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An effective approach to understanding the nature of new physics beyond the SM or the
MSSM models is presented. We then apply this method to discuss the extension of the MSSM
Higgs sector with effective operators of dimension d = 5 and d = 6, that may be generated by
“new physics” beyond this sector. The implications for the value of the mass of the MSSM
CP even/odd Higgses are also discussed, to order 1/M2

∗
where M∗ is the scale of new physics

that generated these operators. The results show that one can classically increase the Higgs
mass mh above the current LEP bound, to reduce the fine tuning of the MSSM at large mh.
The origin of the effective operators with the largest corrections to mh is briefly discussed.
We extend the discussion beyond the Higgs sector, to analyse briefly all operators of d = 5
that respect R-parity, B and L numbers conservations and identify the minimal, irreducible
set of such operators. We then point out the existence, at the tree level, of new “wrong”-Higgs
Yukawa couplings, similar to those generated in the MSSM at one-loop.

1 Introduction

Although extremely successful, the Standard Model or its supersymmetric version (MSSM) is
not a fundamental theory, and this motivated the theoretical efforts to understand the nature
of new physics beyond it. This search can be done using an effective field theory approach, in
which the “new physics” is parametrised by effective operators. The power of this approach
resides in arranging these operators in powers of 1/M

∗
where M

∗
is the scale of new physics

that generated them. To improve the predictive power, one considers additional organising
principles, such as: (i) symmetry constraints that these operators should respect, often inspired
by phenomenology (for example: R-parity, lepton or baryon number conservation, etc). (ii) a
truncation of the series of operators to a given order in the power of the inverse scale 1/M

∗
. The

effective low-energy Lagrangian then takes the form

L = L0 +
∑

i,n

cn,i

Mn
∗

On,i (1)

where L0 is the SM or the MSSM Lagrangian; On,i is an operator of dimension d = n+ 4 with
the index i running over the set of operators of a given dimension; cn,i are some coefficients of
order O(1). This description is appropriate for scales E which satisfy E ≪ M

∗
. Constraints

from phenomenology can then be used to set bounds on the scale of new physics M
∗
.

Regarding the origin of operators On,i, they can be generated classically or at the quantum
level. At the classical level, this can happen by integration of some new massive states, via the
equations of motion and one then generates an infinite series as in (1). This can happen even in
4D renormalisable theories; indeed, even though the low energy interaction looks nonrenormalis-
able, it may actually point to a renormalisable theory valid up to a much higher scale (a familiar
example is the Fermi interaction). Such effective operators are also generated at the quantum
level, for example following compactification of a higher dimensional theory, by the radiative
corrections associated with momentum and winding modes of the compactification 1,2,3,4,5.
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The effects of these operators on the low energy observables can be comparable to the
radiative effects of light states in the SM/MSSM 6 and this shows the importance of their study.
In the following we shall provide some interesting details regarding the structure and treatment
of these operators. We then apply these to more detailed examples, such as the case of the
MSSM Higgs sector with additional operators of dimensions d = 5 and d = 6. In particular we
show that the mass of lightest SM-like Higgs can easily be increased above the LEP bound by
new physics in the region of few TeV. We then discuss the nature of the “new physics” behind
the effective operators.

2 General considerations on models with higher dimensional operators

Consider a supersymmetric Lagrangian, with a Kähler potential K, the superpotential W and
the gauge kinetic function f , all functions of chiral superfields Φi:

L =

∫

d4θK(Φ†

i e
V ,Φi) +

∫

d2θ
[

W (Φi) + fab(Φi) Wa Wb
]

+ h.c. (2)

Wa is the supersymmetric gauge field strength associated to the vector superfield V a. The
presence of effective operators is hidden in the series expansion (in fields) of these functions:

K = Φ†

i e
V Φi +

[

cijk
M

∗

Φ†

ie
V ΦjΦk + h.c.

