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Hamiltonian truncation (also known as “truncated spectrum approach”) is a numerical technique for
solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-
dimensional low-energy subspace. The accuracy of the method is limited only by the available
computational resources. The renormalization program improves the accuracy by carefully integrating
out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever
variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction
strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a
certain class of high-energy “tail states.” We demonstrate the power of the method with high-accuracy
computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other
existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to
higher spacetime dimensions.

DOI: 10.1103/PhysRevD.96.065024

I. INTRODUCTION

Developing reliable and efficient techniques for
computations in strongly coupled quantum field theories
(QFT) remains one of the critical challenges of modern
theoretical physics. In this paper, we will be concerned with
one such technique—the Hamiltonian truncation (HT).1

This method became popular after the work of Yurov
and Zamolodchikov [1,2] in the late 80s–early 90s.2 By
now it’s an established technique with many nontrivial
results (see [4] for a recent review).
The HT is applicable to QFTs whose Hamiltonian can be

split in the formH ¼ H0 þ V whereH0 is exactly solvable.
H0 may be a free theory or an interacting integrable theory,
such as an integrable massive QFT, or a solvable conformal
field theory (CFT). V describes additional interactions.3

The total HamiltonianH is, in general, not exactly solvable
and is treated numerically. To set up the calculation, one
needs to know the energy eigenstates ofH0 in finite volume
and the matrix elements of V among them. Then one
represents H as an infinite matrix in the Hilbert space
of H0 eigenstates. This matrix is truncated to the subspace
of low-energy eigenstates below some energy cutoff ET and
diagonalized numerically. This procedure represents a
natural adaptation of the Rayleigh-Ritz method from
quantum mechanics to QFT.
The HTmethod is nonperturbative and a prioriworks for

interactions V of arbitrary strength. It works best if the
interaction switches off fast at high energy (in technical
language, if V is strongly relevant). In this case, the method
converges rapidly, and accurate results can be obtained with
low ET cutoff and with truncated Hilbert spaces of modest
size. If on the other hand V is only weakly relevant, then the
convergence is poor, as the truncated results exhibit
significant ET cutoff dependence even for the highest
numerically affordable ET’s. This is a limitation of the
method.
Another, related, limitation is that so far most applica-

tions were in d ¼ 2 spacetime dimensions (although in
principle the method can be set up in any d [9]). The reason
is that in d ¼ 2 there are many physically interesting
integrable QFTs and CFTs, which can play the role of
H0. Many of these systems possess perturbations V which
are strongly relevant—a favorable situation according to
the above-mentioned convergence criterion. On the con-
trary, in d > 2 the only exactly solvable H0’s are basically
free theories, and the available interactions are typically
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1Also known as the TSA—truncated space (or spectrum)
approach.

2An even earlier paper using the HT [3] did not get the
attention it deserved.

3In what follows, we assume that V is a nongauge interactions.
It is a largely open problem how to treat gauge interactions using
the HT. The light front quantization [5] has long intended to solve
this problem, but not many concrete results have been obtained,
except in 1þ 1 dimensions where one can integrate out gauge
fields completely, see e.g., [6–8].

PHYSICAL REVIEW D 96, 065024 (2017)

2470-0010=2017=96(6)=065024(43) 065024-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1103/PhysRevD.96.065024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


weakly relevant or even marginal, so that the convergence
is poor.
Motivated by the need to overcome these limitations,

much recent work has focused on improving the conver-
gence of the method. One natural idea is to construct a
renormalized truncated Hamiltonian, whose couplings are
corrected to take into account the effect of states above
the cutoff which are truncated away. The renormalized
truncated Hamiltonian is still diagonalized numerically, but
its eigenvalues exhibit a smaller dependence on the cutoff.
This method was developed in [9–11] where renormaliza-
tion corrections of leading (quadratic) order in the
interaction V have been considered. Leading-order (LO)
renormalization has been successfully used to improve
convergence in several HT studies [9,11–17].
A natural hope [4,11] is that one can improve conver-

gence even further by consider next-to-leading (NLO)
order renormalization corrections. Previous work on this
problem [18] led to somewhat pessimistic conclusions: it
was found that the most straightforward NLO renormali-
zation performs poorly. The goal of our paper will be to
present a different implementation of NLO renormalization
which overcomes the difficulty found in [18] and improves
convergence compared to the LO methods. A short
exposition of our results has appeared in [19].
The paper is structured as follows. In Sec. II, we review

previous work on the renormalized HT and describe our
approach to NLO renormalization. Our construction is
completely general and is presented as such. In the rest
of the paper, we apply NLO-renormalized Hamiltonian
truncation (NLO-HT) to one particular strongly coupled
QFT—the ϕ4 theory in two spacetime dimensions. This is a
field theory interesting both in its own right, and as a
benchmark model for testing the HT method. This theory
has been studied by renormalized HT in our prior work
[11,14,18],4 and so it will be easy to compare the
performance.
In Sec. III, we remind the setup of the HT method as

applied to ðϕ4Þ2. We then explain how our general NLO-
HT construction from Sec. II can be implemented for this
theory. In Sec. IV, we present numerical results. We study
the spectrum dependence on the Hilbert space cutoff and
show that the convergence is both smoother and more rapid
for NLO-HT than for the LO renormalized HT. We discuss
the spectrum dependence on the volume L and the
extrapolation to the infinite volume. Finally, we study
the dependence of the spectrum on the quartic coupling
g, and determine the critical coupling where the theory
transitions to the phase of spontaneously broken Z2

symmetry. Then we conclude.

The interested reader will find much further useful
information in the appendices. Appendices A, B, C are
devoted to conceptual issues: general considerations and
numerical experiments regarding the structure of interact-
ing eigenstates in finite volume (in particular how the
orthogonality catastrophe is avoided), problems with naive
implementations of renormalization corrections, and con-
nections of the renormalized HT with the time-honored
Brillouin-Wigner and Schrieffer-Wolff constructions of
effective Hamiltonians. The rest of the appendices are
more technical (see the table of contents).

II. GENERAL THEORY OF THE RENORMALIZED
HAMILTONIAN TRUNCATION

A. Review of prior work

1. Raw HT

Consider a QFT in a finite spatial volume L, quantized
on surfaces of constant time.5 The Hamiltonian has the
form

H ¼ H0 þ V: ð2:1Þ

The HamiltonianH0 is assumed to have an exactly solvable
discrete spectrum of eigenstates, which form a basis in the
Hilbert space H. The matrix elements of V among H0

eigenstates are assumed known, so that we can view H as
an infinite matrix acting inH. In many applications, V is an
integral of a local operator:

V ¼
Z
B
O: ð2:2Þ

For a concrete example, think of H0 describing a free
massive scalar field ϕ in 1þ 1 dimensions, H the Fock
space, and O ¼ ∶ϕ4∶ the quartic interaction. This example
will be considered in detail below. For the moment, we
would like to stay general.
Let us now pick an energy cutoff ET and divide the

Hilbert space into the low- and high-energy subspaces:

H ¼ Hl ⊕ Hh; ð2:3Þ

where Hl is spanned by basis states with H0-eigenvalue
E ≤ ET .

6 Notice that one could in principle consider
different types of cutoff, which depend not only on ET

4It has also been recently studied by Coser et al. [20] using a
variant of the truncated conformal space approach (TCSA) [1], by
Bajnok and Lájer [21] using the HT, and in [22–24] via the light
front quantization. These papers did not use renormalization
improvement.

5In relativistic QFTs, one can also quantize on surfaces of
constant light-cone coordinate. This light front quantization [5] is
also used in numerical solutions of strongly coupled QFTs via a
version of HT; some recent work is [7,8,22–25]. The structure of
the unperturbed Hilbert space is different from the equal time
case, which leads to important differences in the numerical
procedure. All technical claims in this work will refer exclusively
to the equal time quantization.

6ET ¼ Emax in the notation of [11].
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but on other conserved quantum numbers which may be
present in the integrable Hamiltonian H0, for example,
occupation numbers of individual momentum modes for
free H0. It’s a tantalizing but little-explored possibility that
significant improvement can be achieved by considering
alternative cutoffs (see Appendix A).
The HT method constructs the “truncated Hamiltonian,”

which is the Hamiltonian H restricted to the finite-
dimensional subspace Hl. The truncated Hamiltonian is
diagonalized numerically, producing “raw” [9] spectrum.
Wewill assume that the scaling dimension of the perturbing
operator O is below d=2. In this case, the raw spectrum
converges to the exact finite volume spectrum for ET → ∞
[9,26]. However, in practice one cannot push to very high
ET as the dimension of Hl grows exponentially (see
Appendix A). In many practically interesting cases, one
finds that the convergence error is still non-negligible at the
maximal numerically accessible cutoffs. This calls for
improvements.

2. Integrating out versus truncating

A natural way to reduce the convergence error is to
integrate out the high energy states rather than to simply
truncate them away. This can be done rigorously as follows.
The eigenvalue equation for the full Hamiltonian in the full
Hilbert space is:

H:c ¼ Ec; c ∈ H: ð2:4Þ
Let c ¼ ðcl; chÞ be the low- and high-energy components
of the eigenvector c. We have7:

Hll:cl þ Vlh:ch ¼ Ecl; ð2:5Þ

Vhl:cl þHhh:ch ¼ Ech: ð2:6Þ

From the second equation, we have

ch ¼ ðE −HhhÞ−1:Vhl:cl: ð2:7Þ
Substituting this into the first equation we obtain

Heff :cl ¼ Ecl; cl ∈ Hl; ð2:8Þ

where

Heff ¼ Hll þ ΔHðEÞ; ð2:9Þ

ΔHðEÞ ¼ Vlh:ðE −HhhÞ−1:Vhl: ð2:10Þ

The eigenvalue Eq. (2.8) in the truncated Hilbert space is
exactly equivalent to the original eigenvalue Eq. (2.4) in the

full Hilbert space. The term ΔH takes into account the
removal of the high energy states. Needless to say, ΔH
cannot be found exactly in any situation of interest, because
E −Hhh is impossible to invert exactly. However, one can
hope that it can be found approximately, and that using
these approximations and diagonalizing Heff one can
reduce the convergence error compared to the raw trunca-
tion at the same cutoff value. This will be discussed below.
Historical comment.—The above effective Hamiltonian

construction was first brought to bear on the problem of
renormalized HT in [9,11]. However, in the general
quantum mechanics context, it goes back at least as far
as the work of Feshbach [27,28] and Löwdin [29] around
1960. It is also used in quantum chemistry; see, e.g.,
[30,31]. There, the procedure of dividing the Hilbert space
is called “partitioning,” Hl and Hh the “model” and the
“outer” space, and Hll þ ΔHðEÞ the “intermediate”
Hamiltonian. The approximation (2.12), see below, is also
commonly used.
See also Appendix C for parallels between the renor-

malized HT and two other expansions used previously in
quantum physics (the Brillouin-Wigner series and the
Schrieffer-Wolff transformation).

3. Leading-order renormalized HT

The simplest method to reduce cutoff effects and
improve convergence of the HT is the local LO renorm-
alization, first argued in [10]. It is easy to implement in
practice, and it has been used in several recent HT studies
[9,11–17].
The method is best justified by viewing it as a particular

approximation to ΔH [9,11]. Earlier work on the renor-
malized HT idea includes [32–34]. We disagree with these
papers and with [10] on several conceptual points, and
especially on the treatment of subleading effects, as
discussed in [9], Sec. V D.
Consider a formal expansion of ΔH in powers of Vhh

ΔHðEÞ ¼
X∞
n¼2

ΔHnðEÞ;

ΔHnðEÞ ¼ Vlh
1

E −H0hh

�
Vhh

1

E −H0hh

�
n−2

Vhl: ð2:11Þ

Let us keep only the first term in this expansion (thus we
approximate Hhh ≈H0hh in (2.10):

ΔHðEÞ ≈ ΔH2ðEÞ ¼ Vlh:ðE −H0hhÞ−1:Vhl: ð2:12Þ

Although the matrix in the denominator is now diagonal
and easy to invert, the definition still involves an infinite
sum over all high energy states, and some approximation is
required in order to compute it. The simplest and the most
widely used is the local approximation [9,11], which adds
small corrections to local couplings:

7For any operator A acting on H, we denote Aαβ ¼ PαAPβ,
where Pα (α ¼ l, h) is the orthogonal projector on Hα. In this
notation, Hll is the truncated Hamiltonian.
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ΔH2 ≈ ΔHloc
2 ¼

X
i

κiðETÞ
Z
B
Oi: ð2:13Þ

HereOi are some local operators of the theory (the original
interaction O will be typically one of them). Coefficients
κiðETÞ can be given analytically, using the operator product
expansion (OPE) [9–11]. The ðϕ4Þ2 theory case will be
treated in detail below.
Eq. (2.13) can be motivated as follows. By the effective

field theory intuition, the local approximation can be
expected to work well for the matrix elements ðΔH2Þij
if the energies of the external states Ei;j are much below ET,
the lowest intermediate energy summed over in Eq. (2.12).
These are the most important matrix elements, because the
states with Ei ≪ ET dominate the lower-energy interacting
eigenstates (see Appendix A). The matrix elements among
states close to the cutoff are not well reproduced by the
local approximation, but those states are unimportant.
Replacing ΔH by ΔHloc

2 in Heff gives the local LO
renormalized truncated Hamiltonian. Solving the eigen-
value Eq. (2.8) numerically, we obtain the “local renor-
malized” [11] spectrum. Empirically, this spectrum does
show a smaller ET cutoff dependence than the raw
spectrum, obtained by direct diagonalization of the trun-
cated Hamiltonian Hll.

4. Beyond local leading-order approximation?

One modest improvement of the local LO approximation
is the “local subleading” approximation discussed in [9,11].
For states well below ET, it partially takes into account
subleading dependence of the matrix elements ðΔH2Þij on
their energy. It performs slightly but not dramatically better
than the local one. So it is important to look for further
improvements.
Our goal will be to develop an NLO approximation,

taking the cubic term ΔH3 into account. Naive NLO would
be to use the first two terms in (2.11)

ΔH ≈ ΔH2 þ ΔH3 ðnaiveNLOÞ: ð2:14Þ

However, there is a difficulty in following this route [18].
To recognize it, let us go back to the LO approximation
(2.12) and mention a subtlety glossed over in that
discussion.
Notice first of all that while the local approximation

(2.13) is convenient and natural, technically we are not
forced to use it. The local approximation is good for Ei,
Ej ≪ ET , but if we really wanted, we could actually
compute ΔH2 with reasonable accuracy for all energies
below the cutoff, by splitting the infinite sum into two parts,
treating one of them exactly, and the other approximately
[18] (see Sec. III B 1). Suppose we did it. Would we get
better results for the spectrum using ΔH2 instead of ΔHloc

2 ?

Surprisingly, the answer is no. The explanation is as
follows. When we replaceΔH byΔH2, we already make an
error. This error is small for Ei, Ej ≪ ET , but it turns out
that it is very large for energies close to the cutoff. There,
ΔH2 overestimates certain matrix elements by many orders
of magnitude. As we said, states close to the cutoff appear
with tiny coefficients in the interacting low-energy eigen-
states. So a moderate error involving the matrix elements
among those states would not be important. However, the
behavior ofΔH2 near the cutoff turns out to be so bad that it
ruins the spectrum. In this respect, using ΔHloc

2 instead of
ΔH2 is a blessing. While it adds another small error for Ei,
Ej ≪ ET , it also regularizes the extremely bad behavior of
ΔH2 near the cutoff. Of course ΔHloc

2 remains inaccurate
near the cutoff, but this inaccuracy is order one and does not
affect the spectrum appreciably.
Now consider the naive NLO proposal (2.14). The

described problem with ΔH2 is just the first sign that
the series expansion (2.11) is inadequate for the matrix
elements of ΔH involving states close to the cutoff ET (see
Appendix B). Given this problem, what can we do? To
mitigate the bad behavior near the cutoff, we could try to
treat ΔH3 in (2.14) via a local approximation. However,
to match the expected increase in accuracy, we would have
to treat ΔH2 better than in the local or the local subleading
approximation, and at the same time regularize the bad
behavior near the cutoff. It’s not obvious what such an
approximation might be.
In the next section, we will present a modified approach

to NLO renormalization, which neatly avoids all mentioned
difficulties. Another approach, to be explored in the future,
is outlined in Appendix B 1.

B. NLO renormalization which works: NLO-HT

We will now describe our modified approach to NLO
renormalization. Let us revisit the effective Hamiltonian
construction in Sec. II A 2. Let’s focus on the key Eq. (2.7),
which expresses the “tail”, i.e. the high energy part ch of the
eigenvector, in terms of its low-energy part cl. If we simply
diagonalize Hll, we forget about these tails. On the other
hand, the correction ΔH in the effective Hamiltonian takes
the tails into account.
Our approach will take the tails into account in a slightly

different way, motivated by the already mentioned con-
nection between the Hamiltonian truncation and the
Rayleigh-Ritz (RR) method. In the RR method, one
diagonalizes the Hamiltonian truncated to a subspace
HRR of the full Hilbert space. For example, the raw HT
method corresponds to HRR ¼ Hl. The cornerstone of the
RR method is the variational characterization of the
truncated eigenvalues provided by the min-max principle.
It implies, in particular, that as the subspace HRR is
enlarged, the truncated eigenvalues approach the exact
eigenvalues monotonically from above.
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The rawHTenlargesHRR by raising the energy cutoffET ,
but this is exponentially expensive. A more efficient way to
enlargeHRR would be to add new basis elements capable of
reproducing the entire tails (2.7). This is the idea of our
approach. Formally, we will proceed as follows. We will be
applying the RR method in the subspace HRR of the form:

HRR ¼ Hl ⊕ Ht; ð2:15Þ

whereHl is the same as above with a certain cutoff ET , and
Ht is a finite-dimensional subspace ofHh spanned by “tail
states” defined below. Since this HRR is strictly larger than
Hl, we are guaranteed to do better than the raw truncation.
How much better will depend on the choice of tail states.
Let jii be the Fock state basis of Hl, i¼1…D¼dimHl.

