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1 Introduction

The relationship between geometric structure and the physical content of quantum field

theories and gravity theories has been a theme in string theory and related research for

several decades. The formulation of F-theory [1–3] has given perhaps the most general ge-

ometric approach yet to the construction of physical theories with varied gauge groups and

matter content. While the F-theory “dictionary” that relates geometry and gauge symme-

try is well understood both mathematically and physically, the corresponding connection

between geometric structure and the representation theory content of matter fields is still

under development. In this paper we analyze some new aspects of the geometry-matter

F-theory correspondence, associated with nonperturbative features of singular seven-brane

configurations that carry exotic matter representations in the associated physical picture.

In standard perturbative type II string theory, a stack of D-branes carries a U(N)

gauge symmetry, and only certain relatively simple matter representations can arise. In

particular, on supersymmetric branes in flat space, intersecting branes carrying U(N) and

U(M) gauge groups give rise to bifundamental (N, M̄) and (N̄ ,M) matter fields. The

two-index nature of the matter fields in perturbative type II constructions comes from the
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realization of these matter fields through strings, where the Chan-Paton factors on the two

ends of the string correspond to the two indices on the matter fields. In the nonperturbative

framework of F-theory, the range of matter fields that can be realized is much broader.

In F-theory compactifications where an SU(N) gauge group is realized (e.g. via a type IN
Kodaira singular fiber) over a smooth 7-brane locus, the generic types of matter that arise

are adjoint (N2 − 1), fundamental (N), and two-index antisymmetric (N × (N − 1)/2)

matter fields. These correspond again to two-index representations with origins common

to those in the perturbative formulation of the theory. Another set of matter fields that

can arise in F-theory are the 3-index antisymmetric representations (20, 35, 56) of SU(6),

SU(7), and SU(8), which can arise through nonperturbative F-theory constructions over

a smooth seven-brane locus [4–7]. These antisymmetric representations can be realized

explicitly through relatively standard Weierstrass models in F-theory.

A more exotic set of SU(N) representations in F-theory are those for which the Young

diagram has more than one column, corresponding to some indices over which the represen-

tation is symmetric. Such representations can only arise over seven-brane configurations

that are singular [8]. The possibility of a two-index symmetric representation arising at a

double point singularity was suggested by Sadov [9], and considered further in [5], but can

only be distinguished from an adjoint through global geometric considerations. Explicit

examples of such two-index symmetric representations of SU(3) were found and explored

in [7, 10]. These explicit models exhibit rather subtle structure in the Weierstrass model in-

volving a nontrivial cancellation in the ring of functions on the divisor carrying the gauge

group, which depends crucially on the structure of the singularity. Similar explicit rep-

resentations of 3-index symmetric representations of SU(2) were found in [11] to have a

related structure. In this paper we develop a systematic approach to understanding these

kinds of representations, using the non-UFD (UFD = unique factorization domain) nature

of the ring of functions on singular seven-brane loci.

The structure of this paper is as follows: in section 2 we review some basic relevant

background on F-theory constructions and low-energy 6D supergravity theories. Most

of the explicit examples in the paper are given in the context of 6D models, where the

understanding is most complete, though the same principles will apply for 4D F-theory

models. In section 3 we give two very simple examples of the kinds of construction needed

to realize exotic non-UFD matter realizations, to illustrate the general structure of these

models. In section 4 we give a concise description of the mathematical framework needed

to describe the Weierstrass models for these kinds of constructions. In section 5 we go into

detail in analyzing the general construction of models with two-index symmetric matter

at double points, and in section 6 we describe the construction of models with three-index

symmetric matter at triple points. In section 7 we show how these geometric constructions

are connected to more standard matter constructions through “matter transitions” anal-

ogous to those studied in [7]. We then in section 8 consider how the configurations that

contain these exotic matter fields are constrained both in F-theory and from low-energy

considerations, and identify cases where the F-theory constraints are stronger than those

that are known in the low-energy theory, giving some new examples of theories in the 6D

supergravity “swampland”. In section 9 we consider the more general question of what

– 2 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

exotic matter representations are allowed in any F-theory models, and conclude that those

studied here seem to essentially exhaust the interesting possibilities for matter charged

under nonabelian gauge groups, though some more complicated representations are not

ruled out from low-energy considerations and currently lie in the swampland. Section 10

contains some concluding remarks.

2 Background on F-theory and 6D supergravity

We review here very briefly some basics of F-theory and summarize the important features

of the 6D supergravity theories that are the focus of the explicit examples in this paper.

Further background on F-theory can be found in [1–3] or in the review notes [12, 13].

2.1 SU(N) gauge factors in F-theory

We will consider F-theory models on a base B, defined by a Weierstrass model

y2 = x3 + fx+ g . (2.1)

Here f, g are functions depending on local coordinates in B that define an elliptic curve

at each point in B. More formally, these are sections of line bundles f ∈ Γ(O(−4K)),

g ∈ Γ(O(−6K)), where K is the canonical class of the base; this fixes the total space of

the elliptic fibration over B to be an elliptic Calabi-Yau manifold. The elliptic fibration is

singular along the seven-brane locus defined by the discriminant

∆ := 4f3 + 27g2 = 0 . (2.2)

We will focus here primarily on type In Kodaira singularities, which locally are like per-

turbative stacks of n D7-branes. Such a singularity occurs when the discriminant vanishes

to order n in a local coordinate z. In a local expansion in z,

f = f0 + f1z + f2z
2 + · · · (2.3)

g = g0 + g1z + g2z
2 + · · · (2.4)

To realize an SU(2) gauge symmetry along z = 0, we must then have ∆ = ∆2z
2 + · · · . For

vanishing at order 0, we have 4f30 + 27g20 = 0, which can be satisfied if f0 = −φ2/48, g0 =

φ3/864 for some φ. For vanishing at order 1 we then have 12f20 f1 + 54g0g1 = 0, which

can be solved by g1 = −2f20 f1/9g0 = −φf1/12. This gives a local construction of the

Weierstrass model with an SU(2) gauge symmetry over the locus z = 0.

This analysis is extended to higher order in z in [5]. To get an SU(3) gauge group,

there are several conditions. First, the “split” condition states that φ must be a perfect

square φ = φ20. Second, the vanishing of ∆ at order 2 gives the further conditions that

f1 = φ0ψ1/2 for some function ψ1 and that g2 = ψ2
1/4− φ20f2/12.

One of the principal goals of this paper is to generalize this kind of analysis to situations

where the SU(N) gauge group is realized on a general divisor D that can have singularities.

In such a situation the local coordinate z is replaced by the section σ, where the equation

σ = 0 defines the divisor D.1

1Thus, D is a Cartier divisor. We assume in this paper that the base B is nonsingular, which implies

that all divisors are Cartier divisors.
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Representation Dimension AR BR CR g

2 1 [12 ] 0 1
2 [14 ] 0

Adj 3 4 0 8 1

4 10 [5] 0 41
[
41
2

]
6 [3]

5 20 0 136 21

Table 1. Anomaly coefficients for SU(2) representations. Numbers in square brackets refer to

half-hypermultiplets for self-conjugate representations. Values calculated using formulae in [8].

2.2 Anomaly cancellation conditions and SU(N) spectra

In a 6D supergravity theory there are strong consistency conditions on the massless spec-

trum from anomaly constraints [14, 15]. Using the notation and formalism of [16], the gauge

and gauge-gravitational anomaly cancellation conditions can in general be written as

−a · b = −1

6

(
AAdj −

∑
R

nRAR

)
, (2.5)

0 = Badj −
∑
R

nRBR, (2.6)

b · b = −1

3

(
CAdj −

∑
R

nRCR

)
. (2.7)

Here a, b are Green-Schwarz coefficients that live in a lattice of signature (1, T ) and

AR, BR, CR are group theory coefficients defined in e.g. [17], while nR is the number of

matter (hypermultiplet) fields in the representation R. There is also the gravitational

anomaly constraint

H − V = 273− 29T, (2.8)

where T is the number of tensor multiplets, V is the number of vector multiplets, and H

is the total number of hypermultiplets. In a model that comes from F-theory, b represents

the divisor class of the seven-brane curve D carrying the gauge group and a = K is the

canonical class of B. In this case, the genus of the curve D satisfies 2g−2 = b·b+a·b. We can

take this more generally as the definition of a quantity g in the low-energy theory for any

choice of a, b, and an associated simple gauge factor g satisfying the anomaly conditions.

For the explicit models in this paper we focus primarily on theories with gauge group

SU(2) and SU(3). For each of these gauge groups there is no quartic invariant, so B = 0

and (2.6) is satisfied automatically. Furthermore, for each of these groups global anomaly

conditions constrain b · b and a · b to be integers. We discuss models with each of these

gauge groups in turn, and then briefly describe the story for SU(N) for general N .

The anomaly coefficients for SU(2) are given in table 1. If we assume that the only

SU(2) representations that arise are the fundamental, adjoint, and 3-index symmetric, then

equations (2.5) and (2.7) can be solved to find:

n4 =
r

2
nAdj = g − 3r n2 = 16 + 6(b · b)− 16g + 7r . (2.9)
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Base P2 Fn

−KB 3H 2S + (n+ 2)F

Number of Tensors 0 1

Divisor Class of Curve dH α
2

(
S + n

2F
)

+ α̃
2F

−a · b 3d α+ α̃

b · b d2 1
2αα̃

Genus g 1
2

(
d2 − 3d+ 2

)
1
2

(
1
2αα̃− α− α̃+ 2

)
Multiplicity 1

2r
1
2r

Adjoint Multiplicity 1
2

(
d2 − 3d+ 2− 6r

)
1
4(α− 2)(α̃− 2)− 3r

Fundamental Multiplicity −2d2 + 24d+ 7r −αα̃+ 8 (α+ α̃) + 7r

Singlet Multiplicity 273 + 5
2d

2 − 87
2 d− 7r 244 + 5

4αα̃−
29
2 (α+ α̃)− 7r

Table 2. Multiplicities for SU(2) models on compactification bases P2 and Fn.

The gravitational anomaly constraint then gives

n1 = 244− 29T + 29g − 12(b · b)− 7r . (2.10)

These are the spectra for the models we wish to describe explicitly here through F-theory

by explicit Weierstrass constructions. The multiplicities for such SU(2) tunings on the

simplest base surfaces P2 and Fn are given in table 2.

One way of understanding the spectrum (2.9) is to note that the most generic model

(having the largest number n1 of uncharged scalar fields) with given a, b in most cases

corresponds to the r = 0 model, with g adjoint representations and 16(1 − g) + 6(b · b)
fundamental representations. Because there are only two independent anomaly coefficients

A,C, the contribution of any other representation can be described in terms of the funda-

mental and adjoint, giving an anomaly equivalence [5, 6] such as

3× 3 + 7× 1↔ 1

2
× 4 + 7× 2 . (2.11)

This means that, at least as far as anomalies are concerned, 3 adjoints and 7 uncharged

scalars can be exchanged for a half hypermultiplet in the 3-index symmetric (4) repre-

sentation and 7 fundamental fields. In [7], it was shown that 3-index antisymmetric mat-

ter representations of SU(N) that are anomaly equivalent to simpler matter fields can

be connected explicitly to more generic fields through unusual “matter transitions” in

which the gauge group and tensor content stay unchanged but the matter representations

change. In section 7 we show that in a similar fashion the transition (2.11) can be real-

ized explicitly as a continuous phase transition between distinct Weierstrass models. Note

that for some choices of a, b there are no allowed models with r = 0. For example, if

a = −3H, b = dH = 13H in a model with T = 0 tensor multiplets, then the number of

fundamentals 7r + 2d(12− d) = 7r − 26 being nonnegative implies that there are at least

– 5 –
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Representation Dimension AR BR CR g

Adj 8 6 0 9 1

3 1 0 1
2 0

6 5 0 17
2 1

10 15 0 99
2 7

Table 3. Anomaly coefficients for SU(3) representations.

r ≥ 4 3-index symmetric representations in any valid model. Such examples have been

encountered in [11, 18] and are discussed further in section 8.2.

Note that there is also an anomaly equivalence in the low-energy theory

5 + 64× 2↔ 21× 3 + 70× 1 . (2.12)

From this we can see that there are low-energy 6D supergravity models that contain 4-index

symmetric representations of SU(2) that satisfy all the anomaly constraints including the

gravitational anomaly [8]. For example, the generic T = 0 model with d = 8 has 21 adjoints,

64 fundamental representations, and 82 uncharged scalars. This is anomaly-equivalent to

a model with 128 fundamentals, a single 5 and 12 uncharged scalars. As discussed further

in section 9, we do not believe however that this model has an F-theory realization.

A similar story holds for SU(3) models. The anomaly coefficients of the simplest

representations are given in table 3. A generic model has g adjoints and 18(1− g) + 6(b · b)
fundamental representations. There is an anomaly equivalence for every SU(N), N > 2

that relates an adjoint (plus an uncharged scalar) to a combination of symmetric and

antisymmetric two-index tensors

1 + Adj(N2 − 1)↔N(N − 1)/2 + N(N + 1)/2 . (2.13)

This enables the exchange of adjoints and symmetric matter while maintaining the to-

tal value of g, to which each contributes one. For SU(3), the two-index antisymmetric

representation is equivalent to the antifundamental, so this simply gives a fundamental

hypermultiplet, and the anomaly equivalence is 1 + 8 ↔ 3 + 6. Note that there are

anomaly-consistent SU(3) spectra with choices of a, b that must have two-index symmetric

representations. For example, for T = 0 at d = 9 the generic model has 28 adjoint fields

and 0 fundamentals. At d = 10, there is an anomaly-allowed model with 6 adjoints and 30

6’s, along with 45 uncharged scalar fields. There are no fundamentals, however, so despite

the anomaly equivalence the 6’s cannot be exchanged for adjoints. We return to these

models in section 8.1.2.

The story is similar for SU(N), N > 3 except that there are three independent represen-

tations since generically BR 6= 0. Generic models will have g adjoints, 16(1−g)+(8−N)(b·b)
fundamental N matter fields, and 2(1 − g) + b · b two-index antisymmetric matter fields.

Adjoints can then be exchanged for symmetric plus antisymmetric fields through (2.13).

Finally, note that there is an anomaly equivalence for SU(3) representations in the low-

energy theory 27 × 3 + 10 ↔ 7 × 8 + 25 × 1, so there are anomaly-consistent low-energy

– 6 –
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models with a three-index symmetric tensor (10) representation, such as the T = 0, d = 6

model with 3 adjoints, 81 fundamentals, one 3-index symmetric, and 56 uncharged scalar

fields. Again, we argue in section 9 that such models cannot be realized in F-theory.

This completes the overview of the low-energy theories that we encounter in the various

constructions later in this paper. Before moving on, we note that the anomaly equations

suggest that, at least for 6D theories, gravity cannot be decoupled if certain representa-

tions are present. If a representation R has a CR larger than CAdj, equation (2.7) im-

plies that b · b must be positive if there are any hypermultiplets in the representation R.

(If half-hypermultiplets are possible, this scenario occurs when 1
2CR > CAdj.) Recall that

the Green-Schwarz coefficients live in a lattice of signature (1, T ). The negative part of the

signature corresponds to tensors living in tensor multiplets, whereas the positive part corre-

sponds to the tensor living in the graviton multiplet. A positive b·b indicates that the tensor

field in the graviton multiplet participates non-trivially in the Green-Schwarz mechanism.

Thus, if gravity is decoupled, one cannot cancel anomalies if there are any representations

with CR > CAdj (or 1
2CR > CAdj for representations with half-hypermultiplets). The 4

representation of SU(2) has a CR that leads to positive b · b, as do the 35 of SU(7) and the

56 of SU(8). While these representations occur in known 6D supergravity theories coming

from F-theory, they cannot be part of a 6D theory without gravity, explaining their absence

from the classification in [19]. The 5 representation of SU(2) and the 10 representation

of SU(3), both of which we believe cannot be realized in F-theory, also have CR > CAdj.

It may be interesting to further explore whether this fact gives new physical insights into

these representations.

3 Tuning with a non-UFD ring: examples

Before getting into technical details, to give a sense of the spirit of the constructions needed

we give a pair of simple examples of how nontrivial cancellations can arise in the Weierstrass

models realizing I2 and I3 singularities when the divisor D supporting the gauge group is

itself singular. We take σ to be a section of the line bundle associated with D, so that in

local coordinates σ = 0 denotes the locus of points in D.

3.1 Triple points and SU(2) 3-symmetric matter

As a simplest example, we want to tune on σ = ξ3 − bη3 = 0. Here ξ, η, and b are

some functions (sections) that do not admit any factorization. In general, σ cannot be

factorized and defines a divisor that is singular at the locus of points ξ = η = 0. For

example, if ξ, η and b are respectively irreducible quadratic, linear, and cubic functions

in some local coordinates, then ξ = η = 0 gives a pair of triple point singularities. The

general idea is that we want to expand the ring of functions on D to allow σ to be factorized.

Formally this is done using the mathematical notion of the normalized intrinsic ring, which

is developed in detail in the following section. More informally, the idea is that to generalize

the expansions (2.3), (2.4) for σ instead of z, the coefficients f0, . . . must be in the natural

ring of functions on D. The auxiliary function φ from section 2.1, however, can be in a

larger ring that is given by adjoining an element B̃ such that ξ = B̃η; note that B̃ = b1/3

– 7 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

solves the cubic equation B̃3 = b. This gives the normalized intrinsic ring for D, which has

somewhat the flavor of a Galois field extension. For the cubic σ = ξ3−bη3 = 0 we choose an

element Φ̃, the analogue of φ,2 to be the following element of the normalized intrinsic ring

Φ̃ = B̃2η . (3.1)

We can then define the leading terms of f and g in terms of Φ̃

f0 = −Φ̃2/48 = −B̃4η2/48⇒ −bξη/48 (3.2)

g0 = Φ̃3/864 = B̃6η3/864⇒ b2η3/864 , (3.3)

and note that they are restrictions of functions on the F-theory base, as indicated by the

righthand side of the above expressions. We then have

∆0 → 4f30 + 27g20 = (−b3ξ3η3 + b4η6)/27648 = −b3η3σ/27648 . (3.4)

We thus have a nontrivial cancellation in the discriminant made possible by the form of σ.

At the next order we have

∆1 → 12f20 f1+54g0g1−b3η3/27648 = g1(b
2η3)/16+(b2η2ξ2)f1/192−b3η3/27648 . (3.5)

This can be made to vanish by taking, for example, f1 = ηλ for some λ. Then

g1 = −ξ2λ/12 + b/1728. We then have the expansion

f = −bξη/48 + λησ +O(σ2) (3.6)

g = b2η3/864 + (−ξ2λ/12 + b/1728)σ +O(σ2) (3.7)

∆ = O(σ2) . (3.8)

This gives an SU(2) on the divisor σ, which has triple points at the loci ξ = η = 0 in a

nonstandard Weierstrass form.

3.2 Double points and SU(3) symmetric matter

Now consider SU(3) with a double point associated with

σ = ξ2 − bη2 . (3.9)

Again, the normalized intrinsic ring is given by adjoining B̃ such that ξ = B̃η; this time,

we have B̃ =
√
b, which solves the quadratic equation B̃2 = b. Working in the normalized

intrinsic ring, we have f0 proportional to φ2 and g0 proportional to φ3, but because the split

condition must be enforced to obtain SU(3), we must take φ = Φ̃2
0. As a possible solution

not in standard form, we choose Φ̃0 = B̃ =
√
b in the normalized intrinsic ring, so that

φ = b (3.10)

is well-defined in the ring of functions on D.

2We have changed the symbol to agree with the notation used later: parameters that are well-defined

only in the normalized intrinsic ring are capitalized and have a tilde.
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At leading order, f0 = −φ2/48 = −b2/48, g0 = φ3/864 = b3/864. Cancelling ∆1

we have

g1 = −φf1/12 = −bf1/12 . (3.11)

At the next order, we have

∆2 = −b2f21 /16 + b4f2/192 + b3g2/16 , (3.12)

so we wish to solve

f21 − b2f2/12− bg2 = 0 (3.13)

in the normalized intrinsic ring. Since b = B̃2, for any solution we must be able to write

f1 = B̃Ψ̃1 , (3.14)

where Ψ̃1 is in the normalized intrinsic ring. We then take

g2 = Ψ̃2
1 − bf2/12 . (3.15)

The challenge is to ensure that B̃Ψ̃1 and Ψ̃2
1 lie in the appropriate ring of functions on D.

If we choose f1 = B̃η = ξ then g2 = η2 − bf2/12 and we have

∆2 = −b2ξ2/16 + b4f2/192 + b3
(
η2 − 1

12
bf2

)
/16 = −b2σ/16 , (3.16)

ensuring SU(3) gauge symmetry.

4 Mathematical description of the normalized intrinsic ring

Let us review the history of how our understanding of the singular fibers in F-theory

fibrations has evolved over time. The first step was Kodaira’s classification [20, 21], which

related specific geometric singular fibers to specific choices of monodromy on the homology

of elliptic curves along loops in the base surrounding the singular fiber. (In F-theory

terms, this classifies singular fibers according to the ways in which they source the scalar

field in type IIB supergravity [22].) The total space of the corresponding Weierstrass model

has an ADE singularity, and this — together with the known gauge theory behavior for

perturbative IIB 7-branes — allowed the association of a gauge algebra to each codimension

one singularity (for eight-dimensional theories). A straightforward method to “read off”

the type of Kodaira singular fiber from a Weierstrass equation is also known, in terms of

the orders of vanishing of the Weierstrass coefficients f and g as well as the discriminant

4f3 + 27g2.

