Searches for rare charm decays at LHCb

Dominik Mitzel¹ on behalf of the LHCb collaboration

¹Heidelberg University

EPS-HEP 2017 Venice, Italy, July 5 - 12, 2017

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Why rare charm decays (at LHCb)?

• wide variety of physics, ranging from forbidden to not-so-rare decays

Lepton Flavor Violation	Flavor Changing Neutral Current	Why at LHCb? [JINST 3 (2008) S080005
 forbidden in SM some NP models predict large enhancement [PRD 66 (2002) 014009] 	 in SM only at loop level SM short-distance contribution of inclusive D→Xµ+µ- ~O(10-9) [PRD83,(2011)114006] 	 perfect detector to study decays of heavy flavor excellent particle ID, momentum & vertex resolution
 example D⁰→e[±]µ[∓] 	 one of few occasions to investigate up-type quark FCNCs example D⁰→h+h-µ+µ- 	 recorded one of the largest samples of charm decays ~5·10¹² D⁰ in LHCb acc. (Run1)
D⁰→e±µ∓	D ⁰ →H D ⁰ →K+K-μ+μ- D ⁰ →π+πμ+μ-	<+K-V(μ+μ-))⁰→π+π ⁻ V(μ+μ-) D⁰→K-π+V(μ+μ-)
LFV, LNV, BNV	FCNC	VMD Radiative
0 10^{-15} 10^{-14} D+ _(s) →h-µ+µ+	$\begin{array}{cccccccc} 10^{-13} & 10^{-12} & 10^{-11} & 10^{-10} & 10^{-9} & 10^{-8} \\ D^0 \rightarrow \mu^{\pm} \mu^{\pm} & D^+_{(s)} \rightarrow h^+ \mu^+ \mu^- \\ 2 \end{array}$	10^{-7} 10^{-6} 10^{-5} 10^{-4} D ⁺ (s) \rightarrow h ⁺ V($\mu^+\mu^-$)

Search for the lepton-flavour violating decay $D^0{\rightarrow}~e^{\pm}\mu^{\mp}$

3

PLB 754 (2016) 167

Search for LFV decay $D^0 \rightarrow e^{\pm}\mu^{\mp}$ PLB 754 (2016) 167

- strictly forbidden in the SM
 - SM extensions: rates in [10⁻¹⁴-10⁻⁶]
 - any signal clear indication of NP
 - most stringent limit so far: Belle $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 2.6 \times 10^{-6} \text{ at } 90\% \text{ CL}$

[PRD 81(2010) 091102(R)]

LHCb analysis details

- full Run1 dataset (3/fb)
- D⁰ from D^{*+} \rightarrow D⁰ π ⁺ decays
- measurement relative to normalization decay $D^0 \rightarrow K^-\pi^+$

 $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$ [PLB 754 (2016) 167

First observation of the decay $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ in the $\rho^0-\omega$ region of the dimuon mass spectrum

5

PLB 757 (2016) 558-567

Observation of the decay $D^0{\rightarrow}~K^-\!\pi^+\mu^+\mu^-$

- $m(\mu^+\mu^-) \in [675-875]$ MeV/c² consistent with muons coming from $\rho^{0/\omega}$ resonance
- tree level dominated, still a rare decay and perfect normalization mode for $D^0 \rightarrow h^+h^-\mu^+\mu^-$

PLB 757 (2016) 558-567

most stringent limit so far: E791 400 Candidates / (2.6 MeV/ c^2) LHCb $\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) < 3.6 \times 10^{-5} \text{ at } 90\% \text{ CL}$ (b) [PRL 86 (2001) 3969] 300 total PDF $D^0 \rightarrow K^-\pi^+\mu^+\mu^ D^0 \rightarrow K^-\pi^+\pi^+\pi$ LHCb analysis details comb. background 200 data: 2/fb from 2012 100 prompt D⁰ (primary pp interaction) normalization channel $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ 1850 1900 1800 $m(K^{-}\pi^{+}\mu^{+}\mu^{-})$ [MeV/*c*²]

[LHCb-PAPER-2017-019] (in preparation)

Observation of D⁰ meson decays into π⁺π⁻μ⁺ and K⁺K⁻μ⁺μ⁻ final states

7

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$

 involving short distance (SD) physics, however total BF's dominated by long distance (LD) contributions

example short-distance contribution EW Penguin

example long-distance contribution $D^0 \rightarrow h^+h^-\rho^0(\rightarrow \mu^+\mu^-)$

Cappiello et al. about $D^0 \rightarrow h^+h^-\mu^+\mu^-$ decays:

"In a nutshell, the penalty of small branching fractions (...) is overly compensated by the diversity (and the size) of the asymmetries one can build."

[JHEP 04(2013)135]

- current strategy: BF measurement in bins of dimuon mass
 - sensitivity to SD contributions in regions away from resonances
- future strategy: measure asymmetries (AFB, ACP ...) with sensitivity to SD physics
 - O(1%) predictions for some NP models [JHEP 1304 (2013) 135], [PRD 87 (2013) 054026]

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$

Experimental details

- data: 2/fb from 2012
- $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ normalization channel
- D^0 from $D^{*+} \rightarrow D^0 \pi^+$ decays
 - efficient suppression of combinatorial background

Dimuon mass binning scheme

bin	low mass	η	$ ho/\omega$	ϕ	high mass
$m(\mu^+\mu^-)[MeV/c^2]$	< 525	525 - 565	565 - 950	950 - 1100	> 1100
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$D^0 \to K^+ K^- \mu^+ \mu^-$	\checkmark	\checkmark	\checkmark		