The tail states jΨii will be vectors in the high-energy
Hilbert space Hh. The “optimal” choice for jΨii would be

ðE −HhhÞ−1:Vhljii ðwould-be optimal tailsÞ: ð2:16Þ

Since cl in (2.7) is a linear combination of jii, using these
optimal tail states we could reproduce ch exactly, and so the
RR eigenvalues would be equal to the exact eigenvalues.
The optimal tails cannot be found and manipulated

exactly, for the same reason that ΔH in (2.10) cannot be
found exactly. Instead, we will use a simple approximation
to the optimal tail states:

jΨii ¼ ðE� −H0hhÞ−1:Vhljii ðsimpler tails used hereÞ:
ð2:17Þ

Here we replaced the exact eigenvalue E by some reference
energy E� which will be eventually chosen close to a given
eigenvalue of interest. We also replaced Hhh by H0hh. We
will see that these simpler tail states are tractable. We will
also see that the RRmethod using the simpler tails performs
significantly better than both the raw truncation and the LO
renormalization procedures. This is a sign that the simpler
tails do approximate the optimal tails reasonably well.
So, subspace Ht in (2.15) will be spanned by jΨii

defined in (2.17). In the numerical calculations of this
work, we will always include the full set of tails
T ¼ f1…Dg. However, a priori we can include tail
states corresponding to any subset i ∈ T ⊂ f1…Dg of
low-energy states. In this section, we will develop the
theory for such a general case.8

The reader may be wondering what all this has to do with
the NLO renormalization. This will become clear later,
once we formalize the procedure. Consider the eigenvalue
Eq. (2.4) truncated to the HRR subspace (2.15). In operator
form, we have

PRRHPRRjψi ¼ ERRjψi; ð2:18Þ

where jψi ∈ HRR, PRR is the corresponding projector, and
ERR is the RR eigenvalue. We will call it E from now on,
although it’s only an approximation to the exact eigenvalue
appearing in (2.4) and (2.8). In matrix form, the equation
becomes

HRR:c ¼ EGRR:c; ð2:19Þ

where c ¼ ðcl; ctÞ are the components of jψi when
expanded in the basis of HRR:

jψi ¼
XD
i¼1

ðclÞijii þ
X
j∈T

ðctÞjjΨji; ð2:20Þ

HRR is the matrix of H in the same basis, and GRR is the
Gram matrix. Since the tail states live in Hh, the Gram
matrix has the block-diagonal form:

GRR ¼
�
1

Gtt

�
: ð2:21Þ

The part Gtt ¼ GttðE�Þ is nontrivial because the tail states
are not orthogonal; it is given by:

ðGttÞij¼hΨijΨji

¼hijVlh
1

ðE�−H0hhÞ2
Vhljji ði;j∈T Þ: ð2:22Þ

Consider now the block structure of HRR:

HRR ¼
�
Hll Hlt

Htl Htt

�
: ð2:23Þ

Here Hll is the usual Hamiltonian truncated to Hl. The
other blocks must be worked out using the definition of tail
states. It turns out that they can be conveniently expressed
in terms ofΔH2 andΔH3 discussed in the previous section:

ðHltÞij ¼ hijHjΨji ¼ ΔH2ðE�Þij ði ∈ f1…Dg; j ∈ T Þ;
ð2:24Þ

ðHttÞij¼hΨijHjΨji
¼½−ΔH2ðE�ÞþΔH3ðE�ÞþE�GttðE�Þ�ij ði;j∈T Þ:

ð2:25Þ

8One sensible way for selecting T would be to include only
states jii having a big overlap with the low-energy part cl, so that
ch can still be reproduced with a good approximation. As it will
become clear later, by doing so one would reduce the computa-
tional cost of the numerical procedure. In the future, it is worth
investigating more carefully the trade-off between the number of
included tails and the accuracy of the method. See also Fig. 10 in
Appendix A. Another way to take advantage of an incomplete set
of tails is mentioned in Sec. III B 4.
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Eq. (2.24) is immediate, and (2.25) requires a one-line
calculation. We also have Htl ¼ H†

lt.
Let us rewrite the generalized eigenvalue problem (2.19)

in a form analogous to (2.5), (2.6),

Hll:cl þHlt:ct ¼ Ecl; ð2:26Þ

Htl:cl þHtt:ct ¼ EGtt:ct: ð2:27Þ

See Sec. III B 3 for a discussion of how one could proceed
to find the spectrum directly from these equations and of
computational advantages it could bring (in the context of
the ϕ4 theory). In this paper, we will instead transform the
problem to an equivalent form by eliminating the tail
components ct and deriving an effective equation involving
only cl. While this step is not strictly speaking necessary, it
will bring additional physical insight on the method. So,
expressing ct from the second equation and substituting
into the first, we get an analogue of (2.8):

ðHll þ Δ ~HÞ:cl ¼ Ecl; ð2:28Þ

Δ ~H ¼ Hlt:ðEGtt −HttÞ−1:Htl: ð2:29Þ

Using (2.24), (2.25) we obtain

Δ ~H¼ΔH2ðE�Þlt
1

ΔH2ðE�Þtt−ΔH3ðE�ÞttþðE−E�ÞGðE�Þtt
×ΔH2ðE�Þtl: ð2:30Þ

We emphasize the notation: every time a matrix has a
subscript l (t) it means that the corresponding index runs
over the full f1…Dg (over the subset T ).
In our computations, we will always choose E� suffi-

ciently close to E for the states of interest (which will be the
lowest-energy states in both parity sectors), and neglect the
last term in the denominator.9 Also let us specialize to
the case when T is the full set of tails, as will be in all
numerical computations below. In this case, we obtain a
simplified expression:

Δ ~H ¼ ΔH2ðE�Þ
1

ΔH2ðE�Þ − ΔH3ðE�Þ
ΔH2ðE�Þ ; ð2:31Þ

where all matrices have indices running over the full basis
of Hl. This is our main theoretical result. In the rest of the
paper, we will test how this correction performs, in the
context of the two dimensional ϕ4 theory.

Finally let us clarify the relation with NLO. Performing a
formal power series expansion of Δ ~H in ΔH3 up to the first
order, we obtain:

Δ ~H ¼ ΔH2ðE�Þ þ ΔH3ðE�Þ þ � � � : ð2:32Þ

For E ≈ E�, these are the same two terms as in the naive
NLO correction (2.14). We see that our approach based on
Δ ~H will capture OðV3Þ corrections, unlike the studies in
[9,11,14,18] based onΔH2. For this reason, we will refer to
Δ ~H as “NLO renormalization correction.” In practice,
we will of course use the full expression (2.31) without
expanding.
Of course, Δ ~H is not identical to the naive NLO

correction, differing by the higher order … terms in
(2.32). That’s good because naive NLO fails, as discussed
in Sec. II A 4. On the other hand our NLO approach is
guaranteed not to fail. This is because we arrived at our Δ ~H
via a variational route. Since the Hilbert space (2.15) is
strictly larger than the raw truncated Hilbert space Hl, our
NLO renormalization is guaranteed to perform better than
the raw truncation. As we will see, it also performs better
than the local LO renormalization from Sec. II A 3.

III. NLO-HT FOR ðϕ4Þ2 THEORY

In the previous section, we gave a general description of
NLO renormalized Hamiltonian truncation (NLO-HT). In
the rest of the paper, we will apply this method to one
particular strongly coupled QFT: the ϕ4 theory in d ¼ 2
spacetime dimensions. In this section, we describe imple-
mentation of the method, and in the next one the numerical
results. As we have already studied the ðϕ4Þ2 theory in
[11,14,18] using the LO renormalization, it will be very
instructive to compare.

A. The ðϕ4Þ2 theory

We give here only the minimal information, see [11] for
the details. The theory is defined by the normal-ordered
Euclidean action

S ¼ 1

2

Z
d2x½∶ð∂ϕÞ2 þm2ϕ2∶þ g∶ϕ4∶�: ð3:1Þ

We quantize it canonically on a cylinder with periodic
boundary conditions, expanding the field into creation and
annihilation operators:

ϕðx; τ ¼ 0Þ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2Lωk

p ðakeikx þ a†ke
−ikxÞ; ð3:2Þ

k ¼ 2πn=Lðn ∈ ZÞ; ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
;

½ak; ak0 � ¼ 0; ½ak; a†k0 � ¼ δkk0 : ð3:3Þ

9The correction proportional toG could be comparable toΔH3

for the excited states, for which E − E� is order one. We could add
this correction exactly or perturbatively as in [11], but we will not
do it in this work.
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Here x is the coordinate along the spacial circle of length L,
while τ ∈ R is the Euclidean time along the cylinder.
In terms of normal-ordered operators, the Hamiltonian is

a sum of the free piece and the quartic interaction, plus
finite-volume corrections,

H ¼ H0 þ g½V4 þ 6zðLÞV2� þ ½E0ðLÞ þ 3zðLÞ2gL�;
H0 ¼

X
k

ωka
†
kak;

V2 ¼ L
X
k

1

2Lωk
½aka−k þ 2a†kak þ a†ka

†
−k�;

V4 ¼ L
X

P
ki¼0

1Q ffiffiffiffiffiffiffiffiffiffiffi
2Lωi

p

× ½ðak1ak2ak3ak4 þ 4a†−k1ak2ak3ak4 þ H:c:Þ
þ 6a†−k1a

†
−k2ak3ak4 �: ð3:4Þ

The E0ðLÞ and zðLÞ terms are exponentially suppressed in
the limit Lm ≫ 1. They are discussed in [11] and defined in
Eqs. (2.10), (2.18) of that paper, which we do not reproduce
here. Introduction of these terms is necessary for putting the
theory correctly in finite volume. For example, E0ðLÞ can
be understood as the Casimir energy. In [11] these con-
tributions were described, but then neglected in the numeri-
cal analysis. In this work they will be kept, as the numerical
error will be sometimes smaller in comparison, allowing us
to analyze these exponentially suppressed effects.
The Hamiltonian H acts in the free theory Fock space

HFock in finite volume L (we will consider volumes up to
10 m−1). There are three conserved quantum numbers: total
momentum P, spatial parity P (x → −x), and field parity
Z2 (ϕ → −ϕ). As in [11,14,18], we will focus on the
invariant subspaces H� consisting of states with P ¼ 0,
P ¼ þ, Z2 ¼ �. The states inHþ (H−) contain even (odd)
number of free quanta. The basic problem is to find
eigenstates of H belonging to H�. The two subspaces
don’t mix and the diagonalization can be done separately.
The lowest eigenstate in Hþ is the ground state in finite

volume (the interacting vacuum). The interpretation of the
lowest eigenstate inH− depends on the phase of the theory,
namely if the Z2 symmetry is spontaneously broken in
infinite volume or not. The Z2-preserving phase is realized
formoderate quartic couplings g=m2 < gc, where the critical
coupling wasmeasured as gc ¼ 2.97ð13Þ in [11], while here
we will find a smaller but compatible value gc ≈ 2.8. In the
Z2-preserving phase, the lowest H− eigenstate is the one-
particle excitation at zero momentum. Excitation energy
over the ground state then measures the physical particle
mass mph. In the Z2-broken phase at g=m2 > gc, the lowest
H− eigenstate is the second vacuum, exponentially degen-
erate with the first one at finite L [14,21].
In this paper we will focus on the Z2-preserving phase,

below gc. We will use the NLO-HT method to measure the

physical massmph as a function of the quartic coupling. We
will also measure gc, as the point wheremph goes to zero. It
will be instructive to compare with [11] where these
measurements were done using the LO renormalized HT.

B. NLO-HT implementation outline

Here and below, we will fix the units of energy by setting
the mass to m ¼ 1.
In our python code, we first build the Fock state basis

ofH ¼ H� up to a fixed energy cutoff ET . For example, we
will use ET ¼ 20 for L ¼ 10, corresponding to order 104

states. We then evaluate the matrix elements of H between
these states (i.e. the matrix Hll) directly from the definition
(3.4). This matrix is sparse, and it is important to organize
this computation exploiting this sparsity maximally effi-
ciently. Our current algorithm improves on [11]; it is
described in Appendix I. The subsequent steps are the
computation ofΔ ~H and the numerical diagonalization; they
are discussed below.

1. ΔH2

We need to evaluate the matrix element ðΔH2Þij between
any two Hl states. Recall that ΔH2 is defined by (2.12)
which is an infinite sum over intermediate states inHh. The
choice of E� will be described below; for now, let us keep it
as a free parameter.
We introduce a new cutoff EL > ET (‘L’ for ‘local

approximation’) and split this sum into “moderately high”
states in the range ET < Ek ≤ EL and “ultrahigh” ones of
energy Ek > EL [18]:

ΔH2ðE�Þ ¼ ΔH<
2 þ ΔH>

2 ; ð3:5Þ

ðΔH<
2 Þij ¼

X
k∶ET<Ek≤EL

Vik
1

E� − Ek
Vkj; ð3:6Þ

ðΔH>
2 Þij ¼

X
k∶Ek>EL

ðsameÞ: ð3:7Þ

The number of “moderately high” states, which con-
tribute to ΔH<

2 , is large but finite. We will choose EL not
excessively large, so that this finite sum can be done
exactly; see Appendix I for the algorithmic details. On the
other hand, while the number of ultrahigh states contrib-
uting to ΔH>

2 is infinite, all of these states have energy
significantly higher than the external energies Ei;j. For this
reason, wewill be able to approximate the matrixΔH>

2 by a
sum of local operators:

ðΔH>
2 Þij ≈

X
N¼0;2;4

κNðELÞðVNÞij;

VN ¼
Z

L

0

dx∶ϕðxÞN∶: ð3:8Þ

NLO RENORMALIZATION IN THE HAMILTONIAN TRUNCATION PHYSICAL REVIEW D 96, 065024 (2017)

065024-7



This is similar in spirit to the local approximation which we
already encountered in Eq. (2.13), with ET replaced by EL.
The operators ∶ϕðxÞN∶ are the particular examples of
operators Oi in that formula, as appropriate for the ϕ4

theory under consideration. For an explanation why
only operators up to V4 occur at this order, see [11] and
Appendix E.
The point of introducing the intermediate scale EL is that

we want (3.8) to be a good approximation for all Ei;j ≤ ET .
Without the intermediate scale the approximation would
break down close to the cutoff, as is the case for Eq. (2.13)
that is true only for Ei;j ≪ ET.
The expected accuracy of the local approximation (3.8)

is ðET=ELÞ2. In principle, we need EL ≫ ET , but in
practice we will choose EL ≈ 3ET and we will check that
it already gives a reasonable approximation (see
Appendix G). The local approximation can be justified
using the operator product expansion (OPE) as in [11]; it
can also be connected with the diagram technique (see
Appendix E). The coefficients κN are given by [11]:

κNðELÞ ¼ g2
Z

∞

EL

dE
μNðEÞ
E� − E

; ð3:9Þ

where μN can be conveniently expressed as the relativistic
phase-space integrals [18]. They can be computed in an
m=E expansion and the leading terms are [11]10:

μ0ðEÞ ¼
1

E2

�
18

π3
ðlogE=mÞ2 − 3

2π

�
;

μ2ðEÞ ¼
72 logE=m

π2E2
; μ4ðEÞ ¼

36

πE2
: ð3:10Þ

2. ΔH3

The evaluation of ΔH3 follows the same strategy as for
ΔH2. We introduce an intermediate cutoff E0

L (in general
different from EL) and split the definition into four sums
depending if the exchanged states k, k0 are moderately high
or ultrahigh with respect to E0

L:

ΔH3ðE�Þ ¼ ΔH≪
3 þ ΔH≫

3 þ ðΔH<>
3 þ H:c:Þ; ð3:11Þ

ðΔH≪
3 Þij ¼

X
k;k0∶ET<Ek;k0≤E

0
L

Vik
1

E� − Ek
Vkk0

1

E� − Ek0
Vk0j;

ð3:12Þ

ðΔH≫
3 Þij ¼

X
k;k0∶Ek;k0>E0

L

ðsameÞ; ð3:13Þ

ðΔH<>
3 Þij ¼

X
k∶ ET<Ek≤E

0
L

k0∶ Ek0>E
0
L

ðsameÞ; ð3:14Þ

We compute ΔH≪
3 by evaluating and multiplying the

involved finite matrices; see Appendix I. For ΔH≫
3 , we

use a local approximation:

ΔH≫
3 ≈

X
N¼0;2;4;6

λNVNþλ2j4∶V2V4∶þλ4j4∶V4V4∶: ð3:15Þ

This involves local operators up to V6 as well as bilocal
operators with up to eight fields, whose appearance is a
novelty first observed here (see Sec. E 3 and Appendix F
for details).11

Concerning ΔH<>
3 , its definition can be rewritten as a

finite sum over moderately high k:

ðΔH<>
3 Þij ¼

X
k∶ET<Ek≤E0

L

Vik
1

E� − Ek
ðΔH>

2 Þkj: ð3:16Þ

The ΔH>
2 here is the piece of ΔH2 receiving the contri-

bution from the ultrahigh states; it is given by (3.7) with
EL → E0

L. For (3.7), we could use a local approximation
since both external energies were much below the cutoff,
but here we cannot do this right away, since Ek may be
close to the cutoff E0

L. To deal with this nuisance, we
introduce a further cutoff E00

L > E0
L. Then, in the sum

defining ðΔH>
2 Þkj, the part over the intermediate states

below E00
L is performed explicitly, and for the part above E00

L
the local approximation (3.8) is used (with EL → E00

L).
Let us now make some remarks on the computational

cost of evaluating ΔH3, which is the most expensive step in
the procedure. For the choice of parameters L, ET , E0

L, E
00
L

which we will use in Sec. IV, the expressions (3.12) and
(3.14) involve double sums over tens of millions of high-
energy states. We are able to take advantage of the sparsity
of the matrices to perform these sums relatively efficiently
(see Appendix I for the details). Still, this step limits the
value of the local cutoffs and/or the number of tails that can
be included. In the future, one may have to devise more
efficient approximate procedure to evaluating the matrix
ΔH3. One simple option would be to discard tail states that
are not important for modeling the high-energy part of the
eigenvectors ch in (2.7) (see note 8). Alternatively, one
could consider varying degrees of approximation for the
different matrix entries of ðΔH3Þij. For instance, if for a10μN ¼ μ44N in the notation of [11]. In obtaining Eq. (3.10), the

infinite length limit L → ∞ was taken. This is a good approxi-
mation for the volumes that we consider later in the numerical
study. While we will keep exponentially suppressed term in the
zeroth-order Hamiltonian (3.4), keeping such terms in renorm-
alization corrections is unimportant at the current level of
accuracy.

11Ref. [4] briefly discussed the local approximation at the
cubic order, for the TCSA case when H0 describes a CFT. Their
Eq. (321) appears incomplete, as it does not allow for bilocal
operators. See also Appendix F 3.
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pair of states i, j it happens that ðΔH2Þij ≫ ðΔH3Þij, one
might be justified in discarding altogether the smaller
contribution for this matrix element. It would be very
interesting to explore these and other possibilities. We leave
this for future work, while here we will stick to the simple
prescription described so far.
This finishes a rough outline of how the needed matrices

will be evaluated. We would like to emphasize one feature
of the proposed algorithm: the systematic split of all sums
into moderately high and ultrahigh parts. The moderately
high sums are done by simply evaluating and multiplying
the needed finite matrices, while in the ultrahigh parts the
local approximation can be used. In Appendix D, we
will review a diagrammatic technique of [18], which in
principle provides a different way of organizing the
computation of ΔHn. Since that technique is not easily
automatizable, we will not use it here for the moderately
high region computations. However, it will be instrumental
for analyzing the local approximation for the ultrahigh parts
(Appendices E, F).

3. Idea for the future

We would like to record here a promising idea which
occurred to us late in this project, so that we had not had the
chance to test it in detail. In the setup outlined in Sec. III, in
which the full set of tails is added to the variational ansatz,
we can raise the cutoff up to ET ¼ 20, beyond which
computing the matrix ΔH3 becomes too expensive. On the
other hand the raw truncation can be implemented up to
ET ¼ 35. We could further increase the accuracy of our
procedure combining the two, i.e. by considering ET ¼ 35
but introducing an incomplete set of tails for states below
Et ¼ 20 < ET (see note 8). We think this combination
may be affordable if we analyze this problem directly via
(2.27), without integrating out the tails, as we explain in
Sec. III B 4.

4. Diagonalization

We used an iterative Lanczos method diagonalization
routine scipy.sparse.linalg.eigsh (based on
ARPACK), with the parameter which ¼ ‘SA’, intended
for computing algebraically smallest eigenvalues. With this
choice of parameter the matrix is not inverted and diag-
onalization times are smallest. Notice that this routine
works both for sparse and nonsparse matrices. In our
problem, the matrices Hll, ΔH2, ΔH3 are sparse, but the
matrix Δ ~H is not sparse because of the matrix inversion
involved in its definition.
With the same routine one could implement the idea

outlined in Sec. III B 3, by passing the inverse of the Gram
matrix GRR and solving directly (2.27). In that case, every
large matrix needed for the numerical algorithm will be
kept in the sparse format, while the only nonsparse matrix
will be G−1

tt , of modest size.

Below, we will also compare NLO-HT to the raw
truncation at much higher cutoff, up to ET ¼ 35 when
the Hilbert space contains millions of states. In this work,
the full needed matrix is always evaluated and saved in
memory, and then the diagonalization routine is called.
When the involved matrices are sparse, it might be possible
to use the option of evaluating the needed matrix elements
‘on the fly’, as opposed to prior evaluation and storage of
the whole matrix. We have not explored this option in
this work.

IV. NUMERICAL RESULTS

In the previous section, we described how to set up the
NLO-renormalized HT method for the ðϕ4Þ2 theory in
finite volume. In this section, we will present the numerical
results which come out of this implementation. Recall that
we are working in the units in which m ¼ 1.
Our code is written in python and was run on a cluster

with 100 Gb RAM nodes. As an example of required
computational resources, one NLO-HT data point in Fig. 1
for L ¼ 10 and ET ¼ 20 requires 40 CPU hours and about
80 Gb RAM. Running time and memory requirements
quickly decrease with ET . The whole scan for ET ¼ 10–20
in steps of 0.5 for a given g takes about 140 CPU hours. For
the raw and leading LO renormalized HT, the maximal
attainable ET was limited by available RAM, while the
running time was faster than for the NLO-HT.