The second step was the realization that in lower dimensional compactifications, an-

other kind of monodromy comes into play: monodromy could act as automorphisms

of the Kodaira singular fibers themselves [23]. We refer to this as “Tate monodromy”

to distinguish it from the original “Kodaira monodromy” because Tate’s algorithm [24]

(a refinement of the Kodaira classification) allows one to fully classify gauge algebras in
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lower dimension, including monodromy considerations.3 This was spelled out in [4], with

some clarifications in [6].

Tate’s algorithm also allows one to “read off” the matter content from certain codi-

mension two singular loci, but it was realized in [5] and [25] that the analysis from [4] was

not complete, and that analysis was reexamined in those two papers.4 The term “Tate

form” has come to mean a model whose gauge algebra is determined by an equation in

one of the forms studied in [4, 25]; the goal of this paper is to begin a systematic study of

models that are not in Tate form.

The key technique in both [5] and [25] was to find expansions for the Weierstrass

coefficients f and g as finite power series in σ, when {σ = 0} defines a component Σ of the

discriminant locus of the fibration. More precisely, sequences of functions f0, f1, . . . , fN
and g0, g1, . . . , gN were found such that

f ≡ f0 + f1σ + · · ·+ fNσ
N (mod σN+1)

g ≡ g0 + g1σ + · · ·+ gNσ
N (mod σN+1),

(4.1)

and satisfying other properties that clarify the structure of the corresponding singularities.

Each function fj or gj is chosen for its properties as an intrinsic function on Σ. That is, if

we introduce the algebraic coordinate ring5 R of (an open subset of) the F-theory base B

with fj , gj ∈ R, then the key properties of these functions are determined by their images

in R/〈σ〉. We can think of R/〈σ〉 as the ring of intrinsic local functions on Σ.6

In both [5] and [25], a condition was imposed that this ring of intrinsic local functions on

Σ should be a unique factorization domain (UFD), and that property was used extensively

in analyzing the expansion. In this paper, we will go beyond that assumption, and consider

divisors Σ whose ring of intrinsic local functions is not a UFD.

A fundamental result in algebraic geometry says that any algebraic variety Σ has a

“normalization” Σ̃ that is nonsingular in codimension one. (If Σ has dimension one, then

Σ̃ is in fact nonsingular.) The local functions on Σ̃ are described by the “normalization”

of the ring R/〈σ〉 of local functions on Σ. We shall refer to this normalization R̃/〈σ〉 as

the normalized intrinsic ring.

Algebraically, the normalized intrinsic ring is what is known as the “integral closure

of R/〈σ〉 in its field of fractions” (provided that R/〈σ〉 is the ring of functions on an affine

open subset of Σ, that is, a subset which can be embedded as an algebraic subvariety of

some CN ). The integral closure is obtained from R/〈σ〉 by adjoining all elements of its

3From Tate’s point of view, this arises because the function field of the F-theory base is not algebraically

closed.
4Ref. [5] had the goal of describing as many matter configurations as possible, whereas ref. [25] was

devoted to exploring to what extent the original Tate algorithm was predictive in codimension two.
5This algebraic coordinate ring need only contain functions defined in a neighborhood of the point being

studied, and for example might take the form R = C[s, t] for appropriate local coordinates s and t.
6A note about terminology: every affine algebraic variety has an associated “coordinate ring;” this

applies equally well to open subsets of the F-theory base B and as well as to open subsets of the divisor

Σ on B. This terminology can be confusing when more than one algebraic variety is under discussion, so

we shall use the word “intrinsic” to emphasize that the functions in question need only be defined on the

divisor Σ.
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field of fractions that satisfy a monic polynomial with coefficients in R/〈σ〉. In fact, only

finitely many such elements must be adjoined in order to generate the integral closure.

Algorithms are known for computing this normalization in very general settings: we refer

the reader to chapter 1 of [26] for a very readable account. In this paper, we will focus on

examples that are closely connected to interesting matter representations in F-theory.

A key property that holds when Σ has dimension one is that the normalized intrinsic

ring is a UFD.7 This means that, at least for 6D theories, we will be able to use aspects of

the UFD analysis from [5] but applied to elements of the normalized intrinsic ring rather

than elements of the intrinsic ring itself. For all divisors studied in this paper (of whatever

dimension), we will assume that the normalized intrinsic ring is a UFD.

We begin with a simple example of a normalized intrinsic ring: a cusp singularity on Σ.

That is, we assume that Σ has a local equation of the form σ = t3− s2. The corresponding

intrinsic ring R/〈σ〉 takes the form

C[s, t]/〈t3 − s2〉 (4.2)

and is visibly not a UFD, since s · s = t · t · t in that ring.

Now we wish to add elements in the field of fractions of R/〈σ〉 that satisfy a monic

polynomial with coefficients in R/〈σ〉. In this particular case, we only need to adjoin the

element Ũ = s/t, which satisfies two equations:

0 = Ũ t− s

0 = t− Ũ2.
(4.3)

That is, we have

R̃/〈σ〉 = C[s, t, Ũ ]/〈t3 − s2, Ũ t− s, t− Ũ2〉 , (4.4)

which can be rewritten in the form R̃/〈σ〉 = C[Ũ ] since s can be eliminated using s − Ũ t
and then t can be eliminated using t− Ũ2.

The geometric interpretation is this: the function s/t is well-defined away from the

cusp and has a well-defined limit on the smooth divisor Σ̃, so it should be added to the ring

of functions. Note that adding this function resolves the UFD issue, since s2 = Ũ6 = t3 in

the larger ring.

This structure now gives us some additional flexibility in building F-theory models.

For Σ to be contained in the discriminant locus, we need 4f30 + 27g20 to be identically zero.

If the ring of intrinsic functions is itself a UFD, this implies that there is a function φ such

that8 f0 = −φ2/48 and g0 = φ3/864. In the case of a cusp singularity, although the ring

of intrinsic functions is not a UFD, the normalized intrinsic ring is a UFD. We will get a

solution to the problem of putting Σ into the discriminant locus if we can find a function

Φ̃ ∈ R̃/〈σ〉 with the property that f0 := −Φ̃2/48 and g0 := Φ̃3/864 both lie in the subring

7In fact, for algebraic varieties of dimension one, “normalization” is the same as desingularization (see,

for example, [26]). In other words, the normalized intrinsic ring is simply the coordinate ring of the

desingularization. It is a standard fact in commutative algebra that coordinate rings of nonsingular varieties

are unique factorization domains [27].
8We are following the normalization used in [5].
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R/〈σ〉 of functions coming by restriction from the F-theory base. Choosing Φ̃ = Ũ satisfies

this property without Φ̃ itself being the restriction of a function from B. Thus, we can

take f0 = −t/48 and g0 = s/864 to obtain a solution.

This is a gratifying result, since one of the first observations one makes about F-theory

in dimension six or lower is that the multiplicity one part of the discriminant almost always

contains cusp singularities, at points where f and g both vanish. Here we see this arising

from a local analysis in a non-UFD case. While in this situation the discriminant generically

does not support a gauge group and there is no charged matter, the non-UFD structure

here is a simple example of the kind of thing that we encounter in the cases here with

matter at double point and triple point singularities.

The examples in section 3 were also phrased in terms of the normalized intrinsic ring.

We will be more systematic about the structure of that ring in subsequent sections. We

will also use a notation aimed at distinguishing between elements of the various rings.

Variables that are well-defined only in the normalized intrinsic ring are capitalized and

marked with a tilde. For the most part, variables that are in either the coordinate ring or

the ring of intrinsic local functions are lowercase; the main exceptions are the discriminant

∆ and variables related to it (such as terms in a power series expansion of ∆).

5 Detailed analyses of constructions: double points

In this section, we describe how to derive more general SU(N) tunings using the normalized

intrinsic ring techniques. Specifically, we focus on tuning SU(N) on curves of the form

h ≡ p(2)η2a + 2p(1)ηaηb + p(0)η
2
b = 0, (5.1)

with symmetric matter localized at the ηa = ηb = 0 double points. The previously derived

SU(3) models with symmetric matter use curves that can be written in this form, making

this case an important one to consider. Before performing the tuning, we describe some

of the physical and conceptual ideas behind the tuning. These conceptual insights in fact

foreshadow some of the features of the Weierstrass model. We then give the algebraic

derivation of the SU(N) tuning and discuss the resulting matter spectrum. The final

tunings are also given in appendix A.

The quantities ηa, ηb, p(0), p(1), and p(2) are all elements of the coordinate ring of

the F-theory base. However, for some purposes it is convenient to work with (5.1) more

abstractly, and to do computations in an auxiliary ring C[ηa, ηb, p(0), p(1), p(2)] and to regard

h as an element of that ring.

5.1 Geometry, monodromy and symmetric matter

In field theory, one can Higgs an SU(N ≥ 4) gauge group to Sp(bN2 c) by giving a VEV

to an antisymmetric hypermultiplet. The corresponding branching rules for the SU(N)

representations are

→ → + 1 → Adj→ + . (5.2)
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From section 2.2, there are anomaly-equivalent SU(N) matter spectra related by the ex-

change

Adj + 1↔ + . (5.3)

The branching rules in (5.2) imply that both sides of (5.3) branch to the same Sp(bN2 c)
representations. In other words, two anomaly-equivalent SU(N) models Higgs down to the

same Sp(bN2 c) model, even though the two models initially have different matter spectra.

A similar story holds for SU(3). Giving a VEV to two fundamental hypermultiplets Higgses

SU(3) down to Sp(1), with the branching rules given by

3→ 2 + 1 6→ 3 + 2 + 1 8→ 3 + 2× 2 + 1 . (5.4)

There are anomaly equivalent SU(3) spectra related by the exchange

8 + 1↔ 6 + 3 . (5.5)

Again, both sides of the exchange branch to the same Sp(1) representations, implying that

the anomaly-equivalent SU(3) models Higgs down to the same Sp(1) model.

An F-theory SU(N) model with symmetric matter should have a non-UFD Weierstrass

tuning. This follows for N < 6 from the fact that a UFD Weierstrass tuning always

has a Tate description [25] and has only the generic fundamental, adjoint, and two-index

antisymmetric matter representations. After Higgsing, the model contains no exotic matter

and would presumably not require non-UFD structure. Therefore, the Weierstrass model

deformation corresponding to the SU(N)→ Sp(bN2 c) Higgsing process should remove non-

UFD structure. If we know the specifics of the deformation, we may be able to guess where

non-UFD structure appears in the SU(N) tuning.

Fortunately, the SU(N) → Sp(bN2 c) Higgsing process is part of the well-known story

of the split condition. In six and fewer dimensions, the singularity type of a codimension-

one singularity may not fully specify the gauge group. Suppose the discriminant vanishes

to order N along some codimension-one locus σ = 0, while f and g do not vanish along

the locus. The resulting gauge group can be either SU(N) or Sp(bN2 c). To distinguish

between the two possibilities, one must consider Tate monodromy. When one goes around

a closed loop in the gauge divisor, exceptional curves in the resolved fiber may or may

not be interchanged. If no interchange occurs, the gauge group is SU(N); otherwise, the

gauge group is Sp(bN2 c). At the level of the Weierstrass model, information about the

monodromy is encoded in the split condition, namely, whether there exists ψ defined on

σ = 0 such that

ψ2 +
9g

2f

∣∣∣∣∣
σ=0

= 0 . (5.6)

Essentially, the condition asks whether 9g/2f is a perfect square along σ = 0. If the

condition is satisfied, the gauge group is SU(N); otherwise, monodromy effects are present,

and the gauge group is Sp(bN2 c).
When N is even, the standard UFD tunings for SU(N) and Sp(N2 ) are identical except

for the split condition. From the arguments above, any non-UFD structure in the SU(N)
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model with symmetrics must disappear after Higgsing. Therefore, non-UFD structure can

only appear at the level of the split condition when N is even. The split condition is

evaluated only on σ = 0, so one needs to consider only the leading terms f0 and g0 in f

and g. In both the UFD and non-UFD tunings, f0 and g0 will respectively be proportional

to φ2 and φ3, and 9g0/2f0 will be proportional to φ. For the UFD case, the only way to

satisfy the split condition is for φ to be a perfect square. The non-UFD case allows for

more possibilities. If σ = ξ2−bη2, the choice φ = b satisfies the split condition on σ = 0, as

b =

(
ξ

η

)2

− 1

η2
σ. (5.7)

These observations suggest the form that the non-UFD SU(N) tunings should take.

For even N , one starts with the non-split UFD tuning and implements the split condition

in a non-UFD fashion. Importantly, all of the discriminant cancellations occur exactly,

and all of the non-UFD structure is contained in the split condition. For odd N , there are

minor differences between the split and non-split UFD tunings, so the prescription for the

non-UFD tunings is more complicated. Nevertheless, the odd N tunings implement that

split condition in a non-UFD fashion, and there are only relatively minor changes from the

UFD tuning. In the remainder of this section, we show via direct calculation that these

insights hold in the SU(3) tunings and SU(4) tunings. The explicit formulas for higher

SU(N) are described in section 5.4.5.

This picture also explains from a geometric perspective why the non-UFD tunings

give the symmetric matter representation. As described in [5], the difference between the

adjoint and the symmetric + antisymmetric matter representations at a double point of

a divisor supporting an AN−1 singularity comes from the two distinct ways in which the

two copies of AN−1 associated with the gauge factors on the two branches of the divisor

are embedded into the A2N−1 Dynkin diagram associated with P1’s in the resolution of the

singularity in the total space of the fibration over the double point. When φ is a perfect

square, so φ0 lives in the ring of intrinsic local functions as in the UFD case, this embedding

gives the adjoint representation of SU(N). When, on the other hand, φ0 lives only in the

normalized intrinsic ring R̃/〈σ〉, which is a quadratic extension of R/〈σ〉, there is a change

of sign between the two branches of the divisor that intersect at the double point, which

flips the orientation of one of the AN−1 Dynkin diagrams relative to the other, giving the

symmetric + antisymmetric representations of SU(N). An example of how this works is

given explicitly in appendix C.

5.2 Generators of the normalized intrinsic ring

To find the generators that must be added to the ring of intrinsic local functions in order

to obtain the normalized intrinsic ring, it is helpful to rewrite the expression (5.1) in the

more suggestive form (
p(2)ηa + p(1)ηb

)
ηa = −

(
p(1)ηa + p(0)ηb

)
ηb . (5.8)

Thus, in the field of fractions we have two expressions for a single element H̃:

H̃ =
p(2)ηa + p(1)ηb

ηb
= −

p(1)ηa + p(0)ηb

ηa
. (5.9)
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Moreover, we can see that

H̃2 =
p2(2)η

2
a + 2p(2)p(1)ηaηb + p2(1)η

2
b

η2b
=
p(2)h

η2b
− p(2)p(0) + p2(1) , (5.10)

so that H̃ satisfies the monic polynomial in R/〈h〉

H̃2 = p2(1) − p(2)p(0) . (5.11)

If R/〈h〉 denotes the ring of intrinsic local functions, then the normalized intrinsic ring is9

R̃/〈h〉 = R[H̃]/〈ηbH̃ − p(2)ηa − p(1)ηb, ηaH̃ + p(1)ηa + p(0)ηb, H̃
2 − p2(1) + p(2)p(0)〉. (5.12)

Note that

h = ηb

(
ηaH̃ + p(1)ηa + p(0)ηb

)
− ηa

(
ηbH̃ − p(2)ηa − p(1)ηb

)
, (5.13)

so that h vanishes in R̃/〈h〉, as expected. Note also that 4H̃2 is the discriminant of the

quadratic (5.1) considered as a function of ηa/ηb. Thus, extending the ring by H̃ is closely

related to the natural extension by the root α of the quadratic p(2)(ηaα)2 + 2p(1)(ηaα) +

p(0) = 0. Using H̃, however, gives a particularly simple and clear way to understand

the algebraic structure of the models. Our discussion of triple points in section 6 takes a

similar form.

5.3 Monomials and polynomials in the normalized intrinsic ring

To perform the Weierstrass tunings, we need to determine when a product of polynomials

in R̃/〈h〉 lies in R/〈h〉. It is helpful to first focus on individual monomials before turning

to polynomials. Consider a monomial in R̃/〈h〉 of the form ηiaη
j
bH̃

k. Monomials for which

k is even are automatically in R/〈h〉, as are monomials with i + j ≥ k. Thus, the only

monomials potentially not in R/〈h〉 are those with i + j < k, where k is odd. Given a

monomial with odd k, we can repeatedly convert factors H̃2 to p2(1) − p(2)p(0) until we are

left with a single factor of H̃. Therefore, all monomials in R̃/〈h〉 that do not lie in R/〈h〉
can be written as H̃ times an expression in R/〈h〉.

A generic polynomial in R̃/〈h〉 thus takes the form

α+ βH̃, (5.14)

where α and β are polynomials in R/〈h〉. We will be interested in situations where β has

at least one term that is not proportional to either ηa or ηb. This condition in turn implies

that βH̃ is not in R/〈h〉, as will be necessary for a non-Tate Weierstrass tuning.

We now consider the product of two polynomials(
α+ βH̃

)(
γ + δH̃

)
= αγ + (βγ + αδ) H̃ + βδH̃2. (5.15)

9We have actually only established that H̃ is an element of this ring, not that it is the only element

that needs to be added. However, that will be true if everything else about R and the elements ηj , σj is

sufficiently general.
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To ensure that this product lies in R/〈h〉, we need βγ + αδ to be a linear combination of

ηa and ηb. The general solution to this10 takes the form

α = αaηa + αbηb + λβ̌ γ = γaηa + γbηb − λδ̌, (5.16)

where β̌ and δ̌ are parts of β and δ which are not divisible by ηa or ηb (which implies that

(β − β̌)H̃ and (δ − δ̌)H̃ both lie in R/〈h〉). We would then have that

(βγ + αδ)H̃ = (β − β̌)γH̃ + β̌(γaηa + γbηb)H̃ − β̌λδ̌H̃

+ α(δ − δ̌)H̃ + (αaηa + αbηb)δ̌H̃ + λβ̌δ̌H̃ , (5.17)

which we see lies in R/〈h〉 after canceling the λβ̌δ̌H̃ terms. Note that if (α+βH̃)2 ∈ R/〈h〉
then λ must be 0.

5.4 Tuning process

We start by expanding f and g as

f = f0 + f1h+ f2h
2 + . . . g = g0 + g1h+ g2h

2 + . . . . (5.18)

In other words, we find an algebraic function11 f0 such that f − f0 is divisible by h, and

then an algebraic function f1 such that f − f0 − f1h is divisible by h2, and so on. The

functions fi and gi are not unique, and in fact may not exist on the entire base: they might

only exist in open subsets [25].

For any choice of such an expansion, the discriminant can be expanded as

∆ = 4f3 + 27g2 =
(
4f30 + 27g20

)
+
(
12f20 f1 + 54g0g1

)
h

+
(
12f0f

2
1 + 12f20 f2 + 27g21 + 54g0g2

)
h2(

4f31 + 24f0f1f2 + 12f20 f3 + 54g1g2 + 54g0g3
)
h3 + . . . . (5.19)

Although the fi and gi are not unique, their images in the quotient ring R/〈h〉 have

important properties which are independent of choices.

5.4.1 Tuning I1

For the I1 singularity, we require that

4f30 + 27g20 ∝ h. (5.20)

Thanks to unique factorization in the normalized intrinsic ring, there must exist an element

Φ̃ in that ring such that

f0 ≡ −
1

48
Φ̃2 (mod h) g0 ≡

1

864
Φ̃3 (mod h). (5.21)

10Assuming that all polynomials are sufficiently general: see footnote 9.
11Ideally, this would be a polynomial in some projective or affine coordinate ring, in practice it may be

easier to treat it as a rational function in some situations.
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In principle, Φ̃ might not be well-defined as an element of R/〈h〉. However, if we write

Φ̃ = φ1 + φ2H̃ then having both Φ̃2 and Φ̃3 in R/〈h〉 implies that φ32H̃
3 is in R/〈h〉 (since

by the argument above φ1 only contains terms proportional to σa, σb), so that φ32 (and

hence φ2) is a combination of ηa and ηb. That in turn implies that Φ̃ itself lies in R/〈h〉.
We can therefore solve (5.21) with φ ∈ R/〈h〉, i.e., we can choose an algebraic function

φ ∈ R that solves (5.21) (mod h) and then define

f0 := − 1

48
φ2 g0 :=

1

864
φ3. (5.22)

With such a choice, the zeroth order term of the discriminant vanishes exactly:

4f30 + 27g20 = 0. (5.23)

This may naively seem to imply that f0 and g0 lack any non-Tate structure. There

is a remaining condition yet to be implemented, however: the split condition. Since our

focus is on tuning SU(N) gauge groups with N ≥ 3, we must satisfy the split condition by

letting

φ ≡ Φ̃2
0 (mod h). (5.24)

Here, Φ̃0 is an element of R̃/〈h〉, while φ must be an element of R/〈h〉. From the discussion

in section 5.3, Φ̃0 can therefore be written as

νaηa + νbηb + νH̃ , (5.25)

with νa, νb, and ν all algebraic functions in R. φ is now given by

φ = (νaηa + νbηb)
2 − 2ννa

(
p(0)ηb + p(1)ηa

)
+ 2ννb

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
. (5.26)

5.4.2 Tuning I2

The discriminant now reads

∆ =
(
12f20 f1 + 54g0g1

)
h+O(h2) =

1

192
φ3 (12g1 + f1φ)h+O(h2). (5.27)

To remove the order one term, we simply let

g1 = − 1

12
f1Φ̃

2
0 = − 1

12
f1φ. (5.28)

The order one term of ∆ now vanishes exactly, leaving an I2 singularity on the locus h = 0.

