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Abstract: We analyze exotic matter representations that arise on singular seven-brane
configurations in F-theory. We develop a general framework for analyzing such representa-
tions, and work out explicit descriptions for models with matter in the 2-index and 3-index
symmetric representations of SU(N) and SU(2) respectively, associated with double and triple
point singularities in the seven-brane locus. These matter representations are associated with
Weierstrass models whose discriminants vanish to high order thanks to nontrivial cancella-
tions possible only in the presence of a non-UFD algebraic structure. This structure can be
described using the normalization of the ring of intrinsic local functions on a singular divisor.
We consider the connection between geometric constraints on singular curves and correspond-
ing constraints on the low-energy spectrum of 6D theories, identifying some new examples
of apparent “swampland” theories that cannot be realized in F-theory but have no apparent
low-energy inconsistency.
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1 Introduction

The relationship between geometric structure and the physical content of quantum field the-
ories and gravity theories has been a theme in string theory and related research for several
decades. The formulation of F-theory [1–3] has given perhaps the most general geometric
approach yet to the construction of physical theories with varied gauge groups and matter
content. While the F-theory “dictionary” that relates geometry and gauge symmetry is well un-
derstood both mathematically and physically, the corresponding connection between geometric
structure and the representation theory content of matter fields is still under development.
In this paper we analyze some new aspects of the geometry-matter F-theory correspondence,
associated with nonperturbative features of singular seven-brane configurations that carry
exotic matter representations in the associated physical picture.

In standard perturbative type II string theory, a stack of D-branes carries a U(N) gauge
symmetry, and only certain relatively simple matter representations can arise. In particular,
on supersymmetric branes in flat space, intersecting branes carrying U(N) and U(M) gauge
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groups give rise to bifundamental (N, M̄) and (N̄ ,M) matter fields. The two-index nature
of the matter fields in perturbative type II constructions comes from the realization of these
matter fields through strings, where the Chan-Paton factors on the two ends of the string cor-
respond to the two indices on the matter fields. In the nonperturbative framework of F-theory,
the range of matter fields that can be realized is much broader. In F-theory compactifica-
tions where an SU(N) gauge group is realized (e.g. via a type IN Kodaira singular fiber)
over a smooth 7-brane locus, the generic types of matter that arise are adjoint (N2 − 1),
fundamental (N), and two-index antisymmetric (N × (N − 1)/2) matter fields. These cor-
respond again to two-index representations with origins common to those in the perturbative
formulation of the theory. Another set of matter fields that can arise in F-theory are the
3-index antisymmetric representations (20, 35, 56) of SU(6), SU(7), and SU(8), which can
arise through nonperturbative F-theory constructions over a smooth seven-brane locus [4–7].
These antisymmetric representations can be realized explicitly through relatively standard
Weierstrass models in F-theory.

A more exotic set of SU(N) representations in F-theory are those for which the Young
diagram has more than one column, corresponding to some indices over which the represen-
tation is symmetric. Such representations can only arise over seven-brane configurations that
are singular [8]. The possibility of a two-index symmetric representation arising at a double
point singularity was suggested by Sadov [9], and considered further in [5], but can only be
distinguished from an adjoint through global geometric considerations. Explicit examples of
such two-index symmetric representations of SU(3) were found and explored in [10, 7]. These
explicit models exhibit rather subtle structure in the Weierstrass model involving a nontrivial
cancellation in the ring of functions on the divisor carrying the gauge group, which depends
crucially on the structure of the singularity. Similar explicit representations of 3-index sym-
metric representations of SU(2) were found in [11] to have a related structure. In this paper
we develop a systematic approach to understanding these kinds of representations, using the
non-UFD (UFD = unique factorization domain) nature of the ring of functions on singular
seven-brane loci.

The structure of this paper is as follows: In §2 we review some basic relevant background
on F-theory constructions and low-energy 6D supergravity theories. Most of the explicit
examples in the paper are given in the context of 6D models, where the understanding is
most complete, though the same principles will apply for 4D F-theory models. In §3 we
give two very simple examples of the kinds of construction needed to realize exotic non-UFD
matter realizations, to illustrate the general structure of these models. In §4 we give a concise
description of the mathematical framework needed to describe the Weierstrass models for these
kinds of constructions. In §5 we go into detail in analyzing the general construction of models
with two-index symmetric matter at double points, and in §6 we describe the construction
of models with three-index symmetric matter at triple points. In §7 we show how these
geometric constructions are connected to more standard matter constructions through “matter
transitions” analogous to those studied in [7]. We then in §8 consider how the configurations
that contain these exotic matter fields are constrained both in F-theory and from low-energy
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considerations, and identify cases where the F-theory constraints are stronger than those
that are known in the low-energy theory, giving some new examples of theories in the 6D
supergravity “swampland”. In §9 we consider the more general question of what exotic matter
representations are allowed in any F-theory models, and conclude that those studied here seem
to essentially exhaust the interesting possibilities for matter charged under nonabelian gauge
groups, though some more complicated representations are not ruled out from low-energy
considerations and currently lie in the swampland. §10 contains some concluding remarks.

2 Background on F-theory and 6D supergravity

We review here very briefly some basics of F-theory and summarize the important features of
the 6D supergravity theories that are the focus of the explicit examples in this paper. Further
background on F-theory can be found in [1–3] or in the review notes [12, 13].

2.1 SU(N) gauge factors in F-theory

We will consider F-theory models on a base B, defined by a Weierstrass model

y2 = x3 + fx+ g . (2.1)

Here f, g are functions depending on local coordinates in B that define an elliptic curve at each
point in B. More formally, these are sections of line bundles f ∈ Γ(O(−4K)), g ∈ Γ(O(−6K)),
where K is the canonical class of the base; this fixes the total space of the elliptic fibration
over B to be an elliptic Calabi-Yau manifold. The elliptic fibration is singular along the
seven-brane locus defined by the discriminant

∆ := 4f3 + 27g2 = 0 . (2.2)

We will focus here primarily on type In Kodaira singularities, which locally are like perturba-
tive stacks of n D7-branes. Such a singularity occurs when the discriminant vanishes to order
n in a local coordinate z. In a local expansion in z,

f = f0 + f1z + f2z
2 + · · · (2.3)

g = g0 + g1z + g2z
2 + · · · (2.4)

To realize an SU(2) gauge symmetry along z = 0, we must then have ∆ = ∆2z
2 + · · · . For

vanishing at order 0, we have 4f30 + 27g20 = 0, which can be satisfied if f0 = −φ2/48, g0 =

φ3/864 for some φ. For vanishing at order 1 we then have 12f20 f1 + 54g0g1 = 0, which can
be solved by g1 = −2f20 f1/9g0 = −φf1/12. This gives a local construction of the Weierstrass
model with an SU(2) gauge symmetry over the locus z = 0.

This analysis is extended to higher order in z in [5]. To get an SU(3) gauge group, there
are several conditions. First, the “split” condition states that φ must be a perfect square
φ = φ20. Second, the vanishing of ∆ at order 2 gives the further conditions that f1 = φ0ψ1/2

for some function ψ1 and that g2 = ψ2
1/4− φ20f2/12.
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One of the principal goals of this paper is to generalize this kind of analysis to situations
where the SU(N) gauge group is realized on a general divisor D that can have singularities.
In such a situation the local coordinate z is replaced by the section σ, where the equation
σ = 0 defines the divisor D.1

2.2 Anomaly cancellation conditions and SU(N) spectra

In a 6D supergravity theory there are strong consistency conditions on the massless spectrum
from anomaly constraints [14, 15]. Using the notation and formalism of [16], the gauge and
gauge-gravitational anomaly cancellation conditions can in general be written as

−a · b = −1

6

(
AAdj −

∑
R

nRAR

)
, (2.5)

0 = Badj −
∑
R

nRBR, (2.6)

b · b = −1

3

(
CAdj −

∑
R

nRCR

)
. (2.7)

Here a, b are Green-Schwarz coefficients that live in a lattice of signature (1, T ) and AR, BR, CR
are group theory coefficients defined in e.g. [17], while nR is the number of matter (hypermul-
tiplet) fields in the representation R. There is also the gravitational anomaly constraint

H − V = 273− 29T, (2.8)

where T is the number of tensor multiplets, V is the number of vector multiplets, and H is
the total number of hypermultiplets. In a model that comes from F-theory, b represents the
divisor class of the seven-brane curve D carrying the gauge group and a = K is the canonical
class of B. In this case, the genus of the curve D satisfies 2g − 2 = b · b+ a · b. We can take
this more generally as the definition of a quantity g in the low-energy theory for any choice
of a, b, and an associated simple gauge factor g satisfying the anomaly conditions.

For the explicit models in this paper we focus primarily on theories with gauge group
SU(2) and SU(3). For each of these gauge groups there is no quartic invariant, so B = 0

and (2.6) is satisfied automatically. Furthermore, for each of these groups global anomaly
conditions constrain b · b and a · b to be integers. We discuss models with each of these gauge
groups in turn, and then briefly describe the story for SU(N) for general N .

The anomaly coefficients for SU(2) are given in Table 1. If we assume that the only
SU(2) representations that arise are the fundamental, adjoint, and 3-index symmetric, then
Equations (2.5) and (2.7) can be solved to find:

n4 =
r

2
nAdj = g − 3r n2 = 16 + 6(b · b)− 16g + 7r . (2.9)

1Thus, D is a Cartier divisor. We assume in this paper that the base B is nonsingular, which implies that
all divisors are Cartier divisors.
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Representation Dimension AR BR CR g

2 1 [12 ] 0 1
2 [14 ] 0

Adj 3 4 0 8 1
4 10 [5] 0 41

[
41
2

]
6 [3]

5 20 0 136 21

Table 1. Anomaly coefficients for SU(2) representations. Numbers in square brackets refer to half-
hypermultiplets for self-conjugate representations. Values calculated using formulae in [8]

Base P2 Fn

−KB 3H 2S + (n+ 2)F

Number of Tensors 0 1
Divisor Class of Curve dH α

2

(
S + n

2F
)

+ α̃
2F

−a · b 3d α+ α̃

b · b d2 1
2αα̃

Genus g 1
2

(
d2 − 3d+ 2

)
1
2

(
1
2αα̃− α− α̃+ 2

)
Multiplicity 1

2r
1
2r

Adjoint Multiplicity 1
2

(
d2 − 3d+ 2− 6r

)
1
4(α− 2)(α̃− 2)− 3r

Fundamental Multiplicity −2d2 + 24d+ 7r −αα̃+ 8 (α+ α̃) + 7r

Singlet Multiplicity 273 + 5
2d

2 − 87
2 d− 7r 244 + 5

4αα̃−
29
2 (α+ α̃)− 7r

Table 2. Multiplicities for SU(2) models on compactification bases P2 and Fn.

The gravitational anomaly constraint then gives

n1 = 244− 29T + 29g − 12(b · b)− 7r . (2.10)

These are the spectra for the models we wish to describe explicitly here through F-theory by
explicit Weierstrass constructions. The multiplicities for such SU(2) tunings on the simplest
base surfaces P2 and Fn are given in Table 2.

One way of understanding the spectrum (2.9) is to note that the most generic model (hav-
ing the largest number n1 of uncharged scalar fields) with given a, b in most cases corresponds
to the r = 0 model, with g adjoint representations and 16(1−g)+6(b·b) fundamental represen-
tations. Because there are only two independent anomaly coefficients A,C, the contribution
of any other representation can be described in terms of the fundamental and adjoint, giving
an anomaly equivalence [5, 6] such as

3× 3 + 7× 1↔ 1

2
× 4 + 7× 2 . (2.11)

This means that, at least as far as anomalies are concerned, 3 adjoints and 7 uncharged scalars
can be exchanged for a half hypermultiplet in the 3-index symmetric (4) representation and
7 fundamental fields. In [7], it was shown that 3-index antisymmetric matter representations
of SU(N) that are anomaly equivalent to simpler matter fields can be connected explicitly
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Representation Dimension AR BR CR g

Adj 8 6 0 9 1
3 1 0 1

2 0
6 5 0 17

2 1
10 15 0 99

2 7

Table 3. Anomaly coefficients for SU(3) representations.

to more generic fields through unusual “matter transitions” in which the gauge group and
tensor content stay unchanged but the matter representations change. In §7 we show that in a
similar fashion the transition (2.11) can be realized explicitly as a continuous phase transition
between distinct Weierstrass models. Note that for some choices of a, b there are no allowed
models with r = 0. For example, if a = −3H, b = dH = 13H in a model with T = 0 tensor
multiplets, then the number of fundamentals 7r + 2d(12 − d) = 7r − 26 being nonnegative
implies that there are at least r ≥ 4 3-index symmetric representations in any valid model.
Such examples have been encountered in [11, 18] and are discussed further in §8.2.

Note that there is also an anomaly equivalence in the low-energy theory

5 + 64× 2↔ 21× 3 + 70× 1 . (2.12)

From this we can see that there are low-energy 6D supergravity models that contain 4-index
symmetric representations of SU(2) that satisfy all the anomaly constraints including the
gravitational anomaly [8]. For example, the generic T = 0 model with d = 8 has 21 adjoints,
64 fundamental representations, and 82 uncharged scalars. This is anomaly-equivalent to a
model with 128 fundamentals, a single 5 and 12 uncharged scalars. As discussed further in
§9, we do not believe however that this model has an F-theory realization.

A similar story holds for SU(3) models. The anomaly coefficients of the simplest represen-
tations are given in Table 3. A generic model has g adjoints and 18(1−g)+6(b·b) fundamental
representations. There is an anomaly equivalence for every SU(N), N > 2 that relates an ad-
joint (plus an uncharged scalar) to a combination of symmetric and antisymmetric two-index
tensors

1 + Adj(N2 − 1)↔N(N − 1)/2 + N(N + 1)/2 . (2.13)

This enables the exchange of adjoints and symmetric matter while maintaining the total value
of g, to which each contributes one. For SU(3), the two-index antisymmetric representation is
equivalent to the antifundamental, so this simply gives a fundamental hypermultiplet, and the
anomaly equivalence is 1 + 8↔ 3 + 6. Note that there are anomaly-consistent SU(3) spectra
with choices of a, b that must have two-index symmetric representations. For example, for
T = 0 at d = 9 the generic model has 28 adjoint fields and 0 fundamentals. At d = 10, there
is an anomaly-allowed model with 6 adjoints and 30 6’s, along with 45 uncharged scalar fields.
There are no fundamentals, however, so despite the anomaly equivalence the 6’s cannot be
exchanged for adjoints. We return to these models in §8.1.2.
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The story is similar for SU(N), N > 3 except that there are three independent represen-
tations since generically BR 6= 0. Generic models will have g adjoints, 16(1−g)+(8−N)(b ·b)
fundamental N matter fields, and 2(1− g) + b · b two-index antisymmetric matter fields. Ad-
joints can then be exchanged for symmetric plus antisymmetric fields through (2.13). Finally,
note that there is an anomaly equivalence for SU(3) representations in the low-energy theory
27 × 3 + 10 ↔ 7 × 8 + 25 × 1, so there are anomaly-consistent low-energy models with a
three-index symmetric tensor (10) representation, such as the T = 0, d = 6 model with 3
adjoints, 81 fundamentals, one 3-index symmetric, and 56 uncharged scalar fields. Again, we
argue in §9 that such models cannot be realized in F-theory.

This completes the overview of the low-energy theories that we encounter in the various
constructions later in this paper. Before moving on, we note that the anomaly equations
suggest that, at least for 6D theories, gravity cannot be decoupled if certain representations
are present. If a representation R has a CR larger than CAdj, Equation (2.7) implies that
b · b must be positive if there are any hypermultiplets in the representation R. (If half-
hypermultiplets are possible, this scenario occurs when 1

2CR > CAdj.) Recall that the Green-
Schwarz coefficients live in a lattice of signature (1, T ). The negative part of the signature
corresponds to tensors living in tensor multiplets, whereas the positive part corresponds to
the tensor living in the graviton multiplet. A positive b · b indicates that the tensor field in the
graviton multiplet participates non-trivially in the Green-Schwarz mechanism. Thus, if gravity
is decoupled, one cannot cancel anomalies if there are any representations with CR > CAdj (or
1
2CR > CAdj for representations with half-hypermultiplets). The 4 representation of SU(2)

has a CR that leads to positive b · b, as do the 35 of SU(7) and the 56 of SU(8). While these
representations occur in known 6D supergravity theories coming from F-theory, they cannot
be part of a 6D theory without gravity, explaining their absence from the classification in [19].
The 5 representation of SU(2) and the 10 representation of SU(3), both of which we believe
cannot be realized in F-theory, also have CR > CAdj. It may be interesting to further explore
whether this fact gives new physical insights into these representations.

3 Tuning with a non-UFD ring: examples

Before getting into technical details, to give a sense of the spirit of the constructions needed
we give a pair of simple examples of how nontrivial cancellations can arise in the Weierstrass
models realizing I2 and I3 singularities when the divisor D supporting the gauge group is
itself singular. We take σ to be a section of the line bundle associated with D, so that in local
coordinates σ = 0 denotes the locus of points in D.

3.1 Triple points and SU(2) 3-symmetric matter

As a simplest example, we want to tune on σ = ξ3 − bη3 = 0. Here ξ, η, and b are some
functions (sections) that do not admit any factorization. In general, σ cannot be factorized
and defines a divisor that is singular at the locus of points ξ = η = 0. For example, if ξ, η and
b are respectively irreducible quadratic, linear, and cubic functions in some local coordinates,
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then ξ = η = 0 gives a pair of triple point singularities. The general idea is that we want to
expand the ring of functions on D to allow σ to be factorized. Formally this is done using
the mathematical notion of the normalized intrinsic ring, which is developed in detail in the
following section. More informally, the idea is that to generalize the expansions (2.3, 2.4) for
σ instead of z, the coefficients f0, . . . must be in the natural ring of functions on D. The
auxiliary function φ from §2.1, however, can be in a larger ring that is given by adjoining an
element B̃ such that ξ = B̃η; note that B̃ = b1/3 solves the cubic equation B̃3 = b. This gives
the normalized intrinsic ring for D, which has somewhat the flavor of a Galois field extension.
For the cubic σ = ξ3−bη3 = 0 we choose an element Φ̃, the analogue of φ,2 to be the following
element of the normalized intrinsic ring

Φ̃ = B̃2η . (3.1)

We can then define the leading terms of f and g in terms of Φ̃

f0 = −Φ̃2/48 = −B̃4η2/48⇒ −bξη/48 (3.2)

g0 = Φ̃3/864 = B̃6η3/864⇒ b2η3/864 . (3.3)

and note that they are restrictions of functions on the F-theory base, as indicated by the
righthand side of the above expressions. We then have

∆0 → 4f30 + 27g20 = (−b3ξ3η3 + b4η6)/27648 = −b3η3σ/27648 . (3.4)

We thus have a nontrivial cancellation in the discriminant made possible by the form of σ. At
the next order we have

∆1 → 12f20 f1 + 54g0g1 − b3η3/27648 = g1(b
2η3)/16 + (b2η2ξ2)f1/192− b3η3/27648 . (3.5)

This can be made to vanish by taking, for example, f1 = ηλ for some λ. Then g1 = −ξ2λ/12+

b/1728. We then have the expansion

f = −bξη/48 + λησ +O(σ2) (3.6)

g = b2η3/864 + (−ξ2λ/12 + b/1728)σ +O(σ2) (3.7)

∆ = O(σ2) (3.8)

This gives an SU(2) on the divisor σ, which has triple points at the loci ξ = η = 0 in a
nonstandard Weierstrass form.