A. ET dependence

The numerical accuracy of the NLO-HT method is
determined by the cutoff ET of the low-energy Hilbert
space, and by the auxiliary “local” cutoffs EL, E0

L; E
00
L

introduced in Sec. III B. The latter cutoffs are used in the
computation of Δ ~H; here we will fix them relative to ET as
EL ¼ 3ET , E0

L ¼ 2ET , E00
L ¼ 3ET . This is high enough so

that Δ ~H is approximated sufficiently well (see also the
checks in Appendix G). The E� parameter in (2.31) will be
fixed as follows. At each ET , we will choose E� equal to the
energy of the lowest state in each Z2 parity sector, as
computed for the same ET in the local LO renormalized
approximation (Sec. II A 3).
With the auxiliary cutoffs fixed as above, ET remains the

only free parameter. Therefore, the numerical error will be
estimated just by varying ET .
In Fig. 1, we plot the NLO-HT vacuum energy E0 and the

physical mass E1 − E0 as a function of ET , for g ¼ 1 and 2
and L ¼ 10. Notice that g ¼ 1, 2, while being smaller than
the critical coupling gc ≈ 2.8, are well above the window
g≲ 0.2 where perturbation theory is accurate.12 We could
push the NLO-HT cutoff up to ET ¼ 20 for L ¼ 10,
corresponding to ∼104 states. The main numerical

12See Appendix B of [11].
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bottleneck which prevents us from going higher is the
evaluation of ΔH3.
For the sake of comparison, in the same figure we

overlay the numerical results obtained by two of the
methods described in [11]. These are the raw truncation,
in which the correction term ΔHðEÞ in (2.8) is simply
thrown away, and the local LO renormalized (referred to as
simply “local” below) procedure, in which ΔHðE�Þ is
replaced by the simpler correction term ΔHloc

2 ðE�Þ com-
puted in a fully local fashion, as discussed in Sec. II A 3.13

As one can see, we are able to push the cutoff ET much
higher for these simpler methods, up to ET ¼ 34 for
L ¼ 10, corresponding to ∼107 states.

The first observation is that the raw HT and the NLO-
HT are variational procedures, and hence always provide
upper bounds on the eigenvalues, which become mono-
tonically more accurate with increasing ET . This is visible
in the figure. On the contrary local renormalization is not
variational and does not have to be monotonic.
From Fig. 1 it is evident that the rawHT is by far the least

accurate, therefore we will not report results of this method
in the rest of the discussion. We will keep showing local
results as a baseline to judge the relative advantages of the
NLO-HT, and to justify its additional complexity.
Fig. 2 compares the rate of convergence of these two

methods. In this figure, the vacuum energy density E0=L
and mass E1 − E0 are shown for L ¼ 6, 8, 10 and g ¼ 1 and
g ¼ 2. These plots are consistent with the expectation that
both methods converge to the same asymptotic values as
ET → ∞. Notice that the local data are plotted versus 1=E2

T ,
while the NLO-HT data versus 1=E3

T . At asymptotically

FIG. 1. The vacuum energy (left) and the physical mass (right) for L ¼ 10, plotted as a function of ET for the three methods: raw HT,
local LO renormalized HT, and NLO-HT. The top (bottom) plots refer to g ¼ 1 (g ¼ 2).

13In this case, E� is taken from raw HT. We do not include the
results obtained by the “local subleading” method of [11], which
are only marginally more accurate than the local ones.
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FIG. 2. Convergence rate of NLO-HT versus local LO renormalized HT. See the text.
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large ET , both methods appear to have linear convergence
with respect to these two variables. Notice that for the
smaller values of Lwe could push the cutoff higher than for
L ¼ 10, due to larger gaps in the free spectrum.
Naively, we may have expected faster convergence

with the cutoff: 1=E3
T for the local and 1=E4

T for the NLO-
HT. For example, the coefficients of the local correction
terms given in (3.9) behave as 1=E2

T times logarithms. If
these coefficients were to correct the 1=E2

T behavior fully,
we would have remained with an error decreasing one
power of ET faster. Apparently this does not happen.
Similarly, in the NLO-HT case, the largest local coef-
ficient at the cubic order decreases as the cubic power of
the cutoff, see Table III, and again this does not seem
sufficient to fully correct the 1=E3

T behavior of the
spectrum. While we don’t understand why the naive
expectations concerning the convergence rate fail,14 it
remains true that the observed convergence for NLO-HT
is much faster than for the local (which in turn is much
faster than for the raw HT).
The local data in Figs. 1 and 2 show significant

fluctuations on top of the 1=E2
T approach, especially

pronounced for the mass. The origin of these fluctuations
lies in the discreteness of the spectrum. For a continuously
increasing ET , the truncated Hilbert space changes dis-
continuously when the high-energy states fall below the
cutoff. At the same time, the local correction term
ΔHloc

2 ðE�Þ varies continuously with the cutoff, and so is
unable to compensate the effects of discreteness.15

On the other hand, the correction term Δ ~H in the NLO-
HT method adjusts itself discontinuously with the cutoff,
because the sum over states just above the cutoff if
performed exactly and not in the local approximation.
For this reason, the NLO-HT provides a much smoother
dependence on ET , as Figs. 1 and 2 demonstrate. This
makes the NLO-HT data well amenable to a fit. We tried
various fitting procedures, and the one which seemed to
worked best is to fit the NLO-HT points by a polynomial in
1=ET of the form

FðETÞ ¼ αþ β=E3
T þ γ=E4

T: ð4:1Þ

From these fits we extract predictions for the eigenvalues at
ET ¼ ∞, with error estimates, which will be used in the
subsequent sections. For more details on the fitting pro-
cedure, see Appendix H.

The reader may notice that some points in the left panels
of Fig. 2 violate monotonicity in ET by a small amount,
which is in apparent contradiction with was what stated
earlier about the variational nature of the NLO-HT pro-
cedure. These fluctuations are numerical artifacts having
negligible impact on the accuracy of the method. Their
presence is explained by the following two reasons. First, as
explained in Sec. III B, the ultrahigh energy contributions to
the matricesΔH2 andΔH3 in (2.31) have been computed in
the local approximation, rather than exactly. Second, in our
prescription, we choose the parameter E� in Δ ~H to depend
onET , as explained above, implying that increasingET does
not strictly correspond to enlarging the variational ansatz.

B. L dependence

In this section, we study the dependence of the numerical
eigenvalues on the volume L. Finite volume effects in
quantum field theory are very well understood theoretically
[35–37]. This will allow us to perform interesting con-
sistency checks of our results, and to devise a procedure for
extracting infinite volume predictions.
Let us discuss first the theoretical expectations for the

vacuum energy density and for the physical particle mass in
finite volume. The vacuum energy at L ≫ 1=mph should
behave as

E0ðLÞ=L ¼ Λ −
mph

πL
K1ðmphLÞ þ

a
4

ffiffiffi
π

p
�
mph

L3

�
1=2

e−2mphL

þ � � � ðL ≫ 1=mphÞ; ð4:2Þ
where Λ is the infinite volume vacuum energy density (the
cosmological constant) and mph is the physical mass of the
lightest particle. This formula is valid in anymassive quantum
field theory in 1þ 1 dimensions in absence of bound states
(i.e. particles with mass below 2mph). See the discussion in
[11] after Eq. (4.4), as well as [38], Eq. (90) and later. Free
bosons/fermions have a ¼ �1. For interacting theories, we
expect a ¼ Oð1Þ. This is satisfied by the fits below.
The physical mass in finite volume is defined as E1 − E0

where E1 is the lightest excited energy level at zero
momentum. The large L corrections to this quantity can
be understood as contributions to the one-particle self-
energy arising from virtual particles traveling around the
cylinder representing ðspatial circleÞ × ðtimeÞ [35,37]. In a
1þ 1 dimensional theory with unbroken Z2 symmetry,
they can be expressed as16

14A possible reason for the NLO-HT might have to do with the
local approximation of ΔH3, see Appendix G.

15It should be pointed out that Ref. [21] was able to fit the raw
HT data by a fitting function inspired by the ET dependence
theoretically predicted in [11]. They used a slightly different
definition of Hilbert space cutoff and fitted only a subsequence of
cutoff values, which was reducing the fluctuations around a
smooth fit.

16The role of the Z2 symmetry is to forbid the cubic coupling.
With a cubic coupling there would be an extra leading term in the
rhs scaling as expð− ffiffiffiffiffiffiffiffi

3=4
p

mphLÞ [35,37]. The given value of the
exponent σ is for a generic 1þ 1 dimensional QFT with Z2

symmetry. Generic theories in higher dimensions and/or without
Z2 symmetry will have smaller σ (see [37]), while specific
theories with restricted interactions may have larger σ; e.g., the
critical 2d Ising model perturbed by the temperature perturbation
has σ ¼ 3.
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E1ðLÞ− E0ðLÞ ¼mph þΔmðLÞ þOðe−σmphLÞ; σ ¼
ffiffiffi
3

p
;

ð4:3Þ

ΔmðLÞ ¼ −
1

8πmph

Z
dθe−mphL cosh θFðθ þ iπ=2Þ;

ð4:4Þ

FðθÞ ¼ −4im2
ph sinhðθÞðSðθÞ − 1Þ; ð4:5Þ

where SðθÞ is the S-matrix for 2 → 2 scattering, with θ the
rapidity difference. The third term in (4.3) is given by
contributions in which virtual particles travel around the
cylinder multiple times.
While the S-matrix can be measured in the HT approach

by studying the L dependence of two particle states [2], this
will not be done in this work. Instead, we will parametrize
our ignorance of the S-matrix replacing Sðθ þ iπ=2Þ with a
Taylor series expansion around θ ¼ 0. This is reasonable
because the integral in Δm is dominated by small θ. We
obtain:

ΔmðLÞ=mph ≈ bK1ðmphLÞ þ
c

ðmphLÞ3=2
e−Lmph : ð4:6Þ

The Bessel function here would be the exact answer for a
constant SðθÞ, while the second term comes from θ2

in Sðθ þ iπ=2Þ doing the integral via the steepest descent
(the linear term vanishes in the integral). Further correc-
tions are suppressed by additional powers of 1=ðmphLÞ.
In Fig. 3, we present the numerical data: the vacuum

energy density E0=L and the physical mass E1 − E0 as
functions of L for three values of the coupling g ¼ 0.2, 1, 2.
We include the NLO-HT data points at the highest ET we
could reach for the given L (blue), the NLO-HT data fit-
extrapolated to ET ¼ ∞ as discussed in the previous
section (red error bars), and the local data at its highest
ET (yellow).17

Let us interpret this data theoretically, starting with weak
coupling g ¼ 0.2 which lies at the boundary of the region
where fixed order perturbation theory ceases to be reli-
able [11]. We fit the ET ¼ ∞ data for the physical mass
using Eq. (4.3) where we neglect the third term and
approximate Δm by Eq. (4.6). The fit has three parameters:
mph, b, c. The fit works well in the whole range of L and
allows us to extract the value ofmph reported in Table I. The
uncertainty on mph was determined by fitting the upper and
lower ends of the error bars.
We next fit the ET ¼ ∞ data for the vacuum energy

using Eq. (4.2) with Λ, mph, a as fit parameters. Including
the error term ∝ a is not very important to achieve a good

fit for this low value of g, but it’s important for g≳ 2
considered below. We checked that a very good fit can be
obtained with mph in the range determined from E1 − E0.
The final determination of Λ reported in Table I is obtained
using a constrained fit18 restrictingmph to that range. Notice
that it is crucial for this test not to neglect the corrections
E0ðLÞ, zðLÞ in the Hamiltonian (3.4) whose decrease
rate e−mL is close to the e−mphL effects we are trying to
observe.
Passing to g ¼ 1, 2, for these stronger couplings there is

much more difference between the three curves. The NLO-
HT data at the maximal attainable cutoff do not show
dependence on L compatible with theoretical expectations.
However, the same data extrapolated to ET ¼ ∞ can be
fitted very well. We use the same fitting procedures as for
g ¼ 0.2. The fits are good and the physical mass from the
two determinations agrees within errors. See Table I for the
extracted mph and Λ.
Let us comment on the local data in Fig. 3. For g ¼ 1, 2,

they are unsuitable to perform the fit, just as the nonex-
trapolated NLO-HT data.19 While the local LO data can be
pushed to a much higher ET, it is more difficult to
extrapolate them to ET ¼ ∞ than the NLO-HT due to
pronounced fluctuations within the asymptotic 1=E2

T con-
vergence rate. We tried extrapolating the local data and
obtained results largely consistent with NLO-HT but with
larger error bars. Also, we remark that in higher dimen-
sions, where the Hilbert space grows more quickly with the
cutoff, and the convergence is slower, we expect the local
LO approximation to perform even worse than here with
respect to the NLO-HT approach, as the cutoff cannot be
pushed as high.
In all the above fits, the third term in (4.3) was neglected.

We checked that this assumption gives a reasonable fit up to
g ¼ 2.6. As g is increased further it gets close to the critical
coupling gc ≈ 2.8. On the one hand, fitting finite volume
data in this region becomes more difficult as the physical
mass approaches zero and the neglect of subleading terms
suppressed by higher powers of e−mphL is no longer
justified. On the other hand, we know that at g ¼ gc the
ϕ4 theory should flow to the critical Ising model. So, for g
near gc, the flow must lead to the Ising field theory (IFT)—
the critical Ising perturbed by the ϵ operator, up to irrelevant
corrections which go to zero as g → gc and which we will
neglect in the subsequent discussion.20 The IFT is

17We don’t show local data for g ¼ 0.2 because they are very
similar to NLO-HT for this small coupling.

18We use the Trust Region Reflective algorithm for the least
square optimization with bounds (calling curve_fit() with
the method ¼ “trf” argument in python).

19The g ¼ 1 vacuum energy data could perhaps be fitted.
Notice that the fluctuations in this data are much smaller than in
Fig. 7 (left) of [11], because of higher ET cutoff.

20For many, although not all, purposes, the IFT can be thought
of as the theory of free massiveMajorana fermions. Our fits prefer
negative values for a in Eq. (4.2) close to g ¼ gc, as appropriate
for fermionic excitations.
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integrable and its finite volume partition function is known
exactly. In particular, the functional dependence of E1ðLÞ −
E0ðLÞ and E0ðLÞ − E0ð∞Þ on mphL is known. One could
use this information to improve our fitting procedure for g
near gc. For instance, the coefficients b and c in (4.6) in that

region would be fixed to the values to 2=π and 0 [39], rather
than being fitted from the data. This reasoning also explains
why neglecting the third term in (4.3) works even for
relatively small values ofmph, since in the IFT σ ¼ 3, above
the generic value

ffiffiffi
3

p
. Using the IFT predictions would lead

FIG. 3. The vacuum energy density E0=L and the physical mass E1 − E0 as functions of L for three representative values of g.
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to more accurate estimates of Λ and mph for g close to gc.
However, in the present work we will be content with our
simplified analysis, not using explicitly this additional
piece of information.

C. g dependence and the critical coupling

In the previous sections, we explained how NLO-HT
data can be extrapolated to ET ¼ ∞ and then to L ¼ ∞.
We will now use these procedures to study the spectrum
dependence on g.
In Fig. 5, we show the NLO-HT data for the vacuum

energy density and the physical mass for g ∈ ½0; 3� in steps
of 0.2. Green error bars refer to L ¼ 10 NLO-HT data
extrapolated to ET ¼ ∞, while red error bars are the infinite
volume estimates (we only perform the latter for g ≤ 2.6,
i.e. not too close to the critical point).
These plots should be compared to Fig. 5 in [11], taking

into account that in those figures we did not attempt to
extrapolate to infinite ET and L and did not provide error
estimates. The current results are clearly superior in that
these sources of systematic error are properly taken into
account.
There is not much structure in the vacuum energy plot

except that it is a monotonically decreasing function of g.
The physical mass plot is more interesting. We see by eye
that the mass gap vanishes somewhere close to g ≈ 2.8.
This is in accord with the previous theoretical [40] and

numerical [11,41–43] studies, which found that our theory
undergoes a second order phase transition at a critical value
of the coupling. To give a more accurate estimate of gc, we
perform a fit of the red data points in the range g ∈ ½0; 2.6�.
We use a rational function:

fðgÞ ¼
ð1þ gð 1g1 þ 1

g2
þ 1

g3
þ 1

gc
Þ þ ag2Þð1 − g

gc
Þν

ð1þ g
g1
Þð1þ g

g2
Þð1þ g

g3
Þ ; ð4:7Þ

with fit parameters a, g1, g2, g3, gc, and ν. We demand that
g1, g2, g3 > 0 so that mfitðgÞ has poles at the negative real
axis. We see that fðgcÞ ¼ 0 by construction. Performing the
fit, we get our final estimate for the critical coupling,
reported in Table II.
The ν parameter in the above fit is a critical exponent,

and assuming the Ising model universality class for the
phase transition, we expect ν ¼ ð2 − ΔϵÞ−1 ¼ 1 using
Δϵ ¼ 1, the dimension of the most relevant nontrivial
Z2-even operator of the critical Ising model [11]. In our
fit, we fixed ν to this exact value. Relaxing this assumption
gives the same prediction with somewhat larger error bars.
The rationale behind introducing the poles into the

ansatz fðgÞ is that they are supposed to approximate the
effect of a branch cut along the negative real axis, which
the analytically continued functionmphðgÞmay be expected
to have. In fact, it’s impossible to get a good fit using a
purely polynomial approximation. The number of poles is
somewhat arbitrary. Three poles as in (4.7) gives a good fit,
and we checked that increasing the number of poles does
not change the prediction for gc appreciably.
The ansatz fðgÞ ¼ 1þOðg2Þ by construction. We

checked that the g2 and g3 coefficients of our best fit are
roughly consistent with the perturbation theory prediction
(Appendix B of [11])

mphðgÞ ¼ 1 − 1.5g2 þ 2.86460ð20Þg3 þ � � � : ð4:8Þ

TABLE I. The values ofmph and Λ extracted from the NLO-HT
data in Fig. 3.

g mph Λ

0.2 0.979733(5) −0.0018166ð5Þ
1 0.7494(2) −0.03941ð2Þ
2 0.345(2) −0.1581ð1Þ

FIG. 4. Left: the vacuum energy density as a function of g. The dashed line joining the points is not a fit; it is included to guide the eye.
We also show errors divided by g2. Right: the physical mass as a function of g. The line is a fit described in the text. We also show fit
residuals divided by g2.
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Using a slightly more complicated ansatz

ð1þ gð 1g1 þ 1
g2
þ 1

g3
þ 1

g4
þ 1

gc
Þ þ ag2 þ bg3 þ cg4Þð1 − g

gc
Þ

ð1þ g
g1
Þð1þ g

g2
Þð1þ g

g3
Þð1þ g

g4
Þ ;

ð4:9Þ

we could find a fit which agrees with perturbation theory
precisely. The gc estimate from such a fit comes out nearly
identical with the one provided above. This is not surprising
because most of the constraining power of the fit relevant
for determining gc comes from the region 1≲ g≲ 2 where
perturbation theory is anyway not adequate.
In Table II, we compare our estimate for gc with other

recent results in the literature. Our original HT estimate in
[11] was a bit high, evidently because the effects of the
extrapolating to ET → ∞, L → ∞ were not taken into
account. It’s reassuring that our current estimate agrees well
with the HT estimate from [21], obtained approaching the
critical point from the other side, i.e. from within the Z2-
broken phase.
The last four results in the table are based on studies of

latticized ϕ4 models, such as lattice Monte Carlo simu-
lations of the euclidean model [41,43] or matrix product
states approach to the latticized Hamiltonian formulation
[42]. Lattice considerations also enter [44] which deter-
mines the critical coupling via resummed perturbation
theory. It should be pointed out that matching to the
continuum limit is particularly subtle in the two dimen-
sional lattice ϕ4 theory, because of the presence of an
infinite number of relevant and marginal operators [11].
The above lattice studies do not perform careful matching,
and use the simplest possible discretization. The agreement
with HT is good, and so this simplest discretization seems
to have the right continuum limit. It would be interesting to
understand why this is so.
Recently, the two dimensional ϕ4 theory was also

studied using the light front quantization [22–24]22 using

a wave-function basis superior to the old discrete light cone
quantization work [45]. The light front quantization scheme
is different from the equal-time quantization scheme used
here. This difference is apparent already at the perturbative
level, since certain diagrams contributing to vacuum energy
and mass renormalization are absent in the light front
scheme. The vacuum energy cannot be compared between
the two schemes as it is set identically zero in the light front
scheme. On the other hand, it is believed that the physical
mass can be compared between the two schemes, with
an appropriate nonperturbative coupling redefinition.23

A method to perform such a coupling redefinition was
recently proposed in [23,46] (see [47] for previous related
work). We refer to those works for the comparison of the
critical coupling estimates obtained using the two methods.
We conclude this section with a rough check that our

method reproduces the physics of the phase transition at
criticality. Conformal field theory predicts that at g ¼ gc the
energy levels should vary with L as

EIðLÞ − E0ðLÞ ∼ 2πΔI=L ðL ≫ 1Þ; ð4:10Þ

where ΔI are operator dimensions in the critical Ising
model. In Fig. 5, we test this relation for the first three
energy levels above the vacuum, which should correspond
to the operators with dimensions Δσ ¼ 1=8, Δϵ ¼ 1,
Δ∂2σ ¼ 2þ 1=8. The bands correspond to varying g in
the range 2.76(3). We see reasonable agreement for σ and ϵ,
while it is possible that the agreement for ∂2σ will be
reached at higher values of L. This figure can be compared
to Fig. 6 in [11] and Figs. 22, 23 of [21], which show
similar behavior.