5.4.3 Tuning Is
3 to obtain SU(3)

∆ is now given by

∆ =
(
12f0f

2
1 + 12f20 f2 + 27g21 + 54g0g2

)
h2 +O(h3)

=
1

192
φ2
(
12φg2 + f2φ

2 − 12f21
)
h2 +O(h3). (5.29)
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To tune an Is3 singularity and obtain an SU(3) model, we must have that

12φg2 + f2φ
2 − 12f21 ∝ h. (5.30)

Working in R̃/〈h〉, we have the condition

12Φ̃2
0

(
g2 +

1

12
f2Φ̃

2
0

)
− 12f21 ≡ 0 (mod h). (5.31)

The UFD nature of R̃/〈h〉 implies that we should tune f1 and g2 as

f1 ≡ Ψ̃Φ̃0 (mod h) g2 ≡ Ψ̃2 − 1

12
f2Φ̃

2
0 (mod h), (5.32)

where Ψ̃ ∈ R̃/〈h〉.
Of course, the expressions for f1 and g2 should be well-defined in R/〈h〉. To ensure

equation (5.32) is consistent with this requirement, Ψ̃ should be expanded as

Ψ̃ = ψaηa + ψbηb + ψH̃. (5.33)

From the analysis of section 5.3, f1 and g2 can now be written as

f1 = (ψaηa + ψbηb) (νaηa + νbηb)−
(
ψνa + νψa

) (
p(1)ηa + p(0)ηb

)
+
(
ψνb + νψb

) (
p(2)ηa + p(1)ηb

)
+ ψν

(
p2(1) − p(2)p(0)

)
(5.34)

and

g2 = (ψaηa + ψbηb)
2 − 2ψψa

(
p(1)ηa + p(0)ηb

)
+ 2ψψb

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
f2φ. (5.35)

After these expressions are plugged in, equation (5.29) takes the form

∆ =
1

16

[
2 (ψaνb − ψbνa)

(
ν [ψaηa + ψbηb]− ψ [νaηa + νbηb]

)
− ν2

(
p(2)ψ

2
b − 2p(1)ψaψb + p(0)ψ

2
a

)
− ψ2 (

p(2)ν
2
b − 2p(1)νaνb + p(0)ν

2
a

)
+ 2νψ

(
p(0)ψaνa − p(1) (ψbνa + ψaνb) + p(2)ψbνb

) ]
φ2h3 +O(h3). (5.36)

We will refer to one-sixteenth of the quantity in square brackets as ∆′2. ∆ is proportional

to h3, and we have an Is3 singularity and an SU(3) gauge group. Importantly, this is the

first step with non-trivial cancellations in the discriminant.

Before proceeding to higher orders, let us summarize the SU(3) model. The Weierstrass

model is described by

f = − 1

48
φ2 + f1h+ f2h

2 g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3, (5.37)

with φ, f1, and g2 given respectively by equations (5.26), (5.34), and (5.35). Full, expanded

expressions for f and g are given in appendix A. The homology classes of the parameters
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Parameter Homology Class Equivalent in [10] Equivalent in [7]

ηa [ηa] a1 σ

ηb [ηb] −b1 ε1

p(2) [h]− 2[ηa] 2s8 1

p(1) [h]− [ηa]− [ηb] s6 0

p(0) [h]− 2[ηb] 2s3 −h
4

νa −KB − [ηa] 0 0

νb −KB − [ηb] 0 ν

ν −KB − [h] + [ηa] + [ηb] 1 2β

ψa −3KB − [h]− [ηa]
1
4s5 0

ψb −3KB − [h]− [ηb]
1
4s2 −3

2λ

ψ −3KB − 2[h] + [ηa] + [ηb] 0 −1
3φ2

f2 −4KB − 2[h] 0 f4 + f5σ

g3 −6KB − 3[h] −1
8s1 g6

Table 4. Homology classes for the SU(3) model tuned on the generic quadratic h ≡ p(2)η
2
a +

2p(1)ηaηb + p(0)η
2
b . The homology classes are given in terms of the canonical class KB for the base

and the homology classes for ηa, ηb and h. The third and fourth columns give the map between the

parameters used here and the SU(3) models in [7, 10].

are given in table 4. For some choices of [h], [ηa], [ηb], and −KB, certain parameters may

have ineffective homology classes. It might be possible to obtain a valid model in such

situations by setting the ineffective parameters to zero. In many cases, setting a parameter

to zero has only benign effects, giving a valid model. For example, if f2 is set to zero,

the model does not change significantly and is free of problems. Other cases may lead

to an invalid model, however. There are situations in which ν and ψ are ineffective and

are forced to be zero; (f, g,∆) then vanish to orders (4, 6, 12) at the ηa = ηb = 0 loci.

Meanwhile, if ψa, ψb, ψ, f2, and g2 are all set to zero, the discriminant vanishes exactly.

The effectiveness of the various parameters therefore constrains the set of possible models.

In particular, this Weierstrass tuning cannot realize certain matter spectra, as discussed

further in section 8.1.

Table 4 also gives the map from the SU(3) model considered here to the two previous

SU(3) models with symmetric matter [7, 10]. In order to obtain either of the two previous

models, one of the parameters, either ν or p(2), must be set to a constant. This restriction

suggests that both of the previous models are in fact specializations of the model derived

here. In particular, setting a parameter to a constant forces a relationship between the

three unspecified homology classes in table 4. If ν is set to 1 as in [10], the homology class

of the curve h is fixed:

[h] = −KB + [ηa] + [ηb]. (5.38)

Likewise, forcing p(2) to be a constant, as in [7] leads to the constraint that

[h] = 2[ηa]. (5.39)
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As a result, the two previous SU(3) models have only two unspecified homology classes, and

the model given here has an extra degree of freedom. The extra unspecified homology class

is important physically, as it allows for matter spectra not possible with the previous two

SU(3) models. Making a parameter constant also affects matter transitions that exchange

adjoints for symmetric matter, as discussed in section 7.

5.4.4 Tuning Is
4 to obtain SU(4)

For the discriminant to be proportional to h4, we require that

∆′2φ
2 + 4f31 + 24f0f1f2 + 12f20 f3 + 54g1g2 + 54g0g3 ∝ h . (5.40)

Working in R̃/〈h〉 and using (5.21), (5.28), and (5.32), this condition can be written as

1

192
Φ̃3
0

(
−96Ψ̃3 + 192∆′2Φ̃0 − 24f2Ψ̃Φ̃2

0 + 12g3Φ̃
3
0 + f3Φ̃

5
0

)
≡ 0 (mod h). (5.41)

We therefore need Ψ̃ to be proportional to Φ̃0, which can be accomplished by letting

ψa = −1

6
φ1νa ψb = −1

6
φ1νb ψ = −1

6
φ1ν (5.42)

for some φ1 ∈ R (i.e., we are solving (5.42) in R/〈h〉, not in R̃/〈h〉). With these redefini-

tions, ∆′2 is now zero, and (5.41) is now

1

192
Φ̃6
0

(
4

9
φ31 + 4f2φ1 + 12g3 + f3Φ̃

2
0

)
= 0 . (5.43)

We thus redefine g3 as

g3 = − 1

27
φ31 −

1

3
φ1f2 −

1

12
φf3. (5.44)

∆ is now proportional to h4, and we have an Is4 singularity. Note that in this discussion

since f2 is untuned, we could in principle set f3 to vanish by setting f2 → f2− f3h, but we

have left the appearances of f3 explicit for clarity.

To summarize the SU(4) model, the f and g for the Weierstrass model are given by

f =− 1

48
φ2− 1

6
φφ1h+f2h

2+f3h
3, (5.45)

g=
1

864
φ3+

1

72
φ1φ

2h+
1

36
φ
(
φ21−3f2

)
h2+

(
− 1

12
φf3−

1

3
φ1f2−

1

27
φ31

)
h3+g4h

4, (5.46)

with φ given by equation (5.26). The homology classes for the parameters are given in

table 5. As before, ineffective parameters should be set to zero, which may lead to an

invalid model.

The SU(4) tuning is essentially a UFD non-split I4 tuning with a specialized non-

UFD tuning for φ. As mentioned in section 5.1, this result matches the expectation that,

for SU(2N) symmetric representations, the only non-UFD structure should appear when

implementing the split condition.
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Parameter Homology Class

ηa [ηa]

ηb [ηb]

p(2) [h]− 2[ηa]

p(1) [h]− [ηa]− [ηb]

p(0) [h]− 2[ηb]

νa −KB − [ηa]

νb −KB − [ηb]

ν −KB − [h] + [ηa] + [ηb]

φ1 −2KB − [h]

f2 −4KB − 2[h]

f3 −4KB − 3[h]

g4 −6KB − 4[h]

Table 5. Homology classes for the SU(4) model tuned on the generic quadratic h ≡ p(2)η
2
a +

2p(1)ηaηb + p(0)η
2
b . The homology classes are given in terms of the canonical class KB for the base

and the homology classes for ηa, ηb and h.

5.4.5 Tuning higher SU(N)

The tunings for larger SU(N) symmetries with symmetric matter follow from the general

principles described in section 5.1. In fact, the procedure requires only small modifications

of the known UFD tunings. Note that we only discuss models with fundamental, two-

index antisymmetric, adjoint, and two-index symmetric matter; the strategies we discuss

may not apply to situations with three-index antisymmetric matter, for example. The

SU(N) tuning for even N is less complicated than the odd N tuning, so we first focus on

the even N case.

An SU(2k) gauge group with symmetric matter can be Higgsed down to an Sp(k)

model without any singular higher-genus matter. For the SU(2k), we therefore start with

the UFD tuning for a non-split Ins2k singularity tuned on the curve h = 0. As discussed

in [5], this tuning takes the form12

f = −1

3
υ2 +O(hk) g = − 1

27
υ3 − 1

3
υf +O(h2k), (5.47)

with

υ =
1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (5.48)

We now specify that h has the quadratic form given in (5.1). To enhance the gauge

symmetry to SU(2k), we must perform further tunings to satisfy the split condition. In

the UFD case, this is accomplished by letting φ = φ20. But for the non-UFD situation

we are interested in here, we use Φ̃0 instead of φ0, where Φ̃0 is an element of R̃/〈h〉 as in

12Note that, for clarity, we have used different variables and notations than [5].
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equation (5.25). φ therefore takes the form of equation (5.26):

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
.

(5.49)

The split condition is satisfied and the gauge symmetry is enhanced to SU(2k). The double

points at ηa = ηb = 0 now contribute symmetric matter.

For the SU(2k+ 1) tunings, we start with the UFD tuning of a split Is2k+1 singularity,

which is also given in [5]:

f = −1

3
υ + φ0ψkh

k +O(hk+1) g = − 1

27
υ3 − 1

3
υf + ψ2

kh
2k +O(h2k+1), (5.50)

with

υ =
1

4
φ20 + φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (5.51)

We assume that the singularity is tuned on a curve h as in equation (5.1). To convert the

UFD model to one with symmetric matter, we consider Φ̃0 and Ψk, elements of R̃/〈h〉 that

are expanded as

Φ̃0 = νaηa + νbηb + νH̃ Ψ̃k = ψaηa + ψbηb + ψH̃. (5.52)

We then replace φ20, φ0ψk, and ψ2
k with the well-defined expressions for Φ̃2

0, Φ̃0Ψ̃, and Ψ̃2

in R/〈h〉:

φ20 → Φ̃2
0 = (νaηa + νbηb)

2 − 2ννa
(
p(0)ηb + p(1)ηa

)
+ 2ννb

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
(5.53)

ψ2
k → Ψ̃2 = (ψaηa + ψbηb)

2 − 2ψψa
(
p(0)ηb + p(1)ηa

)
+ 2ψψb

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
(5.54)

φ0ψk → Φ̃0Ψ̃ = (ψaηa + ψbηb) (νaηa + νbηa)−
(
ψνa + νψa

) (
p(0)ηb + p(1)ηa

)
+
(
ψνb + νψb

) (
p(2)ηa + p(1)ηb

)
+ ψν

(
p2(1) − p(2)p(0)

)
. (5.55)

The replacements give an SU(2k + 1) model in which both the discriminant cancellations

and the split condition involve non-Tate structure.

5.5 The matter spectrum

Finally, we determine the structure of codimension two singularities and the associated

matter spectrum of F-theory models with gauge symmetry from Kodaira singularities over

divisors with double point singularities. We explicitly analyze the resulting matter spec-

trum for SU(3) and SU(4), while our general techniques are readily applicable to SU(N)

for general N .

We will focus in the following on two-dimensional base manifolds B of the elliptic fibra-

tion corresponding to 6D F-theory models. While in principle the matter spectrum for 6D

models is essentially determined by anomaly constraints once the symmetric matter con-

tent is known, for the non-Tate models constructed here explicitly identifying the structure
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of the algebro-geometric loci and multiplicity of the matter fields is much more subtle than

in the simpler case of the UFD-based constructions. We note that the results obtained for

the matter representations and the homology class of their corresponding codimension two

loci in B are the same for F-theory compactifications to 4D with three-dimensional base

manifolds B; in fact, following the analysis of [28], in much of the discussion here we use a

language more appropriate for four dimensions, where each matter type is associated with

an irreducible codimension two locus.

5.5.1 General comments

We begin with some general facts and observations on the determination of the matter

loci and spectrum in F-theory models that is common to both examples discussed in the

following. We recall that in general the matter content of F-theory (except for adjoint

matter) is encoded in the singularities of the elliptic fibration at codimension two in the

base B. The variety in B defined in this way is in general reducible with each of its

irreducible components yielding a particular enhancement of the singularity type of the

elliptic fibration, which corresponds to a particular matter representation. Each matter

representation can, in principle, occur on multiple irreducible components, and all of those

representations must be collected together to describe the entire matter content of the

model. Note that for compactifications to 6D there are typically many such components for

each representation (since irreducible components are points), while for compactifications

to 4D each representation might be associated to only one irreducible component.13

More explicitly, in the examples at hand, we have two types of codimension two sin-

gularities. We have a factorization of the discriminant as

∆ = hN∆N (5.56)

with N ≥ 2 and h singular at ηa = ηb = 0.14

• The first type of codimension two singularities are the common zeros at codimension

two in B of ∆N = h = 0. These contain the conventional matter representations

of SU(N), i.e. the fundamental representation and, for N > 3, also the two-index

anti-symmetric tensor representation of SU(N).

• Second, there are codimension two singularities from the singularities at ηa = ηb = 0

of h = 0. The discriminant vanishes to order 2N at these loci. They support the

two-index symmetric tensor representations of SU(N). In general, singularities of

this type could also support localized adjoint matter, as discussed in more detail in

section 7; we assume in the analysis here that we have a non-UFD Weierstrass model

where all the double point singularities in the discriminant locus support symmetric

matter through the kind of mechanism analyzed explicitly in appendix C.

13But note that even in this case, it is possible for there to be more than one component associated to a

given matter representation.
14The case N = 1 is special as there is no codimension one singularity giving rise to gauge symmetry,

despite the appearance of a codimension two symmetry of type I2.
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From a technical perspective, the determination of the irreducible components of the

codimension two loci described by the ideal ∆N = h = 0 is the most challenging. In simple

situations, such as local analyses with h being a normal coordinate to a smooth divisor,

which is assumed for example in the standard analysis of Tate forms, h = 0 can simply

be inserted into ∆N = 0. In particular, in the UFD-based analysis of [5], the structure

of ∆N clearly decomposes into a contribution from φ0 corresponding to antisymmetric

matter fields, and a residual discriminant component capturing the fundamental matter

fields. However, in the situation at hand, with h given by (5.1), we can not solve h = 0

globally. This poses a problem if we want to compute the homology classes of the codi-

mension two matter loci. One way to circumvent this problem is introduced in [28] to

which we refer for further details. There, a general primary decomposition of the locus

∆N = h = 0 is performed, yielding its associated prime ideals, each of which corresponds

to an irreducible component of the codimension two singularities of the elliptic fibration.

Then, one determines the homology class of each of these irreducible components using

their respective prime ideals. (If we can, it is desirable to only partially decompose the

prime ideal, grouping various irreducible components together when they correspond to

the same matter representation.)

Note that part of the challenge in identifying the irreducible components of the codi-

mension two locus arises from the non-UFD structure of the ring of intrinsic local functions.

We could in principle analyze the codimension two structure in the normalized intrinsic

ring, in which we could write e.g. ∆3 = Φ̃3
0∆̃fund. Since the vanishing locus of Φ̃0 is the

same as that of Φ̃2
0, and the latter is in the ring of intrinsic local functions, we can identify

in a fairly direct fashion the geometric locus of vanishing h = ∆̃fund = 0, which will support

fundamental matter. In the analysis of this section, however, we work more generally in

the geometry of the ring of intrinsic local functions, which will in principle automatically

handle issues such as multiplicity. These analyses should agree; the results of this section

should in part be interpreted as a confirmation of the structure of the matter spectrum

that can be derived more directly through anomaly analysis or other approaches.

We now outline the procedure described above in the context of the two F-theory

models with SU(3) and SU(4) gauge symmetry.

5.5.2 Matter spectrum of SU(3) models

We consider the F-theory model with Is3 singularity over the divisor h = 0 defined in (5.1).

It is specified by the non-Tate Weierstrass form in (5.37) with the tunings (5.34) and (5.35).

We refer to appendix A for a concise summary of the Weierstrass model. The discriminant,

given by equation (A.7), is proportional to h3, so that we have in our notation from (5.56)

∆ = h3∆3 . (5.57)

For the convenience of the reader, we begin by summarizing the findings of the de-

termination of matter content based on the analysis of codimension two singularities of

this model along with the corresponding 6D matter content of F-theory in table 6. Note

that in the absence of exotic (symmetric) matter, these multiplicities can be understood
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SU(3)-rep Multiplicity Fiber Locus

= 6 x6 = [ηa] · [ηb] I6 V (ISing) = {ηa = ηb = 0}

8 x8 = 1
2 [h] · ([h] +KB) + 1− x6 I3 VSU(3) = {h = 0}

3 (= 3̄) x3 = 3[h] · (−3KB − [h]) + x6 I4 V (p1) ∪ V (ISing)

Table 6. Matter spectrum of the elliptic fibration (5.37) with a singularity of type I3 over a

divisor h = 0 with ordinary double point singularities. Shown are the SU(3) representations, the

multiplicity of full hypermultiplets in 6D, corresponding fiber types and loci in the base. We denote

the variety described by the vanishing set of an ideal I by V (I). Note that the 6D hypermultiplet

in the 3 representation contains a complex field in each of the 3 and 3̄ representations.

directly from the UFD Weierstrass expansion in e.g. [5], where the discriminant takes the

form ∆3 = h3φ30∆fund +O(h4), and fundamental matter arises at the zeros of ∆fund, which

is in the class −12KB + 3KB − 3[h] since [φ0] = −KB. This direct interpretation is more

difficult to make, however, in the more intricate non-UFD models we have constructed here,

as discussed above, although from the point of view of the “matter transitions” described

in section 7 the multiplicities in this table can also be reproduced by starting with a UFD

construction and trading adjoint matter for symmetric matter through matter transitions.

We begin with the discussion of the adjoint as well as the codimension-two (symmetric

and fundamental) matter localized at the double point singularities of h = 0. As pointed

out in [5, 9], both representations arise from the arithmetic genus g of the curve h = 0.

Decomposing the genus g of h = 0 into its geometric genus pg and contributions from the

[ηa] · [ηb] double point singularities, we obtain

g = pg + [ηa] · [ηb] = 1 +
1

2
[h] · ([h] +KB) . (5.58)

Here we employ that a double point contributes 1 to the arithmetic genus g, which we

compute via adjunction in the second equality. As has been shown in [29], there are

x8 = pg hypermultiplets in the adjoint where pg is the geometric genus of the curve, i.e.,

the genus of its normalization. As discussed above, we assume that we have a construction

where all double points correspond to the two-index symmetric tensor 6 of SU(3). For

the constructions of this paper, this follows from the geometric logic described earlier, is

confirmed in section 7 via a matter transition argument, and is shown explicitly through

resolution in an example in appendix C. Thus, we identify the intersection number [ηa] · [ηb]
as the multiplicity x6 of matter fields in the representation 6, and we arrive at the matter

multiplicities in the first and second lines in table 6.