]

+ · · ·

W = λijk ΦiΦjΦk +
cijkl

M
∗

ΦiΦjΦkΦl + · · ·

fab = δab +
fabi

M
∗

Φi + · · · (3)

The first terms in the rhs would lead to a renormalisable theory. These functions can contain
not only operators which are polynomial in fields, but also operators that can involve more than
two (one for fermions) space-time derivatives acting on physical fields. For example one can
have derivative operators in the superpotential (a) and Kähler potential (b):

(a)
λij

M
∗

∫

d2θΦi � Φj ∼
λij

M
∗

∫

d4θΦiD
2 Φj

(b)
kij

M2
∗

∫

d4θ Φ†

i � Φj,
kij

M2
∗

∫

d4θ Φ†

i Φj D
2 Φk, ... (4)

where D is the chiral supercovariant derivative. In (a), terms like ψ�ψ and F�φ are generated,
where Φ = φ+

√
2θ ψ+ θ2 F . In (b) one finds terms like |�φ|2, ψ∂µ�ψ, F †�F . In this case the

auxiliary fields become dynamical degrees of freedom. Such operators can be generated even in
a 4D supersymmetric renormalisable theory. To see this, consider the Lagrangian

L =

∫

d4θ
[

Φ†Φ + χ†χ
]

+

∫

d2θ
[

mΦχ+
M2

∗

2
χ2 +

λ

3
Φ3

]

+ h.c. (5)

Integrating out the massive field χ by the eqs of motion, one obtains

L =

∫

d4θ

[

(

1 +
m2

M2
∗

)

Φ† Φ+
m2

M4
∗

Φ†�Φ+· · ·

]

+

∫

d2θ

[

−m2

2M
∗

Φ2+
λ

3
Φ3+

m2

2M3
∗

Φ�Φ

]

+h.c. (6)

If one keeps all the terms in the series expansion above, the theory is ghost-free, because the
initial theory was so; the effective field theory (6) is valid only below the scale M

∗
.



From this discussion one natural question emerges: can one reformulate a supersymmetric
theory of higher order (with effective operators with extra derivatives), in terms of a standard,
second order theory (with at most two derivatives (one for fermions))? As we shall see shortly,
the answer is in many cases affirmative. Let us see how this works.

Effective operators in the Kähler function.

Consider the following general Lagrangian, where W is polynomial in fields, but otherwise
arbitrary (and not necessarily renormalisable):

L =

∫

d4θ
[

Φ† (1 + �/M2
∗

)Φ + χ†χ
]

+

{
∫

d2θ W [Φ;χ] + h.c.

}

+ O(1/M3
∗

) (7)

where one can replace Φ†�Φ → (−1/16)D
2
Φ†D2Φ. This model can be “unfolded” into a

Lagrangian without extra derivatives 7 (see also the appendix in 8). For this, consider a change
of basis to Φ1,2:

Φ = s1Φ1 + s2Φ2, (1/m)D
2
Φ† = r1Φ1 + r2Φ2 (8)

where s1,2, r1,2 form an unitary matrix, so that the eigenvalue problem is not changed; m is a very
small, non-zero mass scale of the theory that can be taken to zero at the end of calculation. Since

Φ and D
2
Φ are not independent, such transformation must be accompanied by a Lagrangian

constraint, which must vanish in the limit M
∗
→ ∞. This constraint has the form:

δL =

∫

d2θ
[

(1/m)D
2
(s1 Φ1 + s2 Φ2)

† − (r1Φ1 + r2 Φ2)
]

Φ3

( m2

4M
∗

)

(9)

Φ3 is a chiral superfield (Lagrange multiplier). After we bring L′ ≡ L + δL to a diagonal form

L′=

∫

d4θ
[

Φ̃†

1Φ̃1−Φ̃†

2Φ̃2−Φ̃†

3Φ̃3+χ†χ
]

+

{
∫

d2θ
[

W [Φ(Φ̃1,2);χ]−M
∗
Φ̃2Φ̃3

]

+h.c.

}

+O(1/M3
∗
)(10)

where Φ = Φ̃2 − Φ̃1 and where we took the limit m→ 0.
This Lagrangian is that of a second order theory and classically equivalent to the initial one

in (7). It shows that two massive ghosts (Φ̃2,3) are present, of mass of O(M
∗
); we observe that the

χ field was “spectator” throughout this analysis and did not affect it; in fact the χ-dependence
can be replaced by an arbitrary polynomial function. This reformulation of the initial theory
into a second-order one has interesting advantages and applications. In particular it would be
interesting to apply this technique to the case of higher derivative gravity. Particular attention
should be paid to the analytical continuation (pole prescription) of the theory, when going to
the “unfolded” form.

