pilots at all CMS
T1s in the second half of 2015.

• Mixed scheduling of multicore and single core jobs within multicore pilots. In
order to assess the multicore pilot model readiness to schedule a mixed workload consisting
of multicore and single core jobs, prompt reconstruction 4-core jobs were tested at large
scale at all CMS Tier-1 sites prior to the start of 2015 data taking, as shown in Fig.4(b).
The target, set at 50% of the pledged T1 CPU cores, was essentially achieved during the
moments of highest multicore job pressure. However, the small amount of data collected
during 2015 made the urgency to use of T1 CPUs for prompt reconstruction lower than
expected, so finally prompt data reconstruction was executed mainly at the T0.

• Multicore Pilot job scheduling efficiency. To measure the efficiency of multicore
pilot internal payload scheduling, single core jobs were submitted with enough pressure to
saturate the allocated resources of about 1000 CPU cores. Multicore pilots were typically
40 hours long, while single core jobs run with a variety of job lengths between 1 to 2 hours.
The test, run over the lifetime of the pilots, yielded negligible scheduling inefficiencies, as
shown in Fig.4(c).

• Execution of multicore prompt data reconstruction jobs at the T0 during 2015.
As shown in Fig.4(d), a variety of core counts were employed for jobs running the T0 CPUs.
Prompt data reconstruction for proton-proton collisions was typically executed as 4-core
jobs, while other multicore job sizes were also employed, in particular for the end-of-year
heavy ion run, with 8-core jobs.

4. Future outlook
In 2016 it is expected that CPU resources at the T1 sites will be regularly used to run
multithreaded tasks, such as data reconstruction jobs and also simulated data processing,
as the Monte-Carlo simulation and digitization steps have been ported to run efficiently in
multithreaded mode. The commissioning work done during 2015 with T1 sites ensures that
both the sites and the multicore scheduling system are ready to reach this goal. In 2016 the
pool of available multicore resources will be increased to include the major T2 sites. Finally,
while CMS tools for multicore job management are ready, a complete deployment of monitoring
tools is needed in order to continue optimizing the scheduling algorithms.
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