We note that each double point contributes also one hypermultiplet in the 3 of SU(3)

as noticed in [10]. There this was shown by Higgsing the model to an Abelian model

with two U(1)’s. The presence of an additional 3 can be motivated by viewing the double

points locally as the collision of two different 7-branes carrying an SU(3) gauge group; the

intersection points support matter in the bi-fundamental representation (3,3).15 As the

15It is the non-trivial point of our analysis that the relevant representation is (3,3) and not (3, 3̄).
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two 7-branes are really part of one single brane in the global geometry, we have to identify

them and view the bi-fundamental as the reducible representation 3 ⊗ 3, which exhibits

the group theory decomposition 3⊗3 = 6⊕ 3̄ in the non-Tate situation where a symmetric

matter representation is present.16

Next we turn to the conventional matter localized at the intersection loci ∆3 = h = 0.

We first gain some intuition about the possible matter loci by solving h = 0 locally and away

from its double point singularities and inserting the solution into ∆3 = 0. We immediately

observe a factorization of ∆3 into two components, which indicates the existence of two

irreducible varieties inside h = ∆3 = 0.

In order to find the varieties inside h = ∆3 = 0 which correspond to different types

of matter, we make a computation in the auxiliary ring C[ηa, ηb, p(0), p(1), p(2)]. We have

performed a rigorous primary decomposition of h = ∆3 = 0 in that ring using Singular [30],

obtaining two prime ideals denoted by p1 and p2. (Note that these ideals are prime in

C[ηa, ηb, p(0), p(1), p(2)] although they may factor further once specific elements of the ring

R are chosen to represent the variables in the auxiliary ring. For compactifications to

6D, they will almost certainly factor further since each codimension two prime ideal is

supported at a single point of the F-theory base.)

Explicitly, we find

p2 =
{
ηap(2)ν + ηb(ηaνa + ηbνb + p(1)ν), ηbp(0)ν − ηa(ηaνa + ηbνb − p(1)ν)

}
/(Ising ∪ I ′) ,

(5.59)

where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {ηaνa + ηbνb, ν} (5.60)

in order to obtain a prime ideal. The prime ideal p1 is too lengthy to be reproduced here; it

is generated by several large polynomials in the parameters in f and g. It can be obtained

by computing the saturation of the ideal h = ∆3 = 0 w.r.t. the ideal p2, i.e. the repeated

quotient ideal

p1 = lim
n→∞

{∆3, h}/(p2)n . (5.61)

Next we analyze the singularity type of the elliptic fibration along the varieties V (p1),

V (p2) defined by the vanishing loci of p1, p2 inside the variety ∆3 = h = 0. By investigation

of the orders of vanishing of (f, g,∆), we find that

(f, g,∆)|V (p1)
∼ (0, 0, 4) , (f, g,∆)|V (p2)

∼ (2, 2, 4) , (5.62)

which indicates Kodaira singularities of type I4 and IV respectively [20, 21, 24]. This means

that the variety V (p1) supports matter in the fundamental 3 of SU(3) [4], whereas V (p2)

16Note that, in 6D N = 1 and 4D N = 2 theories, a hypermultiplet consists of two half-hypermultiplets

in representations that are conjugates of each other. Thus, there is no distinction in matter content

between full hypermultiplets in the 3 and 3̄ representations of SU(3), and for uniformity we refer to such

a hypermultiplet as a 3 even when it is produced as a 3̄. In particular, this distinction is not important

after we have decomposed the tensor product, at least for our purposes. Of course, the SU(3) × SU(3)

representations (3,3) and (3, 3̄) should be distinguished, as they are not conjugates of each other.
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is the locus of a degeneration of an I3 singularity to type IV . This does not correspond to

the emergence of additional physical degrees of freedom due to the lack of new holomorphic

curves to be wrapped by M2-branes.

Finally, for the computation of the matter multiplicity x3 of fundamentals, we need

to know the homology class of V (p1). As we are on a two-dimensional base B, the variety

V (p1) is just a collection of points and its homology class is simply the number of such

points. We start by computing the multiplicities of V (p1), V (p2) inside ∆3 = h = 0.

Using the resultant technique discussed in [28], we find the multiplicities to be 1 and 3,

respectively, i.e. we obtain the following relation in homology:

[∆3] · [h] = [V (p1)] + 3[V (p2)] . (5.63)

The homology class of the left hand side of this equation is readily computed using the

explicit expression for h in (5.1) and ∆3 in (5.40). We then compute [V (p2)] using its defini-

tion (5.59) as being contained in a complete intersection among the additional components

specified by the complete intersection ideals in (5.60). The homology classes of the latter

are easily computed noting their definition as irreducible complete intersections. Their

multiplicities inside the complete intersection in (5.59) are computed using the resultant

as 1 and 1, respectively. Thus, we obtain

[V (p2)] = (−KB + [ηb]) · (−KB + [ηa])− [ηa] · [ηb]− (−KB − [h] + [ηa] + [ηb]) · (−KB)

= −KB · [h] , (5.64)

where we used the homology classes of all relevant sections given in table 4. The first term

in the first equality is the homology class of the complete intersection in (5.59) and the

second and third terms are the homology classes of the varieties corresponding to the ideals

in (5.60). Putting everything together, we obtain the homology class of [V (p1)] using the

homology relation (5.63) as

[V (p1)] = [h] · (−12KB − 3[h])− 3(−KB · [h]) = 3[h] · (−3KB − [h]) . (5.65)

The first term in the first equality is the homology class of ∆3 = h = 0 and the second term

is (5.64). We also double check the result for [V (p1)] by directly working with the lengthy

ideal p1, i.e. by finding a suitable complete intersection containing V (p1) among with

other “auxiliary” varieties given as complete intersections. We then just have to compute

the homology class of the complete intersection and subtract the homology classes of the

auxiliary varieties with their appropriate multiplicities inside V (p1), which we compute

using the resultant.

In summary, we obtain the contribution (5.65) from Kodaira singularities of type I4
over the component V (p1) inside ∆3 = h = 0 to the multiplicity x3 of 3 matter fields. As

noted earlier, there are additional matter fields in the 3 representation for each ordinary

double point singularity [10]. The combined results leads to the full matter multiplicity in

the last line of table 6.

We conclude by checking the consistency of the derived SU(3) matter spectrum by

testing anomaly freedom of the 6D theory. Following the discussion of section 2.2, we

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

SU(4)-rep Multiplicity Fiber Locus

= 10 x10 = [ηa] · [ηb] I8 V (ISing) = {ηa = ηb = 0}

= 6 x6 = −[h] ·KB + x10 I∗0 V (p2) ∪ V (ISing)

15 x15 = 1
2 [h] · ([h] +KB) + 1− x10 I4 VSU(2) = {h = 0}

4 x4 = 4[h] · (−2KB − [h]) I5 V (p1)

Table 7. Matter spectrum of the elliptic fibration (5.45) with an Is4 -singularity over the singular

divisor h = 0. Shown are the SU(4) representations, the multiplicity of full hypermultiplets in 6D,

corresponding fiber types and loci V (I) in the base.

identify b = [h] and a = KB. We then see that anomaly cancellation follows immediately

for the spectrum in table 6 upon the identification r = [ηa] · [ηb], g = 1 + [h] · ([h] +KB).

5.5.3 Matter spectrum of SU(4) models

Next, we consider an F-theory model with SU(4) gauge algebra arising from a Kodaira

singularity of type Is4 over the divisor h = 0 defined in (5.1). The non-Tate Weierstrass

form is given in (5.45) with a discriminant as in (5.56) of the form

∆ = h4∆4 , (5.66)

with ∆4 given in (A.10) in appendix A. We again first summarize the matter content of

the 6D F-theory in table 7.

As in the previous discussion of SU(3), the adjoint matter arises from the geometric

genus pg given by the general formula (5.58) while the symmetric matter arises from the

[ηa] · [ηb] double point singularities on h = 0. Thus, we arrive at the matter multiplicities

in the first and third lines in table 7.

We note that, as in the SU(3) case, each double point contributes also one hypermulti-

plet in the 6 of SU(4), which we can understand by decomposing the bi-fundamental 4⊗4

as 10⊕ 6 at the double points.

Next, we discuss the emergence of conventional matter localized at the intersec-

tion loci ∆4 = h = 0. Performing a primary decomposition in the auxiliary ring

C[ηa, ηb, p(0), p(1), p(2)], we immediately obtain two prime ideals denoted by p1 and p2 cor-

responding to two irreducible varieties inside h = ∆4 = 0. Explicitly, we find

p2 =
{
ηap(2)ν + ηb(ηaνa + ηbνb + p(1)ν), ηbp(0)ν − ηa(ηaνa + ηbνb − p(1)ν)

}
/(Ising ∪ I ′) ,

(5.67)

where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {ηaνa + ηbνb, ν} (5.68)

in order to obtain a prime ideal, as in (5.59). The prime ideal p1 is once again too lengthy to

be reproduced here. It can be obtained by computing the saturation of the ideal h = ∆4 = 0
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w.r.t. the ideal p2, or as the quotient ideal

p1 =

{
η2a

(
f2 +

1

3
φ21

)2

− g4
(
ηa(νaηa + νbηb)− ν̄(p(1)ηa + p(0)ηb)

)2
,

p(2)η
2
a + ηb(2p(1)ηa + p(0)ηb)

}
/(Ising ∪ {p(0), ηa}) . (5.69)

The singularity type of the elliptic fibration along the two varieties V (p1), V (p2) is

readily analyzed by investigation of the orders of vanishing of (f, g,∆). They are given by

(f, g,∆)|V (p1)
∼ (0, 0, 5) , (f, g,∆)|V (p2)

∼ (2, 3, 6) , (5.70)

respectively, indicating Kodaira singularities of type I5 and I∗0 respectively [20, 21, 24]. This

means that the variety V (p1) supports matter in the fundamental 4 of SU(4), indicated

by a local enhancement to SU(5), while the variety V (p2), in contrast to the SU(N) case

with N ≤ 3, supports matter in the anti-symmetric representation 6, indicated by the

enhancement to SO(8). We note that this is completely analogous to the SU(5) case

discussed, for example, in great detail in [31].

Finally, the matter multiplicities x4 of fundamentals and x6 require the knowledge

of the homology classes of V (p1) and V (p2). The multiplicities of V (p1), V (p2) inside

∆4 = h = 0 are computed with the resultant technique of [28] to be 1 and 4, respectively,

resulting in the homology relation

[∆4] · [h] = [V (p1)] + 4[V (p2)] . (5.71)

The homology class of the complete intersection on the left hand side is readily computed

using the explicit expression for h in (5.1) and ∆4 in (A.10). We then cross-check our

computations for [V (p1)] and [V (p2)] using their respective definitions (5.69) and (5.67).

Indeed, we find

[V (p1)] = 2[h] · ([ηa]− 4KB − 2[h])− 4[ηa] · [ηb]− 2[ηa] · ([h]− 2[ηb])

= 4[h] · (−2KB − [h]) , (5.72)

and

[V (p2)] = ([ηb]−KB) · ([ηa]−KB)− [ηa] · [ηb]− (−KB − [h] + [ηa] + [ηb]) · (−KB)

= −KB · [h] , (5.73)

which obey this consistency check. Here we used the homology classes of all relevant

sections given in table 5. The numerical prefactors in front of the terms that are subtracted

are the multiplicities of the redundant components (5.68) and {p(0), ηa} computed using

the resultant.

In summary, we obtain that the number of fundamental hypermultiplets is given

by (5.72) and the number of hypermultiplets in the 6 contributed from I∗0 fibers is given

by (5.73). Together with the additional matter fields in the 6 representation at each ordi-

nary double point singularity we obtain the third and last lines of table 7.
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We conclude with the consistency check on the derived SU(4) matter spectrum via 6D

anomalies. Following the discussion of section 2.2, we again set b = [h] and a = KB. We

then see that anomaly cancellation follows immediately for the spectrum in table 7 upon

the identification r = [ηa] · [ηb] and g = 1 + [h] · ([h] +KB).

The upshot of the analysis in this subsection is that we can explicitly determine the

loci where the distinct matter representation types are localized, even in the more subtle

non-Tate non-UFD cases studied earlier in this section.

6 Detailed analyses of constructions: triple points

In this section, we describe how to derive SU(2) models with three-index symmetric matter

using the normalized intrinsic ring techniques. We focus on tuning the SU(2) singularity

on curves of the form

t ≡ t(3)η3a + 3t(2)η
2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0, (6.1)

with the matter localized at the ηa = ηb = 0 triple points. This form of the gauge

curve agrees with that used in [11]. However, the tuning derived here is more general

than the one in [11], even though both models use the same form of the gauge curve. We

first describe the normalized intrinsic ring and give an algebraic derivation of the SU(2)

tuning. We then discuss the resulting matter spectrum. The final model is summarized

in appendix B. Note that this construction can also be used to describe tri-fundamental

matter fields, by choosing a cubic form that explicitly factorizes. There is a corresponding

auxiliary ring C[ηa, ηb, t(0), t(1), t(2), t(3)] in which some of our computations are done.

6.1 Description of the normalized intrinsic ring

Notice that because t is a homogeneous polynomial of degree 3, the equation t = 0 can be

written in the form

ηa

(
1

3

∂t

∂ηa

)
= −ηb

(
1

3

∂t

∂ηb

)
. (6.2)

Thus, in the field of fractions of R/〈t〉 we have two expressions for a single element T̃ :

T̃ =
1
3(∂t/∂ηa)

ηb
=
−1

3(∂t/∂ηb)

ηa
, (6.3)

which leads us to relations T̃ ηb = 1
3(∂t/∂ηa) and T̃ ηa = −1

3(∂t/∂ηb) to be used in the

normalized intrinsic ring. For ease of notation, we introduce

τηb :=
1

3

∂t

∂ηa
= t(3)η

2
a + 2t(2)ηaηb + t(1)η

2
b (6.4)

τηa := −1

3

∂t

∂ηb
= −t(2)η2a − 2t(1)ηaηb − t(0)η2b (6.5)

so that the relations can be written T̃ ηb = τηb and T̃ ηa = τηa.

Furthermore,

(T̃ ηb)
2 − (t(3)ηa + t(2)ηb) t = η2b τsq , (6.6)
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where

τsq :=
(
t2(2) − t(3)t(1)

)
η2a +

(
t(2)t(1) − t(3)t(0)

)
ηaηb +

(
t2(1) − t(2)t(0)

)
η2b , (6.7)

so that T̃ 2 = τsq is also a relation in the normalized intrinsic ring. In fact, if all parameters

are generic, we can define the normalized intrinsic ring as

R̃/〈t〉 = R[T̃ ]/〈T̃ ηa − τηa, T̃ ηb − τηb, T̃ 2 − τsq〉. (6.8)

We will later need an expression for T̃ 3 in this ring, which we derive by writing

τsq = ηaτsq,a + ηbτsq,b, (6.9)

where

τsq,a =
(
t2(2) − t(3)t(1)

)
ηa +

(
t(2)t(1) − t(3)t(0)

)
ηb (6.10)

τsq,b =
(
t2(1) − t(2)t(0)

)
ηb. (6.11)

Then

T̃ 3 = T̃ τsq = τηaτsq,a + τηbτsq,b

=
(
t(3)t(2)t(1) − t3(2)

)
η3a + 3

(
t(3)t

2
(1) − t(1)t

2
(2)

)
η2aηb

+ 3
(
t(3)t(1)t(0) − t2(2)t(0)

)
ηaη

2
b +

(
t3(1) − 2t(2)t(1)t(0) + t(3)t

2
(0)

)
η3b .

(6.12)

We denote the right hand side of the previous equation by τcu.

Note that T̃ 2 is in the intrinsic local ring R/〈t〉, so that we are really only carrying out

an extension by a quadratic element of the ring. This construction is parallel to the ring

we found in the double point case in section 5.

6.2 Tuning process

We start by expanding f and g as

f = f0 + f1t+ f2t
2 + . . . g = g0 + g1t+ g2t

2 + . . . , (6.13)

just as done in section 5.4. The discriminant is then given by

∆ = 4f3 + 27g2 =
(
4f30 + 27g20

)
+
(
12f20 f1 + 54g0g1

)
t+O(t2). (6.14)

6.2.1 Tuning I1

For an I1 singularity, the zeroth order term of the discriminant must be proportional to t:

4f30 + 27g20 ∝ t . (6.15)

Because the normalized intrinsic ring is a UFD, there must be some element Φ̃ in R̃/〈t〉
such that

f0 ≡ −
1

48
Φ̃2 (mod t) g0 ≡

1

864
Φ̃3 (mod t). (6.16)
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Of course, Φ̃2 and Φ̃3 must have well defined expressions in R/〈t〉, which places restrictions

on the form of Φ̃. We start by expanding Φ̃ as

Φ̃ = φ+ φT̃ , (6.17)

where φ and φ have well-defined expressions in R/〈t〉. Focusing first on Φ̃2, the only

potentially problematic term in

Φ̃2 = φ2 + 2φφT̃ + φ
2
T̃ 2 (6.18)

is the φφT̃ term. To ensure that this term lies in R/〈t〉, φ should take the form

φ := φaηa + φbηb. (6.19)

(Note that φ cannot take this form if we want a non-UFD Weierstrass tuning.)

f0 can then be defined as

f0 := − 1

48

[
(φaηa + φbηb)

2 − 2φφa
(
t(2)η

2
a + 2t(1)ηaηb + t(0)η

2
b

)
+ 2φφb

(
t(3)η

2
a + 2t(2)ηaηb + t(1)η

2
b

)
+ φ

2
τsq

]
. (6.20)

Essentially, we have replaced the terms in Φ̃2 involving T̃ with the corresponding expres-

sions in R/〈t〉. Φ̃3 also lies in R/〈t〉 after the redefinition of φ, and g0 can now be defined as

g0 :=
1

864

[
(φaηa+φbηb)

3−3φφa (φaηa+φbηb)
(
t(2)η

2
a+2t(1)ηaηb+t(0)η

2
b

)
(6.21)

+3φφb (φaηa+φbηb)
(
t(3)η

2
a+2t(2)ηaηb+t(1)η

2
b

)
+3φ

2
(φaηa+φbηb)τsq+φ

3
τcu

]
.

We now have

4f30 + 27g20 = ∆′0t, (6.22)

and the discriminant is proportional to t. ∆′0 has a lengthy expression that we do not

give here.

6.2.2 Tuning I2 to obtain SU(2)

For an I2 singularity, the discriminant must be proportional to t2, and

∆′0 + 12f20 f1 + 54g0g1 (6.23)

must be proportional to t. In other words

∆′0 + 12f20 f1 + 54g0g1 ≡ 0 (mod t). (6.24)

Let us first focus on the ∆′0 term. It is easiest to work with the field of fractions of

R/〈t〉, in which ∆′0 is equivalent to

φ
2

32

g0
ηaηb

[
− 3φaηb

(
t(0)ηb + t(1)ηa

)
− 3φbηa

(
t(2)ηb + t(3)ηa

)
+ φ

(
t(3)t(0) − t(2)t(1)

)
ηaηb

]
. (6.25)
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If g1 were allowed to be an element in the field of fractions, we could immediately determine

how g1 should be defined to cancel the ∆′0 contributions. But g1 is an element of the

coordinate ring, and the terms in equation (6.25) cannot be fully canceled using g1. In

particular, the φat(0)η
2
b and φbt(3)η

2
a terms in the square brackets are not proportional to

ηaηb and cannot be canceled. To proceed further, φa and φb must be tuned so that

φat(0)η
2
b + φbt(3)η

2
a = rηaηb + st. (6.26)

where r and s are some expressions in the coordinate ring. The above condition should

hold regardless of the values of ηa and ηb, so it must also hold for special situations in

which either ηa = 0 or ηb = 0. If we plug in either ηa = 0 or ηb = 0, we obtain the two

conditions

(φa − sηb)t(0)η2b
∣∣∣
ηa=0

= 0 (φb − sηa)t(3)η2a

∣∣∣∣∣
ηb=0

= 0. (6.27)

The only way to satisfy these conditions (without forcing ηa, ηb, t(0) or t(3) to be zero) is

for φa and φb to take the form

φa :=haηa + hbηb φb :=hbηa + hcηb, (6.28)

where we have replaced s with hb. With these definitions, ∆′0 takes the form

∆′0 = −g0
φ
2

32

(
3ha

(
t(0)ηb + t(1)ηa

)
− 6hb

(
t(1)ηb + t(2)ηa

)
+ 3hc

(
t(2)ηb + t(3)ηa

)
− φ

(
t(3)t(0) − t(2)t(1)

)
+O(t)

)
, (6.29)

where all terms above are well defined in R. Even though we found (6.28) by considering

the special cases where ηa = 0 or ηb = 0, ∆′0 takes the appropriate form even when ηa and

ηb are arbitrary. The tunings in (6.28) are therefore valid beyond the special ηa = 0 and

ηb = 0 situations and work regardless of the values of ηa and ηb. We now define g1 to be

g1 :=
φ
2

576

(
ha
(
t(0)ηb + t(1)ηa

)
− 2hb

(
t(1)ηb + t(2)ηa

)
+ hc

(
t(2)ηb + t(3)ηa

)
− 1

3
φ
(
t(3)t(0) − t(2)t(1)

))
+ γ1, (6.30)

leaving

∆ =
(
12f20 f1 + 54g0γ1

)
t+O(t2). (6.31)

We now turn to the f20 f1 term. Working in R̃/〈t〉, the condition for the I2 singularity

is now

Φ̃4f1 + 12Φ̃3γ1 ≡ 0 (mod t). (6.32)
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γ1 should therefore be identified with

− 1

12
Φ̃f1 = − 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b + φT̃

)
f1. (6.33)

Φ̃f1 must lie in R/〈t〉, which implies that f1 must take the form

f1 := λaηa + λbηb. (6.34)

γ1 should in turn be defined as

γ1 := − 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b

)
(λaηa + λbηb)−

1

12
φ (λaτηa + λbτηb) . (6.35)

With these redefinitions, the discriminant is now proportional to t2, indicating we have

successfully tuned an SU(2) model. To summarize, f and g are now given by

f = f0 + f1t+ f2t
2 g = g0 + g1t+ g2t

2, (6.36)

with

f0 =− 1

48

(
haη

2
a+2hbηaηb+hcη

2
b

)2− 1

24
φφaτηa−

1

24
φφbτηb−

1

48
φ
2
τsq (6.37)

g0 =
1

864

(
haη

2
a+2hbηaηb+hcη

2
b

)3
+

3

864
φ
(
haη

2
a+2hbηaηb+hcη

2
b

)
[(haηa+hbηb)τηa+(hbηa+hcηb)τηb]

+
3

864
φ
2 (
haη

2
a+2hbηaηb+hcη

2
b

)
τsq+

1

864
φ
3
τcu (6.38)

f1 =λaηa+λbηb (6.39)

g1 =
φ
2

576

[
ηa
(
hct(3)−2hbt(2)+hat(1)

)
+ηb

(
hct(2)−2hbt(1)+hat(0)

)
−φ

3

(
t(3)t(0)−t(2)t(1)

)]
− 1

12

(
haη

2
a+2hbηaηb+hcη

2
b

)
(λaηa+λbηb)−

1

12
φ(λaτηa+λbτηb) . (6.40)

The homology classes of the various parameters are given in table 8.

