Rare strange decays at LHCb

Miguel Ramos Pernas on behalf of the LHCb collaboration

Universidade de Santiago de Compostela

miguel.ramos.pernas@cern.ch

EPS-HEP

Venice, July 8, 2017

European Research Council

Established by the European Commission

Introduction

Strange decays play a major role in particle physics:

- For BSM at $\mathcal{O}(\text{TeV}),$ it can only be seen if there are new sources of flavour violation
- $s \rightarrow d$ transitions have the strongest suppression in the SM: $V_{td}V_{ts}^* \sim 10^{-4}$
- In a Non-Mininimal-Flavour-Violating (Non-MFV) paradigm, they have the highest sensitivity

Miguel Ramos Pernas

Miguel Ramos Pernas

Miguel Ramos Pernas

Miguel Ramos Pernas

The main purpose

- Study of *b* and *c* hadron decays.
- Good vertexing
- Good particle identification
- Very good mass resolution

However, much more can be done ...

- Direct searches for new physics: dark photons, A⁰₁, ...
- QCD at high pseudorapidity: p-Pb, p-He, p-Ar, ...
- Exotic particles: Pentaquarks, ...

The LHCb Rare and Strange program

- Strange sector still largely unexplored
- First studies at LHCb in 2011
- $K^0_S \rightarrow \mu^+ \mu^-$ analysis has been the main benchmark

$K^0_S o \mu^+ \mu^-$

- Flavour-changing neutral current (FCNC) transition
- Dominated by long distance contributions through $K^0_{S/L} \to \gamma \gamma$
- Notably new light scalars can affect K_S^0 exclusively
- Model-independent bounds on the CP-violating phase of the $s \to dl^+ l^-$ amplitude
- SM prediction: $\mathcal{B}\left(K_S^0 \to \mu^+ \mu^-\right) = (5.0 \pm 1.5) \times 10^{-12}$ [Nucl. Phys. B366 (1991) 189][JHEP 01 (2004) 009]

Figure: (a): Long distance contribution. (b) Short distance contributions. [JHEP 01 (2004) 009]

 $K^0_S
ightarrow \mu^+ \mu^-$

Analysis features

- Analysis using MC and data in 2012 conditions: 2 fb $^{-1}$ at 8 TeV
- Improvements on background rejection, $\mu_{\rm ID}$ and trigger
- Normalized to $K^0_S \to \pi^+\pi^-$ (most dangerous background)
- Negligible contributions from $K_L^0 \rightarrow \mu^+ \mu^-$, $K^0 \rightarrow \pi^+ \mu^- \bar{\nu}, \ \eta \rightarrow \mu^+ \mu^- \gamma, \ \dots$
- Fit done in bins of two MVA discriminants for two different trigger selections
- Result from 2011 is included as a prior [JHEP 01 (2013) 090]

New world best limit!

$$\mathcal{B}\left(K_{S}^{0} \to \mu^{+}\mu^{-}\right) < 0.8(1.0) \times 10^{-9} \text{ at } 90(95)\% \text{ of CL}$$

 $K^0_S
ightarrow \mu^+ \mu^-$

$\Sigma^+ o p^+ \mu^+ \mu^-$

 Evidence for this decay was found by the HyperCP experiment with 3 events in absence of background

•
$$\mathcal{B}(\Sigma^+ \to p^+ \mu^+ \mu^-) = \left(8.6^{+6.6}_{-5.4} \pm 5.5\right) \times 10^{-8}$$

• The three events had the same dimuon invariant mass, thus pointing towards a $\Sigma^+ \rightarrow p^+ X^0 (\rightarrow \mu \mu)$ decay

•
$$\mathcal{B}(\Sigma^+ \to p^+ X^0 (\to \mu \mu)) = \left(3.1^{+2.4}_{-1.9} \pm 5.5\right) \times 10^{-8}$$

 $\Sigma^+
ightarrow p^+ \mu^+ \mu^-$

Analysis strategy

- Using full Run-I statistics: 3fb⁻¹
- Search using prompt decays
- Two different trigger strategies were adopted
 - FULL all events are retained. No normalization.
 - TIS candidates are taken independetly of any trigger decision. Normalization to $\Sigma^+ \rightarrow p^+ \pi^0$.