This is not the whole story; since the ghost degrees of freedom are massive (of order M
∗
), one

can integrate them out, by the equations of motion. After a careful calculation and consistent
Taylor expansion, the result is (see also the appendix in 8)

L′=

∫

d4θ
[

Φ̃†

1Φ̃1−
1

M2
∗

W ′ †[Φ̃1;χ]W ′[Φ̃1;χ] + χ†χ
]

+

{
∫

d2θW [Φ̃1;χ] + h.c.

}

+ O(1/M3
∗

) (11)

where the derivatives of W are taken wrt its first argument. This Lagrangian contains only
polynomial interactions (renormalisable or not) and standard kinetic terms, and is equivalent
to the original one, eq.(7). As a side-remark, let us mention that this result agrees with that
obtained by using the equations of motion in the derivative term in (7). This is not true in
general, as we shall see shortly.



Effective operators in the superpotential.

We extend the previous discussion to similar effective operators in the superpotential, which
have now dimension d = 5. Consider for example the following Lagrangian

L =

∫

d4θ
[

Φ†Φ + χ†χ
]

+

{
∫

d2θ
[ σ

M
∗

Φ � Φ +W [Φ;χ]
]

+ h.c.

}

=

∫

d4θ
[

Φ†Φ +
σ

4M
∗

(

ΦD2Φ + h.c.
)

]

+

{
∫

d2θ W [Φ;χ] + h.c.

}

+ O(1/M3
∗
) (12)

with σ = ±1 and where W can contain additional higher dimensional (polynomial) interactions.
The method presented earlier works identically, to find the “unfolded” Lagrangian 7

L′ =

∫

d4θ
[

Φ†

1Φ1 − Φ†

2Φ2 + χ†χ
]

+

{
∫

d2θ

[

σM
∗

4
Φ2

2+W [Φ2 − Φ1;χ]

]

+h.c.

}

+O(1/M3
∗

) (13)

There is only one ghost superfield here, because unlike earlier, the auxiliary field is not dynamical.
We integrate out the massive ghost superfield which has a mass O(M

∗
), to find

L′ =

∫

d4θ
[

Φ†

1Φ1−
4

M2
∗

W ′W
′
†+χ†χ

]

+

{
∫

d2θ

[

W−
σW

′2

M
∗

+
2

M2
∗

W
′′

W
′2

]

+h.c.

}

+O(1/M3
∗
)(14)

where the argument of W , W ′, W ′′ above is [−Φ1;χ] and derivatives are taken wrt the first
argument. This is equivalent to the starting Lagrangian (12) and has new interactions, but only
polynomial in fields. A similar result is obtained by using non-linear field redefinitions 8. Note
that the use of equations of motion in original L to remove the higher derivatives is not leading
to an identical result at O(1/M2

∗

), but gives a result where in (14) the coefficients 4 (2) are
replaced by 3 (3/2). The reason for this discrepancy is that this last method does not take into
account that Euler-Lagrange equations are changed in the higher order theory (see also 9,10,11),
so in our case it gave correct results valid in O(1/M2

∗
) order only.

To conclude, the presence of effective operators with extra space-time derivatives can be re-
placed, in the low energy effective theory, by additional polynomial interactions and wavefunction
renormalisations. The examples discussed were exactly supersymmetric; when supersymmetry
is broken, new effects are present, such as soft terms and µ term renormalisation 6.

3 MSSM with d=5 operators.

As an application, consider the MSSM extended by all possible d = 5 operators that respect
R-parity, baryon and lepton number symmetry. The Lagrangian is L = L0 + L(5) where

L0 =

∫

d4θ
∑

i=1,2

Zi(S, S
†)H†

i e
Vi Hi +

{
∫

d2θ µ0 (1 +B0 S)H1.H2 + h.c.