Table 8 also gives the dictionary between this SU(2) model and the previous SU(2)

model given in [11]. The key difference between these models is that φ is forced to be a

constant in [11]. This restricts the homology classes: for φ to be a constant,

[t]
!

= −2KB + [ηb] + [ηa]. (6.41)

The SU(2) model of [11] thus has only two unspecified homology classes, whereas the

model derived using the normalized intrinsic ring techniques has three unspecified homology

classes. This extra freedom has physical consequences. In particular, the model derived

here can support a wider array of matter spectra than the model in [11]. Otherwise, the

two models are fairly similar. In fact, if f2 and g2 are set to zero and φ is set to a constant,

the two models are equivalent.
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Parameter Homology Class Equivalent Symbol in [11]

ηa [ηa] s8

ηb [ηb] −s9
t(3) [t]− 3[ηa] 12s4

t(2) [t]− 2[ηa]− [ηb] 4s3

t(1) [t]− [ηa]− 2[ηb] 4s2

t(0) [t]− 3[ηb] 12s1

φ −2KB − [t] + [ηb] + [ηa] 1

ha −2KB − 2[ηa] 0

hb −2KB − [ηa]− [ηb] 0

hc −2KB − 2[ηb] 0

λa −4KB − [t]− [ηa] 0

λb −4KB − [t]− [ηb] 0

f2 −4KB − 2[t] 0

g2 −6KB − 2[t] 0

Table 8. Homology classes for the SU(2) model tuned on a generic cubic t ≡ t(3)η
3
a + 3t(2)η

2
aηb +

3t(1)η
2
bηa + t(0)η

3
b . Homology classes are given in terms of the canonical class KB of the base and

the homology classes of ηa, ηb, and t. The third column gives the map between the parameters

used here and those for the SU(2) models in [11].

6.3 The matter spectrum

Equipped with the general non-Tate Weierstrass model described by (6.36) through (6.40),

we proceed with the determination of the singular locus and corresponding matter spectrum

of the corresponding F-theory model. As before, we will focus on two-dimensional base

manifolds B of the elliptic fibration yielding a 6D supergravity theory, although the follow-

ing results also carry over to non-chiral F-theory compactifications to 4D. The discussion

will be very similar to the one in section 5.5.

We recall that the matter content of F-theory (except for the adjoint matter) is encoded

in the codimension two singularities of the elliptic fibration specified by the Weierstrass

model (6.36)–(6.40). In the case at hand, we have two types of codimension two singular-

ities. First, there are the common zeros at codimension two in B of ∆2 = t = 0 with ∆2

being defined via ∆ = 4f3 + 27g2 = t2∆2. These contain, as we demonstrate below, the

conventional matter representations of SU(2), i.e. the 2 representation. Second, there are

codimension two singularities from the singularities of t = 0 at ηa = ηb = 0, which support

the triple symmetric matter representations 4 of SU(2). As before in section 5.5, the de-

termination of the irreducible components of the codimension two loci in ∆2 = t = 0 is the

most challenging, and in general involves performing a primary decomposition following

the procedure outlined in [28] to which we refer for further details.

Before going into the details of this computation, we summarize the found matter

content based on the analysis of codimension two singularities of the general non-Tate
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SU(2)-rep Multiplicity Fiber Locus

4 x4 = 1
2 [ηa] · [ηb] I∗ns0 V (ISing) = {ηa = ηb = 0}

3 x3 = 1
2 [t] · ([t] +KB) + 1− 6x4 I2 VSU(2) = {t = 0}

2 x2 = [t] · (−8KB − 2[t]) + 6[ηa] · [ηb] + 2x4 I3 V (p1) ∪ V (ISing)

Table 9. Matter spectrum of the elliptic fibration (6.36)–(6.40) with a singularity of type I2 over

a divisor t = 0 with ordinary triple point singularities. Shown are the SU(2) representations, the

multiplicity of full hypermultiplets in a 6D theory, corresponding fiber type and locus in the base.

We denote the variety described by the vanishing set of an ideal I by V (I).

Weierstrass form (6.36)–(6.40) along with the corresponding 6D matter content of F-theory

in table 9.

We begin with the discussion of the non-localized matter, i.e. the adjoint matter, as

well as the matter localized at the singularities of t = 0. The geometric genus pg of t = 0,

which counts adjoints, is given by the arithmetic genus g corrected by the contribution

from the triple point singularities:

pg = g − 3[ηa] · [ηb] = 1 +
1

2
[t] · ([t] +KB)− 3[ηa] · [ηb] . (6.42)

Here we employ that every triple point contributes 3 to the arithmetic genus g, which we

compute via adjunction in the second equality. We assume in analogy to the discussion of

matter with double point singularities that we are working with a construction in which

all the triple points contribute 3-symmetric matter representations. Identifying 1
2 [ηa] · [ηb]

as the multiplicity x4 of matter fields in the representation 4, we thus arrive at the mat-

ter multiplicities in the first and third lines in table 9. We note that each triple point

contributes only one half-hypermultiplet as the representation 4 is pseudo-real.

Next we turn to the conventional matter localized at the intersection loci ∆2 = t = 0.

We first gain some intuition about the possible matter loci by solving t = 0 locally away

from its triple point singularities and inserting the solution into ∆2 = 0. We immediately

observe a factorization of ∆2 into two components, which indicates the existence of two

irreducible varieties inside t = ∆2 = 0.

Indeed, we can perform a rigorous primary decomposition of t = ∆2 = 0 in the auxiliary

ring C[ηa, ηb, t(0), t(1), t(2), t(3)] using Singular [30] to obtain two prime ideals denoted by p1
and p2.

17 Explicitly, we find

p2 =
{
ηa(ηaφt(2) − η2aha − 2ηbηahb − η2bhc) + φηb(ηbt(0) + 2ηat(1)), (6.43)

ηb(ηbφt(1) + η2aha + 2ηbηahb + η2bhc) + φηa(ηat(3) + 2ηbt(2))
}
/(Ising ∪ I ′) ,

where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {haη2a + 2hbηaηb + hcη
2
b , φ} (6.44)

17As before, these ideals may factor further once specific elements of the ring R are chosen to represent

the variables in the auxiliary ring.
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in order to obtain a prime ideal. The prime ideal p1 is too lengthy to be reproduced here; it

is generated by several large polynomials in the parameters in f and g. It can be obtained

by computing the saturation ideal of the ideal t = ∆2 = 0 w.r.t. the ideal p2:
18

p1 = {∆2, t}/p2 . (6.45)

Next we analyze the singularity type of the elliptic fibration along the varieties V (p1),

V (p2) defined by the vanishing loci of p1, p2 inside the variety ∆2 = t = 0. By investigation

of the orders of vanishing of (f, g,∆), we find that

V (p1) : (f, g,∆) ∼ (0, 0, 3) , V (p2) : (f, g,∆) ∼ (1, 2, 3) , (6.46)

which indicates a singularity of type I3 and III respectively [20, 21, 24]. This means that

the variety V (p1) supports matter in the fundamental 2 of SU(2) [4], whereas V (p2) is

the locus of a degeneration of an I2 singularity to III. This does not correspond to the

emergence of additional physical degrees of freedom due to the lack of new holomorphic

curves to be wrapped by M2-branes.

Finally, for the computation of the matter multiplicity x2 of doublets, we need to

know the multiplicities of V (p1), V (p2) inside ∆2 = t = 0. Using the resultant technique

discussed in [28], we find the multiplicities to be 1 and 2, respectively, i.e. we obtain the

following relation in homology

[∆2] · [t] = [V (p1)] + 2[V (p2)] . (6.47)

The homology class of the left hand side of this equation is readily computed using the

explicit expression for t in (6.1) and ∆2 as it follows from (6.37). We then compute

[V (p2)] using its definition (6.43) as being contained in a complete intersection among the

additional components specified by the ideals in (6.44). The homology classes of the latter

are easily computed noting their definition as irreducible complete intersections. Their

multiplicities inside the complete intersection in (6.43) is computed using the resultant as

4 and 1, respectively. Thus, we obtain

[V (p2)] = (−2KB+[ηa])·(−2KB+[ηb])−4[ηa]·[ηb]−(−2KB−[t]+[ηa]+[ηb])·(−2KB)

=−2KB ·[t]−3[ηa]·[ηb] , (6.48)

where we used the homology classes of all relevant sections given in table 8. The first term

in the first equality is the homology class of the complete intersection in (6.43) and the

second and third terms are the homology classes of the varieties corresponding to the ideals

in (6.44). Putting everything together, we obtain the homology class of [V (p1)] as

[V (p1)] = [t] · (−12KB−2[t])−2(−2KB · [t]−3[ηa] · [ηb]) = [t] · (−8KB−2[t])+6[ηa] · [ηb] .
(6.49)

18Due to the complexity of the involved algebra and the limited available computing power, we were only

able to determine the ideal p1 in the case where t(2) is a random rational number between −1000 and 1000.
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The first term in the first equality is the homology class of ∆2 = t = 0 and the second

term is (6.48), which has to be subtracted with the correct multiplicity 2. We also double

check the result for [V (p1)] by directly working with the lengthy ideal p1.

We thus obtain the contribution from I3 loci inside ∆2 = t = 0 to the multiplicity

x2 of 2 matter fields as shown in the first term of the last line of table 9. We note

that there are additional matter fields in the 2 representation from the ordinary triple

point singularities as noted in [11]: group-theoretically, the 4 representation arises in the

decomposition 2⊗2⊗2 = 4⊕2⊕2 at each ordinary triple point ηa = ηb = 0 of t = 0. This

shows that each triple point also supports one full hypermultiplet in the representation 2,

which leads to the second contribution in the last line of table 9.

We conclude by double-checking the derived SU(2) matter spectrum by testing anomaly

freedom of the 6D theory. Following the discussion of section 2.2, we identify b = [t] and

a = KB. We then see that anomaly cancellation follows immediately for the spectrum in

table 9 upon the identification r = [ηa] · [ηb], g = 1 + [t] · ([t] +KB).

7 Matter transitions

In many situations, the 6D anomaly conditions specify a unique charged matter content

given a few parameters. But for the models considered here, these same parameters are

not enough to fully determine the matter spectrum, as mentioned in section 2.2. Even if

a · b, b · b, the gauge group, and the representations are fixed, the 6D anomaly cancellation

conditions still admit multiple solutions for the matter multiplicities. Given a particular

SU(2) spectrum, one can find another consistent spectrum through the exchange (2.11)

3×Adj + 7× 1↔ 1

2
+ 7× . (7.1)

The SU(N) models with N ≥ 3 meanwhile admit multiple spectra related by the ex-

changes (2.13)

Adj + 1↔ + . (7.2)

The “anomaly equivalent” theories related by the exchanges have the same number of tensor

and vector multiplets. From the perspective of the Weierstrass tunings, the homology

classes of the various parameters are not fully fixed by the gauge curve homology class and

−KB. In turn, there may be multiple charged matter spectra for a given base and gauge

curve homology class.

A natural next step is to ask how these anomaly equivalent models fit into the space

of vacua. Specifically, is there a process to move between the anomaly equivalent models?

As discussed in [7], there are a number of possible ways to connect 6D models. The

simplest of these, which can be seen as a purely field-theoretic phenomena, is the Higgs

mechanism: there can be a theory with a larger gauge group whose Higgs branch contains

both of the models in question. A more exotic type of transition, known since [3, 32], is the

tensionless string or small instanton transition in which the number of tensor multiplets

in the theory changes. The theory is superconformal at the transition point. A third

possibility was raised in [7], where it was shown that anomaly equivalent models for a variety
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of gauge groups, such as SU(6) and SU(3), are connected by “matter transitions” that occur

within the Higgs branch of a superconformal theory. As in the case of a Higgs transition,

the original gauge theory must be enhanced, but to a superconformal theory rather than

to a theory with larger gauge group. In the context of F-theory, this occurs through a

series of tunings and deformations of the Weierstrass model. In field theoretic terms, such

transitions relate two theories with the same gauge group and the same number of tensor

multiplets via an intermediate superconformal theory which contains both of them in its

Higgs branch. The models derived here have similar matter transitions. In addition to being

interesting phenomena in their own right, the matter transitions clarify the relationships

between exotic higher-genus matter, curve singularities, and non-Tate tuning structures.

Before turning to the matter transitions in specific models, let us first describe how

these transitions work in general. The process is illustrated in figure 1 for SU(4). We

assume we are working with a 6D F-theory model, although the transitions may occur

in 4D models as well. Initially, the F-theory model will have matter located at several

codimension two loci. The first step of the transition is to tune the Weierstrass model so

that a collection of these loci are moved to a single point. f and g now vanish to at least

orders 4 and 6 at this point, signaling the appearance of a superconformal sector [3, 33, 34].

Next, the Weierstrass model is deformed, separating the superconformal locus again into

multiple codimension-two matter loci. The representations supported at these new points

are different from those at the beginning of the transition. The SCFT in this example is

the “single E-string theory” [32, 35, 36] corresponding to a −1 curve in F-theory. It has a

Higgs branch of dimension 29 with a variety of gauge groups and matter representations

realized at different points of that Higgs branch. In the case of the SU(4) matter transition,

this E-string SCFT is the intersection of two loci within the Higgs branch that each have

a global SU(4) symmetry but with different matter representations; it also has a tensor

branch with a −1 curve that intersects a divisor carrying the SU(4). It might be interesting

to understand these loci within the Higgs branch more explicitly in terms of the associated

instanton moduli space for this and related matter transitions, though we do not explore

that question further here.

Overall, the setup can be described in terms of the Higgs branch of a fixed SCFT, within

which one finds several distinct loci with a previously selected gauge group, although the

matter spectra may differ among the loci. (There are two loci for the SU(4) example

illustrated in figure 1 below.) The initial tuning moves us from the first locus to the SCFT.

One could then, in principle, move onto the tensor branch through a blow-up on the base.

Instead, we follow Weierstrass deformations that move us to a new locus within the Higgs

branch with the same gauge group but a different matter spectrum. In the simplest cases,

the SCFT at the transition point is an E-string theory consisting of a single −1 curve

on the tensor branch. The SCFTs for some of the transitions considered here may have

extra gauge groups tuned on the −1 curve. However, the simplest transitions do not have

additional tensor branch gauge symmetries, suggesting that these gauge groups are not a

general requirement for transitions.

Finally, we note a few general observations about the transitions. First, progress

through the transition can be described using a single parameter. This may not be imme-
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(a)

6

6

4 15

(b)

6

6

4 15

(c)

SCFT4

(d)

6
6

4 10+6

Figure 1. Schematic illustration of the transition for SU(4). The curve represents (a slice of) h, the

curve along which the SU(4) singularity is tuned. Points represent codimension-two loci contributing

charged matter; the labels give the SU(4) representations associated with particular codimension-

two loci. (a) Initially, there are several codimension-two loci supporting charged matter. We assume

that a double point has already been tuned on the curve, with 15 matter localized at the point.

(b) The Weierstrass model is tuned so that two 6 loci move to the double point. (c) When the 6

loci reach the double point, the singularity type at the double point worsens, giving an SCFT. (d)

Deformations in the Weierstrass model remove the SCFT by pulling away two 6 loci. The charged

matter at the double point is now 10 + 6, rather than the initial 15.

diately obvious from the general discussion or from the detailed analysis of models below.

But the transition can be thought of as moving through a single parameter family of mod-

els. If desired, one can even write the deformations and tunings explicitly in terms of a

single parameter, as done in [7]. Second, the description of the transition process above did

not mention introducing or deforming singularities along the gauge curve. This omission is

a reflection of an important point regarding singular matter: gauge curve singularities do

not automatically contribute exotic matter. In particular, introducing a curve singularity

only localizes adjoints at the singular point and does not change the matter content. To

make the singular points support exotic matter, the theory must additionally undergo a
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more dramatic change, such as obtaining a superconformal sector at the transition point.

In the examples considered here, the tunings and deformations of the transition that actu-

ally change the matter content do not affect the number of singular points along the gauge

curve. The elliptic curve singularity type at a double point or triple point may change dur-

ing the course of the transition. However, the gauge curve singularity is present through

the core part of the transition.

7.1 SU(3) model with symmetric matter

In order to make the discussion more concrete, we first focus on the SU(3) model with

symmetric matter. Recall that if the SU(3) singularity is tuned on the curve

h = p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b = 0, (7.3)

the SU(3) Weierstrass model is described by

f = − 1

48
φ2 + f1h+ f2h

2 g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3, (7.4)

with

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (7.5)

f1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
ψaν + νaψ

) (
p(1)ηa + p(0)ηb

)
+
(
ψbν + νbψ

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (7.6)

g2 = (ψaηa + ψbηb)
2 − 2ψaψ

(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(1)ηb + p(2)ηa

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
φf2. (7.7)

This model admits transitions that cause a net exchange of matter of

Adj + 1↔ + . (7.8)

For this discussion, we focus on the transitions that exchange an adjoint and a singlet for

+ . These transitions involve three basic steps described in more detail below:

1. Introduce a new double point along the gauge curve h = 0, localizing adjoint matter

at the double point. As mentioned previously, this step does not change the mat-

ter content of the theory and thus should not be considered as a core part of the

transition.

2. Further tune the Weierstrass model to obtain an SCFT at the double point.

3. Deform the Weierstrass model in a different way to remove the SCFT, leading to a

model with a different matter spectrum.

The transitions that cause the opposite exchange of matter ( + → Adj + 1) can be

obtained by inverting the above three steps.
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Step 1: introduce a new double point. Symmetric matter can occur only at double

point singularities along the gauge curve. To convert adjoint matter into symmetric matter,

we therefore must first introduce a new double point singularity along the curve. This can

be done through the tunings

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.9)

h, now given by

h = p′(2)η
2
a + p′(1)aηaηb + p′(0)a

2η2a, (7.10)

has double point singularities at ηa = a = 0. The tuning introduces a total of [a]·[ηa] double

points; in the minimal case, [a] · [ηa] = 1, and there is only one new double point. Note that

this tuning does not change the matter spectrum. A double point singularity along an SU(3)

curve can correspond to either 8 + 1 or 6 + 3 matter19 [5]. The a = ηa = 0 locus currently

supports localized adjoints, as these double points can be deformed away. Thus, while the

tunings in (7.9) localize adjoints that previously could propagate throughout the gauge

curve, there is no change in the matter spectrum. In other words, one cannot introduce

symmetric matter simply by tuning more double points. Changing the matter spectrum re-

quires a more dramatic change, which here entails passing through a superconformal point.

Note that in the description here we have assumed the initial curve h has the form (7.3)

and already contains some double points. More generally, this need not be the case. An

arbitrary smooth curve could be put in this form where ηb = 1 so there are no initial double

point singularities; in this case, for example, we could tune a single double point singularity

from a smooth curve with none by starting with [ηa] = 1 and taking [a] = 1.

Step 2: move to the SCFT. Currently, symmetric matter (if present) resides at the

ηa = ηb = 0 locus. To convert the localized adjoints at ηa = a = 0 into symmetric matter,

one would like to perform a deformation such as aηb → η′b. At this point in the transition,

such a deformation is not possible: there are factors of ηb in the Weierstrass model (7.3)–

(7.7) without corresponding factors of a. We therefore need to perform the additional

tunings

νb → aν ′b ψb → aψ′b. (7.11)

These tunings make f and g vanish to orders 4 and 6 at a = ηa = 0, signaling the presence

of an SCFT. In order to produce this superconformal matter, the tuning must have pushed

other matter loci to the a = ηa = 0 double points. Prior to the tunings in equations (7.9)

and (7.11), the discriminant takes the form

∆ = ∆3h
3, (7.12)

where ∆3 is equivalent to Φ̃3
0∆̃3 in the normalized intrinsic ring. The discriminant locus

contributes [∆̃3] · [h] fundamentals. After the tunings, ∆̃3 vanishes to order 3 on the

19Note that, for reasons discussed in footnote 16, we will not be careful in distinguishing between hyper-

multiplets in the 3 and 3̄ representation.
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a = ηa = 0 locus, while h vanishes to order 2. Since the a = ηa = 0 locus now supports

an SCFT, it should be subtracted out when counting the number of fundamentals after

the transition. For each a = ηa = 0 point, 3 × 2 = 6 fundamentals therefore disappear

as a result of the tunings in equations (7.9) and (7.11). A careful consideration of the

available degrees of freedom and redundancies in the Weierstrass model indicates that in

the tuning (7.11) two singlets are fixed for each a = ηa = 0 point. This missing matter

corresponds exactly to the loci that were pushed to a = ηa = 0 in order to form the SCFT.