TABLE II. Estimates of gc from various techniques.

Year, Reference gc Method

This work 2.76(3) NLO-HT
2015 [11] 2.97(14) LO renormalized HT
2016 [21] 2.78(6) raw HT21

2009 [41] 2.70þ0.025
−0.013 Lattice Monte Carlo

2013 [42] 2.766(5) Uniform matrix product states
2015 [43] 2.788(15)(8) Lattice Monte Carlo
2015 [44] 2.75(1) Resummed perturbation theory

FIG. 5. Comparison of energy levels at g ¼ gc with CFT
predictions.

21The Z2-broken phase of the theory was studied, using
minisuperspace treatment for the zero mode (as in [14]). Their
estimate for the critical coupling has been translated to our
convention using the Chang duality [11,40].

22See also [25] for an application to the three dimensional ϕ4

theory at large N.

23This is believed to be true at least in the Z2-invariant phase.
Accessing theZ2-broken phase on the light front is a much harder
problem, and we are not aware of any concrete computations.
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V. CONCLUSIONS AND OUTLOOK

In this work, we have addressed several conceptual and
practical issues regarding the renormalization improvement
of the Hamiltonian truncation (HT) technique. This led us
to propose the NLO-HT, a variant of the HT using a
variational correction term to the Hamiltonian, of next-to-
leading-order accuracy in the interaction. The NLO-HT
method puts on a firmer theoretical footing the renormal-
ization theory in the context of Hamiltonian truncation, and
at the same time rigorously improves the numerics with
respect to previous work.
In the second part of the paper, we tested the NLO-HT in

the context of the two-dimensional ϕ4 theory. We also
benchmarked the NLO-HT against the simpler existing
versions of the HT—the raw truncation and the local
leading-order renormalization. Compared to these, the
NLO-HT results exhibit smoother and more rapidly con-
vergent dependence on the Hilbert space cutoff ET .
Therefore, they lend themselves to more accurate extrap-
olations to ET ¼ ∞ and ultimately provide more accurate
determinations of the true eigenvalues.
In this work, we focused on the massive region where the

Z2 symmetry is preserved, and on the critical region, where
the mass gap vanishes. We computed the mass gap and
vacuum energy density over the whole range of couplings,
as well as the critical exponents at the critical point. In the
future, it will be interesting to use NLO-HT to also study
the region beyond the phase transition, where the Z2

symmetry breaks spontaneously. That region was previ-
ously studied in [14,21] using the local LO renormalized
and raw Hamiltonian truncation.
The implementation of the NLO-HT method required a

refinement of the local approximation of the counter-
terms, which formed the basis of the previously used local
LO renormalization. We have discussed and addressed
novel issues arising in the local approximation at the cubic
level, such as the presence of bilocal operators. Following
[18], we used the local approximation only to approxi-
mate the “ultrahigh” energy parts of the correction terms,
while the moderately high parts were evaluated exactly.
This required additional computational effort, but as a
result all matrix elements of the correction terms were
accurately taken into account. At present, the evaluation
of counterterms presents a computational bottleneck
demanding significant time and memory resources.
This step is the main limiting factor in the performance
of the method. In this regard, we outlined several
directions for future development. One promising idea
was already mentioned in Secs. III B 3, while others are
scattered in the main text; see, e.g., note 8 and Sec. III B 2.
Other interesting questions for developing the method
include the following:

(i) Is it worth it/possible to enrich the variational ansatz
to allow for an even more accurate reproduction of
the would-be optimal tails (2.16)?

(ii) Can we deal more efficiently with the states with
high occupation numbers, which at present occupy a
fraction of the Hilbert space disproportionally large
compared to their total weight? See Appendix A.

However, while further improvements in the method are
welcome, they are not strictly speaking necessary. The
NLO-HT is already one of the most advanced implemen-
tations of Hamiltonian truncation currently available. It
would be great to see it applied in further HT studies of the
ϕ4 theory or of other strongly coupled QFTs. We will be
happy to share our code upon request. One ϕ4 application
we are currently thinking about is to investigate the analytic
structure of mph and Λ for the complexified quartic
coupling g. The Hamiltonian truncation seems to be the
only nonperturbative technique currently suitable for
this task.
Finally, we believe that Hamiltonian truncation is now in

a much better shape to attack strongly coupled renormal-
ization group (RG) flows in higher dimensions. For
instance, as the next step, one could study models of the
Landau-Ginzburg or Yukawa type in three dimensions, and
their RG flow either to a gapped or to a conformal phase.
Furthermore, one could apply the renormalization pro-
cedure described in this work in the context of TCSA, in
order to deform interacting fixed points directly. For
instance, it would be interesting to study the temperature
and/or magnetic deformation in the three-dimensional Ising
model, in which the UV data (OPE coefficients and scaling
dimensions) for the low-lying primary operators are known
to high accuracy [48–50].
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APPENDIX A: STRUCTURE OF THE
INTERACTING EIGENSTATES

Much of the motivation underlying the HT method is
based on the idea of decoupling—that interacting eigen-
states in finite volume are dominated by the low-energy
noninteracting states. In this Appendix, we will show some
plots demonstrating the validity of this idea, in the context
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of the ðϕ4Þ2 theory (see also the related discussion in [4],
Sec. VII.B). We will also discuss, and resolve, the apparent
contradiction with the “orthogonality catastrophe”.
All plots in this Appendix will correspond to m ¼ 1,

L ¼ 10, and cutoff ET ¼ 20. We will be showing data for
the raw truncated Hamiltonian eigenstates—as we are
interested here in the qualitative features, it’s not crucial
to include renormalization corrections.
We start by showing the composition of the Z2 even

truncated Hilbert space subject to the constraints P ¼ 0,
P ¼ 0. In Fig. 6, we plot the distribution of the number of
states per particle number (0,2,4,…) and per interval
½E;Eþ 1Þ of energy. As this plot illustrates, the total
Hilbert space dimension (dashed line) grows exponentially
with the cutoff. We expect that the leading exponential
asymptotics will be the same as in the massless scalar boson
CFT, ∼ exp

ffiffiffi
x

p
, x ¼ ð2π=3ÞLET . (Fixing the prefactor

would require, among other things, taking into account
the zero momentum constraint.) We see that most states
have rather high occupation numbers N. In Fig. 6, there
are a total of 12869 states, of which 1, 16, 332, 1890,
3931, 3801, 2063,…,1 for N ¼ 0, 2, 4, 6, 8, 10, 12, …, 20
respectively, the maximum being at N ¼ 8.
Given this exponential haystack of states, are all of them

equally important to represent the interacting eigenstates? It
turns that the high energy states are less important than the
low-energy ones. Moreover, the states with high occupation
numbers are the least important. Before showing the
evidence, let’s introduce some terminology. Let jEi be
an interacting eigenstate of the truncated Hamiltonian,
which has an expansion,

jEi ¼
X

cnjni; ðA1Þ

where jni runs over the basis of Hl described in
Appendix I 1. We will call wn ¼ jcnj2 the weight of the

given basis state inside jEi. We assume jEi is unit
normalized so the weights sum to one. The most important
basis states are those which carry most weight. Which are
those states?
Wewill now show a series of plots concerning the weight

composition of the interacting vacuum (the lowest eigen-
state in the Z2 even sector).24 We will choose three
representative values of the coupling g ¼ 1, 2, 3. These
couplings are all strong, and g ≈ 3 roughly corresponds to
the end of the Z2 invariant phase [11].
The energy E and the total occupation number N are two

principal parameters of a basis state. How do they correlate
with the weight? Starting with the occupation number, let
wðNÞ be the total weight of all states of occupation number
N. As is clear from Fig. 7 (left), wðNÞ decreases exponen-
tially with N. This tendency is especially pronounced at
g ¼ 1, 2, but it is noticeable at g ¼ 3 as well. The free
vacuum (N ¼ 0) dominates the interacting ground state for
all three couplings (for the reference, its weight w0 ¼ 0.96,
0.80, 0.54 for g ¼ 1, 2, 3 respectively).25

We next study the distribution of weights in energy. Let
wðEÞ, E ¼ 0; 1; 2;… be the total weight of states whoseH0

energy belongs to the interval ½E;Eþ 1Þ. It turns out that
this distribution also decreases, although not exponentially,
but rather like a power law ∼E−2 for large E. This is clear
from Fig. 7 (right), where we plot wðEÞ multiplied
by ðEþ 1Þ2.
Next let us combine Figs. 7 and see how the weight is

distributed both in energy and in the occupation number.
Let wðEjNÞ be like wðEÞ from the previous plot, but limited
to states of fixed total occupation number N ¼ 0; 2; 4;….
This set of distributions is shown in Fig. 8, where we take
g ¼ 2, the other values of the coupling being similar. Like
in Fig. 7 (right), we multiply by ðEþ 1Þ2. This plot reveals
that for every N the function wðEjNÞ follows the same
power law ∼E−2 (the only exception is N ¼ 2, where the
decrease with E seems faster). The total weight per N
decreases rapidly with N, consistently with Fig. 7 (left).
In the above histograms, we grouped states by energy or

by occupation number or both. It’s important to realize that
there is further significant variation of individual weights
within the histogram bins. This is clear from Fig. 9 (left)
which shows each state separately for the interacting
ground state at g ¼ 2. For example, weights of 4-particle
states (golden points) with nearby energies fluctuate by as
much as two orders of magnitude.
It’s instructive to try to understand this plot using

Eq. (2.7) which expresses the high energy part of the
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FIG. 6. The composition of the Z2 even Hilbert space for
m ¼ 1, L ¼ 10. For each occupation number sector (up to
N ¼ 8), we show the number of states per unit interval of energy
up to the cutoff ET ¼ 20. The dashed line shows the total number
of states in the same interval (all allowed occupation numbers).

24Very similar conclusions are reached looking at any low
eigenstate, Z2 even or odd.

25Since this plot is done at finite ET , the values of wðNÞ for N
close to ET have some cutoff dependence. However, we believe
that the exponential decrease of wðNÞ is robust, as it can be
observed already at N ≲ ET=2, where the cutoff dependence is
minimal.
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eigenvector in terms of the low-energy components. For the
purpose of this exercise, “low” will denote all energies
below 5 (say), and “high” all energies between 5 and 20. In
the spirit of our approximate tail formula (2.17), we will
also approximate Hhh by H0hh in (2.7). Let then cl be the
part of the raw eigenvector corresponding to states of
energies E ≤ 5, and define ch by the formula:

ch ¼
1

E0 −H0hh
Vhl:cl; ðA2Þ

where E0 is the raw eigenvalue. The resulting ch is shown in
Fig. 9 (right). Comparing to the left panel, we see that the
periodic variation of the 4-particle component is largely
reproduced. This variation is explained by the spread of the
Vhl matrix elements. The order of magnitudes ofN ¼ 2 and
N ¼ 6 weights are also reproduced (although not the
change of sign of cn in the N ¼ 2 component which is
responsible for the dip at E ¼ 9). The N ¼ 8 component is

FIG. 7. Weights as a function of the occupation number (left) and of the state energy (right).
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FIG. 8. This plot refers to the interacting ground state for g ¼ 2.
It shows the histogram of weights in an interval of energy, for
each occupation number separately (up to N ¼ 8). The dashed
line (same as the g ¼ 2 line in Fig. 7 (right)) shows the total
weight per the same energy interval.

FIG. 9. Left: Weights inside the interacting ground state for g ¼ 2 from numerical diagonalization. Right: Weights for states of
energies E > 5 obtained by formula (A2).
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captured poorly, which is not surprising given that too few
4-particle states have been included into cl.
Despite the argument above and the empirical evidence

from Fig. 7 (right) and Fig. 8, we warn the reader that we do
not have a proof of the asymptotic ∼E−2 decay of wðEÞ
and wðEjNÞ.
The observed exponential decoupling of high occupation

numbers N is asking to be explained. Is it related to the fact
that N changes by at most a finite amount (four) in each ϕ4

interaction? At the moment, there is no proof.26 The
exponential decoupling is also asking to be exploited.
Can we take different energy cutoffs in each occupation
number sector? Looking at Fig. 8, it would seem natural to
increase the cutoff in the 4-particle sector and reduce the
cutoff for N ≥ 6. One possible rule is that the near-cutoff
states in each sector should contribute comparably. There is
no guarantee that this will work, given that some
Hamiltonian matrix elements grow with N. Still, this is
something that needs to be explored.
In this work, as in [11,14,18], we took a common energy

cutoff for all sectors. This was convenient for implementing
the renormalization corrections. The price to pay is that
there’s a huge number of states in the Hilbert space—those
with high occupation numbers—which have very little
weight in the interacting eigenstates. Notice, however, that
we cannot neglect them altogether because their integrated
weight is not negligible.
Our final plot is relevant for thinking about the idea of

optimizing the choice of tail states, mentioned in note 8.
Suppose that we pick a weight threshold ϵ. How many
states are there whose weight is <ϵ, and how large is the
cumulative weight of all remaining states? The answers can
be read off Fig. 10. The solid lines plot the sequence wn
ordered from large to small weights. The dashed lines
represent the total weight of all states in this ordered list
subsequent to the nth.

1. On the orthogonality catastrophe

The orthogonality catastrophe27 is the notion that infinite
volume interacting eigenstates have zero overlap with the
noninteracting ones. Since the HT works in a finite but
large volume, one may have thought that we will see

exponentially small overlaps, while we have seen in the
above plots that overlaps remainOð1Þ even forLm¼10–20.
We would like to discuss how this apparent contradiction
gets resolved.
Consider the overlap between the interacting vacuum

jΩi and the perturbative vacuum j0i in a finite but large
volume L. In general, we expect that in 1þ 1 dimensions, it
will go to zero as

jhΩj0ij2 ∼ e−αLm=ð2πÞ; ðA3Þ

where α ¼ αðg=m2Þ is expected to be order 1 for moderate
couplings. The 1=2π has the usual phase space origin, since
the suppression originates from the accumulation of nor-
malization factors of different momentum modes. A toy
example is the free massive scalar perturbed by the ϕ2

interaction, which amounts to a change in mass. This
example can be solved in finite volume via a Bogoliubov
transformation. The interacting ground state is a kind of a
coherent state. The overlap with the free vacuum can be
computed exactly, and α ¼ Oð1Þ confirmed.28

In HT, we are not interested in taking the mathematically
strict infinite volume limit—it suffices to have a volume
large enough so that we can extract infinite volume
limits of physical quantities, like the particle spectrum.29

By Lüscher’s theorems [35], corrections to stable particle
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FIG. 10. Solid lines: all weights inside the interacting vacuum,
ordered from large to small. Dashed lines: the total weight of all
states past the nth largest.

26Compare to the anharmonic oscillator p̂2 þ q̂2 þ λq̂4 in
quantum mechanics. When it is treated via the Hamiltonian
truncation (Rayleigh-Ritz) in the harmonic oscillator basis, as
reviewed in [9,51], high occupation numbers (¼ high energies, as
we are in 0þ 1 dimensions) are also observed to decouple
exponentially. In this simpler problem, this phenomenon can be
understood analytically via the analyticity properties of the exact
wave function in the coordinate representation, or directly in the
occupation number representation [52]. See also note 34.

27Early examples were considered by van Hove [53] and
Anderson [54]. This discussion is also related to Haag’s theorem
[55]. In this context, for a formal proof of unitary nonequivalence
of two free massive scalars fields with massesm1 ≠ m2 in infinite
volume, see Theorem X.46 in [56].

28In the notation of [11], Sec. III D, we have

jΩi¼
Y 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshηk
p exp

�
−
1

2
tanhηka

†
ka

†
−k

�
j0i;

α

2π
¼
Z

dk
2π

log
1

2

�
1þ 1þx=ðk2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2x=ðk2þ1Þ
p

�
; x¼ g2=m2: ðA4Þ

For x ¼ 0.1, 1, 10 we get αðxÞ ¼ 0.003, 0.15, 1.8.
29For another recent discussion of the infinite volume limit in

HT, see [57].
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masses in 1þ 1 dimensional field theories on a finite circle
of length L go as

e−βLmph ; ðA5Þ
where mph is the physical particle mass one is trying to

extract, and β ¼ ffiffiffi
3

p
=2 or 1 depending on whether the

particle appears as a pole in its own 2 → 2 scattering
amplitude or not.30

Suppose now we stay away from the critical point so that
mph is order m (this is satisfied for g≲ 2 for the ðϕ4Þ2
theory). Comparing (A3) with (A5), we see that there is a
“sweet window,”

1 ≪ Lm ≪ 2π=α; ðA6Þ
where the spectrum is already accurate, but the interacting
eigenstates are still dominated by the low-energy non-
interacting states.31 This is the range where the HT is
expected to work best, and the g ¼ 1 and g ¼ 2 plots from
this Appendix fall precisely into this range. So we see that
the above mentioned apparent contradiction is explained by
the extra α=ð2πÞ in the overlap exponent. We expect α ¼
Oðg=m2Þ for small g, so that the window in (A6) widens,
while for moderately large couplings we expect α ¼ Oð1Þ.
This discussion brings to mind the following question

(more theoretical than practical). Suppose that we computed
volume L eigenstates, with L in the sweet window. Is it then
possible to “exponentiate” them and construct approximate
eigenstates in any volume L0 ≫ L, which would then
exhibit the orthogonality catastrophe? We do not know.

APPENDIX B: PROBLEMS WITH THE
NAIVE TRUNCATION

In this Appendix, we elaborate on the difficulties found
when trying to approximate accurately the operator ΔH by
truncating the series expansion (2.11), which we copy here,

ΔHðE�Þ ¼
X∞
n¼2

ΔHnðE�Þ;

½ΔHnðE�Þ�rs ¼
X

Vrjn−1

1

E� − Ejn−1

…Vj2j1

1

E� − Ej1

Vj1s;

ðB1Þ
where the sum is taken over all states ji above the cutoff ET .

Consider this series in the ðϕ4Þ2 theory. The naive
dimensional analysis suggests that each next term in the
series is suppressed byOðg=E2

TÞ. However, this expectation
turns out incorrect. There are some intermediate states
which violate this power-counting. Because of these states,
matrix elements ½ΔHnðE�Þ�rs exhibit anomalous growth
with n. This growth first becomes visible for states r, s just
below the cutoff ET , but for sufficiently large n it
propagates to all external states. As a result the expansion
does not converge; it is only asymptotic.
These effects were first discussed in [18], and we will

review them here. The culprits are intermediate states with
large occupation numbers N. An oscillator acting on such a
state gives an extra factor of ∼

ffiffiffiffi
N

p
, and the accumulation of

such factors skews the asymptotics. We will demonstrate
the phenomenon using the states jNi consisting of N ≫ 1
particles at rest.32 In this section, we use ∼ to denote order
of magnitude estimates.
As a first example, consider equal initial and final states

r ¼ s ¼ jNi. We choose N ¼ ⌊ET=m⌋ so that this state is
at or just below the cutoff. Then

ðH0Þss ∼ Nm ∼ ET; Vss ∼ gN2=ðLm2Þ ∼ fNET;

fN ¼ gN
Lm3

: ðB2Þ

We see in particular that for any g there exists a large
enough N such that the perturbation V is not suppressed
with respect to H0 in this matrix element. As we will see
now, ΔH2 will pick up a further factor of fN . Indeed, the
state jNi will be connected by V to the states jN þ 2i and
jN þ 4i which lie above ET . The connecting matrix
elements are of the same order as Vss. Taking into account
the contribution of just these states to ΔH2, we get:

jðΔH2Þssj≳ V2
ss=ðNmÞ ∼ f2NET: ðB3Þ

Notice that all terms entering the expression for ½ΔHn�rs
have the same sign, namely ð−1Þn−1, as long as E� < ET as
we assume. This is because the matrix elements Vij are
positive by inspection, and all denominators are negative.
So if we focus on just some intermediate states, we obtain a
lower bound on the absolute value, as in (B3). Going to
higher orders, we will keep getting the same relative factor:

jðΔHnÞssj ≳ fnNET; ðB4Þ

totally unlike the naively expected suppression by powers
of g=E2

T . For sufficiently large N (i.e. for sufficiently large
ET), we will have fN > 1 and the series for this matrix
element will then diverge.