}

+ · · ·

+

∫

d2θ
[

QλU (S)U c H2 −QλD(S)Dc H1 − LλE(S)Ec H1

]

+ h.c. (15)

The dots stand for Higgs-independent terms and Zi(S, S
†) = 1 − ci S

†S, ci ∼ O(1). Further

L(5) =
1

M
∗

∫

d4θ
[

H†

1 e
V1QYUU

c +H†

2 e
V2QYDD

c +H2
† eV2LYEE

c (16)

+ aDα
[

bH2e
−V1

]

Dα

[

c eV1H1

]

+ δ(θ
2
)
[

QU c TQQD
c +QU c TL LE

c + λH(H1H2)
2
]

+h.c.
]



with a standard notation. We introduced here some spurion dependent functions: a, b, c, Z1,2, YF ,
F = U,D,E, which are general functions of (S, S†) while TQ, TL, λH , are holomorphic functions
of S. Here S = m0θ

2 is the spurion superfield and m0 the supersymmetry breaking scale, with
m0 = 〈Fhidden〉/MP , so supersymmetry breaking is transmitted via gravitational interaction.
Any supersymmetry breaking associated with the presence of the above interactions is included
using the spurion field technique. Not all operators in (16) are independent 6. To remove the
redundant operators we use field re-definitions:

H1 → H1 −
1

M
∗

D
2
[

∆1H
†

2 e
V2 (i σ2)

]T

+
1

M
∗

QρU U
c

H2 → H2 +
1

M
∗

D
2
[

∆2H
†

1 e
V1 (iσ2)

]T

+
1

M
∗

QρD D
c +

1

M
∗

LρE E
c (17)

where ρF = ρF (S), F = U,D,E, ∆i = ∆i(S, S
†), i = 1, 2, can be chosen arbitrarily. To avoid

the presence of flavour changing neutral currents, the following simple ansatz can be made:

TQ(S) = cQ(S) λU (0) ⊗ λD(0), TL(S) = cL(S)λU (0) ⊗ λE(0),

ρF (S) = cF (S) λF (0), YF (S, S†) = yF (S, S†) λF (0), F = U,D,E. (18)

and, as usual λF (S) = λF (0) (1 + AF S). Using a suitable choice for the (otherwise arbitrary)
coefficients of the spurion entering in ∆1,2, one can set TQ = TL = 0 also a = b = c = 0 and
YF → yF (S†)λF (0). Then one finds 6

L(5) =
1

M
∗

∫

d4θ
[

H†

1 e
V1 QY ′

U (S†)U c +H†

2 e
V2QY ′

D(S†)Dc +H†

2 e
V2LY ′

E(S†)Ec + h.c.
]

+
1

M
∗

∫

d2θ λ′H(S) (H1H2)
2 + h.c. (19)

Detailed calculations show6 that the new Yukawa couplings Y
′

F (S†) now depend on S† only,
Y

′

F (S†) = λF (0) (xF
0 + xF

2 S
†). After (17), the couplings of L0 also acquired, at tree level,

threshold corrections which depend on M
∗

6. The new form of L(5) in (19) gives the minimal
irreducible set of R-parity, B, L conserving d=5 operators that can be present beyond MSSM.

A consequence of this analysis is the generation of new couplings, beyond those in the MSSM
at the tree level. For example there is a “wrong”-Higgs Yukawa coupling, that exchanges the
holomorphic dependence on one Higgs by that on the hermitian conjugate of the other 12,13.
Such couplings do arise in the MSSM at one-loop, after integrating out massive squarks and are
suppressed by m2

0/M
2
∗
×(loop-factor). Here they are suppressed by m0/M∗

only, as seen below:

Ms

M
∗

[

xU
2 [λU (0)]ij (h†1 qL i) u

c
R j + xD

2 [λD(0)]ij (h†2 qL i) d
c
R j + xE

2 [λE(0)]ij (h†2 lL i) e
c
R j+h.c.