3.2 Double points and SU(3) symmetric matter

Now consider SU(3) with a double point associated with

σ = ξ2 − bη2 . (3.9)
2We have changed the symbol to agree with the notation used later: parameters that are well-defined only

in the normalized intrinsic ring are capitalized and have a tilde.
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Again, the normalized intrinsic ring is given by adjoining B̃ such that ξ = B̃η; this time,
we have B̃ =

√
b, which solves the quadratic equation B̃2 = b. Working in the normalized

intrinsic ring, we have f0 proportional to φ2 and g0 proportional to φ3, but because the split
condition must be enforced to obtain SU(3), we must take φ = Φ̃2

0. As a possible solution not
in standard form, we choose Φ̃0 = B̃ =

√
b in the normalized intrinsic ring, so that

φ = b (3.10)

is well-defined in the ring of functions on D.
At leading order, f0 = −φ2/48 = −b2/48, g0 = φ3/864 = b3/864. Cancelling ∆1 we have

g1 = −φf1/12 = −bf1/12 . (3.11)

At the next order, we have

∆2 = −b2f21 /16 + b4f2/192 + b3g2/16 (3.12)

so we wish to solve
f21 − b2f2/12− bg2 = 0 (3.13)

in the normalized intrinsic ring. Since b = B̃2, for any solution we must be able to write

f1 = B̃Ψ̃1 , (3.14)

where Ψ̃1 is in the normalized intrinsic ring. We then take

g2 = Ψ̃2
1 − bf2/12 . (3.15)

The challenge is to ensure that B̃Ψ̃1 and Ψ̃2
1 lie in the appropriate ring of functions on D.

If we choose f1 = B̃η = ξ then g2 = η2 − bf2/12 and we have

∆2 = −b2ξ2/16 + b4f2/192 + b3(η2 − 1

12
bf2)/16 = −b2σ/16 , (3.16)

ensuring SU(3) gauge symmetry.

4 Mathematical description of the normalized intrinsic ring

Let us review the history of how our understanding of the singular fibers in F-theory fibrations
has evolved over time. The first step was Kodaira’s classification [20], which related specific
geometric singular fibers to specific choices of monodromy on the homology of elliptic curves
along loops in the base surrounding the singular fiber. (In F-theory terms, this classifies singu-
lar fibers according to the ways in which they source the scalar field in type IIB supergravity
[21].) The total space of the corresponding Weierstrass model has an ADE singularity, and
this – together with the known gauge theory behavior for perturbative IIB 7-branes – allowed
the association of a gauge algebra to each codimension one singularity (for eight-dimensional
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theories). A straightforward method to “read off” the type of Kodaira singular fiber from
a Weierstrass equation is also known, in terms of the orders of vanishing of the Weierstrass
coefficients f and g as well as the discriminant 4f3 + 27g2.

The second step was the realization that in lower dimensional compactifications, another
kind of monodromy comes into play: monodromy could act as automorphisms of the Kodaira
singular fibers themselves [22]. We refer to this as “Tate monodromy” to distinguish it from
the original “Kodaira monodromy” because Tate’s algorithm [23] (a refinement of the Ko-
daira classification) allows one to fully classify gauge algebras in lower dimension, including
monodromy considerations.3 This was spelled out in [4], with some clarifications in [6].

Tate’s algorithm also allows one to “read off” the matter content from certain codimension
two singular loci, but it was realized in [5] and [24] that the analysis from [4] was not complete,
and that analysis was reexamined in those two papers.4 The term “Tate form” has come to
mean a model whose gauge algebra is determined by an equation in one of the forms studied
in [4, 24]; the goal of this paper is to begin a systematic study of models that are not in Tate
form.

The key technique in both [5] and [24] was to find expansions for the Weierstrass co-
efficients f and g as finite power series in σ, when {σ = 0} defines a component Σ of the
discriminant locus of the fibration. More precisely, sequences of functions f0, f1, . . . , fN and
g0, g1, . . . , gN were found such that

f ≡ f0 + f1σ + · · ·+ fNσ
N (mod σN+1)

g ≡ g0 + g1σ + · · ·+ gNσ
N (mod σN+1),

(4.1)

and satisfying other properties that clarify the structure of the corresponding singularities.
Each function fj or gj is chosen for its properties as an intrinsic function on Σ. That is, if we
introduce the algebraic coordinate ring5 R of (an open subset of) the F-theory base B with
fj , gj ∈ R, then the key properties of these functions are determined by their images in R/〈σ〉.
We can think of R/〈σ〉 as the ring of intrinsic local functions on Σ.6

In both [5] and [24], a condition was imposed that this ring of intrinsic local functions on
Σ should be a unique factorization domain (UFD), and that property was used extensively
in analyzing the expansion. In this paper, we will go beyond that assumption, and consider
divisors Σ whose ring of intrinsic local functions is not a UFD.

3From Tate’s point of view, this arises because the function field of the F-theory base is not algebraically
closed.

4Ref. [5] had the goal of describing as many matter configurations as possible, whereas Ref. [24] was devoted
to exploring to what extent the original Tate algorithm was predictive in codimension two.

5This algebraic coordinate ring need only contain functions defined in a neighborhood of the point being
studied, and for example might take the form R = C[s, t] for appropriate local coordinates s and t.

6A note about terminology: every affine algebraic variety has an associated “coordinate ring;” this applies
equally well to open subsets of the F-theory base B and as well as to open subsets of the divisor Σ on B. This
terminology can be confusing when more than one algebraic variety is under discussion, so we shall use the
word “intrinsic” to emphasize that the functions in question need only be defined on the divisor Σ.
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A fundamental result in algebraic geometry says that any algebraic variety Σ has a “nor-
malization” Σ̃ that is nonsingular in codimension one. (If Σ has dimension one, then Σ̃ is in
fact nonsingular.) The functions on Σ̃ are described by the “normalization” of the ring R/〈σ〉.
We shall refer to this normalization R̃/〈σ〉 as the normalized intrinsic ring.

A key property that holds when Σ has dimension one is that the normalized intrinsic ring
is a UFD. This means that, at least for 6D theories, we will be able to use aspects of the UFD
analysis from [5] but applied to elements of the normalized intrinsic ring rather than elements
of the intrinsic ring itself. For all divisors studied in this paper (of whatever dimension), we
will assume that the normalized intrinsic ring is a UFD.

Algebraically, the normalized intrinsic ring is what is known as the “integral closure of
R/〈σ〉 in its field of fractions.” Algorithms are known for computing this normalization in
very general settings: we refer the reader to Chapter 1 of [25] for a very readable account of
this. In this paper, we will focus on examples that are closely connected to interesting matter
representations in F-theory.

We begin with a simple example of a normalized intrinsic ring: a cusp singularity on Σ.
That is, we assume that Σ has a local equation of the form σ = t3 − s2. The corresponding
intrinsic ring R/〈σ〉 takes the form

C[s, t]/〈t3 − s2〉 (4.2)

and is visibly not a UFD, since s · s = t · t · t in that ring.
The algebraic prescription for finding the normalized intrinsic ring is to add elements in

the field of fractions of R/〈σ〉 that satisfy a monic polynomial with coefficients in R/〈σ〉. (In
general it may be necessary to shrink the open set in order to find such elements, and the
systematic algorithm can be complicated: see [25].) In this particular case, we only need to
adjoin the element Ũ = s/t, which satisfies two equations:

0 = Ũ t− s

0 = t− Ũ2.
(4.3)

That is, we have
R̃/〈σ〉 = C[s, t, Ũ ]/〈t3 − s2, Ũ t− s, t− Ũ2〉 , (4.4)

which can be rewritten in the form R̃/〈σ〉 = C[Ũ ] since s can be eliminated using s− Ũ t and
then t can be eliminated using t− Ũ2.

The geometric interpretation is this: the function s/t is well-defined away from the cusp
and has a well-defined limit on the smooth divisor Σ̃, so it should be added to the ring of
functions. Note that adding this function resolves the UFD issue, since s2 = Ũ6 = t3 in the
larger ring.

This structure now gives us some additional flexibility in building F-theory models. For
Σ to be contained in the discriminant locus, we need 4f30 + 27g20 to be identically zero. If
the ring of intrinsic functions is itself a UFD, this implies that there is a function φ such
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that7 f0 = −φ2/48 and g0 = φ3/864. In the case of a cusp singularity, although the ring
of intrinsic functions is not a UFD, the normalized intrinsic ring is a UFD. We will get a
solution to the problem of putting Σ into the discriminant locus if we can find a function
Φ̃ ∈ R̃/〈σ〉 with the property that f0 := −Φ̃2/48 and g0 := Φ̃3/864 both lie in the subring
R/〈σ〉 of functions coming by restriction from the F-theory base. Choosing Φ̃ = Ũ satisfies
this property without Φ̃ itself being the restriction of a function from B. Thus, we can take
f0 = −t/48 and g0 = s/864 to obtain a solution.

This is a gratifying result, since one of the first observations one makes about F-theory
in dimension six or lower is that the multiplicity one part of the discriminant almost always
contains cusp singularities, at points where f and g both vanish. Here we see this arising from
a local analysis in a non-UFD case. While in this situation the discriminant generically does
not support a gauge group and there is no charged matter, the non-UFD structure here is a
simple example of the kind of thing that we encounter in the cases here with matter at double
point and triple point singularities.

The examples in §3 were also phrased in terms of the normalized intrinsic ring. We will
be more systematic about the structure of that ring in subsequent sections. We will also use
a notation aimed at distinguishing between elements of the various rings. Variables that are
well-defined only in the normalized intrinsic ring are capitalized and marked with a tilde. For
the most part, variables that are in either the coordinate ring or the ring of intrinsic local
functions are lowercase; the main exceptions are the discriminant ∆ and variables related to
it (such as terms in a power series expansion of ∆).

5 Detailed analyses of constructions: double points

In this section, we describe how to derive more general SU(N) tunings using the normalized
intrinsic ring techniques. Specifically, we focus on tuning SU(N) on curves of the form

h ≡ p(2)η2a + 2p(1)ηaηb + p(0)η
2
b = 0, (5.1)

with symmetric matter localized at the ηa = ηb = 0 double points. The previously derived
SU(3) models with symmetric matter use curves that can be written in this form, making this
case an important one to consider. Before performing the tuning, we describe some of the
physical and conceptual ideas behind the tuning. These conceptual insights in fact foreshadow
some of the features of the Weierstrass model. We then give the algebraic derivation of the
SU(N) tuning and discuss the resulting matter spectrum. The final tunings are also given in
Appendix A.

The quantities ηa, ηb, p(0), p(1), and p(2) are all elements of the coordinate ring of the F-
theory base. However, for some purposes it is convenient to work with (5.1) more abstractly,
and to do computations in an auxiliary ring C[ηa, ηb, p(0), p(1), p(2)] and to regard h as an
element of that ring.

7We are following the normalization used in [5].
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5.1 Geometry, monodromy and symmetric matter

In field theory, one can Higgs an SU(N ≥ 4) gauge group to Sp(bN2 c) by giving a VEV to an
antisymmetric hypermultiplet. The corresponding branching rules for the SU(N) representa-
tions are

→ → + 1 → Adj→ + (5.2)

From §2.2, there are anomaly-equivalent SU(N) matter spectra related by the exchange

Adj + 1↔ + (5.3)

The branching rules in (5.2) imply that both sides of (5.3) branch to the same Sp(bN2 c)
representations. In other words, two anomaly-equivalent SU(N) models Higgs down to the
same Sp(bN2 c) model, even though the two models initially have different matter spectra. A
similar story holds for SU(3). Giving a VEV to two fundamental hypermultiplets Higgses
SU(3) down to Sp(1), with the branching rules given by

3→ 2 + 1 6→ 3 + 2 + 1 8→ 3 + 2× 2 + 1 (5.4)

There are anomaly equivalent SU(3) spectra related by the exchange

8 + 1↔ 6 + 3. (5.5)

Again, both sides of the exchange branch to the same Sp(1) representations, implying that
the anomaly-equivalent SU(3) models Higgs down to the same Sp(1) model.

An F-theory SU(N) model with symmetric matter should have a non-UFD Weierstrass
tuning. This follows for N < 6 from the fact that a UFD Weierstrass tuning always has a Tate
description [24] and has only the generic fundamental, adjoint, and two-index antisymmet-
ric matter representations. After Higgsing, the model contains no exotic matter and would
presumably not require non-UFD structure. Therefore, the Weierstrass model deformation
corresponding to the SU(N)→ Sp(bN2 c) Higgsing process should remove non-UFD structure.
If we know the specifics of the deformation, we may be able to guess where non-UFD structure
appears in the SU(N) tuning.

Fortunately, the SU(N) → Sp(bN2 c) Higgsing process is part of the well-known story of
the split condition. In six and fewer dimensions, the singularity type of a codimension-one
singularity may not fully specify the gauge group. Suppose the discriminant vanishes to order
N along some codimension-one locus σ = 0, while f and g do not vanish along the locus.
The resulting gauge group can be either SU(N) or Sp(bN2 c). To distinguish between the two
possibilities, one must consider Tate monodromy. When one goes around a closed loop in the
gauge divisor, exceptional curves in the resolved fiber may or may not be interchanged. If no
interchange occurs, the gauge group is SU(N); otherwise, the gauge group is Sp(bN2 c). At
the level of the Weierstrass model, information about the monodromy is encoded in the split
condition, namely, whether there exists ψ defined on σ = 0 such that

ψ2 +
9g

2f

∣∣∣∣∣
σ=0

= 0 (5.6)
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Essentially, the condition asks whether 9g/2f is a perfect square along σ = 0. If the condition
is satisfied, the gauge group is SU(N); otherwise, monodromy effects are present, and the
gauge group is Sp(bN2 c).

When N is even, the standard UFD tunings for SU(N) and Sp(N2 ) are identical except for
the split condition. From the arguments above, any non-UFD structure in the SU(N) model
with symmetrics must disappear after Higgsing. Therefore, non-UFD structure can only
appear at the level of the split condition when N is even. The split condition is evaluated
only on σ = 0, so one needs to consider only the leading terms f0 and g0 in f and g. In
both the UFD and non-UFD tunings, f0 and g0 will respectively be proportional to φ2 and
φ3, and 9g0/2f0 will be proportional to φ. For the UFD case, the only way to satisfy the split
condition is for φ to be a perfect square. The non-UFD case allows for more possibilities. If
σ = ξ2 − bη2, the choice φ = b satisfies the split condition on σ = 0, as

b =

(
ξ

η

)2

− 1

η2
σ. (5.7)

These observations suggest the form that the non-UFD SU(N) tunings should take. For
even N , one starts with the non-split UFD tuning and implements the split condition in a
non-UFD fashion. Importantly, all of the discriminant cancellations occur exactly, and all
of the non-UFD structure is contained in the split condition. For odd N , there are minor
differences between the split and non-split UFD tunings, so the prescription for the non-UFD
tunings is more complicated. Nevertheless, the odd N tunings implement that split condition
in a non-UFD fashion, and there are only relatively minor changes from the UFD tuning. In
the remainder of this section, we show via direct calculation that these insights hold in the
SU(3) tunings and SU(4) tunings. The explicit formulas for higher SU(N) are described in
§5.4.5.

This picture also explains from a geometric perspective why the non-UFD tunings give
the symmetric matter representation. As described in [5], the difference between the adjoint
and the symmetric + antisymmetric matter representations at a double point of a divisor
supporting an AN−1 singularity comes from the two distinct ways in which the two copies
of AN−1 associated with the gauge factors on the two branches of the divisor are embedded
into the A2N−1 Dynkin diagram associated with P1’s in the resolution of the singularity in
the total space of the fibration over the double point. When φ is a perfect square, so φ0 lives
in the ring of intrinsic local functions as in the UFD case, this embedding gives the adjoint
representation of SU(N). When, on the other hand, φ0 lives only in the normalized intrinsic
ring R̃/〈σ〉, which is a quadratic extension of R/〈σ〉, there is a change of sign between the two
branches of the divisor that intersect at the double point, which flips the orientation of one
of the AN−1 Dynkin diagrams relative to the other, giving the symmetric + antisymmetric
representations of SU(N). An example of how this works is given explicitly in Appendix C.
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5.2 Generators of the normalized intrinsic ring

To find the generators that must be added to the ring of intrinsic local functions in order to
obtain the normalized intrinsic ring, it is helpful to rewrite the expression (5.1) in the more
suggestive form (

p(2)ηa + p(1)ηb
)
ηa = −

(
p(1)ηa + p(0)ηb

)
ηb. (5.8)

Thus, in the field of fractions we have two expressions for a single element H̃:

H̃ =
p(2)ηa + p(1)ηb

ηb
= −

p(1)ηa + p(0)ηb

ηa
(5.9)

Moreover, we can see that

H̃2 =
p2(2)η

2
a + 2p(2)p(1)ηaηb + p2(1)η

2
b

η2b
=
p(2)h

η2b
− p(2)p(0) + p2(1) (5.10)

so that H̃ satisfies the monic polynomial in R/〈h〉

H̃2 = p2(1) − p(2)p(0) . (5.11)

If R/〈h〉 denotes the ring of intrinsic local functions, then the normalized intrinsic ring is8

R̃/〈h〉 = R[H̃]/〈ηbH̃ − p(2)ηa − p(1)ηb, ηaH̃ + p(1)ηa + p(0)ηb, H̃
2 − p2(1) + p(2)p(0)〉 (5.12)

Note that

h = ηb(ηaH̃ + p(1)ηa + p(0)ηb)− ηa(ηbH̃ − p(2)ηa − p(1)ηb) (5.13)

so that h vanishes in R̃/〈h〉, as expected. Note also that 4H̃2 is the discriminant of the
quadratic (5.1) considered as a function of ηa/ηb. Thus, extending the ring by H̃ is closely
related to the natural extension by the root α of the quadratic p(2)(ηaα)2+2p(1)(ηaα)+p(0) = 0.
Using H̃, however, gives a particularly simple and clear way to understand the algebraic
structure of the models. Our discussion of triple points in §6 takes a similar form.