30Note that for a massive QFT in dþ 1 dimensions compacti-
fied on a flat torus, Eq. (A5) remains valid as written while in
Eq. (A3) one has to change Lm=ð2πÞ → ðLm=ð2πÞÞd in the
exponent. In particular, the sweet window (A6) is expected to
survive.

31For Lm ≫ 2π=α, we expect that the maximum of the
distribution of weights of interacting eigenstates will shift to
nonzero occupation numbers. It would be interesting to explore
this phenomenon in more detail.

32Similar phenomena will happen for other intermediate states
with large occupation numbers, e.g., containing N=2 particle
pairs of momenta k;−k.
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The above example can be generalized to show that the
situation is in fact even worse, namely that the series
diverges for any ET and for any nonzero matrix element.
For this, we argue as follows. We pick s, r in the same Z2

sector, for definiteness even. Pick an even N so large that
the state jNi is above ET and that fN > 1. It’s easy to see
that any even state can be connected to the state jNi by a
finite sequence of intermediate Fock states jji which are
above ET and are obtained by repetitive actions of V, i.e. so
that the matrix elements Vjiþ1ji are nonzero.

33 If ns and nr
are the number of steps necessary to connect s, r to jNi,
then starting from n ¼ ns þ nr each following ½ΔHn�rs will
pick up at least a factor of fN by the same argument as the
one leading to (B4). Since fN > 1 the series will diverge.
The above effects show that the strategy of systemati-

cally improving the accuracy of the spectra by truncating
(B1) at increasingly higher orders nmax is problematic. So
what can we do about all this? It’s important that we are
mostly interested in the low-energy eigenstates, and as
discussed in Appendix A, those have large overlap mostly
with the low-energy noninteracting states. In particular, the
states with large occupation numbers, like the state jNi
close to the cutoff, have contributions which are exponen-
tially suppressed (see Fig. 7). One could hope that the
problem of the overall divergence of the ΔHn series is
irrelevant if one is mostly interested in the low-energy
entries of the Hamiltonian matrix and if one truncates the
series at low n. One could also hope that even though ΔH2

is not small for some states close to the cutoff, this is not
important because those states contribute very little to the
interacting eigenstates. In other words, Hope: the series
(B1), truncated at low n, approximates the low-energy part
of the matrix ΔH well, and the part close to the cutoff
which is not well approximated is unimportant.
However, as numerical experimentation shows, this hope

does not seem to materialize, at least for the values of ET
which are computationally feasible. For example, if one
truncates the expansion at n ¼ 2, computes ΔH2 exactly,
and then uses it to diagonalize H þ ΔH2 in (2.8), then one
finds the following. First of all, one finds spurious
eigenvectors which live close to the cutoff. Since ΔH2 is
negative and large near the cutoff, these spurious eigen-
vectors have eigenvalues smaller than the physical eigen-
values. Even if one eliminates these and focuses on the
eigenvectors which can be interpreted as corrections to the
raw truncated eigenvectors, one finds that the corrections

are erratic and not always small. The conclusion is that the
matrix ΔH2 near the cutoff is really too large compared to
the true ΔH, and this messes up the physical spectrum.34

This problem did not influence the results of [11,14]
because in those papers the local approximation was used
for ΔH2, suppressing the anomalously large matrix ele-
ments near the cutoff. The problem was instead realized by
the authors of [18], who were the first to compute ΔH2

exactly. The problem was dealt with in [18] by introducing
an auxiliary cutoff EW ≲ ET=2 and setting ΔH2 to zero
above this cutoff. This temporary solution did not allow us
to fully take advantage of the exactly known ΔH2, nor to
include the ΔH3 corrections.

1. Taming the divergence?

Wewould like to describe here an idea which might tame
the divergence of the perturbative series (B1). The idea was
not used in this paper, but in the future it may be used either
as an alternative to NLO-HT from Sec. II B or in combi-
nation with that method.
The key observation is that the problematic growth of

(B3) and (B4) for large occupation numbers can be cured if
one performs an expansion not around H0 but around
H̄0 ≡H0 þ diagV, with diagV the diagonal part of the
potential V. So, consider splitting the Hamiltonian as

H ¼ H̄0 þ V̄; ðB5Þ

where we introduced the notation V̄ ¼ V − diagV. This is a
reasonable split because H̄0 is still an exactly solvable
Hamiltonian, diagonal in the same Fock space in which H0

is diagonal. On—the other hand, by moving the diagonal
part of V into H̄0, one can hope that the series for the
correction term will be better behaved.35

The derivation (2.4) (2.10) goes through with the
corresponding substitutions, so that one obtains the
formal expansion (2.11) for the correction term with
the replacements

1

E −H0hh
→

1

E − H̄0hh
; V → V̄: ðB6Þ

These replacements produce higher powers of the occu-
pation numbers in the denominators in such a way that the
rhs of (B3) gets replaced by

33Here’s one way to do this. Recall that we assume that s, r
have zero momentum. There are four stages: (1) Act on s with V
once just to get above ET ; (2) Pick one particle, say of momentum
p, and act on it with ða†0Þ2a†pap monomial inside V repeatedly,
increasing the zero momentum occupation number up to N;
(3) Eliminate the nonzero momentum particles by acting repeat-
edly with a†0a

†
p2þp1

ap1
ap2

, picking particle pairs with jp2j ≥ jp1j
and p2, p1 of opposite sign. (4) Annihilate unnecessary zero
momentum particles.

34By the way, the described effects appear in some form even
for the anharmonic oscillator in quantum mechanics (note 26).
For that theory, the raw HT converges exponentially, but if one
tries to improve convergence using renormalization one runs into
the problem that the ΔH series diverges and the renormalized
result is worse than the truncated one.

35A straightforward generalization is to consider instead H̄0 ¼
H0 þ λðdiagVÞ and V̄ ¼ V − λðdiagVÞ with λ ≠ 1.
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∼
V2
ss

Nmþ Vss
; ðB7Þ

which is at most order Vss no matter how high N is.
Similarly, in the mechanism for the divergence of any

matrix element we will no longer encounter arbitrary large
factors fN . At most we get Oð1Þ factors starting from
n ¼ ns þ nr. Notice that those factors will not come from
the diagonal matrix elements hNjV̄jNi, since those are zero,
but one can get similar factors oscillating between jNi and
jN þ 2i, say. Actually, we believe the series is still
divergent (as our numerical experiments and the study of
the anharmonic oscillator example show), but it diverges
much more slowly and one could think that the above-
stated Hope perhaps has a chance to be true in this
modified setup.
Concerning the technical realization of this possible

solution, notice that the Hamiltonian H̄0, although diagonal
in the free Fock space, does not allow a natural formulation
in terms of fields. In particular, the increase in the energy of
a state acted upon by the oscillator depends on the initial
energy and not only on the oscillator frequency. Still,
diagrammatic rules from Appendix D apply with appro-
priate changes. Namely, those vertices with two lines to the
left and two to the right which correspond to diagV are
forbidden, and the energy of the states between any two
vertices gets replaced by the H̄0 eigenvalue.
Initial numerical tests of the described procedure looked

promising (in particular we had nice results truncating to
nmax ¼ 2 and evaluating the correction term ΔH̄2 exactly).
A more complete exploration is left for the future.

APPENDIX C: RELATIONS TO
OTHER EXPANSIONS

1. Brillouin-Wigner series

One particular case where the equation for the effective
Hamiltonian (2.8) is used in quantum mechanics is when
the low Hilbert space Hl consists of a single element, of
noninteracting energy E1, say. In this case, there is nothing
to diagonalize, and Eq. (2.8) directly expresses the inter-
acting eigenvalue as a solution of the nonlinear equation:

E ¼ E1 þ V11 þ V1h
1

E −H0hh − Vhh
Vh1: ðC1Þ

We can then expand the denominator in Vhh and obtain the
analogue of Eq. (2.11):

E ¼ E1 þ V11 þ
X∞
n¼2

TnðEÞ;

Tn ¼ V1h
1

E −H0hh

�
Vhh

1

E −H0hh

�
n−2

Vh1: ðC2Þ

This perturbative series is called the Brillouin-Wigner
(BW) series [58,59] and represents a way to organize
quantum-mechanical perturbation theory which is some-
what different from the usual Rayleigh-Schrödinger (RS)
series. Of course, if we further expand E in the denominator
and solve the equation order-by-order in V, we get back to
the RS series. But if we truncate the BW series at a certain
finite order and then solve the resulting equation for E
exactly, we will get an approximation to the true eigenvalue
which is different from the same-order RS approximation.
As proved by Wigner [59], the BW approximations of

odd order allow the variational interpretation. Namely, let
E ¼ E2Nþ1, N ≥ 1, be an odd-order BWapproximation, i.e.
the smallest solution of the truncated equation,

E ¼ E1 þ V11 þ
X2Nþ1

n¼2

TnðEÞ: ðC3Þ

Then there exists a wave function ψ ¼ ψ2Nþ1 such that

hψ jH0 þ Vjψi ¼ E2Nþ1hψ jψi: ðC4Þ

This wave function can be given explicitly:

jψi¼j1iþ
XN−1

n¼0

�
1

E−H0hh
Vhh

�
n 1

E−H0hh
Vh1j1i: ðC5Þ

The proof consists in plugging (C5) into (C4). Various
cancellations and simplifications occur as a consequence of
(C3) and the identity follows. If the eigenvalue in question
is the ground state, the existence of the variational inter-
pretation (C4) implies that the BW approximations are
always overestimates. Notice that there is no claim that the
accuracy of approximation increases with N as, unlike in
the RR method, the trial Hilbert space is not enlarged.
It is instructive to compare the above discussion with our

Sec. II B. To allow for the comparison, we focus Sec. II B
on the case when Hl consists of a single state, to which we
add a tail. The effective Hamiltonian correction Δ ~H, which
is simply the eigenvalue correction in the single state case,
is then given by (see Eq. (2.31), where ΔH2, ΔH3 are
numbers in the case at hand)

Δ ~H ¼ ΔH2

1 − ΔH3=ΔH2

; ðC6Þ

ΔH2 ¼ V1h
1

E −H0hh
Vh1;

ΔH3 ¼ V1h
1

E −H0hh
Vhh

1

E −H0hh
Vh1: ðC7Þ

This can be compared to the BW correction for N ¼ 1,
which takes the following form:
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ΔHBW ¼ ΔH2 þ ΔH3 ðN ¼ 1Þ: ðC8Þ

Both our correction and the BW correction have a varia-
tional interpretation. For the BW, it’s (C5) with N ¼ 1. For
us, it’s the same equation except that the normalization of
the tail, which is the second term in (C5), is not kept fixed
to 1 but is a free parameter which is determined dynami-
cally (see Eq. (2.20), where ct and cl are independent
variables). This means that our procedure is bound to give a
better approximation. In the case of the ground state, the
variational interpretation implies that our correction has to
be always smaller than BW. This can also be seen formally
from the above equations: for the ground state ΔH2 < 0,
and so Δ ~H ≤ ΔHBW independently of the sign of ΔH3.

2. Schrieffer-Wolff transformation

The renormalization correction ΔH2 in (2.12) is
closely related to another kind of renormalized effective
Hamiltonian used in condensed matter physics. Let us
describe briefly the idea behind it.
Consider a Hamiltonian having the following block

structure,

H ¼
�
HL V†

V HH

�
; ðC9Þ

where the interaction V mixes the low- and high-energy
Hilbert spaces spanned by the eigenvalues Ei of the free
Hamiltonian. HL and HH act on the low and high Hilbert
spaces, respectively. V is assumed small, in the sense
specified below, and the method will involve an expansion
in V.
We want to derive an effective Hamiltonian in the low-

energy Hilbert subspace. The idea then is to perform a
canonical transformation to H to bring it into block
diagonal form:

H → UHU† ¼
�
Heff 0

0 H0
H

�
: ðC10Þ

Since (C10) is block diagonal, Heff is the renormalized
effective Hamiltonian that describes the low-energy physics
taking into account the mixing with the states in the high
energy Hilbert space. A practical way to find the unitary
transformation matrix U is to plug in the ansatz,

U ¼ eS; ðC11Þ
with S anti-Hermitian, in (C10) and solve perturbatively for
S ¼ Sð1Þ þ Sð2Þ þ � � �, where SðiÞ ¼ OðViÞ, by requiring
U†HU to be block-diagonal [60]. At leading order
S ≈ Sð1Þ, and (C10) is solved by

Sð1Þ ¼
�
0 −s†

s 0

�
with ski ¼

Vki

Ek − Ei
: ðC12Þ

Projecting eS
ð1Þ
He−S

ð1Þ
in the low Hilbert space gives

Heff ¼ HL þ ΔHSW
2 ; ðC13Þ

with the Schrieffer-Wolff (SW) correction given by

ðΔHSW
2 Þij ¼

1

2

X
k

�
Vik

1

Ei − Ek
Vkj þ Vik

1

Ej − Ek
Vkj

�
;

ðC14Þ

where the sum over k is over the high-energy Hilbert space.
This has to be compared to ΔH2 in (2.12), which we recall
here:

ðΔH2Þij ¼
X
k

Vik
1

E − Ek
Vkj: ðC15Þ

The key difference is that (C15) corresponds to the two
terms in ΔHSW

2 with E replaced by the free energies Ei and
Ej. In fact, the Hamiltonian Heff constructed via the SW
procedure is E-independent, unlike (2.10) which was the
starting point of our discussion.
The perturbative solution to the canonical transformation

(C10) was worked out by Schrieffer and Wolff in [60].
There it was used to relate the Anderson impurity model to
the Kondo model. The Anderson impurity model describes
the interaction of conducting electrons in a metal with
localized atoms in it (impurities) that can lead to localized
magnetic moments. The highest atomic states of the
Anderson model can be integrated out, following for
instance the procedure just reviewed. This leads to an
effective Hamiltonian that couples the spin density of the
conducting electrons with a localized spin, namely the
Kondo effective model. In this physical system, the use of
(C14) and the truncation of the series is well justified
because the energy difference in the denominators is large,
namely the energy gap of the atomic transition into excited
states. In other words, the dimensionless expansion param-
eter Vki=ðEk − EiÞ ≪ 1. This has to be contrasted with
QFT applications that we have in mind in this paper. In the
QFT context, the spectrum is dense at the cutoff and there is
no parametric separation between the low- and high-energy
Hilbert spaces. If we introduce a cutoff ET and take states
Ei and Ek just below and just above the cutoff, the ratio
Vki=ðEk − EiÞ can be arbitrarily large. For this reason, the
SW procedure does not seem adapted for our problem.

APPENDIX D: DIAGRAM TECHNIQUE

This Appendix reviews the diagram technique [18] for a
systematic expansion for the matrices ΔHn in Eqs. (2.11),
(B1). Although only n ¼ 2, 3 is needed for this work, we
will consider general n.
The diagram technique follows from Wick’s theorem.

We represent each V insertion by a vertex with four lines
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exiting. Lines exiting towards the right (left) will represent
akða†kÞ.36 Momentum and time flows from right to left, and
there is momentum conservation in each vertex. There is
also a factor of 1=

ffiffiffiffiffiffiffiffiffiffiffi
2Lωk

p
for each line. In this notation, V is

shown in Fig. 11.
To construct a diagram, we put n vertices time-ordered

from right to left in the same order as in (B1). Some lines
exiting from a vertex can be contracted with lines entering
into a later vertex. These are produced by oscillator con-
tractions when using Wick’s theorem. The uncontracted
lines are extended to the ends of the diagram; they corre-
spond to the remaining creation and annihilation operators.
This is better illustrated by examples rather than formalized;
e.g., the diagram in Fig. 12 produces the operator

a†q4a
†
q5a

†
q6aq1aq2aq3 ðD1Þ

with momenta subject to

q2þq3¼ k1þq6; k1¼ k2þk3þq5; q1þk2þk3¼q4:

ðD2Þ

More precisely, the constraint of momenta conservation is
imposed by a delta function times the lengthL of the cylinder
circle. For instance, we have the factor Lδk3þk2þq1−q4 for the
leftmost vertex in Fig. 12. The internal momenta should be
summed over. There is also a scalar factor 1=

ffiffiffiffiffiffiffiffiffiffiffi
2Lωq

p
for

each external and 1=ð2LωkÞ for each internal line.
We also have to multiply by factors 1=ðE� − EjiÞ

produced by the corresponding insertions in (B1). Here
Eji are energies of the intermediate states, which can be
found in terms of the final and initial energies Er and Es,
taking into account that each vertex changes the flowing
energy by the total frequency of all creation minus all
annihilation operators. For example, in Fig. 12 we have two
intermediate states denoted by vertical dashed lines in
Fig. 13, and their energies are related to Er;s by:

Ej1 ¼EsþδV1; δV1¼ðωk1þωq6Þ−ðωq2þωq3Þ; ðD3Þ

Ej2 ¼Ej1þδV2; δV2¼ðωk2þωk3þωq5Þ−ωk1 ; ðD4Þ

Er¼Ej2þδV3; δV3¼ωq4−ðωq1þωk2þωk3Þ; ðD5Þ

where δVi are energy changes in the vertices.

One way to write a compact solution for these energy
conservation constraints, for any diagram, is as follows.
Denote by Wj the sum of frequencies of all oscillator lines
crossing the dashed line j (which can be an intermediate or
external state line). We can move from a external state to an
intermediate state in a number of steps, and every time we
have to subtract Wj and add Wjþ1. When we add all the
steps all increments except the first and the last cancel.
Thus the energy of an intermediate state ji is related to the
external state energies by

Eji ¼ Es −Ws þWji; ðD6Þ

Er ¼ Eji −Wji þWr: ðD7Þ

Taking the difference of these two equations we obtain a
more symmetric expression [18]

Eji ¼
1

2
ðEr þ EsÞ −

1

2
ðWr þWsÞ þWji: ðD8Þ

We have to impose the constraints that all of these
intermediate state energies are above ET . This will translate
into the restrictions on the internal line momenta. For some
diagrams, this constraint cannot be satisfied at all, and such
diagrams won’t contribute. One example is the diagram in
Fig. 14, for which the energy of the intermediate state is
Es − ðωq2 þ ωq3 þ ωq4 þ ωq5Þ ≤ ET since Es ≤ ET .
Finally, there is a combinatorial factor for each diagram

which is computed as usual.
The original derivation of the diagram technique [18]

was different. It used an auxiliary operator ΔĤn defined as
in (B1) but summing over all ji (not just those with

FIG. 11. The vertices representing the quartic interaction; see
the text.

FIG. 12. A diagram producing operator (D1).

FIG. 13. The same diagram as in Fig. 12 where we indicated the
energies of the external and the intermediate states.

36Notice that this assignment is the opposite from the one in
Ref. [18].
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Eji > ET). This ΔĤn is expressed as an iterated integral of
a time-ordered n-point correlation function of the ∶ϕ4∶
interaction:

ΔĤnðE�Þrs ¼ ð−1Þn−1
Z

∞

0

dτ1…dτn−1eðE�−ErÞðτ1þ���þτn−1Þ

× ½VðTn−1Þ � � �VðT1ÞVð0Þ�rs; ðD9Þ

where Tk ¼
P

k
i¼1 τi.

37 Wick’s theorem is then used at the
level of fields, giving rise to diagrams. Only then one passes
from ΔĤn to ΔHn, imposing the restriction that all
intermediate states be above ET . This is neatly achieved
by considering the analytic dependence of any diagram on
E, viewed as a fiducial variable. The needed terms are those
for which the poles in E are above ET .
The derivation given here, based on Wick’s theorem for

oscillators, is more direct than the one in [18]. Both
derivations have virtues. The original derivation of [18]
has a useful spinoff by allowing us to focus directly on the
diagrams giving rise to the local approximation, as dis-
cussed in Appendix E 2. Also, as emphasized in [18], the
poles of ΔĤn at E� < ET , although not needed for
renormalization, can be used to set up an efficient test
for the code. On the other hand, the derivation given here is
useful if one wants to play with splitting H into the
diagonal and off-diagonal part differently from (3.4); see
Appendix B 1.