]

(20)

These couplings bring a tan β enhancement of a prediction for a physical observable, such as the
bottom quark mass, relative to bottom quark Yukawa coupling:

mb = (1/
√

2) v cosβ
(

λb + δλb + ∆λb tan β
)

(21)

Here λb is the usual bottom quark Yukawa coupling, δλb is its one-loop correction in MSSM
and ∆λb is a “wrong”-Higgs coupling’ corrections, obtained after integrating out at one-loop
massive squarks in MSSM; in our case ∆λb receives an extra correction from (20), which can
actually be larger than its one-loop-generated MSSM counterpart 12,14,15,16. This can bring a
tan β enhancement of the Higgs decay rate into bottom quarks pairs (for further details see 6).



4 MSSM Higgs sector with d=5 and d=6 operators

We can extend the previous discussion by including all effective operators of both dimension
d = 5 and d = 6 that can exist beyond the MSSM Higgs sector. This can be motivated in
various ways. The MSSM Higgs sector is a minimal construction and extension of that of the
SM. It does not take into account possible non-perturbative effects 17 or additional massive
states that can couple to the Higgs sector and generate, when integrated out, new contributions.
The fine tuning 18,19 needed to have the SM-like Higgs mass well above the LEP bound 20 can
also be a problem and it may indicate the existence of new physics beyond the Higgs sector.
Such problems may be addressed by using a model-independent approach, using the effective
operators. In the leading order, new physics beyond the MSSM Higgs sector can manifest itself
as operators of either d = 5 6,21,22,23 or d = 6 8,24 or both. If generated by the same new physics,
by comparing O(1/M∗) and O(1/M2

∗
) terms one can estimate when the series expansion in 1/M

∗

breaks down. The operators in the Higgs sector of dimension d = 5 were:

L1 =
1

M
∗

∫

d2θ λ′H(S) (H2.H1)
2+h.c. = 2 ζ10 (h2.h1)(h2.F1 + F2.h1) + ζ11m0 (h2.h1)

2 + h.c,

L2 =
1

M
∗

∫

d4θ
{

a(S, S†)Dα
[

b(S, S†)H2 e
−V1

]

Dα

[

c(S, S†) eV1 H1

]

+ h.c.
}

(22)

where

λ′H(S)/M
∗

= ζ10 + ζ11m0 θθ, ζ10, ζ11 ∼ 1/M
∗
, (23)

L1 can be generated by integrating out a massive gauge singlet or SU(2) triplet. Indeed, in the
MSSM with a massive gauge singlet, with an F-term of type M

∗
Σ2 +ΣH1.H2, when integrating

out Σ generates L1. L2 can be generated in various ways (see Appendix A, B in 6) but perhaps
the simplest way is via an additional pair of massive Higgs doublets of mass of order M

∗
. As

already discussed, L2 can be removed by general spurion-dependent field redefinitions, up to
soft terms and µ term renormalisation and O(1/M2

∗

) corrections 6.

We assume that m0 ≪M
∗
, so that the effective approach is reliable. If this is not respected

and the “new physics” is represented by “light” states (like the MSSM states), the 1/M
∗

expan-
sion is not reliable and one should work in a setup where these are not integrated out.

The list of d = 6 operators is longer 25:

O1 =
1

M2
∗

∫

d4θ Z1 (H†

1 e
V1 H1)

2, O5 =
1

M2
∗

∫

d4θ Z5 (H†

1 e
V1 H1) H2.H1 + h.c.

O2 =
1

M2
∗

∫

d4θ Z2 (H†

2 e
V2 H2)

2, O6 =
1

M2
∗

∫

d4θ Z6 (H†

2 e
V2 H2) H2.H1 + h.c.

O3 =
1

M2
∗

∫

d4θ Z3 (H†

1 e
V1 H1) (H†

2 e
V2 H2), O7 =

1

M2
∗

∫

d2θZ7 TrWαWα (H2H1) + h.c.