5.3 Monomials and polynomials in the normalized intrinsic ring

To perform the Weierstrass tunings, we need to determine when a product of polynomials
in R̃/〈h〉 lies in R/〈h〉. It is helpful to first focus on individual monomials before turning to
polynomials. Consider a monomial in R̃/〈h〉 of the form ηiaη

j
bH̃

k. Monomials for which k is
even are automatically in R/〈h〉, as are monomials with i+ j ≥ k. Thus, the only monomials
potentially not in R/〈h〉 are those with i + j < k, where k is odd. Given a monomial with
odd k, we can repeatedly convert factors H̃2 to p2(1) − p(2)p(0) until we are left with a single

8We have actually only established that H̃ is an element of this ring, not that it is the only element that
needs to be added. However, that will be true if everything else about R and the elements ηj , σj is sufficiently
general.
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factor of H̃. Therefore, all monomials in R̃/〈h〉 that do not lie in R/〈h〉 can be written as H̃
times an expression in R/〈h〉.

A generic polynomial in R̃/〈h〉 thus takes the form

α+ βH̃, (5.14)

where α and β are polynomials in R/〈h〉. We will be interested in situations where β has at
least one term that is not proportional to either ηa or ηb. This condition in turn implies that
βH̃ is not in R/〈h〉, as will be necessary for a non-Tate Weierstrass tuning.

We now consider the product of two polynomials(
α+ βH̃

)(
γ + δH̃

)
= αγ + (βγ + αδ) H̃ + βδH̃2. (5.15)

To ensure that this product lies in R/〈h〉, we need βγ + αδ to be a linear combination of ηa
and ηb. The general solution to this9 takes the form

α = αaηa + αbηb + λβ̌ γ = γaηa + γbηb − λδ̌, (5.16)

where β̌ and δ̌ are parts of β and δ which are not divisible by ηa or ηb (which implies that
(β − β̌)H̃ and (δ − δ̌)H̃ both lie in R/〈h〉). We would then have that

(βγ + αδ)H̃ = (β − β̌)γH̃ + β̌(γaηa + γbηb)H̃ − β̌λδ̌H̃

+ α(δ − δ̌)H̃ + (αaηa + αbηb)δ̌H̃ + λβ̌δ̌H̃ (5.17)

which we see lies in R/〈h〉 after canceling the λβ̌δ̌H̃ terms. Note that if (α + βH̃)2 ∈ R/〈h〉
then λ must be 0.

5.4 Tuning process

We start by expanding f and g as

f = f0 + f1h+ f2h
2 + . . . g = g0 + g1h+ g2h

2 + . . . . (5.18)

In other words, we find an algebraic function10 f0 such that f − f0 is divisible by h, and then
an algebraic function f1 such that f − f0− f1h is divisible by h2, and so on. The functions fi
and gi are not unique, and in fact may not exist on the entire base: they might only exist in
open subsets [24].

For any choice of such an expansion, the discriminant can be expanded as

∆ = 4f3 + 27g2 =
(
4f30 + 27g20

)
+
(
12f20 f1 + 54g0g1

)
h

+
(
12f0f

2
1 + 12f20 f2 + 27g21 + 54g0g2

)
h2(

4f31 + 24f0f1f2 + 12f20 f3 + 54g1g2 + 54g0g3
)
h3 + . . . . (5.19)

Although the fi and gi are not unique, their images in the quotient ring R/〈h〉 have important
properties which are independent of choices.

9Assuming that all polynomials are sufficiently general: see footnote 8.
10Ideally, this would be a polynomial in some projective or affine coordinate ring, in practice it may be easier

to treat it as a rational function in some situations.
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5.4.1 Tuning I1

For the I1 singularity, we require that

4f30 + 27g20 ∝ h. (5.20)

Thanks to unique factorization in the normalized intrinsic ring, there must exist an element
Φ̃ in that ring such that

f0 ≡ −
1

48
Φ̃2 (mod h) g0 ≡

1

864
Φ̃3 (mod h). (5.21)

In principle, Φ̃ might not be well-defined as an element of R/〈h〉. However, if we write
Φ̃ = φ1 + φ2H̃ then having both Φ̃2 and Φ̃3 in R/〈h〉 implies that φ32H̃3 is in R/〈h〉 (since
by the argument above φ1 only contains terms proportional to σa, σb), so that φ32 (and hence
φ2) is a combination of ηa and ηb. That in turn implies that Φ̃ itself lies in R/〈h〉. We can
therefore solve (5.21) with φ ∈ R/〈h〉, i.e., we can choose an algebraic function φ ∈ R that
solves (5.21) (mod h) and then define

f0 := − 1

48
φ2 g0 :=

1

864
φ3. (5.22)

With such a choice, the zeroth order term of the discriminant vanishes exactly:

4f30 + 27g20 = 0. (5.23)

This may naively seem to imply that f0 and g0 lack any non-Tate structure. There is a
remaining condition yet to be implemented, however: the split condition. Since our focus is
on tuning SU(N) gauge groups with N ≥ 3, we must satisfy the split condition by letting

φ ≡ Φ̃2
0 (mod h). (5.24)

Here, Φ̃0 is an element of R̃/〈h〉, while φ must be an element of R/〈h〉. From the discussion
in §5.3, Φ̃0 can therefore be written as

νaηa + νbηb + νH̃ (5.25)

with νa, νb, and ν all algebraic functions in R. φ is now given by

φ = (νaηa + νbηb)
2 − 2ννa

(
p(0)ηb + p(1)ηa

)
+ 2ννb

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
. (5.26)

5.4.2 Tuning I2

The discriminant now reads

∆ =
(
12f20 f1 + 54g0g1

)
h+O(h2) =

1

192
φ3 (12g1 + f1φ)h+O(h2). (5.27)

To remove the order one term, we simply let

g1 = − 1

12
f1Φ̃

2
0 = − 1

12
f1φ. (5.28)

The order one term of ∆ now vanishes exactly, leaving an I2 singularity on the locus h = 0.
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5.4.3 Tuning Is3 to obtain SU(3)

∆ is now given by

∆ =
(
12f0f

2
1 + 12f20 f2 + 27g21 + 54g0g2

)
h2 +O(h3)

=
1

192
φ2
(
12φg2 + f2φ

2 − 12f21
)
h2 +O(h3). (5.29)

To tune an Is3 singularity and obtain an SU(3) model, we must have that

12φg2 + f2φ
2 − 12f21 ∝ h. (5.30)

Working in R̃/〈h〉, we have the condition

12Φ̃2
0

(
g2 +

1

12
f2Φ̃

2
0

)
− 12f21 ≡ 0 (mod h). (5.31)

The UFD nature of R̃/〈h〉 implies that we should tune f1 and g2 as

f1 ≡ Ψ̃Φ̃0 (mod h) g2 ≡ Ψ̃2 − 1

12
f2Φ̃

2
0 (mod h), (5.32)

where Ψ̃ ∈ R̃/〈h〉.
Of course, the expressions for f1 and g2 should be well-defined in R/〈h〉. To ensure

Equation (5.32) is consistent with this requirement, Ψ̃ should be expanded as

Ψ̃ = ψaηa + ψbηb + ψH̃. (5.33)

From the analysis of §5.3, f1 and g2 can now be written as

f1 = (ψaηa + ψbηb) (νaηa + νbηb)−
(
ψνa + νψa

) (
p(1)ηa + p(0)ηb

)
+
(
ψνb + νψb

) (
p(2)ηa + p(1)ηb

)
+ ψν

(
p2(1) − p(2)p(0)

)
(5.34)

and

g2 = (ψaηa + ψbηb)
2 − 2ψψa

(
p(1)ηa + p(0)ηb

)
+ 2ψψb

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
f2φ. (5.35)

After these expressions are plugged in, Equation (5.29) takes the form

∆ =
1

16

[
2 (ψaνb − ψbνa)

(
ν [ψaηa + ψbηb]− ψ [νaηa + νbηb]

)
− ν2

(
p(2)ψ

2
b − 2p(1)ψaψb + p(0)ψ

2
a

)
− ψ2 (

p(2)ν
2
b − 2p(1)νaνb + p(0)ν

2
a

)
+ 2νψ

(
p(0)ψaνa − p(1) (ψbνa + ψaνb) + p(2)ψbνb

) ]
φ2h3 +O(h3). (5.36)
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Parameter Homology Class Equivalent in [10] Equivalent in [7]
ηa [ηa] a1 σ

ηb [ηb] −b1 ε1
p(2) [h]− 2[ηa] 2s8 1

p(1) [h]− [ηa]− [ηb] s6 0

p(0) [h]− 2[ηb] 2s3 −h
4

νa −KB − [ηa] 0 0

νb −KB − [ηb] 0 ν

ν −KB − [h] + [ηa] + [ηb] 1 2β

ψa −3KB − [h]− [ηa]
1
4s5 0

ψb −3KB − [h]− [ηb]
1
4s2 −3

2λ

ψ −3KB − 2[h] + [ηa] + [ηb] 0 −1
3φ2

f2 −4KB − 2[h] 0 f4 + f5σ

g3 −6KB − 3[h] −1
8s1 g6

Table 4. Homology classes for the SU(3) model tuned on the generic quadratic h ≡ p(2)η2a+2p(1)ηaηb+

p(0)η
2
b . The homology classes are given in terms of the canonical classKB for the base and the homology

classes for ηa, ηb and h. The third and fourth columns give the map between the parameters used
here and the SU(3) models in [10, 7].

We will refer to one-sixteenth of the quantity in square brackets as ∆′2. ∆ is proportional to
h3, and we have an Is3 singularity and an SU(3) gauge group. Importantly, this is the first
step with non-trivial cancellations in the discriminant.

Before proceeding to higher orders, let us summarize the SU(3) model. The Weierstrass
model is described by

f = − 1

48
φ2 + f1h+ f2h

2 g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3, (5.37)

with φ, f1, and g2 given respectively by Equations (5.26), (5.34), and (5.35). Full, expanded
expressions for f and g are given in Appendix A. The homology classes of the parameters are
given in Table 4. For some choices of [h], [ηa], [ηb], and −KB, certain parameters may have
ineffective homology classes. It might be possible to obtain a valid model in such situations
by setting the ineffective parameters to zero. In many cases, setting a parameter to zero has
only benign effects, giving a valid model. For example, if f2 is set to zero, the model does
not change significantly and is free of problems. Other cases may lead to an invalid model,
however. There are situations in which ν and ψ are ineffective and are forced to be zero;
(f, g,∆) then vanish to orders (4, 6, 12) at the ηa = ηb = 0 loci. Meanwhile, if ψa, ψb, ψ, f2,
and g2 are all set to zero, the discriminant vanishes exactly. The effectiveness of the various
parameters therefore constrains the set of possible models. In particular, this Weierstrass
tuning cannot realize certain matter spectra, as discussed further in §8.1.
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Table 4 also gives the map from the SU(3) model considered here to the two previous
SU(3) models with symmetric matter [10, 7]. In order to obtain either of the two previous
models, one of the parameters, either ν or p(2), must be set to a constant. This restriction
suggests that both of the previous models are in fact specializations of the model derived
here. In particular, setting a parameter to a constant forces a relationship between the three
unspecified homology classes in Table 4. If ν is set to 1 as in [10], the homology class of the
curve h is fixed:

[h] = −KB + [ηa] + [ηb]. (5.38)

Likewise, forcing p(2) to be a constant, as in [7] leads to the constraint that

[h] = 2[ηa]. (5.39)

As a result, the two previous SU(3) models have only two unspecified homology classes, and
the model given here has an extra degree of freedom. The extra unspecified homology class is
important physically, as it allows for matter spectra not possible with the previous two SU(3)

models. Making a parameter constant also affects matter transitions that exchange adjoints
for symmetric matter, as discussed in §7.

5.4.4 Tuning Is4 to obtain SU(4)

For the discriminant to be proportional to h4, we require that

∆′2φ
2 + 4f31 + 24f0f1f2 + 12f20 f3 + 54g1g2 + 54g0g3 ∝ h (5.40)

Working in R̃/〈h〉 and using (5.21), (5.28), and (5.32), this condition can be written as

1

192
Φ̃3
0

(
−96Ψ̃3 + 192∆′2Φ̃0 − 24f2Ψ̃Φ̃2

0 + 12g3Φ̃
3
0 + f3Φ̃

5
0

)
≡ 0 (mod h). (5.41)

We therefore need Ψ̃ to be proportional to Φ̃0, which can be accomplished by letting

ψa = −1

6
φ1νa ψb = −1

6
φ1νb ψ = −1

6
φ1ν (5.42)

for some φ1 ∈ R (i.e., we are solving (5.42) in R/〈h〉, not in R̃/〈h〉). With these redefinitions,
∆′2 is now zero, and (5.41) is now

1

192
Φ̃6
0

(
4

9
φ31 + 4f2φ1 + 12g3 + f3Φ̃

2
0

)
= 0 (5.43)

We thus redefine g3 as

g3 = − 1

27
φ31 −

1

3
φ1f2 −

1

12
φf3. (5.44)

∆ is now proportional to h4, and we have an Is4 singularity. Note that in this discussion since
f2 is untuned, we could in principle set f3 to vanish by setting f2 → f2 − f3h, but we have
left the appearances of f3 explicit for clarity.
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Parameter Homology Class
ηa [ηa]

ηb [ηb]

p(2) [h]− 2[ηa]

p(1) [h]− [ηa]− [ηb]

p(0) [h]− 2[ηb]

νa −KB − [ηa]

νb −KB − [ηb]

ν −KB − [h] + [ηa] + [ηb]

φ1 −2KB − [h]

f2 −4KB − 2[h]

f3 −4KB − 3[h]

g4 −6KB − 4[h]

Table 5. Homology classes for the SU(4) model tuned on the generic quadratic h ≡ p(2)η2a+2p(1)ηaηb+

p(0)η
2
b . The homology classes are given in terms of the canonical classKB for the base and the homology

classes for ηa, ηb and h.

To summarize the SU(4) model, the f and g for the Weierstrass model are given by

f = − 1

48
φ2 − 1

6
φφ1h+ f2h

2 + f3h
3, (5.45)

g =
1

864
φ3 +

1

72
φ1φ

2h+
1

36
φ
(
φ21 − 3f2

)
h2 +

(
− 1

12
φf3 −

1

3
φ1f2 −

1

27
φ31

)
h3 + g4h

4,

(5.46)

with φ given by Equation (5.26). The homology classes for the parameters are given in Table
5. As before, ineffective parameters should be set to zero, which may lead to an invalid model.

The SU(4) tuning is essentially a UFD non-split I4 tuning with a specialized non-UFD
tuning for φ. As mentioned in §5.1, this result matches the expectation that, for SU(2N)

symmetric representations, the only non-UFD structure should appear when implementing
the split condition.

5.4.5 Tuning higher SU(N)

The tunings for larger SU(N) symmetries with symmetric matter follow from the general
principles described in §5.1. In fact, the procedure requires only small modifications of the
known UFD tunings. Note that we only discuss models with fundamental, two-index antisym-
metric, adjoint, and two-index symmetric matter; the strategies we discuss may not apply to
situations with three-index antisymmetric matter, for example. The SU(N) tuning for even
N is less complicated than the odd N tuning, so we first focus on the even N case.

An SU(2k) gauge group with symmetric matter can be Higgsed down to an Sp(k) model
without any singular higher-genus matter. For the SU(2k), we therefore start with the UFD
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tuning for a non-split Ins2k singularity tuned on the curve h = 0. As discussed in [5], this tuning
takes the form11

f = −1

3
υ2 +O(hk) g = − 1

27
υ3 − 1

3
υf +O(h2k), (5.47)

with
υ =

1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (5.48)

We now specify that h has the quadratic form given in (5.1). To enhance the gauge symmetry
to SU(2k), we must perform further tunings to satisfy the split condition. In the UFD case,
this is accomplished by letting φ = φ20. But for the non-UFD situation we are interested in
here, we use Φ̃0 instead of φ0, where Φ̃0 is an element of R̃/〈h〉 as in Equation (5.25). φ

therefore takes the form of Equation (5.26):

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
(5.49)

The split condition is satisfied and the gauge symmetry is enhanced to SU(2k). The double
points at ηa = ηb = 0 now contribute symmetric matter.

For the SU(2k + 1) tunings, we start with the UFD tuning of a split Is2k+1 singularity,
which is also given in [5]:

f = −1

3
υ + φ0ψkh

k +O(hk+1) g = − 1

27
υ3 − 1

3
υf + ψ2

kh
2k +O(h2k+1), (5.50)

with
υ =

1

4
φ20 + φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (5.51)

We assume that the singularity is tuned on a curve h as in Equation (5.1). To convert the
UFD model to one with symmetric matter, we consider Φ̃0 and Ψk, elements of R̃/〈h〉 that
are expanded as

Φ̃0 = νaηa + νbηb + νH̃ Ψ̃k = ψaηa + ψbηb + ψH̃. (5.52)

We then replace φ20, φ0ψk, and ψ2
k with the well-defined expressions for Φ̃2

0, Φ̃0Ψ̃, and Ψ̃2 in
R/〈h〉:

φ20 → Φ̃2
0 = (νaηa + νbηb)

2 − 2ννa
(
p(0)ηb + p(1)ηa

)
+ 2ννb

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
(5.53)

ψ2
k → Ψ̃2 = (ψaηa + ψbηb)

2 − 2ψψa
(
p(0)ηb + p(1)ηa

)
+ 2ψψb

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
(5.54)

φ0ψk → Φ̃0Ψ̃ = (ψaηa + ψbηb) (νaηa + νbηa)−
(
ψνa + νψa

) (
p(0)ηb + p(1)ηa

)
+
(
ψνb + νψb

) (
p(2)ηa + p(1)ηb

)
+ ψν

(
p2(1) − p(2)p(0)

)
(5.55)

11Note that, for clarity, we have used different variables and notations than [5].
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The replacements give an SU(2k+ 1) model in which both the discriminant cancellations and
the split condition involve non-Tate structure.

5.5 The matter spectrum

Finally, we determine the structure of codimension two singularities and the associated matter
spectrum of F-theory models with gauge symmetry from Kodaira singularities over divisors
with double point singularities. We explicitly analyze the resulting matter spectrum for SU(3)
and SU(4), while our general techniques are readily applicable to SU(N) for general N .