*remark: low and high mass bins also affected by tails of resonances

Measurement strategy

- BF measurement in $m(\mu^+\mu^-)$ bins if local signal significance > 3σ
- upper limit on signal BF if local significance <3σ
- quote total BF of the decays

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ [LHCb-PAPER-2017-019]

signal yield determination through maximum likelihood fits to D⁰ mass

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ [LHCb-PAPER-2017-019]

LHCb preliminary

30

Binned measurement

11

Further rare charm analyses at LHCb

Published

- Limit on $D^0 \rightarrow \mu^+ \mu^-$ [PLB 725 (2013) 15-24]
- Limit on $D^+(s) \rightarrow \pi^+\mu^+\mu^-$ and $D^+(s) \rightarrow \pi^-\mu^+\mu^+$ [PLB 724 (2013) 203-212]
- Limit on $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ [PLB 728 (2014) 234-243]
- Observation of $\eta_{C}(2S) \rightarrow p\overline{p}$ and search for X(3872) $\rightarrow p\overline{p}$ decays

[PLB 769 (2017) 305-313]

Near future

- Search for the decay $\Lambda_c \rightarrow p\mu^-\mu^+$
- Updated $D^0 \rightarrow \mu^+ \mu^-$ exploiting all Run1 statistics
 - Study of complete set of $D_{+(s)} \rightarrow hll$ decays with Run1+Run2

Longer term prospects

LHCb can...

- ...come close (or reach) SM predictions for some modes
 - observation of $D^0 \rightarrow K^+\pi^-\mu^+\mu^-$ might be possible with Run2 data
- ...combine constraints for all rare charm decays
- ...start measuring asymmetries
 - e.g. precision O(2%) for D⁰ $\rightarrow \pi^+\pi^-\mu^+\mu^-$ with Run2, below 1% level after upgrade

Mode	Run 1+2 (8fb ⁻¹)	post upgrade (58fb ⁻¹)
D+→π+µ+µ⁻	0.5% (40k events)	0.2% (350k events)
D⁰→π+π-µ+µ-	2% (3000 events)	0.6% (30k events)
D⁰→K+K-µ+µ-	6% (250 events)	2% (2300 events)
D⁰→K⁻π+µ+µ⁻	1% (12k events)	0.3% (110k events)
D⁰→K+π <i>µ</i> + <i>µ</i> -	20% (30 events)	6% (300 events)

* naive scaling assuming the same efficiency and signal-to-background ratio as in Run1

Conclusions

- the low SM rates make the field a perfect place to look for physics beyond the SM
 - for many decays modes the SM predictions are way below current experimental sensitivities
- LHCb is making major contributions
 - most measurements report world's best results
 - new analyses and updates will come for Run1 and Run2 data
- exciting times ahead: many improvements planned for future upgrade

Thank you

Appendix

Mass fits "Search for $D^0 \rightarrow e^{\pm}\mu^{\mp}$ " (1) PLB 754 (2016) 167

Fig. 2. Distributions of (left) $m(D^0)$ and (right) Δm for $D^0 \rightarrow e^{\pm}\mu^{\mp}$ candidates reconstructed in the combined 7 TeV and 8 TeV data, with fit functions overlaid. The rows correspond to the three bins of BDT output, with the top row corresponding to the most background-like and the bottom row to the most signal-like. The solid (blue) lines show the total fit results, while the thick (grey) lines show the total $D^0 \rightarrow e^{\pm}\mu^{\mp}$ component, the thin (purple) lines show the total misidentified $D^0 \rightarrow \pi^+\pi^-$ and the dashed (grey) lines indicate the combinatorial background. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

[PLB 754 (2016) 167]

Mass fits "Search for $D^0 \rightarrow e^{\pm}\mu^{\mp}$ " (2) PLB 754 (2016) 167

Fig. 3. Distributions of (left) $m(D^0)$ and (right) Δm for $K^-\pi^+$ candidates for the 8 TeV data. The dark (blue) line shows the overall fit, the lighter grey line shows the signal, and the dot-dash line shows genuine D^0 events where the soft pion does not come from a D^{*+} decay. The combinatorial background is too small to be visible. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) [PLB 754 (2016) 167]

18

Error budget "First observation of the decay $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ " PLB 757 (2016) 558-567

Table 3

Systematic uncertainties on $\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-)$.

Source	Uncertainty [%]
Track reconstruction	3.2
Offline selection	2.0
Simulated decay models	2.5
Hardware trigger	4.4
Software trigger	4.3
Muon identification	3.2
Kaon identification	1.0
Size of simulated sample	2.9
$\sigma_{\rm syst}(\varepsilon_{D^0\to K^-\pi^+\mu^+\mu^-}/\varepsilon_{D^0\to K^-\pi^+\pi^+\pi^-})$	8.8
Circuit all and a second second	0.0
Signal shape parameters	0.8
Peaking background tails	1.5
Signal PDF	0.6
Non-peaking background shape	2.1
$\sigma_{\rm syst}(N_{K^-\pi^+(\mu^+\mu^-)_{\rho^0-\omega}}/N_{K^-\pi^+\pi^+\pi^-})$	2.8
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$	2.5
	0.0
Quadratic sum	9.6
	[PLB 757 (2016) 55

Normalization mode "First observation of the decay $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ " PLB 757 (2016) 558-567

[PLB 757 (2016) 558-567]

Normalization mode "Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^{--}$ LHCb-PAPER-2017-019