O4 =
1

M2
∗

∫

d4θZ4 (H2.H1) (H2.H1)
†, O8 =

1

M2
∗

∫

d4θZ8 (H2H1)
2 + h.c. (24)

where Wα = (−1/4)D
2
e−VDα eV is the chiral field strength of SU(2)L or U(1)Y vector super-

fields Vw and VY respectively. Also V1,2 = V a
w (σa/2) + (∓1/2)VY with the upper (minus) sign

for V1. The remaining d = 6 operators involve extra space-time derivatives:



O9 =
1

M2
∗

∫

d4θ Z9H
†

1 ∇
2
eV1 ∇2H1 O12 =

1

M2
∗

∫

d4θ Z12H
†

2 e
V2 ∇αW (2)

α H2

O10 =
1

M2
∗

∫

d4θ Z10H
†

2 ∇
2
eV2 ∇2H2 O13 =

1

M2
∗

∫

d4θ Z13H
†

1 e
V1 W (1)

α ∇αH1

O11 =
1

M2
∗

∫

d4θ Z11H
†

1 e
V1 ∇αW (1)

α H1 O14 =
1

M2
∗

∫

d4θ Z14H
†

2 e
V2 W (2)

α ∇αH2 (25)

Also ∇αHi = e−Vi Dα e
ViHi and W i

α is the field strength of Vi. To be general, in the above
operators one should include spurion (S) dependence under any ∇α, of arbitrary coefficients,
to account for supersymmetry breaking effects associated to them. Finally, the wavefunction
coefficients are spurion dependent and have the structure

(1/M2
∗
)Zi(S, S

†) = αi0 + αi1m0 θθ + α∗

i1m0 θθ + αi2m
2
0 θθθθ, αij ∼ 1/M2

∗
. (26)

Regarding the origin of these operators: O1,2,3 can be generated in the MSSM by an additional,
massive U(1)′ gauge boson or SU(2) triplets, when integrated out 21. O4 can be generated
by a massive gauge singlet or SU(2) triplet, while O5,6 can be generated by a combination of
SU(2) doublets and massive gauge singlet. O7 is essentially a threshold correction to the gauge
coupling, with a moduli field replaced by the Higgs. O8 exists only in non-susy case, but is
generated when removing the d = 5 derivative operator L2 by field redefinitions 6, so we keep it.

It can be shown that operators O9,...,14, can be eliminated along the lines discussed in the
previous sections. For example, in the absence of gauge interactions, O9 is similar to the operator
in eq.(7) and only brings a wavefunction renormalisation, O9 ∼ |µ|2/M2

∗

∫

d4θH†

1H1, and similar
for O10. Regarding O11,12, in the supersymmetric case they vanish, following the definition of
∇α and an integration by parts. Further, O13,14 are similar to O9,10, which can be seen by

using the definition of W
(i)
α and the relation between ∇2, (∇

2
) and D2, (D

2
). In the presence

of supersymmetry breaking, elimination of these operators and their supersymmetry breaking
contribution is still possible, up to a renormalisation of the soft terms and µ term 6.

5 Higgs mass corrections from d = 5 and d = 6 operators.

With the remaining set of independent, effective operators L1, O1,....,8 of dimensions d = 5 and
d = 6, one finds the scalar potential V and its EW minimum; this is perturbed by O(1/M2

∗
)

corrections from that of the MSSM. The expression of V is long and it is not given here (see 8

for its form). From V one computes the mass of CP-odd/even Higgs fields. One has:

m2
A = (m2

A)MSSM −
2 ζ10 µ0 v

2

sin 2β
+ 2m0 ζ11 v

2 + δm2
A, δm2

A = O(1/M2
∗

) (27)

for the pseudoscalar Higgs, with (m2
A)MSSM the MSSM value, with δm2

A due to O(1/M2
∗
) cor-

rections from d = 5 and d = 6 operators. For the CP-even Higgs one has 6,21,23

m2
h,H = (m2

h,H)MSSM

+ (2 ζ10 µ0) v
2 sin 2β

[

1 ±
m2

A +m2
Z√

w̃

]

+
(−2 ζ11m0) v

2

2

[

1 ∓
(m2

A −m2
Z) cos2 2β

√
w̃

]

+ δm2
h,H , where δm2

h,H = O(1/M2
∗

) (28)



The upper (lower) signs correspond to h (H), and w̃ ≡ (m2
A +m2

Z)2 − 4m2
Am

2
Z cos2 2β. With

this result one can show that the mass mh can be increased above the LEP bound, also with
the help of quantum corrections 6,21,22,23.