[LHCb-CONF-2016-013]

SM once again

- 4σ evidence of $\Sigma^+ \rightarrow p^+ \mu^+ \mu^-$ in the FULL sample: $12.9^{+5.1}_{-4.2}$ fitted events
- No signal in the TIS sample
- $\mathcal{B}\left(\Sigma^+\to p^+\mu^+\mu^-\right)<6.3\times10^{-8}$ at $95\%~\mathrm{CL}$
- No significant peaks have been seen in the dimuon mass
- Branching fraction measurement ongoing

 $K^0_S o \pi^0 \mu^+ \mu^-$

 $\mathcal{B}\left(K^0_L\to\pi^0\mu^+\mu^-\right)$ has a variation of ~ 1 order of magnitude in models with extra dimensions.

$$\begin{split} \mathcal{B}\left(K_L^0 \to \pi^0 l^+ l^-\right)_{\mathsf{SM}} &= \left(C_{\mathsf{dir}}^l \pm C_{\mathsf{int}}^l |\mathbf{a}_{\mathcal{S}}| + C_{\mathsf{mix}}^l |\mathbf{a}_{\mathcal{S}}|^2 + C_{\gamma\gamma}^l + C_{\mathcal{S}}^l\right) \times 10^{-12} \end{split}$$

$$\begin{split} |\pmb{a_S}| &= 1.2 \pm 0.2 \text{ dominates the theoretical} \\ \text{uncertainty. Comes from the measurements} \\ \text{of } \mathcal{B} \left(K_S^0 \to \pi^0 l^+ l^- \right). \end{split}$$

Randall-Sundrum model

- Large uncertainties on $\mathcal{B}\left(K_S^0 \to \pi^0 \mu^+ \mu^-\right) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ (NA48) [Phys. Lett. B599 (2004) 197]
- · Current kaon experiments do not expect to improve such measurement
- A sensitivity study has been done at LHCb

Miguel Ramos Pernas

 $K^0_S
ightarrow \pi^0 \mu^+ \mu^-$

Analysis strategy

- Low reconstruction efficiency of $\pi^0 \rightarrow \gamma \gamma$ at LHCb
- The K^0_S mass does not depend too much on the information from the π^0
- Two different strategies adopted:
 - FULL: Include the information from the π^0 , Run-I 3 fb⁻¹
 - PARTIAL: Add a virtual particle with $p \sim 10 \text{ GeV/c}$ (provides the best $M_{\pi^0 \mu^+ \mu^-}$ resolution), Run-II 0.3 fb⁻¹

[CERN-LHCb-PUB-2016-017]

Clean and very promising decay

- No peaking backgrounds from other decays: $K^0_S o \pi^+\pi^-$, $X^0 o \pi^+\pi^-\pi^0$, $K^0 o \mu^+\mu^-\gamma$, ...
- Main source of background is combinatorial
- Best sensitivity without reconstructing the π^0
- A precision measurement will be possible in the Upgrade!

Miguel Ramos Pernas

$K^0_S ightarrow l^+ l^- l^+ l^-$

Many interest on the study of $K_S^0 \rightarrow l^+ l^- l^+ l^-$ decays. Very supressed in the SM [Eur. Phys. J. C73 (2013) no. 12 2678]:

$$\begin{split} \mathcal{B}\left(K^0_S \to e^+e^-e^+e^-\right) &\sim 10^{-10} \\ \mathcal{B}\left(K^0_S \to \mu^+\mu^-e^+e^-\right) &\sim 10^{-11} \\ \mathcal{B}\left(K^0_S \to \mu^+\mu^-\mu^+\mu^-\right) &\sim 10^{-14} \end{split}$$

Interesting physics behind this

- Interference between $K_S^0 \rightarrow l^+l^-l^+l^-$ and $K_L^0 \rightarrow l^+l^-l^+l^-$ decays would allow CKM stringent constraints.
- Highly suppressed, sensitive to NP

No experimental results in the literature so far [PDG].

Electron modes are challenging

- Need to study $K_S^0 \to \pi^+\pi^-e^+e^-$ to be used as normalization/control channel.
- Branching fraction measured by the NA48 collaboration [PLB vol. 694 pages 301-309].