1. Bound on the intermediate energies for ΔH2

In this section, we will prove an auxiliary result which
will be needed in Appendix E 1. Consider the diagrams
contributing to ΔH2. Some of these have loops, others are
tree-level or disconnected. We claim that: there is an upper
bound 2ET þm on the intermediate state energy Ej for
tree-level and disconnected diagrams contributing to ΔH2.
The proof is based on the formula (D8):

Ej ¼ Ers − ðWr þWsÞ=2þWj; ðD10Þ

where we use the notation Ers ¼ 1
2
ðEr þ EsÞ.

Consider first the disconnected diagrams. For such
diagrams, we have Wj ≤ Wr þWs (with equality if all
lines from the left vertex go right, and all lines from the
right vertex go left). So Ej ≤ Ers þ ðWr þWsÞ=2. To have
a nonzero matrix element, we must have Wr ≤ Er,
Ws ≤ Es, since all particles acted upon by the oscillators
must be present in the initial and final state. So the nonzero
matrix elements have Ej ≤ 2Ers ≤ 2ET , which is even
stronger than the claimed bound.
The proof for the tree level diagrams is slightly more

difficult as one has to keep track of the line connecting the
vertices. It will be convenient to condense diagrams into
“thick line” diagrams, carrying the essential information.
For this, we replace all lines entering or exiting the vertex
from the same direction by a “thick line” carrying the
momentum and energy equal to sum of united line
momenta and energies. For a thick line carrying momentum
Q, we will denote the energy carried by it EðQÞ. Although
this energy depends not only on Q but also on how the
momenta are distributed, this information will not be
needed in the proof and is omitted.
The most general thick line diagram corresponding to a

tree-level ΔH2 diagram is:

ðD11Þ

For example, the diagram

ðD12Þ

will correspond to the thick line diagram (D11) with

Q1 ¼ q1; Q2 ¼ q2 þ q3;

Q3 ¼ q6; Q4 ¼ q4 þ q5; ðD13Þ

EðQ1Þ ¼ ωq1 ; EðQ2Þ ¼ ωq2 þ ωq3 ;

EðQ3Þ ¼ ωq6 ; EðQ4Þ ¼ ωq4 þ ωq5 : ðD14Þ

Some of the thick lines may be missing; e.g., for the
diagram

FIG. 14. This diagram does not contribute, since the inter-
mediate state is always below ET.

37This is the same ΔĤn as in [18] but the definition has been
Wick-rotated. Here we work in Euclidean time as in [11]. The
time-dependence of operators is in the interaction representation:
VðTÞ ¼ eH0TVð0Þe−H0T . The integrals in (D9) converge for
E� < 0, and for other E analytic continuation is understood.
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ðD15Þ

the thick line diagram would be missing the Q1 thick line
since there are no thin lines coming into the vertex from that
direction. In order not to treat such cases separately, we
represent them by the same thick line diagram (D11) with
the understanding that the “missing” lines have associated
momentum Q ¼ 0 and energy EðQÞ ¼ 0.
Now to the proof. We have

Ws ¼ EðQ1Þ þ EðQ2Þ; Wr ¼ EðQ3Þ þ EðQ4Þ;
Wj ¼ ωk þ EðQ1Þ þ EðQ3Þ: ðD16Þ

We also have

Es ¼ Ws þ Eð−Q1 −Q2Þ;
Er ¼ Wr þ Eð−Q3 −Q4Þ: ðD17Þ

In the first equation, Eð−Q1 −Q2Þ stands for the total
energy of the constituents of the s state apart from those
which are acted upon by the oscillators in the diagram.
Their momentum is −Q1 −Q2 since the total state momen-
tum is zero. The second equation is analogous.
Using the above equations in (D10) and eliminating

EðQ1Þ and EðQ3Þ, we obtain:

Ej ¼ 2Ers − δ; ðD18Þ

δ¼
�
1

2
½Eð−Q1−Q2ÞþEð−Q3−Q4Þ�þEðQ2ÞþEðQ4Þ

�

−ωk: ðD19Þ

We claim that

Eð−Q1 −Q2Þ þ EðQ2Þ þ EðQ4Þ ≥ ωk −m: ðD20Þ

Indeed, in the lhs we have a sum of energies of a group of
particles whose momenta sum to k. Using convexity
properties of the function ωk it’s not hard to prove that

X
ωðkiÞ ≥ ω

�X
ki
�
; ðD21Þ

which implies (D20), in its stronger version without −m in
the rhs This −m is needed in the special case when the lhs

of (D20) is actually empty because all three groups of
particles are empty (in particular if Q2 and Q4 are “missing
lines”). If this happens then k ¼ 0 and adding −m we
restore the inequality.
Eq. (D20) and its analogue for Eð−Q3 −Q4Þ imply that

δ ≥ −m, and so as claimed

Ej ≤ 2Ers þm ≤ 2ET þm: ðD22Þ

APPENDIX E: LOCAL APPROXIMATION

The diagram technique from Appendix D leads to exact
expressions for the matrix elements of ΔHn, but evaluating
these exact expressions can be demanding. There are many
diagrams, and diagrams with loops involve sums over
intermediate momenta, with the cutoff that the intermediate
energies be above ET . Each diagram corresponds to a
product of a certain number of creation and annihilation
operators, but the coefficients have a complicated depend-
ence on their frequencies. As a result, ΔHn cannot be
exactly expressed as an integral of an operator local in the
field ϕ; as we say, it’s a nonlocal operator.
However, if we are interested in matrix elements

between low-energy states, then one can hope that ΔHn
may be approximated by a local operator. In fact, the
calculation of the diagrams can be greatly simplified when
the energy exchanged between the different vertices of the
diagrams is much larger than the frequencies of the
external particles. In this limit, according to the usual
effective field theory intuition, we may expect that the
processes described by the nonlocal diagrams can be
approximated by collapsing the loops over ultrahigh
momenta into pointlike interactions, i.e. local operators.
It’s definitely true for ΔH2 [11,18], but as we will see
there are subtleties for ΔH3. It’s instructive to proceed
carefully and see how the local operators arise as a good
approximation starting from the diagrams. We will focus
on n ¼ 2, 3 as needed in this work.

1. Local approximation for ΔH2 via diagrams

The diagrams for ΔH2 have two vertices. For the quartic
interaction case considered here, depending on the number
of contractions, the resulting terms have 0,2,4,6, or 8
oscillators; see Appendix C.1 of [18] for the full list.
To see how the local approximation arises, we start by

considering the diagram with 2 external legs, hence 2
oscillators. There are four such diagrams:

ðE1Þ
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Let’s start with the first of these. By the rules of
Appendix D, it corresponds to the operator

96g2
X
ki;qi

L2δq1þk1þk2þk3δq2−k1−k2−k3
2Lωk12Lωk22Lωk3

θðEj − ETÞ
E� − Ej

×
a†q1a

†
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lωq12Lωq2

p : ðE2Þ

Here Ej is the energy of the intermediate state, subject to
Ej > ET . We have Ej ¼ Es þ ωq1 þ ωk1 þ ωk2 þ ωk3 by
Eq. (D6). As in Appendix D, Er and Es denote energies of
the external states in the considered matrix element, q’s are
the external and k’s the internal momenta. Momentum
always flows from right to left. The combinatorial factor for
this diagram is 96 ¼ ð4

3
Þ23!.

As explained in Sec. III B, we will introduce another
energy scale EL > ET (we would like it to be much larger
than ET but in practice we can afford EL ¼ ð2–3ÞET). We
will split ΔH2 as in Eq. (3.5) depending on whether the
intermediate energy is below or above EL. The part of
diagram (E2) with Ej ≤ EL will be included in ΔH<

2 and
will be evaluated exactly. Here we will be concerned with
the part with Ej > EL, included in ΔH>

2 . In this case, we
will approximate (E2) by dropping the q1 dependence in the
momentum conserving δ-functions, and also by neglecting
Es andωq1 inEj with respect toωk1þωk2þωk3 . In this way,
we conclude that the Ej > EL part of the diagram is
approximated by

C
X
q1;q2

Lδq1þq2

a†q1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lωq1

p a†q2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lωq2

p ¼C
Z

L

0

dx½ϕþðxÞ�2; ðE3Þ

where ϕþðxÞ ¼ P
qa

†
q=

ffiffiffiffiffiffiffiffiffiffiffi
2Lωq

p
e−iqx is the positive-

frequency part of ϕðxÞ, and C is just a constant without
q-dependence:

C ¼ 96g2
X
ki

Lδk1þk2þk3

2Lωk12Lωk22Lωk3

θðωk1 þωk2 þωk3 −ELÞ
E� −ωk1 −ωk2 −ωk3

:

ðE4Þ

So we see that the first diagram in (E1) produced a piece
of ϕ2, and it’s not hard to guess that the remaining pieces
will come from the remaining three. Their exact expres-
sions differ from (E2) in how q’s and ωq’s enter into the
momentum conserving δ functions and into Ej. However,
when we consider the ΔH>

2 parts and carry out the
approximation described above, these differences disap-
pear. So each of these diagrams is approximated by another
piece of ϕ2 (ϕþϕ− for the second and fourth, ½ϕ−�2 for the
third), times the same constant C as above. The pieces
combine neatly when we sum the diagrams, producing

C
Z

L

0

dx∶ϕ2∶: ðE5Þ

Hence the ultrahigh energy part of these four diagrams
renormalizes the local operator ∶ϕ2∶.
When the above procedure is carried out systematically

for other classes of diagrams, it gives rise to the approxi-
mate expression (3.8). To be precise, the ultrahigh energy
part of diagrams with p contractions, p ¼ 2, 3, 4, renorm-
alizes V8−2p. The coefficients are given by

κ8−2pðELÞ ¼ spg2
X
ki

LδΣkiQp
i¼1 2Lωki

θðPωki − ELÞ
E� −

P
ωki

; ðE6Þ

with sp ¼ ð4pÞ2p! the combinatorial factor. This can be
rewritten in terms of the relativistic phase space in finite
volume:

κ8−2pðELÞ ¼ spg2
Z

∞

EL

dE
2π

ΦpðEÞ
E� − E

; ðE7Þ

ΦpðEÞ ¼
X
ki

LδΣkiQp
i¼1 2Lωki

2πδ
�X

ωki − E
�

ðE8Þ

Hence,

μ8−2pðEÞ ¼
g2sp
2π

ΦpðEÞ ðE9Þ

in (3.9). In finite volume, the spectrum is discrete and phase
spaces ΦpðEÞ are sums of δ-functions. We will be mostly
interested in the L → ∞ limit, Lm ≫ 1. For the purposes of
evaluating the integral (E7), we can then replace ΦpðEÞ by
its infinite-volume limit:

ΦpðEÞ →
Z �Yp

k¼1

dki
4πωki

�
ð2πÞ2δ

�X
ki
�
δ
�X

ωki − E
�

ðE10Þ

Equations (3.10) arise from the leading terms of (E10) in
the m=E expansion. These expressions can be obtained by
the Laplace transform method [11]. For p ¼ 2, 3, one can
also expand the known exact expressions for the infinite-
volume phase space [18].
It remains to discuss the diagrams with one and no

contractions (six and eight external legs). These diagrams
cannot be approximated by local operators, because the
energy exchanged between the vertices is of always of the
same order as the frequencies of the external particles.
Consider, for instance,

ELIAS-MIRÓ, RYCHKOV, and VITALE PHYSICAL REVIEW D 96, 065024 (2017)

065024-28



ðE11Þ

The intermediate state energy is

Ej ¼ Es − ωq1 − ωq2 þ ωq3 þ ωq1þq2−q3 : ðE12Þ
Since there are no free loop momenta, the intermediate state
energy can never become parametrically large compared to
the external energies. So there is no way to approximate this
diagram by local operators; it has to be computed exactly.
The same is true for the rest of the diagrams with six or

eight external legs: the intermediate energies is never much
larger than ET . As shown in Appendix D 1, the maximal
possible energy is 2ET for the disconnected diagrams and
2ET þm for the tree-level diagrams.
Our strategy will therefore be as follows. In the “mod-

erately high” energy rangeET < Ej ≤ EL, our procedure of
computing ΔH<

2 exactly (by multiplying matrices) will
amount to taking into account all diagrams, including the
“nonlocal” ones like (E11), without making any approx-
imations. In the “ultrahigh” range Ej > EL, we will take
into account the diagrams with 2,3,4 contractions in the
local approximation (3.8). For this to be a reasonably good
approximation, we will take EL ≳ ð2–3ÞET . The “non-
local” diagrams like (E11) can be ignored when consid-
ering the “ultrahigh” range, in view of the discussed upper
bound on their intermediate state energy.

2. Local approximation for ΔH2
via correlation functions

In the previous section, we explained very concretely
how the local approximation arises via the diagrams. We
will now review an alternative derivation which produces
all the relevant terms quickly without having to sift through
the diagrams. This will be especially helpful when we move
to ΔH3 where the number of diagrams is even larger. It also
has other uses, e.g., if one wants to compute or understand
the subleading corrections in the ET=EL expansion.
Consider the operator

ΔĤ2ðE�Þrs ¼
X
k

Vrk
1

E� − Ek
Vks

¼ −
Z

∞

0

dτeðE�−ErsÞτ½Vðτ=2ÞVð−τ=2Þ�rs;

ðE13Þ
which differs from ΔH2 in that we sum over all inter-
mediate states, not just over those above ET . We will first
analyze ΔĤ2ðE�Þ. Then, we will obtain ΔH>

2 ðE�Þ by
picking up the terms in ΔĤ2ðE�Þrs which have poles in
E� located at E� > EL. This is the trick of [18].

Eq. (E13) is the n ¼ 2 case of (D9), except that we
shifted V’s to the symmetric time configuration, which
explains the change Er → Ers ¼ ðEr þ EsÞ=2 in the expo-
nent.38 This will be convenient, as the linear terms in τ will
vanish when doing the local expansion around τ ¼ 0.
We compute ΔĤ2 by applying Wick’s theorem to

express the operator product under the integral sign as a
sum of normal-ordered terms:

− g2
Z

∞

0

dτeðE�−ErsÞτ
Z

L

0

dxdz
X4
m¼0

s4−m½GLðx; τÞ�4−m

× ∶ϕmðxþ z; τ=2Þϕmðz;−τ=2Þ∶; ðE14Þ

where GLðx; τÞ is the Euclidean propagator in finite
volume, for positive times given by

GLðx; τÞ ¼
X
k

1

2Lωk
e−ωkτeikx ðτ ≥ 0Þ: ðE15Þ

Recall that Eq. (E14) can be used as a starting point to
produce the diagrammatic expansion of [18], as we
explained in Appendix D. Each diagram has a series of
poles in E�, which are the intermediate energies. Restricting
the diagrams so that all poles be above ET gives ΔH2. Here
we would like to emphasize a different fact, namely that
Eq. (E14) can be also used as a starting point to produce the
local approximation, bypassing the diagrams.
The local approximation takes into account the contri-

butions of high-energy intermediate states. Since high
energy corresponds to short times, it should be possible
to pick up these contributions by studying correlation
functions in the τ → 0 limit, using the operator product
expansion [9,11]. So we Taylor-expand the operator inser-
tions of Eq. (E14) around x, τ ¼ 0. Keeping only the
leading term (the subleadingOðx2; τ2Þ terms can be used to
study the m=E expansion) we get

X
m

κ̂2m

Z
L

0

dz∶ϕ2mðz; 0Þ∶; ðE16Þ

where the coefficients are given by

κ̂8−2p ¼ −spg2
Z

∞

0

dτeðE�−ErsÞτ
Z

L

0

dx½GLðx; τÞ�p: ðE17Þ

Plugging in (E15) and performing the integral, we obtain

38Here we follow the notation of [18], while in [11], Ers
denoted a related but a different quantity.
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κ̂8−2p ¼ spg2
X
ki

LδΣkiQp
i¼1 2Lωki

1

E� − Ers −
P

ωki

: ðE18Þ

The local approximation coefficients (E6) are obtained
from this by two simple and natural operations. First, we
drop Ers in the denominator, since the external energies
were totally neglected in (E6). Second, we should add
a θ-function restricting summation to intermediate states
above EL. This is the operation which passes from ΔĤ2

to ΔH>
2 .

Notice that if we apply these operations to κ̂8−2p with
p ¼ 0, 1 we get zero. This is not surprising, since we
already know that the diagrams with 0 or 1 contractions do
not allow local approximation. So κ̂6 and κ̂8 are unphysical
and should be simply dropped.
To summarize, the correlation function method for

deriving the local approximation for ΔH2 proceeds as
follows. Write down ΔĤ2, and use the OPE under the
integral sign. This gives an expansion in local operators
with coefficients given by integrals of products of Green’s
functions. Do the integrals, drop the external energies, and
insert θ-functions to enforce the intermediate energy
thresholds. Use a bit of diagrammatic intuition to eliminate
terms which come from diagrams without such high
energy intermediate states (i.e. diagrams with 0 or 1
contractions).

3. Local approximation for ΔH3: general strategy

According to Eq. (3.11) we organize the calculation of
ΔH3 by splitting it into the≪,<> and≫ parts. The≪ part
will be evaluated exactly by multiplying matrices. In the
language of diagrams, this means that contributions of all
diagrams, including tree-level and disconnected ones, is
taken into account. On the other hand, a local approxima-
tion will be used when evaluating ΔH<>

3 and ΔH≫
3 . The

corresponding cutoffs should be chosen high enough so
that the local approximation is accurate.
The calculation of ΔH<>

3 follows the logic explained
after Eq. (3.16). It involves the matrix ΔH>

2 , which will be
approximated by local operators, as reviewed in the
preceding section. Recall though that the coefficients are
evaluated at E00

L which will be fixed at E00
L=E

0
L ∼ 1.5. We

hasten to add that the introduced scales E0
L and E00

L are
arbitrary. The final exact result should not depend on them.
In practice, the use of the local approximation introduces
some dependence, but we check that it is quite negligible
(Appendix G).
We next discuss the calculation ofΔH≫

3 . Recall that both
intermediate states in ΔH≫

3 have the H0-energies restricted
to Ej > E0

L. As we will now explain, for E0
L ≫ ET, ΔH≫

3

is well approximated by the local and bilocal operators
in (3.15). In practice, it will be sufficient to take
E0
L=ET ≳ 2–3. The appearance of bilocal operators is

one of several new issues encountered for ΔH≫
3 compared

to the ΔH>
2 case.

The derivation can use any of the two methods explained
in Secs. E 1 or E 2 forΔH>

2 . The first method starts from the
exact diagrams, neglects the energies of the external states,
and collects all the pieces that combine into the local
operators. Here we will follow the second, equivalent,
method which start from the correlation functions and uses
the OPE. We consider the operator

ΔĤ3ðE�Þrs¼
Z

∞

0

dτ1dτ2eðE�−ErÞðτ1þτ2Þ½VðT2ÞVðT1ÞVð0Þ�rs;

ðE19Þ

where Tk ¼
P

k
i¼1 τi. Applying Wick’s theorem to the

operator product VðT2ÞVðT1ÞVð0Þ we obtain

g3
Z

L

0

dx2dx1dx0
X4

m;n;p¼0

smnpGm
10G

n
21G

p
20

× ∶ϕ4−p−n
x2;T2

ϕ4−n−m
x1;T1

ϕ4−p−m
x0;0

∶; ðE20Þ

where ϕx;t ¼ ϕðx; tÞ, Gij is the Green’s function (E15)
joining points i and j, and the symmetry factor is

smnp ¼ ð4!Þ3
ð4 −m − nÞ!ð4 −m − pÞ!ð4 − n − pÞ!m!n!p!