Regarding the O(1/M2
∗

) corrections of δm2
h,H , δm

2
A and δm2

h,H of (27), (28), in the general
case of including all operators and their associated supersymmetry breaking, they have a com-
plicated form. Exact expressions can be found in 8,24. For most purposes, an expansion of these
in 1/ tan β is accurate enough. At large tanβ, d = 6 operators bring corrections comparable to
those of d = 5 operators. The relative tan β enhancement of O(1/M2

∗
) corrections compensates

for the extra suppression that these have relative to O(1/M
∗
) operators (which involve both h1,

h2 and are not enhanced in this limit). Note however that in some models only d = 6 operators
may be present, depending on the details of the “new physics” generating the effective operators.

Let us present the correction O(1/M2) tom2
h,H for the casemA is kept fixed to an appropriate

value. The result is, assuming mA>mZ , (otherwise δm2
h and δm2

H are exchanged):

δm2
h = −2 v2

[

α22m
2
0 + (α30 + α40)µ

2
0 + 2α61m0 µ0 − α20m

2
Z

]

− (2 ζ10 µ0)
2 v4 (m2

A −m2
Z)−1

+ v2cot β
[

(m2
A−m

2
Z)−1

(

4m2
A

(

(2α21+α31+α41+2α81)m0 µ0+(2α50+α60)µ
2
0 + α62m

2
0

)

− (2α60−3α70)m
2
Am

2
Z−(2α60+α70)m

4
Z

)

+ 8 (m2
A+m2

Z) (µ0m0 ζ10 ζ11) v
2/(m2

A−m
2
Z)2

]

+ O(1/ tan2 β) (29)

A similar formula exists for the correction to mH :

δm2
H =

[

− 2
(

m0µ0 (α51 + α61) + α82),m
2
0

)

v2 + (2 ζ10 µ0)
2 v4(m2

A −m2
Z)−1

]

+ v2cot β
[

(m2
A−m

2
Z)−1

(

2m2
A

(

2(α11−α21)m0µ0+(α60−α50)µ
2
0+(α52−α62)m

2
0−α60m

2
A

)

−
[

4 (α11 + α21 + α31 + α41 + 2α81)m0µ0 + 6(α50 + α60)µ
2
0 + 2(α52 + α62)m

2
0

− (α50+5α60−2α70)m
2
A

]

m2
Z−(α50−α60)m

4
Z

)

−8 (m2
A+m2

Z)(µ0m0ζ10ζ11) v
2/(m2

A−m2
Z)2

]

+ O(1/ tan2 β) (30)

The mass corrections in (29), (30) must be added to the rhs of eqs.(28) to obtain the full value of
m2

h,H . Together with (24), (26), these corrections identify the operators of d = 6 with the largest
contributions, which is important for model building beyond the MSSM Higgs sector. These
operators are O2,3,4 in the absence of supersymmetry breaking and O2,6 when this is broken. It
is preferable, however, to increase m2

h by supersymmetric rather than supersymmetry-breaking
effects of the effective operators, because the latter are less under control in the effective ap-
proach; also, one would favour a supersymmetric solution to the fine-tuning problem associated
with increasing the MSSM Higgs mass above the LEP bound. Therefore O2,3,4 are the leading
operators, with the remark that O2 has a smaller effect, of order (mZ/µ0)

2 relative to O3,4 (for
similar αj0, j = 2, 3, 4). At smaller tan β, O5,6 can also give significant contributions, while O7

has a relative suppression factor (mZ/µ0)
2. Note that we kept all operators Oi independent. By

doing so, one can easily single out the individual contribution of each operator, which helps in
model building, since not all operators are present in a specific model.