We will focus in the following on two-dimensional base manifolds B of the elliptic fibra-
tion corresponding to 6D F-theory models. While in principle the matter spectrum for 6D
models is essentially determined by anomaly constraints once the symmetric matter content
is known, for the non-Tate models constructed here explicitly identifying the structure of the
algebra-geometric loci and multiplicity of the matter fields is much more subtle than in the
simpler case of the UFD-based constructions. We note that the results obtained for the matter
representations and the homology class of their corresponding codimension two loci in B are
the same for F-theory compactifications to 4D with three-dimensional base manifolds B; in
fact, following the analysis of [26], in much of the discussion here we use a language more
appropriate for four dimensions, where each matter type is associated with an irreducible
codimension two locus.

5.5.1 General comments

We begin with some general facts and observations on the determination of the matter loci
and spectrum in F-theory models that is common to both examples discussed in the following.
We recall that in general the matter content of F-theory (except for adjoint matter) is encoded
in the singularities of the elliptic fibration at codimension two in the base B. The variety in
B defined in this way is in general reducible with each of its irreducible components yielding
a particular enhancement of the singularity type of the elliptic fibration, which corresponds
to a particular matter representation. Each matter representation can, in principle, occur on
multiple irreducible components, and all of those representations must be collected together to
describe the entire matter content of the model. Note that for compactifications to 6D there
are typically many such components for each representation (since irreducible components are
points), while for compactifications to 4D each representation might be associated to only one
irreducible component.12

More explicitly, in the examples at hand, we have two types of codimension two singular-
ities. We have a factorization of the discriminant as

∆ = hN∆N (5.56)

12But note that even in this case, it is possible for there to be more than one component associated to a
given matter representation.
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with N ≥ 2 and h singular at ηa = ηb = 0.13

• The first type of codimension two singularities are the common zeros at codimension two
in B of ∆N = h = 0. These contain the conventional matter representations of SU(N),
i.e. the fundamental representation and, for N > 3, also the two-index anti-symmetric
tensor representation of SU(N).

• Second, there are codimension two singularities from the singularities at ηa = ηb = 0

of h = 0. The discriminant vanishes to order 2N at these loci. They support the two-
index symmetric tensor representations of SU(N). In general, singularities of this
type could also support localized adjoint matter, as discussed in more detail in §7; we
assume in the analysis here that we have a non-UFD Weierstrass model where all the
double point singularities in the discriminant locus support symmetric matter through
the kind of mechanism analyzed explicitly in Appendix C.

From a technical perspective, the determination of the irreducible components of the
codimension two loci described by the ideal ∆N = h = 0 is the most challenging. In simple
situations, such as local analyses with h being a normal coordinate to a smooth divisor, which
is assumed for example in the standard analysis of Tate forms, h = 0 can simply be inserted
into ∆N = 0. In particular, in the UFD-based analysis of [5], the structure of ∆N clearly
decomposes into a contribution from φ0 corresponding to antisymmetric matter fields, and a
residual discriminant component capturing the fundamental matter fields. However, in the
situation at hand, with h given by (5.1), we can not solve h = 0 globally. This poses a problem
if we want to compute the homology classes of the codimension two matter loci. One way to
circumvent this problem is introduced in [26] to which we refer for further details. There, a
general primary decomposition of the locus ∆N = h = 0 is performed, yielding its associated
prime ideals, each of which corresponds to an irreducible component of the codimension two
singularities of the elliptic fibration. Then, one determines the homology class of each of these
irreducible components using their respective prime ideals. (If we can, it is desirable to only
partially decompose the prime ideal, grouping various irreducible components together when
they correspond to the same matter representation.)

Note that part of the challenge in identifying the irreducible components of the codimen-
sion two locus arises from the non-UFD structure of the ring of intrinsic local functions. We
could in principle analyze the codimension two structure in the normalized intrinsic ring, in
which we could write e.g. ∆3 = Φ̃3

0∆̃fund. Since the vanishing locus of Φ̃0 is the same as
that of Φ̃2

0, and the latter is in the ring of intrinsic local functions, we can identify in a fairly
direct fashion the geometric locus of vanishing h = ∆̃fund = 0, which will support fundamental
matter. In the analysis of this section, however, we work more generally in the geometry of
the ring of intrinsic local functions, which will in principle automatically handle issues such

13The case N = 1 is special as there is no codimension one singularity giving rise to gauge symmetry, despite
the appearance of a codimension two symmetry of type I2.
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as multiplicity. These analyses should agree; the results of this section should in part be in-
terpreted as a confirmation of the structure of the matter spectrum that can be derived more
directly through anomaly analysis or other approaches.

We now outline the procedure described above in the context of the two F-theory models
with SU(3) and SU(4) gauge symmetry.

5.5.2 Matter spectrum of SU(3) models

We consider the F-theory model with Is3 singularity over the divisor h = 0 defined in (5.1).
It is specified by the non-Tate Weierstrass form in (5.37) with the tunings (5.34) and (5.35).
We refer to Appendix A for a concise summary of the Weierstrass model. The discriminant,
given by Equation (A.7), is proportional to h3, so that we have in our notation from (5.56)

∆ = h3∆3 . (5.57)

For the convenience of the reader, we begin by summarizing the findings of the deter-
mination of matter content based on the analysis of codimension two singularities of this
model along with the corresponding 6D matter content of F-theory in Table 6. Note that in
the absence of exotic (symmetric) matter, these multiplicities can be understood directly
from the UFD Weierstrass expansion in e.g. [5], where the discriminant takes the form
∆3 = h3φ30∆fund + O(h4), and fundamental matter arises at the zeros of ∆fund, which is
in the class −12KB + 3KB − 3[h] since [φ0] = −KB. This direct interpretation is more dif-
ficult to make, however, in the more intricate non-UFD models we have constructed here, as
discussed above, although from the point of view of the “matter transitions” described in §7
the multiplicities in this table can also be reproduced by starting with a UFD construction
and trading adjoint matter for symmetric matter through matter transitions.

SU(3)-rep Multiplicity Fiber Locus

= 6 x6 = [ηa] · [ηb] I6 V (ISing) = {ηa = ηb = 0}

8 x8 = 1
2
[h] · ([h] +KB) + 1− x6 I3 VSU(2) = {h = 0}

3 x3 = 3[h] · (−3KB − [h]) + x6 I4 V (p1) ∪ V (ISing)

Table 6. Matter spectrum of the elliptic fibration (5.37) with a singularity of type I3 over a divisor
h = 0 with ordinary double point singularities. Shown are the SU(3) representations, the multiplicity
of full hypermultiplets in 6D, corresponding fiber types and loci in the base. We denote the variety
described by the vanishing set of an ideal I by V (I).

We begin with the discussion of the adjoint as well as the matter localized at the sin-
gularities of h = 0. As pointed out in [9, 5], both representations arise from the arithmetic
genus g of the curve h = 0. Decomposing the genus g of h = 0 into its geometric genus pg
and contributions from the [ηa] · [ηb] double point singularities, we obtain

g = pg + [ηa] · [ηb] = 1 +
1

2
[h] · ([h] +KB) . (5.58)
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Here we employ that a double point contributes 1 to the arithmetic genus g, which we compute
via adjunction in the second equality. As has been shown in [27], there are x8 = pg hyper-
multiplets in the adjoint where pg is the geometric genus of the curve, i.e., the genus of its
normalization. As discussed above, we assume that we have a construction where all double
points correspond to the two-index symmetric tensor 6 of SU(3). For the constructions of this
paper, this follows from the geometric logic described earlier, is confirmed in §7 via a matter
transition argument, and is shown explicitly through resolution in an example in Appendix
C. Thus, we identify the intersection number [ηa] · [ηb] as the multiplicity x6 of matter fields
in the representation 6, and we arrive at the matter multiplicities in the first and second lines
in Table 6.

We note that each double point contributes also one hypermultiplet in the 3 of SU(3)
as noticed in [10]. There this was shown by Higgsing the model to an Abelian model with
two U(1)’s. The presence of an additional 3 can be motivated by viewing the double points
locally as the collision of two different 7-branes carrying an SU(3) gauge group; the intersection
points support matter in the bi-fundamental representation (3,3).14 As the two 7-branes are
really part of one single brane in the global geometry, we have to identify them and view
the bi-fundamental as the reducible representation 3 ⊗ 3, which exhibits the group theory
decomposition 3⊗3 = 6⊕3̄ in the non-Tate situation where a symmetric matter representation
is present.

Next we turn to the conventional matter localized at the intersection loci ∆3 = h = 0. We
first gain some intuition about the possible matter loci by solving h = 0 locally and away from
its double point singularities and inserting the solution into ∆3 = 0. We immediately observe
a factorization of ∆3 into two components, which indicates the existence of two irreducible
varieties inside h = ∆3 = 0.

In order to find the varieties inside h = ∆3 = 0 which correspond to different types
of matter, we make a computation in the auxiliary ring C[ηa, ηb, p(0), p(1), p(2)]. We have
performed a rigorous primary decomposition of h = ∆3 = 0 in that ring using Singular
[28], obtaining two prime ideals denoted by p1 and p2. (Note that these ideals are prime in
C[ηa, ηb, p(0), p(1), p(2)] although they may factor further once specific elements of the ring R
are chosen to represent the variables in the auxiliary ring. For compactifications to 6D, they
will almost certainly factor further since each codimension two prime ideal is supported at a
single point of the F-theory base.)

Explicitly, we find

p2 =
{
ηap(2)ν + ηb(ηaνa + ηbνb + p(1)ν), ηbp(0)ν − ηa(ηaνa + ηbνb − p(1)ν)

}
/(Ising ∪ I ′) ,

(5.59)
where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {ηaνa + ηbνb, ν} (5.60)

14It is the non-trivial point of our analysis that the relevant representation is (3,3) and not (3, 3̄).
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in order to obtain a prime ideal. The prime ideal p1 is too lengthy to be reproduced here; it
is generated by several large polynomials in the parameters in f and g. It can be obtained
by computing the saturation of the ideal h = ∆3 = 0 w.r.t. the ideal p3, i.e. the repeated
quotient ideal

p1 = lim
n→∞

{∆3, h}/(p2)n . (5.61)

Next we analyze the singularity type of the elliptic fibration along the varieties V (p1),
V (p2) defined by the vanishing loci of p1, p2 inside the variety ∆3 = h = 0. By investigation
of the orders of vanishing of (f, g,∆), we find that

(f, g,∆)|V (p1)
∼ (0, 0, 4) , (f, g,∆)|V (p2)

∼ (2, 2, 4) , (5.62)

which indicates Kodaira singularities of type I4 and IV respectively [20, 23]. This means
that the variety V (p1) supports matter in the fundamental 3 of SU(3) [4], whereas V (p2) is
the locus of a degeneration of an I3 singularity to type IV . This does not correspond to the
emergence of additional physical degrees of freedom due to the lack of new holomorphic curves
to be wrapped by M2-branes.

Finally, for the computation of the matter multiplicity x3 of fundamentals, we need to
know the homology class of V (p1). As we are on a two-dimensional base B, the variety V (p1)

is just a collection of points and its homology class is simply the number of such points. We
start by computing the multiplicities of V (p1), V (p2) inside ∆3 = h = 0. Using the resultant
technique discussed in [26], we find the multiplicities to be 1 and 3, respectively, i.e. we obtain
the following relation in homology:

[∆3] · [h] = [V (p1)] + 3[V (p2)] . (5.63)

The homology class of the left hand side of this equation is readily computed using the explicit
expression for h in (5.1) and ∆3 in (5.40). We then compute [V (p2)] using its definition (5.59)
as being contained in a complete intersection among the additional components specified by the
complete intersection ideals in (5.60). The homology classes of the latter are easily computed
noting their definition as irreducible complete intersections. Their multiplicities inside the
complete intersection in (5.59) are computed using the resultant as 1 and 1, respectively.
Thus, we obtain

[V (p2)] = (−KB + [ηb]) · (−KB + [ηa])− [ηa] · [ηb]− (−KB − [h] + [ηa] + [ηb]) · (−KB)

= −KB · [h] , (5.64)

where we used the homology classes of all relevant sections given in Table 4. The first term in
the first equality is the homology class of the complete intersection in (5.59) and the second
and third terms are the homology classes of the varieties corresponding to the ideals in (5.60).
Putting everything together, we obtain the homology class of [V (p1)] using the homology
relation (5.63) as

[V (p1)] = [h] · (−12KB − 3[h])− 3(−KB · [h]) = 3[h] · (−3KB − [h]) . (5.65)
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The first term in the first equality is the homology class of ∆3 = h = 0 and the second
term is (5.64). We also double check the result for [V (p1)] by directly working with the
lengthy ideal p1, i.e. by finding a suitable complete intersection containing V (p1) among with
other “auxiliary” varieties given as complete intersections. We then just have to compute
the homology class of the complete intersection and subtract the homology classes of the
auxiliary varieties with their appropriate multiplicities inside V (p1), which we compute using
the resultant.

In summary, we obtain the contribution (5.65) from Kodaira singularities of type I4 over
the component V (p1) inside ∆3 = h = 0 to the multiplicity x3 of 3 matter fields. As noted
earlier, there are additional matter fields in the 3 representation for each ordinary double
point singularity [10]. The combined results leads to the full matter multiplicity in the last
line of Table 6.

We conclude by checking the consistency of the derived SU(3) matter spectrum by testing
anomaly freedom of the 6D theory. Following the discussion of §2.2, we identify b = [h] and
a = KB. We then see that anomaly cancellation follows immediately for the spectrum in
Table 6 upon the identification r = [ηa] · [ηb], g = 1 + [h] · ([h] +KB).

5.5.3 Matter spectrum of SU(4) models

Next, we consider an F-theory model with SU(4) gauge algebra arising from a Kodaira sin-
gularity of type Is4 over the divisor h = 0 defined in (5.1). The non-Tate Weierstrass form is
given in (5.45) with a discriminant as in (5.56) of the form

∆ = h4∆4 , (5.66)

with ∆4 given in (A.10) in Appendix A. We again first summarize the matter content of the
6D F-theory in Table 7.

SU(4)-rep Multiplicity Fiber Locus

= 10 x10 = [ηa] · [ηb] I8 V (ISing) = {ηa = ηb = 0}

= 6 x6 = −[h] ·KB + x10 I∗0 V (p2) ∪ V (ISing)

15 x15 = 1
2
[h] · ([h] +KB) + 1− x10 I4 VSU(2) = {h = 0}

4 x4 = 4[h] · (−2KB − [h]) I5 V (p1)

Table 7. Matter spectrum of the elliptic fibration (5.45) with an Is4 -singularity over the singular
divisor h = 0. Shown are the SU(4) representations, the multiplicity of full hypermultiplets in 6D,
corresponding fiber types and loci V (I) in the base.

As in the previous discussion of SU(3), the adjoint matter arises from the geometric genus
pg given by the general formula (5.58) while the symmetric matter arises from the [ηa] · [ηb]
double point singularities on h = 0. Thus, we arrive at the matter multiplicities in the first
and third lines in Table 7.
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We note that, as in the SU(3) case, each double point contributes also one hypermultiplet
in the 6 of SU(4), which we can understand by decomposing the bi-fundamental 4 ⊗ 4 as
10⊕ 6 at the double points.

Next, we discuss the emergence of conventional matter localized at the intersection loci
∆4 = h = 0. Performing a primary decomposition in the auxiliary ring C[ηa, ηb, p(0), p(1), p(2)],
we immediately obtain two prime ideals denoted by p1 and p2 corresponding to two irreducible
varieties inside h = ∆4 = 0. Explicitly, we find

p2 =
{
ηap(2)ν + ηb(ηaνa + ηbνb + p(1)ν), ηbp(0)ν − ηa(ηaνa + ηbνb − p(1)ν)

}
/(Ising ∪ I ′) ,

(5.67)
where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {ηaνa + ηbνb, ν} (5.68)

in order to obtain a prime ideal, as in (5.59). The prime ideal p1 is once again too lengthy to
be reproduced here. It can be obtained by computing the saturation of the ideal h = ∆4 = 0

w.r.t. the ideal p2, or as the quotient ideal

p1 = { η2a
(
f2 + 1

3φ
2
1

)2 − g4 (ηa(νaηa + νbηb)− ν̄(p(1)ηa + p(0)ηb)
)2
,

p(2)η
2
a + ηb(2p(1)ηa + p(0)ηb)}/(Ising ∪ {p(0), ηa}) (5.69)

The singularity type of the elliptic fibration along the two varieties V (p1), V (p2) is readily
analyzed by investigation of the orders of vanishing of (f, g,∆). They are given by

(f, g,∆)|V (p1)
∼ (0, 0, 5) , (f, g,∆)|V (p2)

∼ (2, 3, 6) , (5.70)

respectively, indicating Kodaira singularities of type I5 and I∗0 respectively [20, 23]. This
means that the variety V (p1) supports matter in the fundamental 4 of SU(4), indicated by
a local enhancement to SU(5), while the variety V (p2), in contrast to the SU(N) case with
N ≤ 3, supports matter in the anti-symmetric representation 6, indicated by the enhancement
to SO(8). We note that this is completely analogous to the SU(5) case discussed, for example,
in great detail in [29].

Finally, the matter multiplicities x4 of fundamentals and x6 require the knowledge of the
homology classes of V (p1) and V (p2). The multiplicities of V (p1), V (p2) inside ∆4 = h = 0

are computed with the resultant technique of [26] to be 1 and 4, respectively, resulting in the
homology relation

[∆4] · [h] = [V (p1)] + 4[V (p2)] . (5.71)

The homology class of the complete intersection on the left hand side is readily computed using
the explicit expression for h in (5.1) and ∆4 in (A.10). We then cross-check our computations
for [V (p1)] and [V (p2)] using their respective definitions (5.69) and (5.67). Indeed, we find

[V (p1)] = 2[h] · ([ηa]− 4KB − 2[h])− 4[ηa] · [ηb]− 2[ηa] · ([h]− 2[ηb])

= 4[h] · (−2KB − [h]) , (5.72)
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and

[V (p2)] = ([ηb]−KB) · ([ηa]−KB)− [ηa] · [ηb]− (−KB − [h] + [ηa] + [ηb]) · (−KB)

= −KB · [h] , (5.73)

which obey this consistency check. Here we used the homology classes of all relevant sections
given in Table 5. The numerical prefactors in front of the terms that are subtracted are the
multiplicities of the redundant components (5.68) and {p(0), ηa} computed using the resultant.

In summary, we obtain that the number of fundamental hypermultiplets is given by (5.72)
and the number of hypermultiplets in the 6 contributed from I∗0 fibers is given by (5.73).
Together with the additional matter fields in the 6 representation at each each ordinary
double point singularity we obtain the third and last lines of Table 7.

We conclude with the consistency check on the derived SU(4) matter spectrum via 6D
anomalies. Following the discussion of §2.2, we again set b = [h] and a = KB. We then see that
anomaly cancellation follows immediately for the spectrum in Table 7 upon the identification
r = [ηa] · [ηb] and g = 1 + [h] · ([h] +KB).