Current world average [PDG]. $\mathcal{B}\left(K_S^0 \to \pi^+\pi^-e^+e^-\right) = 4.79 \pm 0.15 \times 10^{-5}$

Study the feasibility of observing $K^0_S \to \pi^+\pi^-e^+e^-$ at LHCb

$K^0_S \rightarrow l^+ l^- l^+ l^-$

Analysis goals

- Study based on MC and data in 2012 conditions 2 $\rm fb^{-1}$ at 8 TeV
- Calculate expected signal yields for Run-II and upgrade

Dealing with electrons

- Low p_T + energy loss by Bremsstrahlung
- Mass resolution is better in $K^0_S \rightarrow \pi^+\pi^-e^+e^-$ than in $K^0_S \rightarrow e^+e^-e^+e^-$

[LHCb-PUB-2016-016]

Very good prospects

- Evidence or observation possible in Run-I
- $N_{\text{Run-II}}^{\text{exp}} = 120^{+280}_{-100}/\text{fb}^{-1}$
- Assuming eff_{trigg.} $\sim 100\%$ for the upgrade N^{exp}_{up} = $(5.0\pm0.3)\times10^4/{\rm fb}^{-1}$

Prospects

Many improvements on strange decays

- Removal of p_T cuts at the trigger level allows to reach much higher efficiencies
- Study of (rare)strange decays can benefit a lot from a full software trigger
- More efficient particle identification and reconstruction algorithms at low- p_T

Many other incoming ideas on strange decays:

- Study of semileptonic hyperon decays $\Lambda^0 \to p^+ \mu^- \bar{\nu}, \ \Xi^- \to \Lambda^0 \mu^- \bar{\nu}$
- Semileptonic kaon decays $K^0_S \to \pi^+ \mu^- \bar{\nu}$, $K^+ \to \pi^+ \pi^- \mu^+ \nu$
- LHCb as a ϕ factory

• ...

Conclusions

- Strange decays can still provide a lot of information about flavour physics
- Reaching unprecedented values on branching fractions for SM processes
- The rare and strange program at LHCb keeps growing: ~ 20 people working on this field
- A full software trigger is crucial to study these decays at LHCb
- Many improvements have been/are being developed for the Run-II and the upgrade
- Feedback from the theoretical side. Your contribution is very appreciated!
- Many interesting results to come!

Conclusions

- Strange decays can still provide a lot of information about flavour physics
- Reaching unprecedented values on branching fractions for SM processes
- The rare and strange program at LHCb keeps growing: ~ 20 people working on this field
- A full software trigger is crucial to study these decays at LHCb
- Many improvements have been/are being developed for the Run-II and the upgrade
- Feedback from the theoretical side. Your contribution is very appreciated!
- Many interesting results to come!

selcouth (from Middle/Old English) (adj.) rare, strange, marvelous

BACKUP

Track types at LHCb

$K^0_S ightarrow \mu^+ \mu^-$ mass resolution

[arXiv:1706.00758] submitted to EPJ C

$K^0_S ightarrow \mu^+ \mu^-$ mass plots

[arXiv:1706.00758] submitted to EPJ C

Miguel Ramos Pernas

 $\Sigma^+
ightarrow p^+ \mu^+ \mu^-$

[LHCb-CONF-2016-013]

 $\Sigma^+
ightarrow p^+ \mu^+ \mu^-$ mass plots

[LHCb-CONF-2016-013]

(EPS-HEP, Venice, July 8, 2017)

[CERN-LHCb-PUB-2016-017]

(EPS-HEP, Venice, July 8, 2017)

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ mass plots <code>PARTIAL</code>

[CERN-LHCb-PUB-2016-017]

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ mass plots FULL

[CERN-LHCb-PUB-2016-017]

 $K^0_S \to \pi^+\pi^- e^+ e^-$

- -0

- -0

1

لسلسلسلسلس

[LHCb-PUB-2016-016]

(EPS-HEP, Venice, July 8, 2017)

 $K^0_S
ightarrow \pi^+\pi^- e^+e^-$

[LHCb-PUB-2016-016]

(EPS-HEP, Venice, July 8, 2017)

Comparison of trigger diagrams