:

ðE21Þ

The next step would be to perform the OPE as in the
step from (E14) to (E16). This sets all points at the
same time, and would seem to produce a local operator.
However, one has to be careful. The leading term will
indeed have all three points at the same time, but depending
on the Wick contraction pattern, not all operators may end
up at the same spatial point. First consider the fully
connected contraction patterns, such as, e.g., m ¼ 2,
n ¼ 2, p ¼ 1:

ðE22Þ

These indeed force all three operators to live near the
same x and t, giving rise to a local operator (∶ϕ2∶ in
this example). But what about not fully connected
patterns? Most of these don’t contribute to ΔH≫

3 , because
the intermediate energy constraints are not satisfied.
However, those which do contribute can give rise to bilocal
operators. There are two patterns for which this happens.
The first one is m ¼ n ¼ 0, p ¼ 3:
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ðE23Þ

This clearly does not represent a local operator. Indeed, the
six momenta are split into two groups, 4þ 2, which sum to
zero independently. A moment’s thought shows that the
corresponding operator is ∶V2V4∶. The second case is
m ¼ n ¼ 0, p ¼ 2:

ðE24Þ

which gives rise to the operator ∶V4V4∶. Another not fully
connected pattern which contributes toΔH≫

3 ism ¼ n ¼ 0,
p ¼ 4:

ðE25Þ

However, this one does give rise to a local operator V4

(formally because 1:V4 ¼ V4).
In this way, we arrive at the local approximation

shown in Eq. (3.15), with the coefficients related to the
diagrams representing the various Wick contraction
patterns. The λ-coefficients depend on E0

L, since we
enforce the constraint that both intermediate state
energies be above E0

L. Further details will be provided
in Appendix F.

APPENDIX F: LOCAL APPROXIMATION
FOR ΔH3: GORY DETAILS

In this Appendix, we analyze in detail the local approxi-
mation (3.15) for ΔH≫

3 . The correlation function and OPE
method presented in Sec. E 3 gives rise to terms (E20),
corresponding to the various Wick contraction patterns. It’s
not difficult to reconstruct from which diagrams these
terms would come if we started from the diagrammatic
expansion rather than from the correlation functions. For
example, pattern (E22) would correspond to the four
diagrams where the external lines could extend left or
right, like in (E1). The exact expressions for the diagrams
would be sensitive to this information, but in the local
approximation we just get an overall coefficient, common
for the four diagrams and represented by the Wick con-
traction pattern.
It is understood that both intermediate state energies

must be above an auxiliary cutoff EL,
39 enforced by

inserting the corresponding θ-functions. Because of these

constraints, some contraction patterns do not actually
contribute to ΔH≫

3 . Here are two examples:

ðF1Þ

For the first case, both intermediate energies are
OðETÞ so this diagram contributes to ΔH≪

3 . The second
diagram contributes to ΔH≪

3 and ΔH<>
3 . None of these

diagrams contribute toΔH≫
3 provided thatEL is sufficiently

large. Below we will not take such diagrams into account.
We will now list systematically all contraction patterns

which contribute to the local approximation (3.15), and
give for each one its contribution to the corresponding
coefficient. The rules for evaluating this coefficient are
the same as for the diagrams, except that we neglect the
external oscillator momenta and energies, as well as the
energies of the external states. We will introduce a few rules
to save space in the writing:

(i) The external oscillators with their 1=
ffiffiffiffiffiffiffiffiffiffiffi
2Lωk

p
factors

are not written, as they are included into VN . This also
concerns one momentum conserving delta-function
LδP ki

, or two of those if we are dealingwith a bilocal

operator.
(ii) Since dimensions ½VN � ¼ E−1, we must have

½λN � ¼ E2, and for bilocals ½λNjM� ¼ E3. Below
we do not show the factor g3, and the given
expressions will have dimensions ½λN=g3� ¼ E−4,
½λNjM=g3� ¼ E−3.

(iii) In this section, qi, pi and ki will denote the momenta
connecting the left and central vertices, the central
and right, and the left and right, respectively.
Momenta always flow from right to left as in
Appendix D.

(iv) The θ-functions imposing intermediate state ener-
gies above EL are understood but not written. They
are always uniquely reconstructible, as one inter-
mediate energy involves the sum of ωq ’s and ωk’s,
and the other the sum of ωp ’s and ωk’s.

(v) Each diagram involves a sum over all finite volume
momenta ð2π=LÞZ, subject to the shown δ-func-
tions. We will define the following summation
symbol that includes the relativistic normalization
and has a finite infinite volume limit. If there are n
momenta Pi (be that q’s, p’s or k’s) to sum over, we
will write:

X
n

≡ X
P1…Pn

1Q
n
i¼1 2LωðPiÞ

: ðF2Þ

Notice that ½Pn� ¼ E0.39In this Appendix, we rename E0
L to EL for brevity.
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1. Coefficients

λ0 receives contribution from just one pattern:

ðF3Þ

λ2 receives contributions from patterns with 5 contractions. Up to left-right reflection (denoted by h.c.), there are 4 such
patterns:

ðF4Þ

ðF5Þ

ðF6Þ

ðF7Þ

λ4 receives contributions from 6 patterns with 4 contractions:

ðF8Þ

ðF9Þ

ðF10Þ

ðF11Þ
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ðF12Þ

ðF13Þ

λ6 receives contributions from just two patterns:

ðF14Þ

ðF15Þ

Finally, as explained in Sec. E 3, coefficients of the bilocals are given by the patterns:

ðF16Þ

ðF17Þ

A comment is in order concerning the diagrams for λ4.6
and λ6.2. They have the middle vertex joined to the rest by a
single propagator (the horizontal line). Strictly speaking,
this invalidates the local approximation. Indeed, let p be
the momentum flowing through this line, which is the sum
of momenta entering the middle vertex. The original
diagrams will depend on p through the propagator, and
also through the energy of the right intermediate state. In
(F13) and (F15), this dependence is neglected: p → 0, so
that ωp → m. This is not a problem in the intermediate
state, whose energy is dominated by the other energetic
particles. But in the propagator this replacement is prob-
lematic, as it changes 1=ð2ωpÞ → 1=ð2mÞ and overesti-
mates the matrix elements unless p ¼ 0.
A moment’s thought shows that the diagrams for λ4.6 and

λ6.2 should be more properly approximated by the follow-
ing bilocal operators:

Z
L

0

dxdyGLðx − y; 0Þ∶ϕNðxÞϕ3ðyÞ∶; ðF18Þ

with N ¼ 1 and 3, respectively. However, in this paper we
will not try to correct this small error.
For numerical evaluation, expressions (F3)–(F17) will be

further simplified by taking the formal infinite volume limit
L → ∞. This will be done by replacing

X
n

→
Z

dnP
ð2πÞn ; LδPPi

→ ð2πÞδ
�X

Pi

�
: ðF19Þ

The validity of this approximation, for the volumes L that
we consider in our computations, will be justified below.
So we face the task of evaluating 15 coefficients

corresponding to the L → ∞ limits of each diagram. It
would be great if we could find analytic expressions for the
spectral densities for both intermediate states, similar to
(3.10). This would allow us to reduce these computations to
two-dimensional integrals in the energies of those inter-
mediate states, similar to the one-dimensional integrals in
(3.9). For six diagrams (4.1, 4.5, 4.6, 6.2, 2j4, 4j4), the
spectral densities trivially reduce to products of spectral
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densities (3.10). For example, the spectral density for λ4.1 is
μ2ðE1Þμ2ðE2Þ where E1 and E2 are the two intermediate
energies, while for λ4.5 it’s μ4ðE1Þμ4ðE2ÞδðE1 − E2Þ. For
the other diagrams, we were not able to find analytic
spectral densities. For those diagrams, we evaluate the
original multidimensional integral, for each needed EL and
E�, numerically via Monte Carlo integration (we use
vegas-3.2 in python).

2. L → ∞ limit and the asymptotic estimates

In this section, we will carry out a rough asymptotic
analysis to determine how various λ’s scale with EL, m, L.
The accuracy of these asymptotic approximations would be
insufficient for practical computations, for which as men-
tioned we have to resort to numerical integration. Still, this
exercise is instructive. It will also help understand the
validity and limitations of the described formal L → ∞
limit which replaces sums over momenta by integrals. For
brevity of presentation, we will not keep track of E�
dependence. I.e. we assume E� ≪ EL and set E� → 0.
The results of this analysis are summarized in Table III.

Below we explain how the entries of this table are obtained.
We start from the simple diagrams and proceed to the
more complicated ones. E1 and E2 will denote the energies
of the two intermediate states, counting from the left.

Depending on the context, the symbol ∼ in this section
means proportionality, asymptotic equality, or leading-log
asymptotics.
Diagram 4.1. This is the simplest diagram since the two

intermediate states are independent. The spectral densities
are just two particle spectral densities, expressed in terms of
two particle phase space Φ2ðEÞ, see (E10), which in the
limit L → ∞ is given by

Φ2ðE; PÞ ¼
θðs − 4m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p ; s ¼ E2 − P2: ðF20Þ

We will write ΦðEÞ ¼ Φ2ðEÞ if the total pair momentum is
P ¼ 0. This is the case for diagram 4.1 since we neglect the
external momenta. So omitting the prefactors and setting
E� → 0 we get

λ4.1 ∼
Z

∞

EL

dE1

E1

ΦðE1Þ
Z

∞

EL

dE2

E2

ΦðE2Þ ∼
1

E4
L
; ðF21Þ

where we used that ΦðEÞ ∼ 1=E2 for E ≫ m. Notice that
the L → ∞ approximation is justified. Indeed, since both
intermediate states have large energy and the pair momenta
is zero, it follows that both pair components have large
momentum, and the spectrum is dense in that region. Thus
it’s clearly justified to replace sums by integrals.
Diagram 4.2. In this case, the intermediate state E1 is

made of two groups of two particles, one of which is E2. So
E1 > E2. The joint spectral density is ΦðE1 − E2ÞΦðE2Þ,
and we get

λ4.2 ∼
Z

∞

EL

dE2

E2

ΦðE2Þ
Z

∞

E2

dE1

E1

ΦðE1 − E2Þ: ðF22Þ

The crucial question is what’s the typical value of E1 − E2.
Suppose first that E1 − E2 ∼ E2. Then we can rescale E1 ¼
E2ð1þ xÞ and write

λ4.2 ∼
Z

∞

EL

dE2

E2

Z
∞

0

dx
1þ x

ΦðE2xÞΦðE2Þ

∼
Z

∞

EL

dE2

E2

1

E4
2

Z
∞

0

dx
x2ð1þ xÞ

∼
1

E4
L

Z
∞

0

dx
x2ð1þ xÞ ; ðF23Þ

where we used the asymptotics ΦðEÞ ∼ 1=E2 for both Φ’s.
However, the end result is inconsistent since the integral
over x diverges at x ¼ 0. This means that in fact the leading
contribution to λ4.2 comes from the region where E1 − E2 is
very close to the two particle threshold. In this region, the
approximation ΦðEÞ ∼ 1=E2 is invalid. Instead, we denote
E ¼ E1 − E2 and approximate

TABLE III. Representative values for λ’s and the asymptotic
behavior for E ¼ EL ≫ m, Lm ≫ 1. We only give leading-log
asymptotics. The approximate numerical values are given for
g ¼ 1, m ¼ 1, L ¼ 10, E� ¼ 0, in units of 10−3. For comparison
the last three lines report κ’s from (3.9) in the same format. See
the text for the meaning of the last column.

Numerical value (×10−3)

E ¼ 20 E ¼ 40 Asymptotics Sensitive to Pext

λ0 0.67 0.084 1=ðE3mÞ
λ2.1 0.85 0.078 ðlogE=mÞ2=E4

λ2.2 3.8 0.44 1=ðE3mÞ ✓

λ2.3 1.8 0.25 ðlogE=mÞ=ðE3mÞ ✓

λ2.4 0.33 0.032 ðlogE=mÞ2=E4

λ4.1 0.034 0.0021 1=E4

λ4.2 1.21 0.16 1=ðE3mÞ ✓

λ4.3 4.1 0.45 1=ðE3mÞ ✓

λ4.4 1.5 0.12 ðlogE=mÞ=E4

λ4.5 0.25 0.046 LðlogE=mÞ2=E3

λ4.6 3.9 0.60 ðlogE=mÞ=ðE3mÞ ✓

λ6.1 0.39 0.026 1=E4

λ6.2 3.6 0.46 1=ðE3mÞ ✓

λ2j4 1.0 0.15 ðlogE=mÞ=E3

λ4j4 0.42 0.056 1=E3

κ0 −8.4 −3.0 ðlogE=mÞ2=E2

κ2 −31.8 −8.5 ðlogE=mÞ=E2

κ4 −14.3 −3.5 1=E2
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λ4.2 ∼
Z

∞

EL

dE2

E2

ΦðE2Þ
1

E2

Z
∞

0

dEΦðEÞ ∼ 1

E3
Lm

: ðF24Þ

where we used that
R∞
0 dEΦðEÞ ∼ 1=m. It’s important that

this latter integral converges at the upper limit, otherwise
we would not be able to approximate E1 ≈ E2 in the
measure dE1=E1.
The main lesson is that singularities at the boundary of

the phase space give rise to 1=ðE3mÞ dependence where
naive dimensional analysis ignoring the m scale would
predict 1=E4.
One might worry about the validity of the naive L → ∞

approximation (replacing all sums by integrals) for this
diagram, since as we have seen the dominant contribution
involves a two particle state close to the threshold. There
are not so many such states in finite volume, and one might
worry about higher sensitivity to finite L effects compared
say to diagram 4.1. However, a closer inspection of the
exact expression for the relevant integral in finite volume
(see (E8) shows that finite L effects are exponentially
suppressed:

Z
∞

0

dEΦ2ðEÞ ¼
X
k

2π

4ω2
kL

¼ π

4m
coth

Lm
2

¼ π

4m
ð1þ 2e−Lm þ � � �Þ: ðF25Þ

This is not accidental. In fact, the sum can be expressed as
an integral of the propagator (F21):

X
k

1

ω2
k

∝
Z

L

0

dx½GLðx; 0Þ�2; ðF26Þ

and the finite and infinite volume propagators differ in
position space by exponentially small “winding” terms.
Similar reasoning will apply for the other diagrams, and in
the end we will show that the L → ∞ approximation is
justified for all of them.
There is however another effect related to the importance

of low momenta states for this diagram, which is not so
innocuous. This concerns the dependence on the external
momenta, marked by ✓ in the last column of the table.
Denote by Pext ¼ P the momentum flowing into the
diagram through the middle vertex. Naively if P ¼
OðmÞ ≪ EL it can be neglected (and it was neglected
above). However for this diagram this neglect is not valid,
because the small loop is very sensitive to this momentum.
If P ≠ 0 we must replace ΦðEÞ by ΦðE;PÞ in (F24). Since

Z
∞

0

dEΦðE;PÞ ¼
Z

∞

0

ds

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ P2

p ΦðsÞ; ðF27Þ

we see that even P ¼ OðmÞ leads to an Oð1Þ change
(suppression) of this diagram. So, strictly speaking, it’s not
allowed to neglect the Pext dependence.

We will see below several other diagrams exhibiting Pext
dependence, by the same mechanism (4.3, 2.2, 2.3), or by a
slightly different one (4.6, 6.2). Although it’s certainly
possible to include this dependence in our numerical
calculations, it’s a bit tedious, and in this paper we will
not take it into account, setting Pext → 0. This can be
improved in the future work if needed.
Diagrams 4.3 and 2.3. Denoting by p momentum

flowing through the horizontal line of λ4.3, this diagram
is given by

λ4.3 ∼
Z

dE1

E1

Z
dE2

E2

Z
dp
ω2
p
δðE1 − E2ÞΦðE1 − ωp; pÞ:

ðF28Þ

The integral over p converges at p ¼ OðmÞ so

λ4.3 ∼
Z

∞

EL

dE1

E2
1

ΦðE1Þ
Z

dp
ω2
p
∼ 1=ðE3

LmÞ: ðF29Þ

λ2.3 is similar except with the three particle phase
space, whose E ≫ m leading-log asymptotics is Φ3ðEÞ∼
ðlogE=mÞ=E2, giving an extra log. The validity of the
L → ∞ approximation is justified for these diagrams in the
same way as for λ4.2. There is also sensitivity to Pext, for
the same reason as for λ4.2.
Diagrams 4.4 and 2.4. Let q be momentum going around

the loop of λ4.4. Then E1 ¼ 2ωq, E2 ¼ ωq þ E, with E the
energy of a two particle state of momentum q. In particular,
jqj ≫ m. So this diagram is given by

λ4.4 ∼
Z

dE1

E1

Z
dE2

E2

Z
dq
ω2
q
δðE1 − 2ωqÞΦðE2 − ωq; qÞ

∼
Z

dE1

E3
1

Z
dE2

E2

ΦðE2 − E1=2; E1=2Þ; ðF30Þ

where we neglect the particle mass. The invariant mass of
the two particle state is

s ¼ ðE2 − E1=2Þ2 − ðE1=2Þ2 ¼ E2ðE2 − E1Þ: ðF31Þ

If we denote E2 ¼ E1x and use the approximation ΦðsÞ ∼
1=s we get (E ¼ E1)

λ4.4 ∼
Z

∞

EL

dE
E5

Z
∞

1

dx
x2ðx − 1Þ : ðF32Þ

The integral over x is log-divergent at the lower limit and
must be cut off at x ∼m2=E2 because of the cutoff s > 4m2

which we have ignored so far. So,

λ4.4 ∼
Z

∞

EL

dE
E5

logðE=mÞ ∼ ðlogEL=mÞ=E4
L: ðF33Þ
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Although the leading contribution involves two particle
states with small invariant mass, their total momentum was
large. As a result this diagram will not be particularly
sensitive to finite L and Pext effects. λ2.4 is similar but
involves the three particle phase space, with an extra log in
the asymptotics.
Diagrams 4.5, 2j4, 4j4

λ4.5 ∼ L
Z

dE1

E1

Z
dE2

E2

δðE1 − E2ÞΦ4ðE1Þ

∼ LðlogEL=mÞ2=E3
L; ðF34Þ

where we used the leading-log four particle phase space
asymptotics Φ4ðEÞ ∼ ðlogE=mÞ2=E2 The overall factor L
arises because the diagram is disconnected. The other two
diagrams are fully analogous, except three and two particle
spectral densities are involved, and the factor L is absorbed
into the bilocal operator.
Diagrams 4.6 and 6.2

λ4.6 ∼
1

ωP

Z
dE1

E1

Z
dE2

E2

δðE1 − E2 − ωPÞΦ3ðE1Þ

∼ ðlogEL=mÞ=ðωPE3
LÞ; ðF35Þ

where we used the leading-log three particle phase space
asymptotics, and P is the external momentum flowing in
through the central vertex (we assume ωP ≪ ELÞ The
expressions in (F13) and in the table correspond to ωP → m
which neglects the Pext dependence and overestimates the
diagram. λ6.2 is similar but involves the two particle phase
space. Notice that the mechanism for Pext dependence of
these two diagrams is different and simpler than for 2.2,
2.3, 4.2, 4.3.
Diagram 6.1. Denoting by p the momentum going

around the loop we have

λ6.1 ∼
Z

dE1

E1

Z
dE2

E2

Z
dp
ω3
p
δðE1 − 2ωpÞδðE2 − 2ωpÞ

∼
Z

dE1

E1

Z
dE2

E4
2

δðE1 − E2Þ ∼
1

E4
L
; ðF36Þ

where we neglected m in the second approximation. The
bottom line is forced to carry a large momentum, which is
different from λ4.3 and λ2.3 where the main contribution
came from soft bottom line momenta. As a result this
diagram clearly has no finite L or Pext sensitivity.
Diagram 2.1

λ2.1 ∼
Z

dE1

E1

Z
dE2

E2

Z
dk
ωk

ΦðE1 − ωk; kÞΦðE2 − ωk; kÞ:

ðF37Þ

While naively one may have expected 1=E4
L asymptotics,

there are two regions of phase space which give an

enhanced contribution. The first one is that of small k,
whose contribution is

λ2.1 ⊃ const
Z

dE1

E1

Z
dE2

E2

ΦðE1ÞΦðE2Þ
Z

dk
ωk

∼ ðlogEL=mÞ=E4
L; ðF38Þ

where we cut off the log-divergent k integral at k ∼ EL,
where the small k approximation breaks down.
The second enhanced region is 2k ∼ E1 ∼ E2, where the

invariant masses of the two particle states

si ¼ ðEi − ωkÞ2 − k2 ¼ EiðEi − 2ωkÞ þm2 ðF39Þ

are small. Consider the half of the integral where E2 > E1.
Introduce E2 ¼ xE1, x > 1 and ωk ¼ yE1=2, 0 < y < 1.
Neglecting the m2 in the rhs of (F39) for the moment, and
using the approximation ΦðsÞ ∼ 1=s, which will be
adequate to pick the leading-log part, we get

λ2.1 ⊃ const
Z

dE1

E5
1

Z
1

0

dy
yð1 − yÞ IðyÞ; ðF40Þ

IðyÞ ¼
Z

∞

1

dx
x2ðx − yÞ ¼ −

logð1 − yÞ
y2

−
1

y
: ðF41Þ

Notice that IðyÞ has a log singularity as y → 1 but has a
finite limit as y → 0. Substituting IðyÞ into (F40) and
recalling the effective cutoffm2=E2 for y near 1, we get that
the contribution of this region is doubly log-enhanced.
Diagram 2.2

λ2.2 ∼
Z

dE1

E1

Z
dE2

E2

Z
dp
ωp

ΦðE2 − ωp; pÞ

×ΦðE1 − E2 þ ωp; pÞ: ðF42Þ

The invariant masses of the two particle phase spaces are:

s1 ¼ E2 þ 2Eωp þm2 ðE ¼ E1 − E2Þ;
s2 ¼ E2

2 − 2E2ωp þm2: ðF43Þ

The dominant region will be E; p ¼ OðmÞ ≪ E2 ∼ EL.
Contribution from this region is

λ2.2 ⊃ const
Z

dE2

E2
2

ΦðE2Þ × I3; I3 ¼
Z

dpdE
Φðs1Þ
ωp

:

ðF44Þ

We can equivalently write I as I3, where

IN ∼
Z YN

i¼1

dpi

ωpi

δ

�X
pi

�
∼
Z

L

0

dx½Gðx; 0Þ�N; ðF45Þ
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from which it’s clear that the integral converges, and that
IN ∼ 1=m, leading to the estimate in the table. The finite
volume corrections are then suppressed by the same argu-
ment as for λ4.2. There will also be sensitivity to Pext for this
diagram.
Diagram 0. We have three groups of two particles, each

of the same total momentum P ¼ q1 þ q2 ¼ p1 þ p2 ¼
−ðk1 þ k2Þ. Let E be the energy of the q1, q2 group,
then the other two have energies E1 − E and E2 − E1 þ E.
We have

λ0 ∼
Z

dE1

E1

dE2

E2

dPdEΦðE;PÞΦðE1 − E;PÞ

×ΦðE2 − E1 þ E; PÞ: ðF46Þ

The dominant region is P∼E∼W¼E2−E1≪E1∼E2∼EL,
which gives

λ0 ∼
Z

∞

EL

dE1

E4
1

× I;

I ¼
Z

dPdEdWΦðE; PÞΦðEþW;PÞ: ðF47Þ

We can equivalently write I as (F45) with N ¼ 4, from
which the rest of the argument follows.