The upshot of the analysis in this subsection is that we can explicitly determine the loci
where the distinct matter representation types are localized, even in the more subtle non-Tate
non-UFD cases studied earlier in this section.

6 Detailed analyses of constructions: triple points

In this section, we describe how to derive SU(2) models with three-index symmetric matter
using the normalized intrinsic ring techniques. We focus on tuning the SU(2) singularity on
curves of the form

t ≡ t(3)η3a + 3t(2)η
2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0, (6.1)

with the matter localized at the ηa = ηb = 0 triple points. This form of the gauge
curve agrees with that used in [11]. However, the tuning derived here is more general than
the one in [11], even though both models use the same form of the gauge curve. We first
describe the normalized intrinsic ring and give an algebraic derivation of the SU(2) tuning.
We then discuss the resulting matter spectrum. The final model is summarized in Appendix
B. Note that this construction can also be used to describe tri-fundamental matter fields,
by choosing a cubic form that explicitly factorizes. There is a corresponding auxiliary ring
C[ηa, ηb, t(0), t(1), t(2), t(3)] in which some of our computations are done.

6.1 Description of the normalized intrinsic ring

Notice that because t is a homogeneous polynomial of degree 3, the equation t = 0 can be
written in the form

ηa

(
1

3

∂t

∂ηa

)
= −ηb

(
1

3

∂t

∂ηb

)
. (6.2)
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Thus, in the field of fractions of R/〈t〉 we have two expressions for a single element T̃ :

T̃ =
1
3(∂t/∂ηa)

ηb
=
−1

3(∂t/∂ηb)

ηa
, (6.3)

which leads us to relations T̃ ηb = 1
3(∂t/∂ηa) and T̃ ηa = −1

3(∂t/∂ηb) to be used in the nor-
malized intrinsic ring. For ease of notation, we introduce

τηb :=
1

3

∂t

∂ηa
= t(3)η

2
a + 2t(2)ηaηb + t(1)η

2
b (6.4)

τηa := −1

3

∂t

∂ηb
= −t(2)η2a − 2t(1)ηaηb − t(0)η2b (6.5)

so that the relations can be written T̃ ηb = τηb and T̃ ηa = τηa.
Furthermore,

(T̃ ηb)
2 − (t(3)ηa + t(2)ηb) t = η2b τsq (6.6)

where
τsq :=

(
t2(2) − t(3)t(1)

)
η2a +

(
t(2)t(1) − t(3)t(0)

)
ηaηb +

(
t2(1) − t(2)t(0)

)
η2b . (6.7)

so that T̃ 2 = τsq is also a relation in the normalized intrinsic ring. In fact, if all parameters
are generic, we can define the normalized intrinsic ring as

R̃/〈t〉 = R[T̃ ]/〈T̃ ηa − τηa, T̃ ηb − τηb, T̃ 2 − τsq〉. (6.8)

We will later need an expression for T̃ 3 in this ring, which we derive by writing

τsq = ηaτsq,a + ηbτsq,b, (6.9)

where

τsq,a =
(
t2(2) − t(3)t(1)

)
ηa +

(
t(2)t(1) − t(3)t(0)

)
ηb (6.10)

τsq,b =
(
t2(1) − t(2)t(0)

)
ηb. (6.11)

Then
T̃ 3 = T̃ τsq = τηaτsq,a + τηbτsq,b

=
(
t(3)t(2)t(1) − t3(2)

)
η3a + 3

(
t(3)t

2
(1) − t(1)t

2
(2)

)
η2aηb

+ 3
(
t(3)t(1)t(0) − t2(2)t(0)

)
ηaη

2
b +

(
t3(1) − 2t(2)t(1)t(0) + t(3)t

2
(0)

)
η3b .

(6.12)

We denote the right hand side of the previous equation by τcu.
Note that T̃ 2 is in the intrinsic local ring R/〈t〉, so that we are really only carrying out

an extension by a quadratic element of the ring. This construction is parallel to the ring we
found in the double point case in §5.

– 31 –



6.2 Tuning process

We start by expanding f and g as

f = f0 + f1t+ f2t
2 + . . . g = g0 + g1t+ g2t

2 + . . . , (6.13)

just as done in §5.4. The discriminant is then given by

∆ = 4f3 + 27g2 =
(
4f30 + 27g20

)
+
(
12f20 f1 + 54g0g1

)
t+O(t2). (6.14)

6.2.1 Tuning I1

For an I1 singularity, the zeroth order term of the discriminant must be proportional to t:

4f30 + 27g20 ∝ t (6.15)

Because the normalized intrinsic ring is a UFD, there must be some element Φ̃ in R̃/〈t〉 such
that

f0 ≡ −
1

48
Φ̃2 (mod t) g0 ≡

1

864
Φ̃3 (mod t). (6.16)

Of course, Φ̃2 and Φ̃3 must have well defined expressions in R/〈t〉, which places restrictions
on the form of Φ̃. We start by expanding Φ̃ as

Φ̃ = φ+ φT̃ , (6.17)

where φ and φ have well-defined expressions in R/〈t〉. Focusing first on Φ̃2, the only potentially
problematic term in

Φ̃2 = φ2 + 2φφT̃ + φ
2
T̃ 2 (6.18)

is the φφT̃ term. To ensure that this term lies in R/〈t〉, φ should take the form

φ := φaηa + φbηb. (6.19)

(Note that φ cannot take this form if we want a non-UFD Weierstrass tuning.)
f0 can then be defined as

f0 := − 1

48

[
(φaηa + φbηb)

2 − 2φφa
(
t(2)η

2
a + 2t(1)ηaηb + t(0)η

2
b

)
+ 2φφb

(
t(3)η

2
a + 2t(2)ηaηb + t(1)η

2
b

)
+ φ

2
τsq

]
. (6.20)

Essentially, we have replaced the terms in Φ̃2 involving T̃ with the corresponding expressions
in R/〈t〉. Φ̃3 also lies in R/〈t〉 after the redefinition of φ, and g0 can now be defined as

g0 :=
1

864

[
(φaηa + φbηb)

3 − 3φφa (φaηa + φbηb)
(
t(2)η

2
a + 2t(1)ηaηb + t(0)η

2
b

)
+ 3φφb (φaηa + φbηb)

(
t(3)η

2
a + 2t(2)ηaηb + t(1)η

2
b

)
+ 3φ

2
(φaηa + φbηb) τsq + φ

3
τcu

]
(6.21)

We now have
4f30 + 27g20 = ∆′0t, (6.22)

and the discriminant is proportional to t. ∆′0 has a lengthy expression that we do not give
here.
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6.2.2 Tuning I2 to obtain SU(2)

For an I2 singularity, the discriminant must be proportional to t2, and

∆′0 + 12f20 f1 + 54g0g1 (6.23)

must be proportional to t. In other words

∆′0 + 12f20 f1 + 54g0g1 ≡ 0 (mod t). (6.24)

Let us first focus on the ∆′0 term. It is easiest to work with the field of fractions of R/〈t〉,
in which ∆′0 is equivalent to

φ
2

32

g0
ηaηb

[
− 3φaηb

(
t(0)ηb + t(1)ηa

)
− 3φbηa

(
t(2)ηb + t(3)ηa

)
+ φ

(
t(3)t(0) − t(2)t(1)

)
ηaηb

]
(6.25)

If g1 were allowed to be an element in the field of fractions, we could immediately determine
how g1 should be defined to cancel the ∆′0 contributions. But g1 is an element of the coordinate
ring, and the terms in Equation (6.25) cannot be fully canceled using g1. In particular, the
φat(0)η

2
b and φbt(3)η2a terms in the square brackets are not proportional to ηaηb and cannot be

canceled. To proceed further, φa and φb must be tuned so that

φat(0)η
2
b + φbt(3)η

2
a = rηaηb + st. (6.26)

where r and s are some expressions in the coordinate ring. Considering the situations in which
either ηa = 0 or ηb = 0 leads to the conditions that

(φa − sηb)t(0)η2b
∣∣∣
ηa=0

= 0 (φb − sηa)t(3)η2a

∣∣∣∣∣
ηb=0

= 0. (6.27)

These conditions suggest that φa and φb should be defined as

φa :=haηa + hbηb φb :=hbηa + hcηb. (6.28)

With these definitions, ∆′0 takes the form

∆′0 = −g0
φ
2

32

(
3ha

(
t(0)ηb + t(1)ηa

)
− 6hb

(
t(1)ηb + t(2)ηa

)
+ 3hc

(
t(2)ηb + t(3)ηa

)
− φ

(
t(3)t(0) − t(2)t(1)

)
+O(t)

)
, (6.29)
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where all terms above are well defined in R. We now define g1 to be

g1 :=
φ
2

576

(
ha
(
t(0)ηb + t(1)ηa

)
− 2hb

(
t(1)ηb + t(2)ηa

)
+ hc

(
t(2)ηb + t(3)ηa

)
− 1

3
φ
(
t(3)t(0) − t(2)t(1)

))
+ γ1, (6.30)

leaving
∆ =

(
12f20 f1 + 54g0γ1

)
t+O(t2). (6.31)

We now turn to the f20 f1 term. Working in R̃/〈t〉, the condition for the I2 singularity is
now

Φ̃4f1 + 12Φ̃3γ1 ≡ 0 (mod t). (6.32)

γ1 should therefore be identified with

− 1

12
Φ̃f1 = − 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b + φT̃

)
f1. (6.33)

Φ̃f1 must lie in R/〈t〉, which implies that f1 must take the form

f1 := λaηa + λbηb. (6.34)

γ1 should in turn be defined as

γ1 := − 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b

)
(λaηa + λbηb)−

1

12
φ (λaτηa + λbτηb) (6.35)

With these redefinitions, the discriminant is now proportional to t2, indicating we have
successfully tuned an SU(2) model. To summarize, f and g are now given by

f = f0 + f1t+ f2t
2 g = g0 + g1t+ g2t

2, (6.36)

with

f0 =− 1

48

(
haη

2
a + 2hbηaηb + hcη

2
b

)2 − 1

24
φφaτηa −

1

24
φφbτηb −

1

48
φ
2
τsq (6.37)

g0 =
1

864

(
haη

2
a + 2hbηaηb + hcη

2
b

)3
+

3

864
φ
(
haη

2
a + 2hbηaηb + hcη

2
b

)
[(haηa + hbηb) τηa + (hbηa + hcηb) τηb]

+
3

864
φ
2 (
haη

2
a + 2hbηaηb + hcη

2
b

)
τsq +

1

864
φ
3
τcu (6.38)

f1 =λaηa + λbηb (6.39)

g1 =
φ
2

576

[
ηa
(
hct(3) − 2hbt(2) + hat(1)

)
+ ηb

(
hct(2) − 2hbt(1) + hat(0)

)
− φ

3

(
t(3)t(0) − t(2)t(1)

)]
− 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b

)
(λaηa + λbηb)−

1

12
φ (λaτηa + λbτηb) . (6.40)
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The homology classes of the various parameters are given in Table 8.
Table 8 also gives the dictionary between this SU(2) model and the previous SU(2) model

given in [11]. The key difference between these models is that φ is forced to be a constant in
[11]. This restricts the homology classes: for φ to be a constant,

[t]
!

= −2KB + [ηb] + [ηa]. (6.41)

The SU(2) model of [11] thus has only two unspecified homology classes, whereas the model
derived using the normalized intrinsic ring techniques has three unspecified homology classes.
This extra freedom has physical consequences. In particular, the model derived here can
support a wider array of matter spectra than the model in [11]. Otherwise, the two models
are fairly similar. In fact, if f2 and g2 are set to zero and φ is set to a constant, the two models
are equivalent.

Parameter Homology Class Equivalent Symbol in [11]
ηa [ηa] s8
ηb [ηb] −s9
t(3) [t]− 3[ηa] 12s4
t(2) [t]− 2[ηa]− [ηb] 4s3
t(1) [t]− [ηa]− 2[ηb] 4s2
t(0) [t]− 3[ηb] 12s1
φ −2KB − [t] + [ηb] + [ηa] 1

ha −2KB − 2[ηa] 0

hb −2KB − [ηa]− [ηb] 0

hc −2KB − 2[ηb] 0

λa −4KB − [t]− [ηa] 0

λb −4KB − [t]− [ηb] 0

f2 −4KB − 2[t] 0

g2 −6KB − 2[t] 0

Table 8. Homology classes for the SU(2) model tuned on a generic cubic t ≡ t(3)η
3
a + 3t(2)η

2
aηb +

3t(1)η
2
bηa + t(0)η

3
b . Homology classes are given in terms of the canonical class KB of the base and the

homology classes of ηa, ηb, and t. The third column gives the map between the parameters used here
and those for the SU(2) models in [11].

6.3 The matter spectrum

Equipped with the general non-Tate Weierstrass model described by (6.36) through (6.40), we
proceed with the determination of the singular locus and corresponding matter spectrum of
the corresponding F-theory model. As before, we will focus on two-dimensional base manifolds
B of the elliptic fibration yielding a 6D supergravity theory, although the following results
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also carry over to non-chiral F-theory compactifications to 4D. The discussion will be very
similar to the one in §5.5.

We recall that the matter content of F-theory (except for the adjoint matter) is encoded
in the codimension two singularities of the elliptic fibration specified by the Weierstrass model
(6.36)-(6.40). In the case at hand, we have two types of codimension two singularities. First,
there are the common zeros at codimension two in B of ∆2 = t = 0 with ∆2 being defined
via ∆ = 4f3 + 27g2 = t2∆2. These contain, as we demonstrate below, the conventional
matter representations of SU(2), i.e. the 2 representation. Second, there are codimension two
singularities from the singularities of t = 0 at ηa = ηb = 0, which support the triple symmetric
matter representations 4 of SU(2). As before in §5.5, the determination of the irreducible
components of the codimension two loci in ∆2 = t = 0 is the most challenging, and in general
involves performing a primary decomposition following the procedure outlined in [26] to which
we refer for further details.

Before going into the details of this computation, we summarize the found matter content
based on the analysis of codimension two singularities of the general non-Tate Weierstrass
form (6.36)-(6.40) along with the corresponding 6D matter content of F-theory in Table 9.

SU(2)-rep Multiplicity Fiber Locus

4 x4 = 1
2
[ηa] · [ηb] I∗ns

0 V (ISing) = {ηa = ηb = 0}

3 x3 = 1
2
[t] · ([t] +KB) + 1− 6x4 I2 VSU(2) = {t = 0}

2 x2 = [t] · (−8KB − 2[t]) + 6[ηa] · [ηb] + 2x4 I3 V (p1) ∪ V (ISing)

Table 9. Matter spectrum of the elliptic fibration (6.36)-(6.40) with a singularity of type I2 over
a divisor t = 0 with ordinary triple point singularities. Shown are the SU(2) representations, the
multiplicity of full hypermultiplets in a 6D theory, corresponding fiber type and locus in the base. We
denote the variety described by the vanishing set of an ideal I by V (I).

We begin with the discussion of the non-localized matter, i.e. the adjoint matter, as well
as the matter localized at the singularities of t = 0. The geometric genus pg of t = 0, which
counts adjoints, is given by the arithmetic genus g corrected by the contribution from the
triple point singularities:

pg = g − 3[ηa] · [ηb] = 1 +
1

2
[t] · ([t] +KB)− 3[ηa] · [ηb] . (6.42)

Here we employ that every triple point contributes 3 to the arithmetic genus g, which we
compute via adjunction in the second equality. We assume in analogy to the discussion of
matter with double point singularities that we are working with a construction in which all
the triple points contribute 3-symmetric matter representations. Identifying 1

2 [ηa] · [ηb] as
the multiplicity x4 of matter fields in the representation 4, we thus arrive at the matter
multiplicities in the first and third lines in Table 9. We note that each triple point contributes
only one half-hypermultiplet as the representation 4 is pseudo-real.
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Next we turn to the conventional matter localized at the intersection loci ∆2 = t = 0.
We first gain some intuition about the possible matter loci by solving t = 0 locally away from
its triple point singularities and inserting the solution into ∆2 = 0. We immediately observe
a factorization of ∆2 into two components, which indicates the existence of two irreducible
varieties inside t = ∆2 = 0.

Indeed, we can perform a rigorous primary decomposition of t = ∆2 = 0 in the auxiliary
ring C[ηa, ηb, t(0), t(1), t(2), t(3)] using Singular [28] to obtain two prime ideals denoted by p1
and p2.15 Explicitly, we find

p2 =
{
ηa(ηaφt(2) − η2aha − 2ηbηahb − η2bhc) + φηb(ηbt(0) + 2ηat(1)), (6.43)

ηb(ηbφt(1) + η2aha + 2ηbηahb + η2bhc) + φηa(ηat(3) + 2ηbt(2))
}
/(Ising ∪ I ′) ,

where we have to quotient by the ideals

Ising = {ηa, ηb} , I ′ = {haη2a + 2hbηaηb + hcη
2
b , φ} (6.44)

in order to obtain a prime ideal. The prime ideal p1 is too lengthy to be reproduced here; it
is generated by several large polynomials in the parameters in f and g. It can be obtained by
computing the saturation ideal of the ideal t = ∆2 = 0 w.r.t. the ideal p2: 16

p1 = {∆2, t}/p2 . (6.45)

Next we analyze the singularity type of the elliptic fibration along the varieties V (p1),
V (p2) defined by the vanishing loci of p1, p2 inside the variety ∆2 = t = 0. By investigation
of the orders of vanishing of (f, g,∆), we find that

V (p1) : (f, g,∆) ∼ (0, 0, 3) , V (p2) : (f, g,∆) ∼ (1, 2, 3) , (6.46)

which indicates a singularity of type I3 and III respectively [20, 23]. This means that the
variety V (p1) supports matter in the fundamental 2 of SU(2) [4], whereas V (p2) is the locus
of a degeneration of an I2 singularity to III,. This does not correspond to the emergence
of additional physical degrees of freedom due to the lack of new holomorphic curves to be
wrapped by M2-branes.

Finally, for the computation of the matter multiplicity x2 of doublets, we need to know
the multiplicities of V (p1), V (p2) inside ∆2 = t = 0. Using the resultant technique discussed
in [26], we find the multiplicities to be 1 and 2, respectively, i.e. we obtain the following
relation in homology

[∆2] · [t] = [V (p1)] + 2[V (p2)] . (6.47)

The homology class of the left hand side of this equation is readily computed using the explicit
expression for t in (6.1) and ∆2 as it follows from (6.37). We then compute [V (p2)] using its

15As before, these ideals may factor further once specific elements of the ring R are chosen to represent the
variables in the auxiliary ring.