The effect of this second step can therefore be summarized as

8 + 6× 3 + 3× 1→ SCFT. (7.13)

The SCFT at the transition point is an E-string theory. On the tensor branch, where

the (4, 6) singularity is resolved by a blowup on the base, there is a single −1 curve with

no additional gauge groups. The gravitational anomaly condition therefore suggests that

exactly 29 hypermultiplets should be removed at the transition point in order to produce

the SCFT. Indeed, exactly 29 hypermultiplets participate in this step for each a = ηa = 0

point, as seen in the left-hand side of (7.13).

Step 3: deform the SCFT. There are now enough factors of a in the Weierstrass model

to absorb a into ηb. However, there will be factors of a remaining after such an association.

The SU(3) model at the end of the transition should have the same basic structure as

before, suggesting that a tuning with remaining factors of a is a specialized model that can

be further deformed. To remove the extra factors of a, we must perform the deformations

aν → ν ′ aψ → ψ
′
. (7.14)

After this deformation, ν ′ and ψ
′

are not proportional to a. There is no longer an SCFT,

as there is no codimension two locus where f and g vanish to orders 4 and 6. The six

fundamentals and two singlets that had disappeared are now restored, and the ηa = a = 0

double points introduced by equation (7.9) now contribute 6 + 3 matter. Every factor of

ηb is accompanied by exactly one factor of a, so we can now perform the redefinition

aηb → η′b (7.15)

and remove all factors of a. The transition is now complete, with a total change of matter

of the form

8 + 6× 3 + 3× 1→ Superconformal Matter→ 6 + 7× 3 + 2× 1. (7.16)

The net effect of the transition is therefore to exchange 8 + 1 for 6 + 3, as expected from

the anomaly cancellation conditions. We can also exchange 6 + 3 for 8 + 1 by inverting

the steps in the transition.

The Weierstrass model in fact allows for a second type of transition, although this

transition will have the same physical effect. This second transition involves transferring
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factors into ηa rather than into ηb. To convert adjoints into symmetrics, we initially perform

the tunings

p(0) → p′(0) p(1) → ap′(1) p(2) → a2p′(2), (7.17)

thereby introducing new double points at the a = ηb = 0 loci. The additional tunings

νa → aν ′a ψa → aψ′a (7.18)

take us to a superconformal point. The transition is completed with the deformations

aηa → η′a aν → ν ′ aψ → ψ
′
. (7.19)

In total, the transition exchanges [a]·[ηb] adjoints for symmetrics through a process identical

to that in equation (7.16). Of course, one can perform the transition in the opposite

direction by reverting the steps.

As mentioned in section 5.4.3, the previously derived SU(3) models with symmetric

matter are specializations of the ones derived here. In particular, these previous models

restrict homology classes by setting certain parameters to constants. These models will not

exhibit all of the possible transitions laid out here, but they may still allow some subset

of the transitions. For example, the model in [7] essentially forces p(2) to be a constant, so

transitions where ηa changes are not possible. The transitions where ηb changes, however,

are still possible. For the SU(3) model in [10], ν is set to one, while both of the transitions

considered here change the homology class of ν. These transitions are therefore not possible

in this model. This model has other transitions that connect the different matter spectra,

but the theory undergoes more extreme changes during the transition. For instance, when

the gauge curve factorizes at the transition point. As a result, the transition point theory

has a new SU(3) gauge group in addition to the SCFT.

Finally, let us examine how non-Tate structure appears as part of the transition. Con-

sider a situation where ηb is initially set to 1. There are no double points, so the Weierstrass

model has Tate structure. For instance, f1, which has non-Tate structure in general, can

be written as

f1 =
(
ψb + ψaηa +

(
p(1) + p(2)ηa

)
ψ
) (
νb + νaηa +

(
p(1) + p(2)ηa

)
ν
)

−
(
p(0) + 2p(1)ηa + p(2)η

2
a

) (
ψaν + νaψ + ψνp(2)

)
(7.20)

when ηb is set to 1. Since the second term on the right-hand side is proportional to h, we

could move it to f2, leaving the Tate form expression where f1 factors into two components.

Now imagine performing the transition using the steps in equations (7.9), (7.11), and (7.14).

In the p(2)ηaψ and p(2)ηaν parts of the first term, there would not be enough factors of

a to absorb into ν and ψ, and the term would seem to develop a−1 factors. The Tate-

form expression for f1 is thus no longer valid after the transition. However, the second

term in (7.20) would also have parts with a−1 factors. In fact, all the a−1 parts cancel

between the first and second terms of (7.20). As long as we keep the second term as part

of f1, we can maintain a valid expression for f1. f1 is therefore forced to have non-Tate

structure after the transition. The terms proportional to h in f1 when ηb = 1, which

were “optional” before the transition, are necessary after the transition. In this way, the

transition generates the expected non-Tate structure from a Tate-form model.
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7.2 SU(N) model with symmetric matter for N ≥ 4

In general, SU(N) models with symmetric matter should admit transitions that cause the

net exchange

Adj + 1↔ + . (7.21)

While the net exchange during the transition should be the same regardless of whether N

is even or odd, the Weierstrass models for the two cases are somewhat different. In turn,

the details of the transitions will be slightly different for even and odd N ; in particular,

the transition for SU(2k − 1) is a Higgsed version of the SU(2k) transition. We first focus

on the case where N is even before turning to the odd N case.

The Weierstrass model for SU(2k) is described by

f = −1

3
υ2 +O(hk) g = − 1

27
υ3 − 1

3
υf +O(h2k) (7.22)

with

υ =
1

4
φ+ φ1h+ . . . φk−1h

k−1 (7.23)

h = p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b (7.24)

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
. (7.25)

As mentioned in section 5.1 and section 5.4.5, the only non-UFD structure is contained

within φ, and all discriminant cancellations are exact. The discriminant takes the form

∆ = φ2∆2kh
2k, (7.26)

with the ∆2k = h = 0 loci contributing fundamental matter.

Let us consider the analogue of the SU(3) transition, where we convert adjoint matter

into symmetric matter by transferring a factor a into ηb. As before, we introduce a new

double point by tuning

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.27)

Again, this tuning does not actually change the matter content of the theory; instead, it

localizes an adjoint at each a = ηa = 0 double point and fixes one singlet per double point.

We then perform the tuning

νb → aν ′b (7.28)

to take us to the SCFT. After this tuning, φ vanishes to order 2 at the a = ηa = 0 loci.

Combined with the fact that h vanishes to order 2 wherever a = ηa = 0, this indicates that

two loci have been moved to each a = ηa = 0 point. Additionally, the tuning removes one

singlet for each a = ηa = 0 point. Note that ∆2k does not vanish at loci where a = ηa = 0,
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and no fundamental loci are moved to the a = ηa = 0 points. To move to the branch with

symmetric matter, we perform the deformations

aηb → η′b aν → ν ′. (7.29)

These deformations move away two antisymmetric loci and restore a singlet for each double

point, leaving + at the double points.

The full transition can therefore be summarized as

Adj + 2× + 2× 1→ Superconformal Matter→ + 3× + 1. (7.30)

As expected, the net change in matter is

Adj + 1→ + . (7.31)

A total of 8k2 − 2k + 1 hypermultiplets participate in the transition per double point.

For SU(4), this number is 29. Blowing up the singular point gives a single −1 curve with

no additional gauge groups tuned, indicating the appearance of a new tensor multiplet.

Therefore, the gravitational anomaly constraint suggests that 29 hypermultiplets should

disappear at the transition point, as observed. For general k, the number of hypermultiplets

will not be a multiple of 29. However, one should still be able to move to the tensor

branch at the superconformal point and introduce new tensor multiplets. If there is no

change in the number of vector multiplets, 29 hypermultiplets should be lost for each new

tensor multiplet. Since the number of hypermultiplets participating in the transition is

not a multiple of 29, the tensor branch of the SCFT must also include additional gauge

symmetry. In fact, performing the blow up explicitly shows that, on the tensor branch,

an Sp(2k − 4) gauge group is tuned on the −1 curve. There are also 4k fundamentals

charged under this Sp(2k − 4) group. Accounting for this new gauge group, the expected

change in the number of hypermultiplets is 8k2− 2k+ 1, in agreement with the number of

hypermultiplets participating in (7.30).

For SU(2k − 1), the Weierstrass model is described by

f = −1

3
υ2 + zk−1h

k−1 +O(hk) g = − 1

27
υ3 − 1

3
fφ+ γ2k−2h

2k−2 +O(h2k−1), (7.32)

with

υ =
1

4
φ+ φ1h+ . . . φk−2h

k−2, (7.33)

h = p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b , (7.34)

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (7.35)

zk−1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (7.36)

γ2k−2 = (ψaηa + ψbηb)− 2ψaψ
(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
. (7.37)

– 46 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

The transition follows three steps similar to those of the SU(3) transition. First, we intro-

duce new double points at a = ηa = 0 through the tunings

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.38)

At this point in the transition, each new double point corresponds to an adjoint and a

singlet of matter. We then perform the further tunings

νb → aν ′b ψb → aψ′b, (7.39)

taking us to the SCFT. The tunings move two loci and four fundamental loci to each

a = ηa = 0 double point while fixing two singlets per double point. Finally, the SCFT is

removed by the Weierstrass deformations

aηb → η′b aν → ν ′ aψ → ψ
′
. (7.40)

Two loci and four fundamental loci are pushed from each double point, and two singlets

are reintroduced per double point. This leaves + at each a = ηa = 0 double point.

The full SU(2k − 1) transition can be summarized as

Adj + 2× + 4× + 3× 1→ SCFT→ + 3× + 4× + 2× 1. (7.41)

The net change in matter is therefore

Adj + 1→ + , (7.42)

as expected. Note that this transition is essentially a Higgsed version of the SU(2k) transi-

tion in (7.30). Specifically, one can break the SU(2k) representations in (7.30) to SU(2k−1)

representations to obtain (7.41). There are still 8k2 − 2k + 1 hypermultiplets that partici-

pate in the transition. Additionally, the SU(2k − 1) transition point SCFT is the same as

the SU(2k) SCFT: the tensor branch consists of a single −1 curve with a tuned Sp(2k− 4)

gauge group.

7.3 SU(2) with triple-index symmetric matter

From the anomaly cancellation conditions, there are anomaly equivalent SU(2) matter

spectra related by the exchanges

3×Adj + 7× 1↔ 1

2
+ 7× . (7.43)

The corresponding F-theory tunings admit transitions between models with these different

spectra. Transitions in these SU(2) models follow a similar set of steps as the SU(N)

models with symmetric matter. For concreteness, suppose the SU(2) singularity occurs on

a curve

t = t(3)η
3
a + 3t(2)η

2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0. (7.44)
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The Weierstrass model for this case is given in appendix B. To exchange adjoint matter

for matter, one

1. introduces a new triple point in the curve,

2. performs additional tunings to reach an SCFT, and

3. performs deformations to move away from the SCFT.

As before, simply introducing a triple point does not change the matter content. Before

the theory passes through the SCFT, the triple point supports three adjoint hypermulti-

plets, not matter. To exchange matter for adjoint matter, the steps should be

performed in reverse.

To see how these transitions work at the level of the SU(2) Weierstrass model, consider

exchanging adjoint matter for matter. The first step is to introduce new triple points

through the tunings

t(3) → t′(3) t(2) → at′(2) t(1) → a2t′(1) t(0) → a3t′(0) . (7.45)

t, now given by

t = t′(3)η
3
a + 3t′(2)η

2
aaηb + 3t′(1)ηaa

2η2b + t′(0)a
3η3b , (7.46)

has new triple point singularities at a = ηa = 0. Each of the [a] · [ηa] newly introduced

triple points supports 3 localized adjoints and 4 singlets.

To convert the adjoints into symmetric matter, we next need to perform tunings to

reach the superconformal point. For the SU(2) Weierstrass model, the specific tunings are

ha → h′a hb → ah′b hc → a2h′c λa → λ′a λb → aλ′b . (7.47)

With these tunings, f and g now vanish to orders (4, 6) at a = ηa = 0, indicating the

appearance of a superconformal sector. The additional tunings move six fundamental loci

to each a = ηa = 0 triple point while fixing four singlets per triple point. Combined

with the three adjoints and four singlets from the first step, there are now a total of 29

hypermultiplets associated with each new triple point. Again, this number matches the

number of hypermultiplets expected from the gravitational anomaly constraint. The SCFT

at transition point is the same as that for SU(3) and SU(4): the tensor branch consists of

a single −1 curve with no additional gauge symmetry.

We now need to deform the Weierstrass model to get to the model with new

multiplets. The specific deformations needed are

aηb → η′b aφ→ φ
′
. (7.48)

The introduced triple points at a = ηa are now part of the full triple point locus described

by ηa = η′b = 0. Each of these triple points supports a half-multiplet of matter

and two fundamental hypermultiplets. The deformations additionally move away eleven

fundamental loci and introduce a new singlet for each a = ηa = 0 triple point. Thus, the

total matter change in the transition can be written as

3×Adj + 8× 1 + 6× → Superconformal Matter→ 1

2
+ 13× + 1. (7.49)
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The net change of matter in the transition is therefore

3×Adj + 7× 1→ 1

2
+ 7× , (7.50)

in agreement with the expectations from anomaly cancellation.

8 Allowed and disallowed matter combinations

We have shown that the two- and three-index representations of SU(N) and SU(2) can

be realized in F-theory when the gauge group lives on a divisor with a double or triple

point singularity. Even for these representations that can be realized locally, there is a

more general question, which pertains to the combinations of matter representations that

can appear together in a given model. We now focus on this question, first for symmetric

matter representations of SU(N), and then for triple-symmetric representations of SU(2).

We consider in particular the case of models with T = 0, corresponding to F-theory models

on P2, where the existence of a global model in F-theory depends at least in part on the

geometric question of whether a curve exists with a given combination of singularity types.

8.1 SU(N) symmetric matter

We now investigate the question of which combinations of adjoint and two-index symmetric

SU(N) matter fields can be realized geometrically in F-theory. We investigate this ques-

tion at two levels. First, whether the corresponding combination of singularity types is

geometrically allowed at the level of curves on P2. Second, whether explicit Weierstrass

models can be identified for the geometrically allowed configurations of singularity types.

8.1.1 Geometry of double points on curves

For an arbitrary number (n ≤ g) of symmetric representations of SU(N) that is allowed

in the low-energy theory to be possible in F-theory, it is necessary that a generic curve

of arithmetic genus g can be tuned by fixing n moduli so that the resulting curve has n

simple double point singularities and geometric genus pg = g − n. For the simplest case,

n = g = 1, T = 0, this corresponds to the existence of a plane cubic with a single double

point. This can easily be arranged, for example through the cubic

u2 − v2 + u3 = 0 . (8.1)

The next case is a plane quartic (g = 3, T = 0) with up to three double points. Any of the

possibilities n ≤ g can be realized simply by choosing a quartic where all terms constant

and linear in n pairs of homogeneous coordinates are set to vanish; i.e. for n = 3 we have

the general quartic

au2 + buv + cv2 + dvu2 + ev2u+ fv2u2 . (8.2)

More generally, it is possible for a curve of degree d on P2 to realize any number

n ≤ (d− 1)(d− 2)/2 of double points [37].20 A simple argument for this conclusion in the

20Note that the arithmetic genus of a curve of degree d is (d− 1)(d− 2)/2.
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case n = (d − 1)(d − 2)/2 (i.e., pg = 0) proceeds as follows: consider the map from P1 to

Pd given by

[u : v]→
[
vd, uvd−1, . . . , ud−1v, ud

]
. (8.3)

We then map Pd → P2 by taking the projection onto a generic subplane, e.g.

[u0 : u1 : u2 : · · · : ud−1 : ud]→ [l0 : l1 : l2] , li = ai0u0 + ai1u1 + ai2u2 . (8.4)

This gives a well-defined map from P1 → P2, since for generic li, no point in P1 maps to

a point in Pd with l0 = l1 = l2 = 0. The image curve is algebraic since it is explicitly

parameterized by algebraic functions. And the curve has degree d, since the intersection

with the line l0 = 0 gives a generic dth degree polynomial in u, v with d roots. Thus, the

image in P2 is a genus 0 curve of degree d. The singularities in this curve are generically

double point singularities, giving the desired curve with n = g simple double points.

More generally given any F-theory base surface B2, we can ask whether it is possible to

tune a generic curve of arithmetic genus g to produce an arbitrary number of double point

singularities up to the limit of available moduli. As in the case of P2, the technical challenge

is to ensure that the condition for imposing each double point is independent of the others.

We are unaware of any general results of this kind in the mathematics literature.

8.1.2 Explicit Weierstrass models with multiple double points

Constructing an explicit global Weierstrass model for a theory with an arbitrary number

of two-index SU(N) representations presents a nontrivial challenge. While many cases are

covered by the explicit constructions in [7, 10] and in sections 5.2–5.4, there are also cases

that cannot be realized directly in this way. In particular, these approaches give SU(N)

models realized on a divisor of the form

Aξ2 +Bξη + Cη2 . (8.5)

This constrains the range of possible combinations of singularities that may be realized.

We do not attempt to give a completely general analysis here but consider various cases

for T = 0 and small degree d. We focus on the SU(3) models, although similar phenomena

can be seen in higher SU(N) models.

For the case of degree d = 3, g = 1, a single (n = 1) double point can be easily realized

through (8.5) through [ξ] = [η] = 1, which is compatible with a divisor of degree d = 3.

For the case of a quartic, d = 4, g = 3, we can realize n = 1 or n = 2 through (8.5)

by taking [ξ] = 1, [η] = n, but this does not work for n = 3. Thus, the general classes of

explicit constructions do not provide a Weierstrass model for the quartic with three double

points on P2. From the analysis of the previous subsection we know that such a quartic

exists, and in section 8.1.3 we give an explicit demonstration that a Weierstrass model can

be found where all three double points in this quartic support symmetric + antisymmetric

SU(3) representations.

For d = 5, g = 6, the curve (8.5) can realize n = 1, 2, or 4 double points. These three

cases can be constructed from the Weierstrass tunings in section 5. The n = 3, 5, 6 cases,

however, would require a more general construction.

– 50 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

For d > 5, there are consistent spectra that cannot be realized using the Weierstrass

models developed here, even if the curve (8.5) can support the appropriate number of

double points. As the degree increases, parameters in the Weierstrass model are more

likely to become ineffective. While one can address this by setting an ineffective parameter

to zero, there may be issues with the resulting Weierstrass model. If ν and ψ are ineffective,

(f, g,∆) vanish to orders (4, 6, 12) at the double points that should give symmetric matter.

This implies, for example, that the n = 1 models for d ≥ 6 cannot be realized using

the constructions here. In other cases, enough parameters may be ineffective to force the

discriminant to vanish exactly. An example of this occurs when d = 8 and n = 6. While

such models cannot be constructed using the tunings presented here, it may be possible

that some alternative Weierstrass tuning can realize these models.

Finally, recall from section 2.2 that there are cases such as those on P2 with d > 9

where the choice of a, b, associated with the topology of the curve Σ, seem to force the

presence of symmetric SU(N) matter representations. Specifically, the anomaly conditions

imply that the number of SU(3) fundamentals should be negative unless there is symmetric

matter. Thus, in these cases there is no “generic” Weierstrass model on σ without non-

UFD structure at some double points. While this may seem surprising, it can be seen

directly from the UFD Weierstrass models. The discriminant of the UFD SU(3) model

takes the form

∆ = h3
(
φ30∆fund +O(h)

)
, (8.6)

where the ∆fund = h = 0 loci support fundamental matter. On P2, φ0 and ∆fund are

respectively sections of O(3H) and O(27 − 3d)H. For d > 9, ∆fund is ineffective, as are

the higher-order coefficients in the discriminant. The discriminant is therefore forced to

vanish identically, which is clearly problematic.21 Thus, there is no “generic” Tate model

for SU(3) on a degree d > 9 curve in P2, which agrees with the observation that there is

no 6D supergravity model with T = 0 and an SU(3) with b = 10H and only adjoint and

fundamental matter.

While the d > 9 models with only adjoint and fundamental charged matter are inconsis-

tent, the anomaly conditions suggest there are anomaly-equivalent models with symmetric

matter that are consistent. From the analysis of section 2.2, there is a seemingly consistent

d = 10 model with 30 symmetrics, 6 adjoints, and zero fundamentals of SU(3). Additional

spectra can be generated by exchanging an adjoint for a symmetric and a fundamental.