3. General lessons

One important lesson of the careful discussion in this
section is that one must be cautious applying naive dimen-
sional analysis to predict how the coefficients of the local
approximation scale with EL. For the situation at hand,
naive dimensional analysis fails as often as it is successful,
because other scales with the dimension of energy, m and
L−1, come in and change the scaling.

It would be interesting to develop a local approximation
procedure appropriate for the renormalization at the cubic
order in the context of TCSA, in whichH0 describes a CFT.
In the ϕ4 case, the role of the scale m was to regulate IR
divergences, and power counting may be simpler in the
TCSA case when no IR divergences are present. However,
as mentioned in note 11, we do expect bilocal operators to
appear in the TCSA case as well.

APPENDIX G: LOCAL APPROXIMATION:
CHECKS OF ACCURACY

As explained in Sec. III B and Appendix E, we have
the scales EL, E0

L; E
00
L which control the accuracy of the

local approximation used to compute the ultrahigh pieces
of ΔH2 and ΔH3. In this Appendix, we present some
numerical checks of how accurate the local approximation
is. For illustrative purposes, we pick a rather low ET.
In Fig. 15, we plot two matrix elements of ΔH2 as

function of EL: h0jΔH2j0i on the left and h0jΔH2j20i on
the right, with j0i the free theory vacuum and jN0i denoting
N particles at rest. These matrix elements are computed as
explained in (3.5), i.e. by splitting the calculation as
ΔH2 ¼ ΔH<

2 þ ΔH>
2 . Recall that ΔH<

2 includes the con-
tribution from states in the range ðET; EL�. Instead, ΔH>

2

includes those in the range ðEL;∞Þ and is computed in the
local approximation in the L → ∞ limit, using the expres-
sions in (3.9).
In both plots, the steepest solid line does not include the

local diagrams but only ΔH<
2 . Instead, the flatter line

includes both ΔH<
2 and the local approximation to ΔH>

2 ,
showing little dependence on the arbitrary scale EL. The
only local operator in (2.13) that can connect the state j0i
with itself is V0. Thus, the left plot tests the coefficient κ0.
Instead, the right plot tests κ2 since V2 is the only operator

FIG. 15. Two low-energy matrix entries of ΔH<
2 and of ΔH<

2 þ ΔH>
2 as a function of EL. ΔH<

2 is computed exactly and ΔH>
2 , in the

local approximation.
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in (2.13) with nonzero matrix element h0jVN j20i. In these
plots, ET was fixed to 10, but in fact this test does not
depend on ET since shifting ET just adds a constant to both
curves. We did other similar plots for different matrix
entries (in particular testing κ4), showing equally good
behavior.
Analogously, in Fig. 16 the matrix elements h0jΔH3j0i

(left) and h0jΔH2j60i (right) are plotted as a function of the
scale E0

L, fixing E00
L ¼ 1.5E0

L. These plots are a numerical
test of (3.11). The steepest solid line of both plots includes
only the nonlocal piece ΔH≪

3 of (3.12), including the
states in the range ET < Ek ≤ E0

L. Instead, the flatter
dashed (dotted) lines add to the solid ones the operators
ΔH<>

3 (and ΔH≫
3 ) in (3.11). The matrix ΔH<>

3 in (3.14) is
computed as explained after (3.16), i.e. the contribution of

the states between E0
L and E00

L is computed exactly doing
matrix multiplication while in the range ðE00

L;∞Þwe use the
local approximation for ΔH2. The matrix ΔH≫

3 in (3.13) is
calculated entirely in the local approximation, taking the
L → ∞ limit.
The left plot in Fig. 16 is a check of λ0 in (F3). Instead,

the right plot tests the λ coefficients of those (bi-)local
operators in (3.15) that can connect the vacuum j0i with the
six-particle state j60i. These are the operators V6 and
∶V2V4∶. Hence, the right plot is a check of the diagrams
λ6.1, λ6.2, λ2j4. We did similar plots for other matrix elements
of ΔH3 in order to test the rest of the λ’s, and we obtained
similar results to the ones shown in Fig. 16.
Lastly, in Fig. 17 we show two plots of the vacuum

energy. In the left plot, we vary EL keeping fixed

FIG. 17. Vacuum energy as a function of EL (left) and E0
L (right).

FIG. 16. Matrix entries of ΔH≪
3 , ΔH≪

3 þ ΔH<>
3 and ΔH≪

3 þ ΔH<>
3 þ ΔH≫

3 as a function of E0
L.
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E00
L ¼ 1.5E0

L ¼ 2ET , while on the right we vary E0
L keeping

E00
L ¼ 1.5E0

L and fixed EL ¼ 3ET . We use the full ΔH2 or
just its ΔH<

2 part on the left, and the full ΔH3 or just its
ΔH≪

3 part on the right. The point of these plots is the
following. The lines corresponding to the full ΔH2 and
ΔH3 are quite flat. This is comforting as it shows that there
is very little dependence of the spectrum on the unphysical
scales EL, E0

L, E
00
L. Note that this is true even for the values

of EL, E0
L relatively close to ET . For such EL, we expect our

procedure to give a poor approximation for the matrix
elements with energies Ei close to ET . However, as we
stressed several times, such states have a relatively low
impact on the lowest excited states, even for moderately
strong couplings g. This must be the reason why the
spectrum varies so little even for low values of EL and
E0
L. Nevertheless, in the main text we were conservative

and took relatively large values of EL, E0
L, E

00
L, so that all

matrix elements of ΔH2;3 are well approximated.
As mentioned in Sec. F 2, some terms in the local

expansion of ΔH3 (those marked with ✓ in Table III)
are sensitive to the momenta of the external states Pext. In
our way of approximating those terms, the magnitude of the
corresponding matrix entries is overestimated. As the scale
E0
L is increased those matrix entries decrease. Perhaps this

can be used to explain why the dashed line in the right plot
of Fig. 17 shows some residual growth. Namely, at leading
order, the correction to the vacuum due to off-diagonal
elements in ΔH3 is negative, due to the usual level-
splitting. Then, as E0

L is increased the value of the vacuum
energy should indeed somewhat increase. Although this is a
perturbative argument, perhaps there is some truth to it.
In any case, in the future it could be interesting to take

better care of Pext dependence, as explained in Sec. F 2.
This should reduce the residual E0

L-dependence of the
spectrum. Perhaps one can then lower further the value of
E0
L needed to achieve a given accuracy, saving a significant

amount of computational resources.

APPENDIX H: FIT PROCEDURE

In this Appendix, we give further details on the fitting
procedure.

1. Infinite cutoff extrapolation

After we compute the numerical NLO-HT mass and
vacuum energy at finite ET , we try to extrapolate them to
ET ¼ ∞, by fitting the data points with a function of
the form (4.1).40 The central value and error bars are
computed as follows. For each n ¼ 0, 1, 2, 3, we remove n

points in the low ET part of the data sample, specifically
10 ≤ ET ≤ 12.5, where in total 5 data points are present for
our choice of discretization of ET . Several subsamples are
generated, by removing n points according to all possible
combinations. Fitting the model (4.1) for each subsample,
we obtain a series of “fit models” FiðETÞ and the
corresponding asymptotes αi. Then, we take the mean,
max and min of the αi’s as the central value, the upper
bound and the lower bound estimate. Furthermore, to
account for fluctuations for the higher values of ET , we
provide alternative estimates for the error bars, as follows.
We compute the maximum absolute difference between the
data points and the mean of the FiðETÞ in the range
Emax − 5 ≤ ET ≤ Emax, where Emax is the maximum cutoff
we attain at a given L. The final error bars are the largest
between the two methods.

2. Estimate of the critical coupling

The critical value of g where the theory undergoes a
phase transition is determined from the right plot in Fig. 4.
The red data points of the plot are fitted with the rational
function in (4.7), minimizing over g1, g2, g3, a and gc the
“log-likelihood function” formed for N data points:

χ2 ¼
XN
i¼1

ðyi − fðxiÞÞ2=erri2: ðH1Þ

The central value gc ¼ 2.76 reported in Table II corre-
sponds to the smallest χ2, call it χ2ð2.76Þ. The uncertainty
was determined through the following procedure. We fix gc
close to 2.76 and fit the same ansatz (4.7), minimizing the
log-likelihood only over g1, g2, g3 and a. The error interval
reported in Table II corresponds to those gc for which the
root mean square normalized error is within factor 3 of
what it is at gc ¼ 2.76, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðgcÞ=N

q
≤ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ð2.76Þ=N

q
: ðH2Þ

We believe that this error determination is conservative.

APPENDIX I: ALGORITHMIC DETAILS

We will describe here some details of the basis and
matrix generation algorithms used in this work, highlight-
ing key improvements over the code used in [11]. It will be
important to control both the time and memory complexity
of the computation. The core component of our code is a
routine41

F∶jii → fVjijjijEj ≤ Emax; Vji ≠ 0g; ðI1Þ
40For g ≤ 1, we instead set γ ¼ 0. This is motivated by the fact

that by eye the dependence is predominantly linear in 1=E3
T , and

that the linear fit is more robust to the fluctuations of the data
around the smooth curve. While this procedure may seem ad hoc,
we tested it, and it works well. In the future, one can think of more
complicated fitting procedures.

41The operator V is hermitian and the matrix elements are real
in the basis that we consider, so Vij ¼ Vji.
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taking as input a state and returning all the states jji and
coefficients Vji such that Vji ≠ 0, in a given energy range.
This routine will be described in more detail in Sec. I 2.

1. Basis generation and storage

We use two different data structures to represent the Fock
states in the Hilbert space. The reason to do so will become
clear below. Each Fock state is represented in one of the
following ways:
(1) as a list of tuples ½ðn; ZnÞ;…� where n represents

wave number and Zn represents occupation number
(only Zn > 0 are included). The list is ordered in n;
e.g., ½ð−1; 3Þ; ð0; 2Þ; ð3; 1Þ� is a state in this repre-
sentation. This representation is convenient to use as
input for the routine (I1), but it’s relatively expensive
in memory.

(2) as a fixed-length list of all occupation numbers
½Z−nmax

; Z−nmaxþ1;…; Znmax
�, including the zeros,

e.g., ½0; 0; 3; 2; 0; 0; 1� with nmax ¼ 3 is the above
state. The state which is part of the output of the
routine (I1) is efficiently computed in this represen-
tation. It can be stored cheaply in memory as a byte
sequence (bytes in python).

As in [11], we restrict ourselves to the truncated Hilbert
space with total momentum P ¼ 0. Furthermore, we are
interested in the part of the Hilbert space which is P-
invariant (where P is spatial parity). Its basis is formed by
the states which are either P-invariant Fock states or have
the form

ðjψi þ PjψiÞ=
ffiffiffi
2

p
; ðI2Þ

where jψi is a Fock state such that jψi ≠ Pjψi. In the
latter case, the state is represented in the basis by storing
either jψi or Pjψi (but not both), choosing between the two
arbitrarily. Finally, we work separately in the sectors Z2 ¼
�1 of the field parity ϕ → −ϕ. The finite-dimensional
Hilbert space that is stored numerically is composed of
several parts:

(i) “Low energy” states, i.e. all states with energy
E ≤ ET . This chunk of the Hilbert space is stored
both in Representation 1 and 2. In this work, it
typically contains ∼104 elements.

(ii) “Moderately high” states with energy ET < E ≤ E0
L.

Typically, in this work we choose E0
L ∼ 2ET . These

states are summed over in the computations of ΔH≪
3

in (3.12) and of ΔH>
2 in (3.14). Notice that these are

not all the states in the given energy range, as we
only need those states j for which there is a nonzero
V matrix element connecting them to a low-energy
state:

ET < Ej ≤ E0
L and ∃Vji ≠ 0; Ei ≤ ET: ðI3Þ

This distinction is important, as the number of all
states in the given range grows exponentially with

E0
L (for fixed ET), while the number of those

respecting the condition (I3) only polynomially.
To generate them, we do the following. As men-
tioned, we have routine (I1) which, given a state jii
in Representation 1 as an input, returns all the states
jji such that Vji ≠ 0 in Representation 2. We apply
this routine (with Emax ¼ E0

L) over all the states
below ET, and save the results in a hashset (set in
python), which has constant lookup time. In this
way, states are not overcounted. Finally, the states j
so generated are stored in both representations. In
this work, their number is usually of the order 106.

(iii) States with energy E0
L < E ≤ maxðEL; E00

LÞ, which
are summed over either in ΔH<

2 in (3.6) or in ΔH>
2

in (3.16). In this work, we typically choose
EL ∼ E00

L ∼ 3ET . These states are generated analo-
gously to the “moderately high” states above, but
they are not saved in the Representation 1 format,
because it is not necessary to act on these states with
V anymore. This saves a significant amount of
memory, as there can be around 107–108 states in
this chunk of the Hilbert space.

2. Computation of matrix elements

We will now describe some details of the routine (I1),
and of how the matrices ΔH2, ΔH3 are computed. Suppose
we want to find all the nonvanishing matrix elements Vji

between all the states jii ∈ HI , jji ∈ HJ, whereHI ,HJ are
subsets of the Hilbert space with maximal energies EI

max

and EJ
max. We assume EI

max ≤ EJ
max without loss of general-

ity. The procedure is described below.
First, the local operator V must be represented effi-

ciently, by decomposing it into sums of elementary terms.
For generality, we consider V ¼ R

ϕn, with n arbitrary. In
this way, the code can be used to construct both the
“nonlocal” and “local” parts of ΔH2, ΔH3, where all the
even powers of n ≤ 6 appear.42 Schematically, V is a sum of
products of oscillators

V ∼
Xn
nc¼0

X
fkg;fqg

�Ync
i¼1

a†ki
Yn−nc
i¼1

aqi

�
;

X
ki −

X
qi ¼ 0;

ðI4Þ
where nc is the number of creation operators. This sum is
infinite, but for given finite EI

max, EJ
max only a finite subset

will contribute nontrivially to the matrix elements we wish
to compute. These relevant terms are selected and stored in
memory as follows:

(i) For eachnc, we cycle over all the states inHI , creating
a set of all the possible ðn − ncÞ-dimensional tuples

42We won’t describe a modification of the algorithm used the
compute the “bilocal” matrices ∶V2V4∶, ∶V4V4∶ appearing in
ΔH3.
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fqig of momenta which are present in at least one
state.Wewill only need terms in (I4) forwhich fqig is
such a tuple, since all other terms annihilate all states.

(ii) We iterate over this set of tuples, and for each tuple
we generate a list of all the possible nc-dimensional
tuples of momenta fkig, subject to the constraints

X
ki −

X
qi ¼ 0;

X
i

ωðqiÞ ≤ EJ
max: ðI5Þ

This list is then sorted in energy. Clearly we only
need terms in (I4) for which fkig is such a tuple,
since any other term will either violate the zero
momentum condition or raise the energy of the state
above the threshold EJ

max we are interested in.
(iii) For each nc, we create a hash table (dict in

python) mapping the tuples of annihilation mo-
menta to the sorted lists of tuples of creation
momenta. It is useful to use this data structure as
it has constant lookup time. Also, we construct a
similar hash table of the same size, containing all
prefactors (including the factors 1=

ffiffiffiffiffiffiffiffiffi
2ωL

p
and the

combinatorial factors) for each pair of creation-
annihilation sets of operators. These coefficients,
multiplying the terms in (I4) (not shown in that
equation for simplicity), are precomputed for
efficiency.

Next, we cycle over HJ and create a lookup hash table
(dict) of all the associations fjji∶jg between the states
jji and the row indices of the matrix Vji.
Finally, we enter the core routine (I1), which makes use

of the data structures defined above, and works as follows:
(i) We iterate over HI, select a state jii with energy Ei

and generate a list of all the sets of momenta fqig
than can be annihilated at each value of nc.

(ii) We iterate over this list, selecting a tuple fqig, and
get the corresponding list of tuples fkig previously
computed in the hash table.

(iii) We iterate over the list of fkig. This inner loop is the
most expensive part of the computation, and it has
been optimized using the cython extension. We act
on the state jii with the given sets of creation and
annihilation operators and generate a new state jji in
Representation 2 and partial coefficient Vji. The
state is looked up in the hash table to get the index j.

(iv) We add the partial coefficient to the column i of the
matrix, and repeat through the previous points, until
the column i of Vji is entirely computed. We add this

column to the full matrix in the sparse format (for
maximum efficiency we use the coo format in
scipy.sparse).

At the end of this cycle one obtains the full matrix Vij over
the subspacesHI ,HJ. V is then converted from the coo to
the csc format to allow for fast algebraic operations.
Some of the tricks describe above reduce the time

complexity by orders of magnitude. We do not report other
tricks which speed up the computation by factors of a few.
For example, many quantities, such as the energies of the
states, can be precomputed and stored. Also, if HI ¼ HJ

and V is hermitian, only half of the terms in (I4) related to
each other by conjugation can be retained.

3. Evaluation of ΔH2, ΔH3

The matrices ΔH2 and ΔH3 are computed by summing
over basis states with energy above ET . As explained in
Sec. III B, they are decomposed into a “nonlocal” part,
where the Fock states are summed over exactly, and a
“local” part, where the sum is approximated analytically.
Here we describe in detail how to evaluate efficiently the
nonlocal part of the matrices. This step represents the
bottleneck of the entire numerical computation.

a. ΔH<
2

The sum (3.6) has to be evaluated. To do so, it is most
convenient to apply the routine (I1) over the basis states
with energy E ≤ ET, to construct the matrix Vkj in (3.6) and
its transpose. Then, ΔH<

2 is easily evaluated by multiply-
ing those.

b. ΔH≪
3

One has to compute the sum (3.12). The matrices Vik and
its transpose are constructed as above. Instead, Vkk0 is
sometimes too large to be stored in memory, even if it’s
sparse. If this happens, we divide the set of basis states with
energy ET ≤ E ≤ E0

L into chunks and compute blocks of
Vkk0 one at a time, summing over them sequentially.

c. ΔH<>
3

The nonlocal contribution toΔH<>
3 in (3.14) is evaluated

analogously to ΔH≪
3 . To save resources, it is important to

evaluate the matrix elements Vkk0 cycling over the states
with energy ET ≤ E ≤ E0

L and acting on them with V,
rather than cycling over the more numerous states in the
range E0

L ≤ E ≤ E00
L.
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