16Due to the complexity of the involved algebra and the limited available computing power, we were only
able to determine the ideal p1 in the case where t(2) is a random rational number between −1000 and 1000.
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definition (6.43) as being contained in a complete intersection among the additional compo-
nents specified by the ideals in (6.44). The homology classes of the latter are easily computed
noting their definition as irreducible complete intersections. Their multiplicities inside the
complete intersection in (6.43) is computed using the resultant as 4 and 1, respectively. Thus,
we obtain

[V (p2)] = (−2KB + [ηa]) · (−2KB + [ηb])− 4[ηa] · [ηb]− (−2KB − [t] + [ηa] + [ηb]) · (−2KB)

= −2KB · [t]− 3[ηa] · [ηb] , (6.48)

where we used the homology classes of all relevant sections given in Table 8. The first term in
the first equality is the homology class of the complete intersection in (6.43) and the second
and third terms are the homology classes of the varieties corresponding to the ideals in (6.44).
Putting everything together, we obtain the homology class of [V (p1)] as

[V (p1)] = [t]·(−12KB−2[t])−2(−2KB ·[t]−3[ηa]·[ηb]) = [t]·(−8KB−2[t])+6[ηa]·[ηb] . (6.49)

The first term in the first equality is the homology class of ∆2 = t = 0 and the second term is
(6.48), which has to be subtracted with the correct multiplicity 2. We also double check the
result for [V (p1)] by directly working with the lengthy ideal p1.

We thus obtain the contribution from I3 loci inside ∆2 = t = 0 to the multiplicity x2 of
2 matter fields as shown in the first term of the fourth line of Table 9. We note that there are
additional matter fields in the 2 representation from the ordinary triple point singularities as
noted in [11]: group-theoretically, the 4 representation arises in the decomposition 2⊗2⊗2 =

4 ⊕ 2 ⊕ 2 at each ordinary triple point ηa = ηb = 0 of t = 0. This shows that each triple
point also supports one full hypermultiplet in the representation 2, which leads to the second
contribution in the last line of Table 9.

We conclude by double-checking the derived SU(2) matter spectrum by testing anomaly
freedom of the 6D theory. Following the discussion of §2.2, we identify b = [t] and a = KB.
We then see that anomaly cancellation follows immediately for the spectrum in Table 9 upon
the identification r = [ηa] · [ηb], g = 1 + [t] · ([t] +KB).

7 Matter transitions

In many situations, the 6D anomaly conditions specify a unique charged matter content given
a few parameters. But for the models considered here, these same parameters are not enough
to fully determine the matter spectrum, as mentioned in §2.2. Even if a · b, b · b, the gauge
group, and the representations are fixed, the 6D anomaly cancellation conditions still admit
multiple solutions for the matter multiplicities. Given a particular SU(2) spectrum, one can
find another consistent spectrum through the exchange (2.11)

3×Adj + 7× 1↔ 1

2
+ 7× . (7.1)
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The SU(N) models with N ≥ 3 meanwhile admit multiple spectra related by the exchanges
(2.13)

Adj + 1↔ + . (7.2)

The “anomaly equivalent” theories related by the exchanges have the same number of tensor
and vector multiplets. From the perspective of the Weierstrass tunings, the homology classes
of the various parameters are not fully fixed by the gauge curve homology class and −KB. In
turn, there may be multiple charged matter spectra for a given base and gauge curve homology
class.

A natural next step is to ask how these anomaly equivalent models fit into the space of
vacua. Specifically, is there a process to move between the anomaly equivalent models? As
discussed in [7], there are a number of possible ways to connect 6D models. The simplest of
these, which can be seen as a purely field-theoretic phenomena, is the Higgs mechanism: there
can be a theory with a larger gauge group whose Higgs branch contains both of the models
in question. A more exotic type of transition, known since [30, 3], is the tensionless string
or small instanton transition in which the number of tensor multiplets in the theory changes.
The theory is superconformal at the transition point. A third possibility was raised in [7],
where it was shown that anomaly equivalent models for a variety of gauge groups, such as
SU(6) and SU(3), are connected by “matter transitions” that occur within the Higgs branch of
a superconformal theory. As in the case of a Higgs transition, the original gauge theory must
be enhanced, but to a superconformal theory rather than to a theory with larger gauge group.
In the context of F-theory, this occurs through a series of tunings and deformations of the
Weierstrass model. In field theoretic terms, such transitions relate two theories with the same
gauge group and the same number of tensor multiplets via an intermediate superconformal
theory which contains both of them in its Higgs branch. The models derived here have similar
matter transitions. In addition to being interesting phenomena in their own right, the matter
transitions clarify the relationships between exotic higher-genus matter, curve singularities,
and non-Tate tuning structures.

Before turning to the matter transitions in specific models, let us first describe how these
transitions work in general. The process is illustrated in Figure 1 for SU(4). We assume we
are working with a 6D F-theory model, although the transitions may occur in 4D models
as well. Initially, the F-theory model will have matter located at several codimension two
loci. The first step of the transition is to tune the Weierstrass model so that a collection of
these loci are moved to a single point. f and g now vanish to at least orders 4 and 6 at this
point, signaling the appearance of a superconformal sector [3, 31, 32]. Next, the Weierstrass
model is deformed, separating the superconformal locus again into multiple codimension-two
matter loci. The representations supported at these new points are different from those at
the beginning of the transition. The SCFT in this example is the “single E-string theory”
[33, 34, 30] corresponding to a −1 curve in F-theory. It has a Higgs branch of dimension 29
with a variety of gauge groups and matter representations realized at different points of that
Higgs branch.
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Overall, the setup can be described in terms of the Higgs branch of a fixed SCFT, within
which one finds several distinct loci with a previously selected gauge group, although the
matter spectra may differ among the loci. (There are two loci for the SU(4) example illustrated
in Figure 1 below.) The initial tuning moves us from the first locus to the SCFT. One could
then, in principle, move onto the tensor branch through a blow-up on the base. Instead, we
follow Weierstrass deformations that move us to a new locus within the Higgs branch with
the same gauge group but a different matter spectrum. In the simplest cases, the SCFT at
the transition point is an E-string theory consisting of a single −1 curve on the tensor branch.
The SCFTs for some of the transitions considered here may have extra gauge groups tuned on
the −1 curve. However, the simplest transitions do not have additional tensor branch gauge
symmetries, suggesting that these gauge groups are not a general requirement for transitions.

Finally, we note a few general observations about the transitions. First, progress through
the transition can be described using a single parameter. This may not be immediately obvious
from the general discussion or from the detailed analysis of models below. But the transition
can be thought of as moving through a single parameter family of models. If desired, one can
even write the deformations and tunings explicitly in terms of a single parameter, as done in
[7]. Second, the description of the transition process above did not mention introducing or
deforming singularities along the gauge curve. This omission is a reflection of an important
point regarding singular matter: gauge curve singularities do not automatically contribute
exotic matter. In particular, introducing a curve singularity only localizes adjoints at the
singular point and does not change the matter content. To make the singular points support
exotic matter, the theory must additionally undergo a more dramatic change, such as obtaining
a superconformal sector at the transition point. In the examples considered here, the tunings
and deformations of the transition that actually change the matter content do not affect the
number of singular points along the gauge curve. The elliptic curve singularity type at a
double point or triple point may change during the course of the transition. However, the
gauge curve singularity is present through the core part of the transition.

7.1 SU(3) Model with Symmetric Matter

In order to make the discussion more concrete, we first focus on the SU(3) model with sym-
metric matter. Recall that if the SU(3) singularity is tuned on the curve

h = p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b = 0, (7.3)

the SU(3) Weierstrass model is described by

f = − 1

48
φ2 + f1h+ f2h

2 g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3, (7.4)
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(a)

6

6

4 15

(b)

6

6

4 15

(c)

SCFT4

(d)

6
6

4 10+6

Figure 1. Schematic illustration of the transition for SU(4). The curve represents (a slice of) h, the
curve along which the SU(4) singularity is tuned. Points represent codimension-two loci contributing
charged matter; the labels give the SU(4) representations associated with particular codimension-two
loci. (a) Initially, there are several codimension-two loci supporting charged matter. We assume that
a double point has already been tuned on the curve, with 15 matter localized at the point. (b) The
Weierstrass model is tuned so that two 6 loci move to the double point. (c) When the 6 loci reach
the double point, the singularity type at the double point worsens, giving an SCFT. (d) Deformations
in the Weierstrass model remove the SCFT by pulling away two 6 loci. The charged matter at the
double point is now 10 + 6, rather than the initial 15.

with

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (7.5)

f1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
ψaν + νaψ

) (
p(1)ηa + p(0)ηb

)
+
(
ψbν + νbψ

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (7.6)

g2 = (ψaηa + ψbηb)
2 − 2ψaψ

(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(1)ηb + p(2)ηa

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
φf2. (7.7)
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This model admits transitions that cause a net exchange of matter of

Adj + 1↔ + . (7.8)

For this discussion, we focus on the transitions that exchange an adjoint and a singlet for
+ . These transitions involve three basic steps described in more detail below:

1. Introduce a new double point along the gauge curve h = 0, localizing adjoint matter at
the double point. As mentioned previously, this step does not change the matter content
of the theory and thus should not be considered as a core part of the transition.

2. Further tune the Weierstrass model to obtain an SCFT at the double point.

3. Deform the Weierstrass model in a different way to remove the SCFT, leading to a model
with a different matter spectrum.

The transitions that cause the opposite exchange of matter ( + → Adj + 1) can be
obtained by inverting the above three steps.

Step 1: Introduce a new double point. Symmetric matter can occur only at double
point singularities along the gauge curve. To convert adjoint matter into symmetric matter,
we therefore must first introduce a new double point singularity along the curve. This can be
done through the tunings

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.9)

h, now given by
h = p′(2)η

2
a + p′(1)aηaηb + p′(0)a

2η2a, (7.10)

has double point singularities at ηa = a = 0. The tuning introduces a total of [a] · [ηa] double
points; in the minimal case, [a] · [ηa] = 1, and there is only one new double point. Note that
this tuning does not change the matter spectrum. A double point singularity along an SU(3)

curve can correspond to either 8 + 1 or 6 + 3 matter [5]. The a = ηa = 0 locus currently
supports localized adjoints, as these double points can be deformed away. Thus, while the
tunings in (7.9) localize adjoints that previously could propagate throughout the gauge curve,
there is no change in the matter spectrum. In other words, one cannot introduce symmetric
matter simply by tuning more double points. Changing the matter spectrum requires a more
dramatic change, which here entails passing through a superconformal point.

Note that in the description here we have assumed the initial curve h has the form (7.3)
and already contains some double points. More generally, this need not be the case. An
arbitrary smooth curve could be put in this form where ηb = 1 so there are no initial double
point singularities; in this case, for example, we could tune a single double point singularity
from a smooth curve with none by starting with [ηa] = 1 and taking [a] = 1.
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Step 2: Move to the SCFT. Currently, symmetric matter (if present) resides at the
ηa = ηb = 0 locus. To convert the localized adjoints at ηa = a = 0 into symmetric matter, one
would like to perform a deformation such as aηb → η′b. At this point in the transition, such a
deformation is not possible: there are factors of ηb in the Weierstrass model (7.3-7.7) without
corresponding factors of a. We therefore need to perform the additional tunings

νb → aν ′b ψb → aψ′b. (7.11)

These tunings make f and g vanish to orders 4 and 6 at a = ηa = 0, signaling the presence
of an SCFT. In order to produce this superconformal matter, the tuning must have pushed
other matter loci to the a = ηa = 0 double points. Prior to the tunings in Equations (7.9)
and (7.11), the discriminant takes the form

∆ = ∆3h
3, (7.12)

where ∆3 is equivalent to Φ̃3
0∆̃3 in the normalized intrinsic ring. The discriminant locus

contributes [∆̃3]·[h] fundamentals. After the tunings, ∆̃3 vanishes to order 3 on the a = ηa = 0

locus, while h vanishes to order 2. Since the a = ηa = 0 locus now supports an SCFT, it
should be subtracted out when counting the number of fundamentals after the transition. For
each a = ηa = 0 point, 3× 2 = 6 fundamentals therefore disappear as a result of the tunings
in Equations (7.9) and (7.11). A careful consideration of the available degrees of freedom and
redundancies in the Weierstrass model indicates that in the tuning (7.11) two singlets are
fixed for each a = ηa = 0 point. This missing matter corresponds exactly to the loci that were
pushed to a = ηa = 0 in order to form the SCFT. The effect of this second step can therefore
be summarized as

8 + 6× 3 + 3× 1→ SCFT. (7.13)

The SCFT at the transition point is an E-string theory. On the tensor branch, where
the (4, 6) singularity is resolved by a blowup on the base, there is a single −1 curve with no
additional gauge groups. The gravitational anomaly condition therefore suggests that exactly
29 hypermultiplets should be removed at the transition point in order to produce the SCFT.
Indeed, exactly 29 hypermultiplets participate in this step for each a = ηa = 0 point, as seen
in the left-hand side of (7.13).

Step 3: Deform the SCFT. There are now enough factors of a in the Weierstrass model
to absorb a into ηb. However, there will be factors of a remaining after such an association.
The SU(3) model at the end of the transition should have the same basic structure as before,
suggesting that a tuning with remaining factors of a is a specialized model that can be further
deformed. To remove the extra factors of a, we must perform the deformations

aν → ν ′ aψ → ψ
′ (7.14)

After this deformation, ν ′ and ψ′ are not proportional to a. There is no longer an SCFT, as
there is no codimension two locus where f and g vanish to orders 4 and 6. The six fundamentals
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and two singlets that had disappeared are now restored, and the ηa = a = 0 double points
introduced by Equation (7.9) now contribute 6 + 3 matter. Every factor of ηb is accompanied
by exactly one factor of a, so we can now perform the redefinition

aηb → η′b (7.15)

and remove all factors of a. The transition is now complete, with a total change of matter of
the form

8 + 6× 3 + 3× 1→ Superconformal Matter→ 6 + 7× 3 + 2× 1. (7.16)

The net effect of the transition is therefore to exchange 8 + 1 for 6 + 3, as expected from the
anomaly cancellation conditions. We can also exchange 6 + 3 for 8 + 1 by inverting the steps
in the transition.

The Weierstrass model in fact allows for a second type of transition, although this tran-
sition will have the same physical effect. This second transition involves transferring factors
into ηa rather than into ηb. To convert adjoints into symmetrics, we initially perform the
tunings

p(0) → p′(0) p(1) → ap′(1) p(2) → a2p′(2), (7.17)

thereby introducing new double points at the a = ηb = 0 loci. The additional tunings

νa → aν ′a ψa → aψ′a (7.18)

take us to a superconformal point. The transition is completed with the deformations

aηa → η′a aν → ν ′ aψ → ψ
′
. (7.19)

In total, the transition exchanges [a] · [ηb] adjoints for symmetrics through a process identical
to that in Equation (7.16). Of course, one can perform the transition in the opposite direction
by reverting the steps.

As mentioned in §5.4.3, the previously derived SU(3) models with symmetric matter are
specializations of the ones derived here. In particular, these previous models restrict homology
classes by setting certain parameters to constants. These models will not exhibit all of the
possible transitions laid out here, but they may still allow some subset of the transitions.
For example, the model in [7] essentially forces p(2) to be a constant, so transitions where ηa
changes are not possible. The transitions where ηb changes, however, are still possible. For the
SU(3) model in [10], ν is set to one, while both of the transitions considered here change the
homology class of ν. These transitions are therefore not possible in this model. This model
has other transitions that connect the different matter spectra, but the theory undergoes more
extreme changes during the transition. For instance, when the gauge curve factorizes at the
transition point. As a result, the transition point theory has a new SU(3) gauge group in
addition to the SCFT.
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Finally, let us examine how non-Tate structure appears as part of the transition. Consider
a situation where ηb is initially set to 1. There are no double points, so the Weierstrass model
has Tate structure. For instance, f1, which has non-Tate structure in general, can be written
as

f1 =
(
ψb + ψaηa +

(
p(1) + p(2)ηa

)
ψ
) (
νb + νaηa +

(
p(1) + p(2)ηa

)
ν
)

−
(
p(0) + 2p(1)ηa + p(2)η

2
a

) (
ψaν + νaψ + ψνp(2)

)
(7.20)

when ηb is set to 1. Since the second term on the right-hand side is proportional to h, we could
move it to f2, leaving the Tate form expression where f1 factors into two components. Now
imagine performing the transition using the steps in Equations (7.9), (7.11), and (7.14). In the
p(2)ηaψ and p(2)ηaν parts of the first term, there would not be enough factors of a to absorb
into ν and ψ, and the term would seem to develop a−1 factors. The Tate-form expression for
f1 is thus no longer valid after the transition. However, the second term in (7.20) would also
have parts with a−1 factors. In fact, all the a−1 parts cancel between the first and second
terms of (7.20). As long as we keep the second term as part of f1, we can maintain a valid
expression for f1. f1 is therefore forced to have non-Tate structure after the transition. The
terms proportional to h in f1 when ηb = 1, which were “optional” before the transition, are
necessary after the transition. In this way, the transition generates the expected non-Tate
structure from a Tate-form model.

7.2 SU(N) Model with Symmetric Matter for N ≥ 4

In general, SU(N) models with symmetric matter should admit transitions that cause the net
exchange

Adj + 1↔ + . (7.21)

While the net exchange during the transition should be the same regardless of whether N
is even or odd, the Weierstrass models for the two cases are somewhat different. In turn,
the details of the transitions will be slightly different for even and odd N ; in particular, the
transition for SU(2k − 1) is a Higgsed version of the SU(2k) transition. We first focus on the
case where N is even before turning to the odd N case.

The Weierstrass model for SU(2k) is described by

f = −1

3
υ2 +O(hk) g = − 1

27
υ3 − 1

3
υf +O(h2k) (7.22)

with

υ =
1

4
φ+ φ1h+ . . . φk−1h

k−1 (7.23)

h =p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b (7.24)

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
. (7.25)
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As mentioned in §5.1 and §5.4.5, the only non-UFD structure is contained within φ, and all
discriminant cancellations are exact. The discriminant takes the form

∆ = φ2∆2kh
2k, (7.26)

with the ∆2k = h = 0 loci contributing fundamental matter.
Let us consider the analogue of the SU(3) transition, where we convert adjoint matter

into symmetric matter by transferring a factor a into ηb. As before, we introduce a new double
point by tuning

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.27)

Again, this tuning does not actually change the matter content of the theory; instead, it
localizes an adjoint at each a = ηa = 0 double point and fixes one singlet per double point.
We then perform the tuning

νb → aν ′b (7.28)

to take us to the SCFT. After this tuning, φ vanishes to order 2 at the a = ηa = 0 loci.
Combined with the fact that h vanishes to order 2 wherever a = ηa = 0, this indicates that
two loci have been moved to each a = ηa = 0 point. Additionally, the tuning removes one
singlet for each a = ηa = 0 point. Note that ∆2k does not vanish at loci where a = ηa = 0,
and no fundamental loci are moved to the a = ηa = 0 points. To move to the branch with
symmetric matter, we perform the deformations

aηb → η′b aν → ν ′. (7.29)

These deformations move away two antisymmetric loci and restore a singlet for each double
point, leaving + at the double points.