One limit to consider is that where the operators of d = 6 have coefficients such that their
contributions add up to maximise δm2

h. Since αij are not known, one can choose:

−α22 = −α61 = −α30 = −α40 = α20 > 0 (31)



In this case, at large tan β:

δm2
h ≈ 2 v2α20

[

m2
0 + 2m0µ0 + 2µ2

0 + m2
Z

]

(32)

A simple numerical example is illustrative. For m0 = 1 TeV, µ0 = 350 GeV, and with v ≈ 246
GeV, one has δm2

h ≈ 2.36α20 × 1011 (GeV)2. Assuming M
∗

= 10 TeV and ignoring d = 5
operators, with α20 ∼ 1/M2

∗
and the MSSM value of mh taken to be its upper classical limit

mZ (reached for large tan β), we obtain an increase of mh from d = 6 operators alone of about
∆mh = 12.15 GeV to mh ≈ 103 GeV. An increase of α20 by a factor of 2.5 to α20 ∼ 2.5/M2

∗

would give ∆mh ≈ 28 GeV to mh ≈ 119.2 GeV, which is already above the LEP bound. Note
that this increase is realised even for a scale M

∗
of “new physics” beyond the LHC reach.

The above choice of M
∗

= 10 TeV was partly motivated by the fine-tuning results 22 (for
d = 5 operators) and on convergence grounds: the expansion parameter of our effective analysis
is mq/M∗

where mq is any scale of the theory, in particular it can be m0. For a susy breaking
scale m0 ∼ O(1) TeV (say m0 = 3 TeV) and c1,2 or αij of Zi(S, S

†) of order unity (say c1,2 = 2.5)
one has for M

∗
= 10 TeV that c1,2m0/M∗

= 0.75 which is already close to unity, and at the
limit of validity of the effective expansion in powers of 1/M

∗
. To conclude, even for a scale of

“new physics” above the LHC reach, one can still classically increase mh to the LEP bound.

6 Final remarks

The final step is to identify the nature of “new physics” that generated the operators with the
largest correction to mh, ideally from a renormalisable model. At the level of dimension d = 5
operators, this is clear from previous discussion: a massive gauge singlet can generate operator
L1 of (22) and the needed increase of mh, for a scale M

∗
∼ 5 − 10 TeV 22; this can provide a

solution to the little hierarchy problem, provided that one can fix dynamically the scale M
∗
.

For dimension-six operators, from the above discussion one finds that to increase mh it is
needed that one or more of the following conditions are satisfied:

α20 > 0, α30 < 0, α40 < 0 (33)

First recall that O1,2,3 can be most easily generated by integrating out a massive gauge boson
U(1)′ or SU(2) triplets 21, while O4 can be generated by a massive gauge singlet or SU(2)
triplets. Let us discuss the signs of the operators when they are generated as above:
(a): Integrating out a massive vector superfield U(1)′ under which Higgs fields have opposite
charges (to avoid a Fayet-Iliopoulos term), one finds α20<0 and α30>0 (also α10<0) 21, which
is opposite to what we need. This can be changed, if for example there are additional pairs of
massive Higgs doublets also charged under new U(1)′; then O3 could be generated with α30 < 0.
(b): Integrating massive SU(2) triplets that couple to the MSSM Higgs sector would bring
α20>0, α40<0, α30 > 0, so the first two relations agree with what we need.
(c): Integrating a massive gauge singlet would bring α40 > 0, which would instead decrease mh.

Finally, at large tan β, due to additional corrections that effective operators bring to the
ρ parameter 26, it turns out that α40 and α30 can have the largest correction to m2

h, while
avoiding ρ-parameter constraints. The case of a massive gauge singlet or additional U(1)′ vector
superfield (giving O3,4) have the advantage of preserving gauge couplings unification at one-loop.
Following the above information, one can proceed to construct explicit models with additional
states that can generate these effective operators.

Let us mention that the method provided here to reduce the fine tuning in the MSSM for
mh larger than the LEP bound, relies on introducing an additional scale in the visible sector,



due to “new physics” in this sector. Other solutions to this problem may exist, which essentially
rely on a low scale in the hidden sector of supersymmetry breaking 27. In this case the quartic
coupling and the mass of the SM-like Higgs are increased by a factor proportional to (µ2/f)2,
where f is the hidden sector supersymmetry breaking scale. While not without problems, the
advantage of this latter method is that it does not pay the “cost” of an additional parameter
(scale) in the visible sector, as models with effective operators do.
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