(For d > 10, the number of symmetrics required is greater than the genus of the curve, so

there are no consistent models with d > 10). However, none of these models seem to have

corresponding Weierstrass models. Recall that a double point singularity that supports a

symmetric hypermultiplet also supports a fundamental hypermultiplet. Any Weierstrass

model with some number of symmetric hypermultiplets should therefore have at least as

many fundamental hypermultiplets. But the supposedly consistent d = 10 models all have

fewer fundamentals than symmetric hypermultiplets, suggesting that such models cannot

21Alternatively, this can be seen in Tate form from the fact that the Tate coefficient a3 [4] is of degree

9 for SU(3), and would vanish identically as would all the other Tate coefficients for an SU(3) tuning on a

curve of degree d > 9.
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be realized using double point singularities. This behavior can be seen directly in the

Weierstrass models in section 5, as the discriminant vanishes just as in the d = 10 Tate

model even when there are ηa = ηb = 0 double points. Note that the general argument is

fairly independent of the specific Weierstrass tuning; the key issue is the singularity type,

specifically that any double point that supports symmetric matter should also support a

fundamental hypermultiplet. One might hope that some singularity type may contribute

symmetric matter without the corresponding fundamental hypermultiplet; if this is the

case, one could potentially construct the d = 10 spectra from some alternative Weierstrass

tuning. But without such a development, it seems unlikely that any Weierstrass model, not

just the one described in section 5, could give the supposedly consistent d = 10 spectra.

The upshot is that the Weierstrass models developed in section 5 do not realize all

of the models with SU(N) gauge groups and two-index symmetric representations that

look consistent from the low-energy anomaly perspective. Some of these models may be

realizable in F-theory through a different Weierstrass tuning than the one described here.

However, the d = 10 models described above seem to be difficult to obtain in F-theory and

may be candidates for the F-theory “swampland.” It would be interesting to investigate

these models further in future work.

8.1.3 Example: quartics with 3 double points

A quartic on P2 has genus 3 and should be able to support three double points. As

mentioned previously, the form of the curve h used in section 5 does not allow a quartic to

have more than 2 double points. It is, however, possible to construct a quartic with three

double points if one goes beyond the structure used earlier. Specifically, the curve

q = qaη
2
aη

2
c + qbηaηbη

2
c + qcη

2
bη

2
c + qdη

2
aηbηc + qeηaη

2
bηc + qfη

2
aη

2
b = 0 (8.7)

has double point singularities at ηa = ηb = 0, ηb = ηc = 0, and ηc = ηa = 0. If the qa
through qf coefficients are constants and if ηa, ηb, ηc ∈ O(H), q is a quartic curve with

three double points.

Identifying the curve is only the first part of the tuning. To proceed further, we

must describe the normalized intrinsic ring R̃/〈q〉. In fact, R̃/〈q〉 resembles the normalized

intrinsic ring used in section 5. We introduce three parameters, Q̃bc, Q̃ca, and Q̃ab, described

by the relations

Q̃bc =
1

ηc

[(
qfη

2
a + qeηaηc

)
ηb +

1

2

(
qdη

2
a + qcηbηc

)
ηc

]
(8.8)

= − 1

ηb

[(
qaη

2
a + qbηaηb

)
ηc +

1

2

(
qdη

2
a + qcηbηc

)
ηb

]
, (8.9)

Q̃ca =
1

ηa

[(
qcη

2
b + qbηbηa

)
ηc +

1

2

(
qeη

2
b + qaηcηa

)
ηa

]
(8.10)

= − 1

ηc

[(
qfη

2
b + qdηbηc

)
ηa +

1

2

(
qeη

2
b + qaηcηa

)
ηc

]
, (8.11)

Q̃ab =
1

ηb

[(
qaη

2
c + qdηcηb

)
ηa +

1

2

(
qbη

2
c + qfηaηb

)
ηb

]
(8.12)

= − 1

ηa

[(
qcη

2
c + qeηcηa

)
ηb +

1

2

(
qbη

2
c + qfηaηb

)
ηa

]
. (8.13)
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These relations are analogous to the expressions

H̃ =
1

ηb

[
p(2)ηa + p(1)ηb

]
= − 1

ηa

[
p(1)ηa + p(0)ηb

]
(8.14)

used in section 5. Moreover, Q̃bc, Q̃ca, and Q̃ab satisfy the relations

Q̃2
bc =

1

4

(
qdη

2
a + qcηbηc

)2 − (qfη2a + qeηaηc
) (
qaη

2
a + qbηaηb

)
, (8.15)

Q̃2
ca =

1

4

(
qeη

2
b + qaηcηa

)2 − (qcη2b + qbηbηa
) (
qfη

2
b + qdηbηc

)
, (8.16)

Q̃2
ab =

1

4

(
qbη

2
c + qfηaηb

)2 − (qaη2c + qdηcηb
) (
qcη

2
c + qeηcηa

)
, (8.17)

just as H̃ satisfied the relation H̃2 = p2(1) − p(2)p(0).
The general tuning process proceeds as before. We expand f and g as

f = f0 + f1q + f2q
2 + . . . g = g0 + g1q + g2q

2 + . . . (8.18)

and impose conditions on the fi and gi to force the discriminant to vanish to certain orders.

To obtain an SU(3) gauge group in an UFD model, f and g would take the form

f = − 1

48
Φ̃4
0 + Φ̃0Ψ̃q + f2q

2 + . . . (8.19)

g =
1

864
Φ̃6
0 −

1

12
Φ̃3
0Ψ̃q +

(
Ψ̃2 − 1

12
Φ̃2
0f2

)
q2 + . . . . (8.20)

As in section 5, we use the UFD tunings, but we let Φ̃0 and Ψ̃ be elements of R̃/〈q〉. Instead

of expanding Φ̃0 and Ψ̃ as in equations (5.25) and (5.33), we use

Φ̃0 = νaηbηc + νbηcηa + νcηaηb + νaηaQ̃bc + νbηbQ̃ca + νcηcQ̃ab (8.21)

Ψ̃ = ψaηbηc + ψbηcηa + ψcηaηb + ψaηaQ̃bc + ψbηbQ̃ca + ψcηcQ̃ab. (8.22)

The products Φ̃2
0, Φ̃0Ψ̃, and Ψ̃2 now lie in R/〈q〉. The explicit expressions are lengthy, so

we do not write them here; however, they can be found by expanding out the products and

using relations (8.8) through (8.17) to remove all occurrences of Q̃bc, Q̃ca, and Q̃ab. We

can now plug in the expressions for Φ̃2
0, Φ̃0Ψ̃ and Ψ̃2 into (8.19) and (8.20), giving valid

expressions for f and g. Note that a product of two distinct Q̃’s in these expressions is

always accompanied by the appropriate η factors to immediately put the term in R/〈q〉.
The zeroth and first order terms of the discriminant vanish exactly, while the second order

term is proportional to an additional factor of q. Therefore, we have a non-Tate model in

which the discriminant is proportional to q3. The ηa = ηb = 0, ηb = ηc = 0, and ηc = ηa = 0

double points cannot be deformed away, and they support + matter.

Note that if we let either ηa, ηb, or ηc be a constant, we recover expressions nearly

identical to those in the Weierstrass model of section 5. This behavior should be expected.

If, say, ηc is set to a constant, the only remaining double points occur at the ηa = ηb
loci. This is exactly the situation encountered in section 5, and we expect that the models

should be identical up to trivial shifts and scalings of the parameters, as observed.
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8.2 Triple points on P2

We now consider the general question of how many triple-symmetric representations of

SU(2) can be realized in a given class of models. In this case, there are nontrivial constraints

from geometry, associated with the inability to tune curves with certain combinations of

singularities. These correspond to theories in the apparent swampland [38, 39], which look

acceptable from the low-energy point of view but cannot be realized in F-theory.

8.2.1 Triple points on curves

We investigate whether arbitrary numbers of triple points can be realized on curves, spe-

cializing for simplicity to the case of the base P2.

The simplest example is a quartic, with genus g = 3. It is straightforward to choose a

quartic with a simple triple point singularity, taking

σ = Au3 +Bu2v + Cuv2 +Dv3 , (8.23)

with A,B,C,D linear functions of the homogeneous coordinates [u : v : w].

Next consider a quintic, with genus g = 6. We can ask whether a quintic can be tuned

with two triple point singularities. This is not possible. Were this possible, without loss of

generality we could put both triple points on the line v = 0. Then a quintic restricted to

v = 0 would have to vanish to third order at two points, e.g. u = 0, u = 1, but this cannot

happen since a quintic only has five roots. So there cannot be a quintic with two triple

points. This represents an interesting contribution to the apparent F-theory swampland;

there is an apparent low-energy model with T = 0 and an SU(2) gauge group with anomaly

coefficient b = 5 and two triple-symmetric matter fields, but this cannot be realized in F-

theory. It would be nice to understand if there is some nontrivial low-energy explanation

for the inconsistency of this theory.

Continuing, for a degree b = 6 curve we have g = 10. We can check the existence

of such a curve with three triple points by performing a Cremona transformation. In a

Cremona transformation on the plane we blow up three points a, b, c and then blow down

the three -1 curves associated with the lines ab, bc, ac. Assuming the existence of a degree

6 curve C with three triple points at a, b, c we perform the Cremona transformation. Each

blow-up removes a triple point singularity and drops the self-intersection of the curve by

−9, so the resulting curve has self-intersection 36 − 27 = 9. The lines ab etc. do not

intersect C anywhere except at a, b, . . ., so blowing down these lines does not affect the

self-intersection and the final curve after the Cremona transformation is a cubic with no

self-intersections, which is certainly allowed. We simply invert this process to create the

desired curve C, i.e. we perform a Cremona transformation on the plane P2 carrying a

smooth cubic C ′ where all three points a′, b′, c′ are disjoint from C ′.

In a similar way we can check the possibilities for b up to b = 9. For b = 7, g = 15.

Starting with the hypothetical maximum configuration of five triple points on a curve C,

the Cremona transformation on three of the triple points gives a curve of self-intersection

49 − 27 + 3 = 25, i.e. a quintic with two triple points, which is not allowed as discussed

above, so the maximal b = 7 configuration with five triple points is also not allowed. Note
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that here the extra 3 in the self-intersection comes from the fact that each of the lines blown

down intersects the original septic once, so blowing each down raises the self-intersection

by 1. For b = 8, g = 21, we can do a Cremona transformation on three triple points, giving

three double points, so in the maximum case of C degree 8 curve with 7 triple points this

gives a degree 7 curve with 4 triple points and three double points. Iterating this process

shows that this is allowed.

Further arguments are needed to go to b = 9 and beyond, but this analysis shows that

there are cases, like the situations of a degree 5 curve with two triple points and a degree

7 curve with five triple points, which appear acceptable from anomaly considerations but

are not allowed simply from the geometry of singularities on the F-theory side.

8.2.2 Explicit Weierstrass models with triple points

From the general cubic construction with σ = Aξ3+Bξ2η+Cξη2+Dη3 as described in [11]

and in section 6, we can only have certain combinations of triple points for each degree of

σ. Denoting (x, y) = (deg ξ, deg η)→ xy as the number of triple points, we have:

• For a quartic with b = 4: g = 3, (x, y) = (1, 1) → xy = 1, so this possibility has an

explicit F-theory realization.

• For a quintic with b = 5: g = 6, (x, y) = (1, 1) → xy = 1. We cannot realize two

triple points, which matches with the analysis above.

• For b = 6: g = 10, x = 1, y = 1, 2, we can have xy = 1, 2 but not 3 triple-

symmetric representations. Thus, while as discussed above there is a sextic with 3

triple points, a more sophisticated analysis, likely along the lines of section 8.1.3,

is needed to determine if a Weierstrass model can be realized with triple-symmetric

representations at each of these singular points.

• For b = 7, g = 15 we can realize xy = 1, 2, 4. As discussed above the case r = 5 is

not allowed by geometry, so the only open case is r = 3.

• For T = 0, the largest allowed value of b for a model with no 3-index symmetric

representations of SU(2) is b = 12. In this case, there are 55 adjoints and 111

neutral scalar fields, which can be read off from table 2. This is only enough neutral

scalar fields to convert 45 of the adjoints to triple-symmetric representations. This

matches with the observation that the Tate form for SU(2) on P2 is only possible up

to b = 12 (since a4 is of degree 12).22 As discussed in section 2.2, however, there

are allowed low-energy models with b > 12 that must have triple-symmetric matter.

Some of these can be realized through the general cubic Weierstrass construction. For

example (see table (3.22) in [11]), there is a model with b = 13, x = 3, y = 4 which

has as matter content (from 12 triple points) 6 × 4 + 30× 3 + 58× 2. The anomaly

equivalence would only allow the number of 4’s to be reduced by 4 before running out

of fundamental representations needed to make the transformation, leaving at least

22Alternatively, the discriminant for the Tate model takes the form ∆ = φ2∆fundσ
2 +O(σ3), and ∆fund

is ineffective for b > 12.
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2 (r ≥ 4 half-hypermultiplet) 3-index symmetric matter representations in any valid

model. Another example from [11] has b = 18, x = y = 6, with a total matter content

of 18×4+28×3+36×2. Of the 18 3-index symmetric representations, only 5/2 can

be removed through anomaly-equivalent transitions. We speculate that the required

presence of 3-index symmetric matter may be related to the tallness constraints that

force q = 3 matter in some U(1) models [40]; however, we leave a full analysis of any

possible connection to future work.

The upshot of this analysis is that there are some cases that appear allowed from

low-energy anomaly considerations that definitely do not have F-theory models since the

required singularity combinations are not allowed. In other cases it remains to be shown

whether an explicit Weierstrass model can be realized even when the geometry allows the

singularity combination. There is no general obstruction, however to finding Weierstrass

models in those cases where the generic matter content must contain 3-index symmetric

matter of SU(2).

9 Allowed and disallowed representations

So far in this paper we have focused on two- and three-index representations of SU(N),

associated with double and triple intersection points on the divisor carrying the gauge

group. In this section we consider more generally what other kinds of exotic representations

and associated singularities may be allowed in F-theory. We begin with some comments

on the generalization of the algebraic analysis to quadruple point singularities and then

consider the constraints from F-theory geometry more generally.

9.1 Higher singularities

It is natural to ask whether a similar construction to those described above could be carried

out for higher singularities, such as a quadruple intersection point. Following the spirit of

the simple examples in section 3, for example, we can try to identify a simple tuning of

SU(2) on the divisor σ = ξ4 − Bη4. In a similar fashion to section 3.1, we can adjoin the

element α satisfying α4 = B to form the normalized intrinsic ring and then can try various

monomials such as φ = α2η. With this Ansatz, we have

f0 = −Bη2/48, g0 = Bξ2η/864, (9.1)

and

∆0 = B2η2σ/27648 . (9.2)

At the next order, however, we have

∆1 = (Bξ2η)g1/16 + (B2η4)f1/192 +B2η2/27648 . (9.3)

This cannot be solved for f1, g1 as there are not enough powers of ξ, η in the last term on

the r.h.s.. So this Ansatz for the monomial φ does not work. The possibility φ = α3η also

leads to similar problems. While the tuning can be completed for φ = α3η2, the resulting
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f and g vanish to orders (4,6) on ξ = η = 0, and the quadruple points seem to support

superconformal matter rather than a standard SU(2) representation.

One might be interested in searching for a geometric realization of some specific more

complicated representation such as the four-symmetric representation of SU(2) in a fashion

analogous to the realizations discussed here of the two- and three-symmetric representa-

tions. This immediately presents some issues, however. To begin with, the genus that

would be needed for the four-symmetric representation) would seem to be 21. This does

not match at all the pattern of the two- and three-symmetric representations that are re-

alized at double and triple points, since a quadruple point has arithmetic genus of only

6. While we do not have a direct conclusive argument that no singularity type can be

constructed that carries this representation, we now argue that F-theory cannot realize

the four-index symmetric representation of SU(2) or other more exotic representations on

more general grounds, which explains the difficulties that would seem to be present in any

direct attempt at algebraic construction.

9.2 Dynkin diagrams and higher representations

One way of understanding the representations we have described so far is in terms of the

Dynkin diagrams associated with the Kodaira singularity types on the divisor carrying

the gauge group and at the singular point. In the simplest cases where the rank is en-

hanced by one and the Katz-Vafa analysis [41] applies, an AN−1 singularity associated

with SU(N) is enhanced to AN to give a fundamental representation, DN to give the two-

index antisymmetric tensor representation, and EN to give the three-index antisymmetric

tensor representation. In the case of the two-index symmetric representation of SU(N)

studied in section 5, the AN−1 Dynkin diagram is embedded twice in the A2N−1 Dynkin

diagram [5]. Similarly, in the case of the three-index symmetric representation of SU(2)

studied in section 6, the A1 Dynkin diagram is embedded three times in D4 [11]. Both of

these situations are illustrated in figure 2 and represent embeddings of Dynkin diagrams

that can be realized through singularities in valid F-theory models.

The geometric interpretation of this embedding, following [41], is that the discriminant

locus is being sliced by a 1-parameter family of parallel curves. Over the central curve, one

finds a singularity represented by the enlarged Dynkin diagram. When the curve moves to

a nearby, parallel curve, the singularities present correspond to the subdiagram which has

been embedded. For example, over a generic curve passing through the triple point of the

discriminant corresponding to a three-index symmetric representation of SU(2) we find a

singularity of type D4, but when that curve is moved to a nearby parallel curve, it meets

the discriminant locus in three separate points, each corresponding to an A1 singularity.

We now consider, however, what a Dynkin diagram embedding would look like for

representations that go beyond those considered here. A triple-symmetric representation

of SU(3) would correspond to an embedding of A3
2 into a Dynkin diagram of rank 7, but

no such Dynkin diagram exists. It is tempting to instead try to use the extended Dynkin

diagram Ê6, and the embedding of A3
2 illustrated in figure 3. (Similarly, one could try to

use an embedding of A4
1 into the extended Dynkin diagram D̂4, also illustrated in figure 3.)

The flaw here is that the extended diagram can never correspond to a singularity (over a
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s s s sc s ssc
A2

2 → A5 A3
1 → D4

Figure 2. Allowed embeddings of Dynkin diagrams corresponding to Kodaira singularities at

codimension two points for (a) the two-index symmetric representation of SU(3), (b) the three-

index symmetric representation of SU(2). Solid circles represent the Dynkin diagrams of the gauge

group and the open circle represents the matter fields.

s s s sss×c s sssc×
A3

2 → Ê6 A4
1 → D̂4

Figure 3. Disallowed embeddings of Dynkin diagrams corresponding to Kodaira singularities at

codimension two points for (a) the three-index symmetric representation of SU(3), (b) the four-

index symmetric representation of SU(2). Solid circles represent the Dynkin diagrams of the gauge

group and the open circle represents the matter fields. Circle with a cross represents the extra node

of the extended Dynkin diagram.

curve on the base): since an extended Dynkin diagram does not have a negative-definite

intersection matrix, it is not possible to contract all of its curves simultaneously to a single

point. In fact, since the linear combination of curves corresponding to the maximal root

of the associated Lie algebra is linearly equivalent to the fiber of the elliptic fibration, if

we shrink all of the curves in the extended diagram to zero area, we necessarily shrink the

elliptic fiber itself to zero area (giving the F-theory limit of M-theory).

Thus, we argue that none of these embeddings are allowed as singularities producing

the desired matter representation. Similar considerations rule out the exotic 4-index anti-

symmetric (70) representation of SU(8) and the “box” (20’) representation of SU(4), as

discussed in [5]. Despite some effort (see e.g. [7]), no F-theory Weierstrass model for either

of these representations has been found.

Note that this analysis suggests a number of nontrivial matter configurations that are

charged under two SU(N) groups. For example, we could embed SU(2) × SU(3)2 into E6

or SU(2) × SU(4)2 into E8 to realize matter charged under the fundamental of the SU(2)

and the two-index symmetric representation of the other SU(N) group.

One might ask whether other gauge groups besides SU(N) can give analogous exotic

matter representations in F-theory associated with singularities on the divisor supporting

the gauge group. In general, this does not seem to be possible. For all gauge groups other

than SU(N) and Sp(N) the Kodaira singularity involves a vanishing of the Weierstrass

coefficients f, g to at least degrees (2, 3). Even a double point or cusp singularity at such

a point thus would involve a vanishing of f, g to at least degrees (4, 6). This implies that

outside of the context of 6D SCFT’s [33, 34] no higher gauge group can be supported on a

divisor with an intrinsic singularity. So in a supergravity model without a superconformal

– 58 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

sector associated with a codimension two (4, 6) locus, we do not expect exotic matter of

the type considered in this paper for any gauge groups other than SU(N) and Sp(N). For

Sp(1) the gauge group is equivalent to SU(2), and the exotic matter is the 3-index sym-

metric matter representation. For Sp(2) and higher, the symmetric matter representation

is indistinguishable from the adjoint representation, so this does not represent exotic mat-

ter. This matches with the discussion in section 5.1, where we identified the role of the

non-UFD structure in SU(N) symmetric representations in terms of the field appearing as

the square root in the split condition; if this root can be defined near a given singularity

in terms of the ring of functions on the divisor then the associated model has an adjoint

matter representation, while if the root lives in an extension associated with the normalized

intrinsic ring, then the model has a symmetric representation.