The full transition can therefore be summarized as

Adj + 2× + 2× 1→ Superconformal Matter→ + 3× + 1. (7.30)

As expected, the net change in matter is

Adj + 1→ + . (7.31)

A total of 8k2 − 2k + 1 hypermultiplets participate in the transition per double point. For
SU(4), this number is 29. Blowing up the singular point gives a single −1 curve with no
additional gauge groups tuned, indicating the appearance of a new tensor multiplet. Therefore,
the gravitational anomaly constraint suggests that 29 hypermultiplets should disappear at
the transition point, as observed. For general k, the number of hypermultiplets will not
be a multiple of 29. However, one should still be able to move to the tensor branch at the
superconformal point and introduce new tensor multiplets. If there is no change in the number
of vector multiplets, 29 hypermultiplets should be lost for each new tensor multiplet. Since the
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number of hypermultiplets participating in the transition is not a multiple of 29, the tensor
branch of the SCFT must also include additional gauge symmetry. In fact, performing the
blow up explicitly shows that, on the tensor branch, an Sp(2k−4) gauge group is tuned on the
−1 curve. There are also 4k fundamentals charged under this Sp(2k − 4) group. Accounting
for this new gauge group, the expected change in the number of hypermultiplets is 8k2−2k+1,
in agreement with the number of hypermultiplets participating in (7.30).

For SU(2k − 1), the Weierstrass model is described by

f = −1

3
υ2 + zk−1h

k−1 +O(hk) g = − 1

27
υ3 − 1

3
fφ+ γ2k−2h

2k−2 +O(h2k−1), (7.32)

with

υ =
1

4
φ+ φ1h+ . . . φk−2h

k−2, (7.33)

h =p(2)η
2
a + 2p(1)ηaηb + p(0)η

2
b , (7.34)

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (7.35)

zk−1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (7.36)

γ2k−2 = (ψaηa + ψbηb)− 2ψaψ
(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
. (7.37)

The transition follows three steps similar to those of the SU(3) transition. First, we introduce
new double points at a = ηa = 0 through the tunings

p(2) → p′(2) p(1) → ap′(1) p(0) → a2p′(0). (7.38)

At this point in the transition, each new double point corresponds to an adjoint and a singlet
of matter. We then perform the further tunings

νb → aν ′b ψb → aψ′b, (7.39)

taking us to the SCFT. The tunings move two loci and four fundamental loci to each
a = ηa = 0 double point while fixing two singlets per double point. Finally, the SCFT is
removed by the Weierstrass deformations

aηb → η′b aν → ν ′ aψ → ψ
′
. (7.40)

Two loci and four fundamental loci are pushed from each double point, and two singlets are
reintroduced per double point. This leaves + at each a = ηa = 0 double point.

The full SU(2k − 1) transition can be summarized as

Adj + 2× + 4× + 3× 1→ SCFT→ + 3× + 4× + 2× 1. (7.41)
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The net change in matter is therefore

Adj + 1→ + , (7.42)

as expected. Note that this transition is essentially a Higgsed version of the SU(2k) transition
in (7.30). Specifically, one can break the SU(2k) representations in (7.30) to SU(2k − 1)

representations to obtain (7.41). There are still 8k2− 2k+ 1 hypermultiplets that participate
in the transition. Additionally, the SU(2k − 1) transition point SCFT is the same as the
SU(2k) SCFT: the tensor branch consists of a single −1 curve with a tuned Sp(2k− 4) gauge
group.

7.3 SU(2) with Triple-Index Symmetric Matter

From the anomaly cancellation conditions, there are anomaly equivalent SU(2) matter spectra
related by the exchanges

3×Adj + 7× 1↔ 1

2
+ 7× . (7.43)

The corresponding F-theory tunings admit transitions between models with these different
spectra. Transitions in these SU(2) models follow a similar set of steps as the SU(N) models
with symmetric matter. For concreteness, suppose the SU(2) singularity occurs on a curve

t = t(3)η
3
a + 3t(2)η

2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0. (7.44)

The Weierstrass model for this case is given in Appendix B. To exchange adjoint matter for
matter, one

1. introduces a new triple point in the curve,

2. performs additional tunings to reach an SCFT, and

3. performs deformations to move away from the SCFT.

As before, simply introducing a triple point does not change the matter content. Before the
theory passes through the SCFT, the triple point supports three adjoint hypermultiplets, not

matter. To exchange matter for adjoint matter, the steps should be performed in
reverse.

To see how these transitions work at the level of the SU(2) Weierstrass model, consider
exchanging adjoint matter for matter. The first step is to introduce new triple points
through the tunings

t(3) → t′(3) t(2) → at′(2) t(1) → a2t′(1) t(0) → a3t′(0) (7.45)

t, now given by
t = t′(3)η

3
a + 3t′(2)η

2
aaηb + 3t′(1)ηaa

2η2b + t′(0)a
3η3b , (7.46)
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has new triple point singularities at a = ηa = 0. Each of the [a] · [ηa] newly introduced triple
points supports 3 localized adjoints and 4 singlets.

To convert the adjoints into symmetric matter, we next need to perform tunings to reach
the superconformal point. For the SU(2) Weierstrass model, the specific tunings are

ha → h′a hb → ah′b hc → a2h′c λa → λ′a λb → aλ′b (7.47)

With these tunings, f and g now vanish to orders (4, 6) at a = ηa = 0, indicating the ap-
pearance of a superconformal sector. The additional tunings move six fundamental loci to
each a = ηa = 0 triple point while fixing four singlets per triple point. Combined with the
three adjoints and four singlets from the first step, there are now a total of 29 hypermultiplets
associated with each new triple point. Again, this number matches the number of hypermul-
tiplets expected from the gravitational anomaly constraint. The SCFT at transition point is
the same as that for SU(3) and SU(4): the tensor branch consists of a single −1 curve with
no additional gauge symmetry.

We now need to deform the Weierstrass model to get to the model with new multi-
plets. The specific deformations needed are

aηb → η′b aφ→ φ
′ (7.48)

The introduced triple points at a = ηa are now part of the full triple point locus described
by ηa = η′b = 0. Each of these triple points supports a half-multiplet of matter and two
fundamental hypermultiplets. The deformations additionally move away eleven fundamental
loci and introduce a new singlet for each a = ηa = 0 triple point. Thus, the total matter
change in the transition can be written as

3×Adj + 8× 1 + 6× → Superconformal Matter→ 1

2
+ 13× + 1. (7.49)

The net change of matter in the transition is therefore

3×Adj + 7× 1→ 1

2
+ 7× , (7.50)

in agreement with the expectations from anomaly cancellation.

8 Allowed and disallowed matter combinations

We have shown that the two- and three-index representations of SU(N) and SU(2) can be
realized in F-theory when the gauge group lives on a divisor with a double or triple point
singularity. Even for these representations that can be realized locally, there is a more gen-
eral question, which pertains to the combinations of matter representations that can appear
together in a given model. We now focus on this question, first for symmetric matter repre-
sentations of SU(N), and then for triple-symmetric representations of SU(2). We consider in
particular the case of models with T = 0, corresponding to F-theory models on P2, where the
existence of a global model in F-theory depends at least in part on the geometric question of
whether a curve exists with a given combination of singularity types.
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8.1 SU(N) symmetric matter

We now investigate the question of which combinations of adjoint and two-index symmetric
SU(N) matter fields can be realized geometrically in F-theory. We investigate this question at
two levels. First, whether the corresponding combination of singularity types is geometrically
allowed at the level of curves on P2. Second, whether explicit Weierstrass models can be
identified for the geometrically allowed configurations of singularity types.

8.1.1 Geometry of double points on curves

For an arbitrary number (n ≤ g) of symmetric representations of SU(N) that is allowed in the
low-energy theory to be possible in F-theory, it is necessary that a generic curve of arithmetic
genus g can be tuned by fixing n moduli so that the resulting curve has n simple double point
singularities and geometric genus pg = g − n. For the simplest case, n = g = 1, T = 0, this
corresponds to the existence of a plane cubic with a single double point. This can easily be
arranged, for example through the cubic

u2 − v2 + u3 = 0 . (8.1)

The next case is a plane quartic (g = 3, T = 0) with up to three double points. Any of the
possibilities n ≤ g can be realized simply by choosing a quartic where all terms constant and
linear in n pairs of homogeneous coordinates are set to vanish; i.e. for n = 3 we have the
general quartic

au2 + buv + cv2 + dvu2 + ev2u+ fv2u2 . (8.2)

More generally, it is possible for a curve of degree d on P2 to realize any number n ≤
(d − 1)(d − 2)/2 of double points [35].17 A simple argument for this conclusion in the case
n = (d− 1)(d− 2)/2 (i.e., pg = 0) proceeds as follows: consider the map from P1 to Pd given
by

[u : v]→ [vd, uvd−1, . . . , ud−1v, ud] . (8.3)

We then map Pd → P2 by taking the projection onto a generic subplane, e.g.

[u0 : u1 : u2 : · · · : ud−1 : ud]→ [l0 : l1 : l2] , li = ai0u0 + ai1u1 + ai2u2 . (8.4)

This gives a well-defined map from P1 → P2, since for generic li, no point in P1 maps to a point
in Pd with l0 = l1 = l2 = 0. The image curve is algebraic since it is explicitly parameterized
by algebraic functions. And the curve has degree d, since the intersection with the line l0 = 0

gives a generic dth degree polynomial in u, v with d roots. Thus, the image in P2 is a genus
0 curve of degree d. The singularities in this curve are generically double point singularities,
giving the desired curve with n = g simple double points.

More generally given any F-theory base surface B2, we can ask whether it is possible to
tune a generic curve of arithmetic genus g to produce an arbitrary number of double point

17Note that the arithmetic genus of a curve of degree d is (d− 1)(d− 2)/2.
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singularities up to the limit of available moduli. As in the case of P2, the technical challenge
is to ensure that the condition for imposing each double point is independent of the others.
We are unaware of any general results of this kind in the mathematics literature.

8.1.2 Explicit Weierstrass models with multiple double points

Constructing an explicit global Weierstrass model for a theory with an arbitrary number
of two-index SU(N) representations presents a nontrivial challenge. While many cases are
covered by the explicit constructions in [10, 7] and in §5.2–§5.4, there are also cases that
cannot be realized directly in this way. In particular, these approaches give SU(N) models
realized on a divisor of the form

Aξ2 +Bξη + Cη2 . (8.5)

This constrains the range of possible combinations of singularities that may be realized. We
do not attempt to give a completely general analysis here but consider various cases for T = 0

and small degree d. We focus on the SU(3) models, although similar phenomena can be seen
in higher SU(N) models.

For the case of degree d = 3, g = 1, a single (n = 1) double point can be easily realized
through (8.5) through [ξ] = [η] = 1, which is compatible with a divisor of degree d = 3.

For the case of a quartic, d = 4, g = 3, we can realize n = 1 or n = 2 through (8.5) by
taking [ξ] = 1, [η] = n, but this does not work for n = 3. Thus, the general classes of explicit
constructions do not provide a Weierstrass model for the quartic with three double points on
P2. From the analysis of the previous subsection we know that such a quartic exists, and in
§8.1.3 we give an explicit demonstration that a Weierstrass model can be found where all three
double points in this quartic support symmetric + antisymmetric SU(3) representations.

For d = 5, g = 6, the curve (8.5) can realize n = 1, 2, or 4 double points. These three
cases can be constructed from the Weierstrass tunings in §5. The n = 3, 5, 6 cases, however,
would require a more general construction.

For d > 5, there are consistent spectra that cannot be realized using the Weierstrass
models developed here, even if the curve (8.5) can support the appropriate number of double
points. As the degree increases, parameters in the Weierstrass model are more likely to become
ineffective. While one can address this by setting an ineffective parameter to zero, there may
be issues with the resulting Weierstrass model. If ν and ψ are ineffective, (f, g,∆) vanish to
orders (4, 6, 12) at the double points that should give symmetric matter. This implies, for
example, that the n = 1 models for d ≥ 6 cannot be realized using the constructions here. In
other cases, enough parameters may be ineffective to force the discriminant to vanish exactly.
An example of this occurs when d = 8 and n = 6. While such models cannot be constructed
using the tunings presented here, it may be possible that some alternative Weierstrass tuning
can realize these models.

Finally, recall from §2.2 that there are cases such as those on P2 with d > 9 where the
choice of a, b, associated with the topology of the curve Σ, seem to force the presence of
symmetric SU(N) matter representations. Specifically, the anomaly conditions imply that the
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number of SU(3) fundamentals should be negative unless there is symmetric matter. Thus,
in these cases there is no “generic” Weierstrass model on σ without non-UFD structure at
some double points. While this may seem surprising, it can be seen directly from the UFD
Weierstrass models. The discriminant of the UFD SU(3) model takes the form

∆ = h3
(
φ30∆fund +O(h)

)
, (8.6)

where the ∆fund = h = 0 loci support fundamental matter. On P2, φ0 and ∆fund are re-
spectively sections of O(3H) and O(27 − 3d)H. For d > 9, ∆fund is ineffective, as are the
higher-order coefficients in the discriminant. The discriminant is therefore forced to vanish
identically, which is clearly problematic.18 Thus, there is no “generic” Tate model for SU(3) on
a degree d > 9 curve in P2, which agrees with the observation that there is no 6D supergravity
model with T = 0 and an SU(3) with b = 10H and only adjoint and fundamental matter.

While the d > 9 models with only adjoint and fundamental charged matter are incon-
sistent, the anomaly conditions suggest there are anomaly-equivalent models with symmetric
matter that are consistent. From the analysis of §2.2, there is a seemingly consistent d = 10

model with 30 symmetrics, 6 adjoints, and zero fundamentals of SU(3). Additional spectra
can be generated by exchanging an adjoint for a symmetric and a fundamental. (For d > 10,
the number of symmetrics required is greater than the genus of the curve, so there are no
consistent models with d > 10). However, none of these models seem to have corresponding
Weierstrass models. Recall that a double point singularity that supports a symmetric hy-
permultiplet also supports a fundamental hypermultiplet. Any Weierstrass model with some
number of symmetric hypermultiplets should therefore have at least as many fundamental
hypermultiplets. But the supposedly consistent d = 10 models all have fewer fundamentals
than symmetric hypermultiplets, suggesting that such models cannot be realized using double
point singularities. This behavior can be seen directly in the Weierstrass models in §5, as
the discriminant vanishes just as in the d = 10 Tate model even when there are ηa = ηb = 0

double points. Note that the general argument is fairly independent of the specific Weierstrass
tuning; the key issue is the singularity type, specifically that any double point that supports
symmetric matter should also support a fundamental hypermultiplet. One might hope that
some singularity type may contribute symmetric matter without the corresponding fundamen-
tal hypermultiplet; if this is the case, one could potentially construct the d = 10 spectra from
some alternative Weierstrass tuning. But without such a development, it seems unlikely that
any Weierstrass model, not just the one described in §5, could give the supposedly consistent
d = 10 spectra.

The upshot is that the Weierstrass models developed in §5 do not realize all of the models
with SU(N) gauge groups and two-index symmetric representations that look consistent from
the low-energy anomaly perspective. Some of these models may be realizable in F-theory
through a different Weierstrass tuning than the one described here. However, the d = 10

18Alternatively, this can be seen in Tate form from the fact that the Tate coefficient a3 [4] is of degree 9 for
SU(3), and would vanish identically as would all the other Tate coefficients for an SU(3) tuning on a curve of
degree d > 9.
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models described above seem to be difficult to obtain in F-theory and may be candidates
for the F-theory “swampland.” It would be interesting to investigate these models further in
future work.

8.1.3 Example: quartics with 3 double points

A quartic on P2 has genus 3 and should be able to support three double points. As mentioned
previously, the form of the curve h used in §5 does not allow a quartic to have more than 2
double points. It is, however, possible to construct a quartic with three double points if one
goes beyond the structure used earlier. Specifically, the curve

q = qaη
2
aη

2
c + qbηaηbη

2
c + qcη

2
bη

2
c + qdη

2
aηbηc + qeηaη

2
bηc + qfη

2
aη

2
b = 0 (8.7)

has double point singularities at ηa = ηb = 0, ηb = ηc = 0, and ηc = ηa = 0. If the qa through
qf coefficients are constants and if ηa, ηb, ηc ∈ O(H), q is a quartic curve with three double
points.