The upshot of this analysis is that we expect that the only exotic representations as-

sociated with singular divisors in supergravity theories without superconformal sectors are

the 3-index symmetric representation of SU(2) and the 2-index symmetric representation of

SU(N) that we have studied here. It may be interesting to try to understand better to what

extent this constraint on matter fields is special to F-theory or may be more general. Cer-

tainly from the point of view of the low-energy theory, as discussed in [8] and in section 2,

there are anomaly-consistent models that contain higher exotic matter representations such

as the 4-index symmetric representation of SU(2), and there are also anomaly-consistent

models that contain exotic matter representations of higher Kodaira groups such as G2.
23

It would be nice to understand whether these are actually inconsistent models or part of

the “swampland”. For example, heterotic constructions may be able to give rise to theories

with the 4-index symmetric SU(2) representation and exotic representations of e.g. SU(5)

and SU(6) with higher-level constructions [42], although it is not clear if such constructions

can preserve supersymmetry. It would be nice to understand whether such constructions

are indeed possible in consistent supersymmetric theories in 6D and/or 4D, and whether

they can be related to or bounded by the physics of F-theory models.

10 Conclusions

In this paper we have developed a general approach to analyzing exotic matter represen-

tations that can appear in F-theory when the gauge group lives on a singular divisor D.

We analyzed symmetric representations of SU(N) and 3-index symmetric representations of

SU(2), and argued that these are the only exotic representations of a single simple gauge fac-

tor that can arise in this context. These representations are realized through unusual Weier-

strass models in which the cancellation of the discriminant to guarantee the In Kodaira

singularity type over D is realized in a nontrivial way that is only possible when the ring of

functions onD is not a unique factorization domain. These results extend further the known

correspondence between the geometry of elliptic fibrations at codimension two singularities

in the base and the representation theory of matter in the associated F-theory model.

We have used a variety of approaches to confirm the matter content in the non-UFD

constructions presented here. In the examples studied in previous work [7, 10, 11] the sym-

23Thanks to Andrew Turner for discussions and identifying some models of this type.
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metric SU(N) matter content of the non-UFD Weierstrass models was determined implic-

itly by connecting to other abelian or nonabelian models through Higgsing and unHiggsing

transitions. Here we have shown more explicitly how the structure of the non-UFD models

relates to the resolved geometry describing these matter contents, with full details of the

resolution worked out for a concrete example in appendix C. It would be interesting to

understand these structures better from the geometric point of view, possibly also using

the string junction motivated approach of deformations explored in [43, 44].

While the constructions of non-UFD models we have carried out here are much more

general than those encountered previously, it would be good to have a more complete

picture of the range of possibilities. In particular, this could be done by removing redun-

dancies in the Weierstrass models for these compactifications and explicitly determining

the number of independent degrees of freedom and comparing to anomaly cancellation.

Among other things, the analysis presented here gives a clear picture of which spec-

tra that appear to be allowed from low-energy anomaly constraint considerations can be

realized in F-theory. This has allowed us to identify a specific subset of models that are

in the apparent “swampland” with no string realization and no clear low-energy inconsis-

tency. Further study of these models could lead to an improved understanding of quantum

consistency conditions for supergravity, and to a better understanding of whether string

theory is in fact universal for 6D supergravity theories [39].

The analysis done here of possible matter content for nonabelian factors in 6D F-

theory models also fits into the general program of systematically classifying all elliptic

Calabi-Yau threefolds by identifying all allowed bases B [45–48] and then carrying out all

possible tunings of Weierstrass models over each base [49, 50]. In particular, the analysis

here seems to complete the picture of what possible codimension two singularities may

arise in principle from nonabelian charged matter, associated with distinct Calabi-Yau

threefold tunings over a given base. The detailed questions, however, of which anomaly-

allowed combinations of two- and three-index symmetric matter can be explicitly realized

in F-theory, however, must also be addressed to complete the classification of associated

Calabi-Yau threefold geometries.
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A Weierstrass models with symmetric matter

For the Weierstrass models that admit symmetric matter summarized below, we assume

the gauge group is tuned on a curve of form

h ≡ p(2)η2a + 2p(1)ηaηb + p(0)η
2
b = 0. (A.1)

The double points at ηa = ηb = 0 support symmetric matter.

Below we give the tunings for SU(3), SU(4), SU(2k) and SU(2k + 1). The SU(3) and

SU(4) tunings can be generated from the expressions for SU(2k+1) and SU(2k). However,

since SU(3) and SU(4) are referenced frequently, we include the explicit expressions for

convenience.

A.1 SU(3) with symmetric matter

f and g are given by

f = − 1

48
φ2 + f1h+ f2h

2 + f3h
3 (A.2)

g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3. (A.3)

φ, f1 and g2 are given by

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (A.4)

f1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (A.5)

and

g2 = (ψaηa + ψbηb)
2 − 2ψaψ

(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
φf2. (A.6)

Other parameters are untuned. The leading order term in the discriminant is given by

∆ =

[
φ2

16

[
2 (νbψa − νaψb)

(
ν (ψaηa + ψbηb)− ψ (νaηa + νbηb)

)
− ν2

(
p(0)ψ

2
a − 2p(1)ψaψb + p(2)ψ

2
b

)
− ψ2 (

p(0)ν
2
a − 2p(1)νaνb + p(2)ν

2
b

)
+ 2νψ

(
p(0)ψaνa − p(1)ψaνb − p(1)ψbνa + p(2)ψbνb

) ]
+ 4f31 −

φ2

2
f1f2 −

9

2
φf1g2 +

1

192
φ4f3 +

1

16
φ3g3

]
h3 +O(h4) . (A.7)
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A.2 SU(4) with symmetric matter

f and g are given by

f = − 1

48
φ2 − 1

6
φφ1h+ f2h

2 + f3h
3 (A.8)

g =
1

864
φ3 +

1

72
φ1φ

2h+
1

36
φ
(
φ21 − 3f2

)
h2

− 1

27

(
9φ1f2 +

9

4
φf3 + φ31

)
h3 + g4h

4 . (A.9)

Here, φ is as given in (A.4) and all other parameters are untuned. The leading order term

in the discriminant is given by

∆ =
1

576
φ2
(

36φg4 + 12φφ1f3 − 4
(
3f2 + φ21

)2)
h4 +O(h5) . (A.10)

A.3 SU(2k) with symmetric matter

f and g are given by

f = −1

3
υ2 +O(hk) (A.11)

g = − 1

27
υ3 − 1

3
υf +O(h2k), (A.12)

with

υ =
1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (A.13)

φ is again as given in (A.4) and all other parameters are untuned.

A.4 SU(2k + 1) with symmetric matter

f and g are given by

f = −1

3
υ2 + zkh

k +O(hk+1) (A.14)

g = − 1

27
υ3 − 1

3
υf + γ2kh

2k +O(h2k+1), (A.15)

with

υ =
1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (A.16)

φ is again as given in (A.4), and zk and γ2k are given by

zk = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (A.17)

and

γ2k = (ψaηa + ψbηb)
2−2ψaψ

(
p(1)ηa + p(0)ηb

)
+2ψbψ

(
p(2)ηa + p(1)ηb

)
+ψ

2
(
p2(1) − p(2)p(0)

)
.

(A.18)

Other parameters are untuned.
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B SU(2) Weierstrass model with three-index symmetric matter

The SU(2) gauge group is tuned on a curve of form

t ≡ t(3)η3a + 3t(2)η
2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0. (B.1)

The ηa = ηb = 0 triple points support three-index symmetric matter. f and g are given by

f = f0 + f1t+O(t2) g = g0 + g1t+O(t2), (B.2)

with

f0 =− 1

48

[(
haη

2
a+2hbηaηb+hcη

2
b

)2
+2φ(haηa+hbηb)τηa

+2φ(hbηa+hcηb)τηb+φ
2
τsq

]
, (B.3)

g0 =
1

864

[(
haη

2
a+2hbηaηb+hcη

2
b

)3
+3φ

(
haη

2
a+2hbηaηb+hcη

2
b

)
[(haηa+hbηb)τηa+(hbηa+hcηb)τηb]

+3φ
2 (
haη

2
a+2hbηaηb+hcη

2
b

)
τsq+φ

3
τcu

]
, (B.4)

f1 =λaηa+λbηb, (B.5)

g1 =
φ
2

576

[
ηa
(
hct(3)−2hbt(2)+hat(1)

)
+ηb

(
hct(2)−2hbt(1)+hat(0)

)
−φ

3

(
t(3)t(0)−t(2)t(1)

)]
− 1

12

(
haη

2
a+2hbηaηb+hcη

2
b

)
(λaηa+λbηb)−

1

12
φ(λaτηa+λbτηb) . (B.6)

τηa, τηb, τsq and τcu are defined as

τηa = −t(2)η2a − 2t(1)ηaηb − t(0)η2b (B.7)

τηb = t(3)η
2
a + 2t(2)ηaηb + t(1)η

2
b (B.8)

τsq =
(
t2(2) − t(3)t(1)

)
η2a +

(
t(2)t(1) − t(3)t(0)

)
ηaηb +

(
t2(1) − t(2)t(0)

)
η2b (B.9)

τcu =
(
t(3)t(2)t(1) − t3(2)

)
η3a + 3

(
t(3)t

2
(1) − t(1)t

2
(2)

)
η2aηb

+ 3
(
t(3)t(1)t(0) − t2(2)t(0)

)
ηaη

2
b +

(
t3(1) − 2t(2)t(1)t(0) + t(3)t

2
(0)

)
η3b . (B.10)

All other parameters are untuned.

C Symmetric matter and resolutions

The non-UFD nature of the split condition plays a key role in the singularity structure

for symmetric matter. To see this, we must analyze the resolution of elliptic fibration

singularities at double points, which is described in [5]. Consider an SU(4) model with
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symmetric matter located at double points, where the A3 gauge singularity enhances to a

codimension-two A7 singularity. For simplicity, we assume we are working in six dimen-

sions. Near a double point, the SU(4) gauge curve will appear to consist of two components.

The global structure of the gauge curve connects these two components, but if one focuses

on a sufficiently small region near the double point, the two components look disconnected

except for their intersection at the double point. For the purposes of the resolution, it is

therefore sufficient to consider the limit in which the SU(4) gauge curve factorizes. Suppose

the curve takes the form

σ = ξ2 − bη2, (C.1)

as in section 3. To analyze the double points at ξ = η = 0, we can consider the case where

b becomes a perfect square:

b→ β2. (C.2)

Then, the SU(4) gauge curve factorizes into two components, given by

ξ ± βη. (C.3)

Of course, we eventually have to account for the fact that these two components are in fact

connected. The details of this connection determine whether the double point contributes

symmetric or adjoint matter.

Before turning to the specific way in which the split condition affects the resolution,

let us outline the basic resolution procedure. There are A3 singularities along the two

components. These singularities are resolved via blow-ups that introduce three exceptional

P1’s per component, giving six exceptional curves in total. The intersection pattern of the

three exceptional curves forms an A3 Dynkin diagram, and the three curves correspond to

the positive simple roots of A3. Other −2 curves, given by linear combinations of the three

exceptional curves, correspond to the other A3 roots. At the double point, the singularity

type enhances from A3×A3 to A7. There are now seven exceptional curves forming an A7

Dynkin diagram, and appropriate linear combinations of these curves fill out the A7 roots.

Some of these A7 curves correspond to the A3 × A3 roots for the two components. The

remaining A7 curves correspond to the weights of charged matter localized at the double

point. The intersection numbers of these remaining curves with the A3 × A3 exceptional

curves give (the negative of) the Dynkin indices for the weights. From this information,

one can read off the representations supported at the double point. As described so far,

this process would seem to give A3 × A3 representations, such as (4,4) or (4, 4̄). Based

on the global structure of the curve, an A3 exceptional curve for one component can be

identified with an exceptional curve in the other component. The identification then allows

one to convert the A3 ×A3 representations into A3 representations such as the symmetric

or adjoint representations.

To proceed further, we consider the standard I4 Weierstrass model

y2 = x3 + fx+ g, (C.4)

– 64 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

with

f = − 1

48
φ2 − 1

6
φφ1σ + f2σ

2 (C.5)

g =
1

864
φ3 +

1

72
φ1φ

2σ +
1

36
φ
(
φ21 − 3f2

)
σ2 − 1

27

(
9φ1f2 + φ31

)
σ3 + g4σ

4. (C.6)

If we define

x′ = x− 1

12
φ− 1

3
φ1σ, (C.7)

the Weierstrass model can be written as

y2 = x′
3

+

(
φ

4
+ φ1σ

)
x′

2
+

(
f2 +

1

3
φ21

)
σ2x′ + g4σ

4. (C.8)

We let σ factorize into the two components in equation (C.3). In addition, we assume the

split condition is satisfied with φ = φ20. For now, we do not specify the form of φ0, although

we will return to this issue shortly. Up to the inclusion of higher order terms in x′ and σ,

this model is similar to that in [5]. However, φ0 and f2 + 12φ21 were set to constants in [5].

Thus, the expressions for the exceptional curves given there have a hidden dependence on

φ0. This dependence on φ0 must be considered to obtain a full understanding of the double

points. Nevertheless, the steps of the resolution are identical, so we do not describe the

full resolution procedure. Below, we discuss the end result of the resolution, focusing in

particular on how parameters such as φ0 and β affect the exceptional curves.

Along either of the two components, the blow-ups introduce three exceptional curves

that form an A3 Dynkin diagram, as illustrated in figure 4. For one of the components,

we label the exceptional curves C−1 , C2, and C+
1 . The plus and minus subscripts describe

the dependence of the exceptional curves on φ0. The explicit expressions for C+
1 and C−1

are nearly identical, except for the replacement of φ0 with −φ0. As a result, sending φ0
to −φ0 while leaving the other parameters unchanged exchanges C+

1 and C−1 . In C2, φ0
only appears in even powers, so there is no exchange involving C2 when φ0 → −φ0. For

the second component, the resolution produces three different exceptional curves, C̃−1 , C̃2,

and C̃+
1 , that form a distinct A3 Dynkin diagram. The C̃±1 have similar expressions related

by φ0 → −φ0 and are thus exchanged when the sign of φ0 is flipped. Moreover, the C+
1

and C̃+
1 expressions are nearly identical, except for the fact that they are associated with

different components. If one were to exchange the two components by sending β → −β
(while keeping other parameters fixed), C+

1 and C̃+
1 would then be exchanged. The same

is true for C−1 and C̃−1 .

At the ξ = η = 0 points, the singularity type enhances to A7. We now have seven

exceptional curves, denoted by the symbol γ, whose intersections are summarized by the

Dynkin diagram in figure 5. These curves, together with other −2 curves given by linear

combinations of the γ’s, fill out the 28 positive roots of A7. Some of these positive roots

correspond to the A3 exceptional curves from before. In particular, the C and C̃ exceptional

curves become linear combinations of the γ curves at the double point:

C±1 → γ±1 C2 → γ−2 + γ−3 + γ4 + γ+3 + γ+2 C̃±1 → γ±3 C̃2 → γ4 . (C.9)
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C−1 C2 C+
1 C̃+

1C̃2C̃−1

φ0 → −φ0 φ0 → −φ0

β → −ββ → −β

× × × ×

Figure 4. Exceptional curves for the A3 × A3 resolution. Circles denote the exceptional curves,

with x’s marking the intersections. Arrows indicate how exceptional curves are exchanged under

φ0 → −φ0 and β → −β. Colors indicate which C and C̃ curves are identified for the case with

symmetric matter.

Likewise, the other A3 roots, formed by linear combinations of the C’s and C̃’s, become

linear combinations of the γ’s at the double point. Thus, 12 of the 28 positive A7 roots

represent the positive A3 roots from before. The remaining positive A7 roots correspond

to the weights of the charged matter localized at the double point. One can calculate the

intersection numbers of these curves with those in equation (C.9) to obtain the (negative of)

the Dynkin indices of the weights. An explicit analysis of the weights shows that the charged

matter consists of bifundamentals; since we are essentially dealing with an SU(4) × SU(4)

gauge group, this is the expected result. In particular, the curve γ∗ = γ−3 +γ4+γ+3 +γ+2 +γ+1
has the intersection numbers

γ∗ · C−1 = 0 γ∗ · C2 = 0 γ∗ · C+
1 = −1 (C.10)

γ∗ · C̃−1 = −1 γ∗ · C̃2 = 0 γ∗ · C̃+
1 = 0 . (C.11)

The corresponding root therefore has Dynkin indices [0, 0, 1] and [1, 0, 0], which are those

for the highest weight of the bifundamental.

Now, we can return to the situation where the gauge curve does not factorize. Near

the double point, the curve still appears to consist of two distinct components, but the two

components are connected by the global structure of the curve. The two A3’s from the two

components should therefore be identified with each other. In particular, an exceptional

curve for one component should be identified with a specific exceptional curve for the other

branch. In the setup described above, the two components are essentially identical except

for the sign of β. We therefore need to examine how the forms of the exceptional curves

change when β is sent to −β while other parameters are unchanged. Suppose we have a

standard, UFD tuning, where φ0 does not depend on β. Then, when β → −β, the curve

C+
1 becomes C̃+

1 , indicating that C+
1 and C̃+

1 should be identified. Importantly, φ0 was

unaffected by letting β → −β, implying that C+
1 should be identified with C̃+

1 and not

C̃−1 . The A7 curve γ∗ corresponding to the highest weight intersects two curves that are
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γ−1 γ−2 γ−3 γ4 γ+3 γ+2 γ+1

C−1 C̃−1 C+
1C̃+

1C̃2

C2

× × × ×

Figure 5. Embedding of A3×A3 → A7 at a double point. Black dots represent exceptional curves

for the A7 singularity, with the lines between them denoting intersections between the exceptional

curves. Colored lines indicate the combinations of γ curves corresponding to the A3×A3 exceptional

curves. Colors indicate which C and C̃ curves are identified for the case with symmetric matter.

not identified, C+
1 and C̃−1 . Once the global structure of the gauge curve is accounted for,

the Dynkin index is [1, 0, 1], that for the highest weight for adjoint matter. This implies

that in the UFD situation, the double point contributes adjoint matter.

For the non-UFD tuning from section 3, φ0 is proportional to B̃. Note that β in some

sense plays the same role as B̃, so φ0 is essentially proportional to β. Taking β → −β
therefore changes the sign of φ0 as well. C+

1 is now identified with C̃−1 , not with C̃+
1 . Since

γ∗ intersects both C+
1 and C̃−1 , the highest weight now has Dynkin indices [2, 0, 0], signaling

the appearance of symmetric matter. This alternative identification relies crucially on the

fact that φ0 has a particular structure based on the form of the gauge curve. An arbitrary

φ0, such as that in the UFD tuning, leads to an identification corresponding to adjoint

matter. The non-UFD implementation of the split condition is thus a vital feature of the

models with symmetric matter.
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[25] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory,

JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

– 68 –

https://doi.org/10.4310/CNTP.2012.v6.n1.a2
https://arxiv.org/abs/1109.0042
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0042
https://doi.org/10.1007/JHEP04(2016)080
https://doi.org/10.1007/JHEP04(2016)080
https://arxiv.org/abs/1512.05791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05791
https://doi.org/10.1007/JHEP04(2011)080
https://doi.org/10.1007/JHEP04(2011)080
https://arxiv.org/abs/1011.0726
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.0726
https://doi.org/10.1016/0370-2693(96)01134-3
https://arxiv.org/abs/hep-th/9606008
https://inspirehep.net/search?p=find+EPRINT+hep-th/9606008
https://doi.org/10.1007/JHEP11(2015)204
https://doi.org/10.1007/JHEP11(2015)204
https://arxiv.org/abs/1507.05954
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05954
https://doi.org/10.1007/JHEP06(2016)171
https://arxiv.org/abs/1604.01030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.01030
https://arxiv.org/abs/1104.2051
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2051
https://arxiv.org/abs/hep-th/0411120
https://inspirehep.net/search?p=find+EPRINT+hep-th/0411120
https://doi.org/10.1016/0550-3213(85)90222-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B254,327%22
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1016/0370-2693(92)90682-T
https://arxiv.org/abs/hep-th/9210127
https://inspirehep.net/search?p=find+EPRINT+hep-th/9210127
https://doi.org/10.1007/JHEP11(2010)118
https://arxiv.org/abs/1008.1062
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1062
https://doi.org/10.1063/1.530885
https://arxiv.org/abs/hep-th/9304104
https://inspirehep.net/search?p=find+EPRINT+hep-th/9304104
https://doi.org/10.1007/JHEP11(2015)002
https://arxiv.org/abs/1502.06594
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06594
http://dx.doi.org/10.2307/1970131
http://dx.doi.org/10.2307/1970500
https://doi.org/10.1016/0370-2693(96)01095-7
https://doi.org/10.1016/0370-2693(96)01095-7
https://arxiv.org/abs/hep-th/9605131
https://inspirehep.net/search?p=find+EPRINT+hep-th/9605131
http://dx.doi.org/10.1007/BFb0097582
https://doi.org/10.1007/JHEP08(2011)094
https://arxiv.org/abs/1106.3854
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3854


J
H
E
P
1
1
(
2
0
1
7
)
1
2
4

[26] S.D. Cutkosky, Resolution of Singularities, American Mathematical Society, Providence

(2004).

[27] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison–Wesley,

Reading, Mass. (1969).
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