Identifying the curve is only the first part of the tuning. To proceed further, we must
describe the normalized intrinsic ring R̃/〈q〉. In fact, R̃/〈q〉 resembles the normalized intrinsic
ring used in §5. We introduce three parameters, Q̃bc, Q̃ca, and Q̃ab, described by the relations

Q̃bc =
1

ηc

[(
qfη

2
a + qeηaηc

)
ηb +

1

2

(
qdη

2
a + qcηbηc

)
ηc

]
(8.8)

=− 1

ηb

[(
qaη

2
a + qbηaηb

)
ηc +

1

2

(
qdη

2
a + qcηbηc

)
ηb

]
, (8.9)

Q̃ca =
1

ηa

[(
qcη

2
b + qbηbηa

)
ηc +

1

2

(
qeη

2
b + qaηcηa

)
ηa

]
(8.10)

=− 1

ηc

[(
qfη

2
b + qdηbηc

)
ηa +

1

2

(
qeη

2
b + qaηcηa

)
ηc

]
, (8.11)

Q̃ab =
1

ηb

[(
qaη

2
c + qdηcηb

)
ηa +

1

2

(
qbη

2
c + qfηaηb

)
ηb

]
(8.12)

=− 1

ηa

[(
qcη

2
c + qeηcηa

)
ηb +

1

2

(
qbη

2
c + qfηaηb

)
ηa

]
. (8.13)

These relations are analogous to the expressions

H̃ =
1

ηb

[
p(2)ηa + p(1)ηb

]
= − 1

ηa

[
p(1)ηa + p(0)ηb

]
(8.14)

used in §5. Moreover, Q̃bc, Q̃ca, and Q̃ab satisfy the relations

Q̃2
bc =

1

4

(
qdη

2
a + qcηbηc

)2 − (qfη2a + qeηaηc
) (
qaη

2
a + qbηaηb

)
, (8.15)

Q̃2
ca =

1

4

(
qeη

2
b + qaηcηa

)2 − (qcη2b + qbηbηa
) (
qfη

2
b + qdηbηc

)
, (8.16)

Q̃2
ab =

1

4

(
qbη

2
c + qfηaηb

)2 − (qaη2c + qdηcηb
) (
qcη

2
c + qeηcηa

)
, (8.17)
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just as H̃ satisfied the relation H̃2 = p2(1) − p(2)p(0).
The general tuning process proceeds as before. We expand f and g as

f = f0 + f1q + f2q
2 + . . . g = g0 + g1q + g2q

2 + . . . (8.18)

and impose conditions on the fi and gi to force the discriminant to vanish to certain orders.
To obtain an SU(3) gauge group in an UFD model, f and g would take the form

f = − 1

48
Φ̃4
0 + Φ̃0Ψ̃q + f2q

2 + . . . (8.19)

g =
1

864
Φ̃6
0 −

1

12
Φ̃3
0Ψ̃q +

(
Ψ̃2 − 1

12
Φ̃2
0f2

)
q2 + . . . . (8.20)

As in §5, we use the UFD tunings, but we let Φ̃0 and Ψ̃ be elements of R̃/〈q〉. Instead of
expanding Φ̃0 and Ψ̃ as in Equations (5.25) and (5.33), we use

Φ̃0 = νaηbηc + νbηcηa + νcηaηb + νaηaQ̃bc + νbηbQ̃ca + νcηcQ̃ab (8.21)

Ψ̃ = ψaηbηc + ψbηcηa + ψcηaηb + ψaηaQ̃bc + ψbηbQ̃ca + ψcηcQ̃ab. (8.22)

The products Φ̃2
0, Φ̃0Ψ̃, and Ψ̃2 now lie in R/〈q〉. The explicit expressions are lengthy, so we

do not write them here; however, they can be found by expanding out the products and using
relations (8.8) through (8.17) to remove all occurrences of Q̃bc, Q̃ca, and Q̃ab. We can now
plug in the expressions for Φ̃2

0, Φ̃0Ψ̃ and Ψ̃2 into (8.19) and (8.20), giving valid expressions for
f and g. Note that a product of two distinct Q̃’s in these expressions is always accompanied
by the appropriate η factors to immediately put the term in R/〈q〉. The zeroth and first
order terms of the discriminant vanish exactly, while the second order term is proportional to
an additional factor of q. Therefore, we have a non-Tate model in which the discriminant is
proportional to q3. The ηa = ηb = 0, ηb = ηc = 0, and ηc = ηa = 0 double points cannot be
deformed away, and they support + matter.

Note that if we let either ηa, ηb, or ηc be a constant, we recover expressions nearly identical
to those in the Weierstrass model of §5. This behavior should be expected. If, say, ηc is set
to a constant, the only remaining double points occur at the ηa = ηb loci. This is exactly the
situation encountered in §5, and we expect that the models should be identical up to trivial
shifts and scalings of the parameters, as observed.

8.2 Triple points on P2

We now consider the general question of how many triple-symmetric representations of SU(2)
can be realized in a given class of models. In this case, there are nontrivial constraints
from geometry, associated with the inability to tune curves with certain combinations of
singularities. These correspond to theories in the apparent swampland [36, 37], which look
acceptable from the low-energy point of view but cannot be realized in F-theory.
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8.2.1 Triple points on curves

We investigate whether arbitrary numbers of triple points can be realized on curves, special-
izing for simplicity to the case of the base P2.

The simplest example is a quartic, with genus g = 3. It is straightforward to choose a
quartic with a simple triple point singularity, taking

σ = Au3 +Bu2v + Cuv2 +Dv3 , (8.23)

with A,B,C,D linear functions of the homogeneous coordinates [u : v : w].
Next consider a quintic, with genus g = 6. We can ask whether a quintic can be tuned

with two triple point singularities. This is not possible. Were this possible, without loss of
generality we could put both triple points on the line v = 0. Then a quintic restricted to
v = 0 would have to vanish to third order at two points, e.g. u = 0, u = 1, but this cannot
happen since a quintic only has five roots. So there cannot be a quintic with two triple points.
This represents an interesting contribution to the apparent F-theory swampland; there is an
apparent low-energy model with T = 0 and an SU(2) gauge group with anomaly coefficient
b = 5 and two triple-symmetric matter fields, but this cannot be realized in F-theory. It would
be nice to understand if there is some nontrivial low-energy explanation for the inconsistency
of this theory.

Continuing, for a degree b = 6 curve we have g = 10. We can check the existence of
such a curve with three triple points by performing a Cremona transformation. In a Cremona
transformation on the plane we blow up three points a, b, c and then blow down the three
-1 curves associated with the lines ab, bc, ac. Assuming the existence of a degree 6 curve
C with three triple points at a, b, c we perform the Cremona transformation. Each blow-
up removes a triple point singularity and drops the self-intersection of the curve by −9, so
the resulting curve has self-intersection 36 − 27 = 9. The lines ab etc. do not intersect C
anywhere except at a, b, . . ., so blowing down these lines does not affect the self-intersection
and the final curve after the Cremona transformation is a cubic with no self-intersections,
which is certainly allowed. We simply invert this process to create the desired curve C, i.e.
we perform a Cremona transformation on the plane P2 carrying a smooth cubic C ′ where all
three points a′, b′, c′ are disjoint from C ′.

In a similar way we can check the possibilities for b up to b = 9. For b = 7, g = 15. Starting
with the hypothetical maximum configuration of five triple points on a curve C, the Cremona
transformation on three of the triple points gives a curve of self-intersection 49− 27 + 3 = 25,
i.e. a quintic with two triple points, which is not allowed as discussed above, so the maximal
b = 7 configuration with five triple points is also not allowed. Note that here the extra 3
in the self-intersection comes from the fact that each of the lines blown down intersects the
original septic once, so blowing each down raises the self-intersection by 1. For b = 8, g = 21,
we can do a Cremona transformation on three triple points, giving three double points, so in
the maximum case of C degree 8 curve with 7 triple points this gives a degree 7 curve with 4
triple points and three double points. Iterating this process shows that this is allowed.
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Further arguments are needed to go to b = 9 and beyond, but this analysis shows that
there are cases, like the situations of a degree 5 curve with two triple points and a degree 7
curve with five triple points, which appear acceptable from anomaly considerations but are
not allowed simply from the geometry of singularities on the F-theory side.

8.2.2 Explicit Weierstrass models with triple points

From the general cubic construction with σ = Aξ3 + Bξ2η + Cξη2 + Dη3 as described in
[11] and in §6, we can only have certain combinations of triple points for each degree of σ.
Denoting (x, y) = (deg ξ,deg η)→ xy as the number of triple points, we have:

For a quartic with b = 4: g = 3, (x, y) = (1, 1) → xy = 1, so this possibility has an
explicit F-theory realization.

For a quintic with b = 5: g = 6, (x, y) = (1, 1) → xy = 1. We cannot realize two triple
points, which matches with the analysis above.

For b = 6: g = 10, x = 1, y = 1, 2, we can have xy = 1, 2 but not 3 triple-symmetric
representations. Thus, while as discussed above there is a sextic with 3 triple points, a more
sophisticated analysis, likely along the lines of §8.1.3, is needed to determine if a Weierstrass
model can be realized with triple-symmetric representations at each of these singular points.

For b = 7, g = 15 we can realize xy = 1, 2, 4. As discussed above the case r = 5 is not
allowed by geometry, so the only open case is r = 3.

For T = 0, the largest allowed value of b for a model with no 3-index symmetric repre-
sentations of SU(2) is b = 12. In this case, there are 55 adjoints and 111 neutral scalar fields,
which can be read off from Table 2. This is only enough neutral scalar fields to convert 45
of the adjoints to triple-symmetric representations. This matches with the observation that
the Tate form for SU(2) on P2 is only possible up to b = 12 (since a4 is of degree 12).19 As
discussed in §2.2, however, there are allowed low-energy models with b > 12 that must have
triple-symmetric matter. Some of these can be realized through the general cubic Weierstrass
construction. For example (see Table (3.22) in [11]), there is a model with b = 13, x = 3, y = 4

which has as matter content (from 12 triple points) 6 × 4 + 30 × 3 + 58 × 2. The anomaly
equivalence would only allow the number of 4’s to be reduced by 4 before running out of
fundamental representations needed to make the transformation, leaving at least 2 (r ≥ 4

half-hypermultiplet) 3-index symmetric matter representations in any valid model. Another
example from [11] has b = 18, x = y = 6, with a total matter content of 18×4+28×3+36×2.
Of the 18 3-index symmetric representations, only 5/2 can be removed through anomaly-
equivalent transitions. We speculate that the required presence of 3-index symmetric matter
may be related to the tallness constraints that force q = 3 matter in some U(1) models [38];
however, we leave a full analysis of any possible connection to future work.

The upshot of this analysis is that there are some cases that appear allowed from low-
energy anomaly considerations that definitely do not have F-theory models since the required

19Alternatively, the discriminant for the Tate model takes the form ∆ = φ2∆fundσ
2 + O(σ3), and ∆fund is

ineffective for b > 12.
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singularity combinations are not allowed. In other cases it remains to be shown whether
an explicit Weierstrass model can be realized even when the geometry allows the singularity
combination. There is no general obstruction, however to finding Weierstrass models in those
cases where the generic matter content must contain 3-index symmetric matter of SU(2).

9 Allowed and disallowed representations

So far in this paper we have focused on two- and three-index representations of SU(N),
associated with double and triple intersection points on the divisor carrying the gauge group.
In this section we consider more generally what other kinds of exotic representations and
associated singularities may be allowed in F-theory. We begin with some comments on the
generalization of the algebraic analysis to quadruple point singularities and then consider the
constraints from F-theory geometry more generally.

9.1 Higher singularities

It is natural to ask whether a similar construction to those described above could be carried
out for higher singularities, such as a quadruple intersection point. Following the spirit of the
simple examples in §3, for example, we can try to identify a simple tuning of SU(2) on the
divisor σ = ξ4 − Bη4. In a similar fashion to §3.1, we can adjoin the element α satisfying
α4 = B to form the normalized intrinsic ring and then can try various monomials such as
φ = α2η. With this Ansatz, we have

f0 = −Bη2/48, g0 = Bξ2η/864, (9.1)

and
∆0 = B2η2σ/27648 . (9.2)

At the next order, however, we have

∆1 = (Bξ2η)g1/16 + (B2η4)f1/192 +B2η2/27648 . (9.3)

This cannot be solved for f1, g1 as there are not enough powers of ξ, η in the last term on the
RHS. So this Ansatz for the monomial φ does not work. The possibility φ = α3η also leads
to similar problems. While the tuning can be completed for φ = α3η2, the resulting f and g
vanish to orders (4,6) on ξ = η = 0, and the quadruple points seem to support superconformal
matter rather than a standard SU(2) representation.

One might be interested in searching for a geometric realization of some specific more
complicated representation such as the four-symmetric representation of SU(2) in a fashion
analogous to the realizations discussed here of the two- and three-symmetric representations.
This immediately presents some issues, however. To begin with, the genus that would be
needed for the four-symmetric representation) would seem to be 21. This does not match at
all the pattern of the two- and three-symmetric representations that are realized at double
and triple points, since a quadruple point has arithmetic genus of only 6. While we do not
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s s s sc s ssc
A2

2 → A5 A3
1 → D4

Figure 2. Allowed embeddings of Dynkin diagrams corresponding to Kodaira singularities at codimension two
points for (a) the two-index symmetric representation of SU(3), (b) the three-index symmetric representation
of SU(2). Solid circles represent the Dynkin diagrams of the gauge group and the open circle represents the
matter fields.

have a direct conclusive argument that no singularity type can be constructed that carries
this representation, we now argue that F-theory cannot realize the four-index symmetric
representation of SU(2) or other more exotic representations on more general grounds, which
explains the difficulties that would seem to be present in any direct attempt at algebraic
construction.

9.2 Dynkin diagrams and higher representations

One way of understanding the representations we have described so far is in terms of the
Dynkin diagrams associated with the Kodaira singularity types on the divisor carrying the
gauge group and at the singular point. In the simplest cases where the rank is enhanced by
one and the Katz-Vafa analysis [39] applies, an AN−1 singularity associated with SU(N) is
enhanced to AN to give a fundamental representation, DN to give the two-index antisymmetric
tensor representation, and EN to give the three-index antisymmetric tensor representation.
In the case of the two-index symmetric representation of SU(N) studied in §5, the AN−1
Dynkin diagram is embedded twice in the A2N−1 Dynkin diagram [5]. Similarly, in the case
of the three-index symmetric representation of SU(2) studied in §6, the A1 Dynkin diagram
is embedded three times in D4 [11]. Both of these situations are illustrated in Figure 2 and
represent embeddings of Dynkin diagrams that can be realized through singularities in valid
F-theory models.

The geometric interpretation of this embedding, following [39], is that the discriminant
locus is being sliced by a 1-parameter family of parallel curves. Over the central curve, one
finds a singularity represented by the enlarged Dynkin diagram. When the curve moves to
a nearby, parallel curve, the singularities present correspond to the subdiagram which has
been embedded. For example, over a generic curve passing through the triple point of the
discriminant corresponding to a three-index symmetric representation of SU(2) we find a
singularity of type D4, but when that curve is moved to a nearby parallel curve, it meets the
discriminant locus in three separate points, each corresponding to an A1 singularity.

We now consider, however, what a Dynkin diagram embedding would look like for repre-
sentations that go beyond those considered here. A triple-symmetric representation of SU(3)
would correspond to an embedding of A3

2 into a Dynkin diagram of rank 7, but no such Dynkin
diagram exists. It is tempting to instead try to use the extended Dynkin diagram Ê6, and
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s s s sss×c s sssc×
A3

2 → Ê6 A4
1 → D̂4

Figure 3. Disallowed embeddings of Dynkin diagrams corresponding to Kodaira singularities at codimension
two points for (a) the three-index symmetric representation of SU(3), (b) the four-index symmetric represen-
tation of SU(2). Solid circles represent the Dynkin diagrams of the gauge group and the open circle represents
the matter fields. Circle with a cross represents the extra node of the extended Dynkin diagram.

the embedding of A3
2 illustrated in Figure 3. (Similarly, one could try to use an embedding

of A4
1 into the extended Dynkin diagram D̂4, also illustrated in Figure 3.) The flaw here is

that the extended diagram can never correspond to a singularity (over a curve on the base):
since an extended Dynkin diagram does not have a negative-definite intersection matrix, it is
not possible to contract all of its curves simultaneously to a single point. In fact, since the
linear combination of curves corresponding to the maximal root of the associated Lie algebra
is linearly equivalent to the fiber of the elliptic fibration, if we shrink all of the curves in the
extended diagram to zero area, we necessarily shrink the elliptic fiber itself to zero area (giving
the F-theory limit of M-theory).

Thus, we argue that none of these embeddings are allowed as singularities producing the
desired matter representation. Similar considerations rule out the exotic 4-index antisymmet-
ric (70) representation of SU(8) and the “box” (20’) representation of SU(4), as discussed
in [5]. Despite some effort (see e.g. [7]), no F-theory Weierstrass model for either of these
representations has been found.

Note that this analysis suggests a number of nontrivial matter configurations that are
charged under two SU(N) groups. For example, we could embed SU(2) × SU(3)2 into E6 or
SU(2) × SU(4)2 into E8 to realize matter charged under the fundamental of the SU(2) and
the two-index symmetric representation of the other SU(N) group.

One might ask whether other gauge groups besides SU(N) can give analogous exotic
matter representations in F-theory associated with singularities on the divisor supporting the
gauge group. In general, this does not seem to be possible. For all gauge groups other than
SU(N) and Sp(N) the Kodaira singularity involves a vanishing of the Weierstrass coefficients
f, g to at least degrees (2, 3). Even a double point or cusp singularity at such a point thus
would involve a vanishing of f, g to at least degrees (4, 6). This implies that outside of the
context of 6D SCFT’s [31, 32] no higher gauge group can be supported on a divisor with an
intrinsic singularity. So in a supergravity model without a superconformal sector associated
with a codimension two (4, 6) locus, we do not expect exotic matter of the type considered
in this paper for any gauge groups other than SU(N) and Sp(N). For Sp(1) the gauge group
is equivalent to SU(2), and the exotic matter is the 3-index symmetric matter representa-
tion. For Sp(2) and higher, the symmetric matter representation is indistinguishable from
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the adjoint representation, so this does not represent exotic matter. This matches with the
discussion in §5.1, where we identified the role of the non-UFD structure in SU(N) symmetric
representations in terms of the field appearing as the square root in the split condition; if this
root can be defined near a given singularity in terms of the ring of functions on the divisor
then the associated model has an adjoint matter representation, while if the root lives in
an extension associated with the normalized intrinsic ring, then the model has a symmetric
representation.

The upshot of this analysis is that we expect that the only exotic representations as-
sociated with singular divisors in supergravity theories without superconformal sectors are
the 3-index symmetric representation of SU(2) and the 2-index symmetric representation of
SU(N) that we have studied here. It may be interesting to try to understand better to what
extent this constraint on matter fields is special to F-theory or may be more general. Cer-
tainly from the point of view of the low-energy theory, as discussed in [8] and in §2, there
are anomaly-consistent models that contain higher exotic matter representations such as the
4-index symmetric representation of SU(2), and there are also anomaly-consistent models that
contain exotic matter representations of higher Kodaira groups such as G2.20 It would be nice
to understand whether these are actually inconsistent models or part of the “swampland”. For
example, heterotic constructions may be able to give rise to theories with the 4-index symmet-
ric SU(2) representation and exotic representations of e.g. SU(5) and SU(6) with higher-level
constructions [40], although it is not clear if such constructions can preserve supersymmetry.
It would be nice to understand whether such constructions are indeed possible in consistent
supersymmetric theories in 6D and/or 4D, and whether they can be related to or bounded by
the physics of F-theory models.

10 Conclusions

In this paper we have developed a general approach to analyzing exotic matter representations
that can appear in F-theory when the gauge group lives on a singular divisor D. We analyzed
symmetric representations of SU(N) and 3-index symmetric representations of SU(2), and
argued that these are the only exotic representations of a single simple gauge factor that can
arise in this context. These representations are realized through unusual Weierstrass models
in which the cancellation of the discriminant to guarantee the In Kodaira singularity type
over D is realized in a nontrivial way that is only possible when the ring of functions on D
is not a unique factorization domain. These results extend further the known correspondence
between the geometry of elliptic fibrations at codimension two singularities in the base and
the representation theory of matter in the associated F-theory model.

We have used a variety of approaches to confirm the matter content in the non-UFD con-
structions presented here. In the examples studied in previous work [10, 7, 11] the symmetric
SU(N) matter content of the non-UFD Weierstrass models was determined implicitly by con-
necting to other abelian or nonabelian models through Higgsing and unHiggsing transitions.

20Thanks to Andrew Turner for discussions and identifying some models of this type.
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Here we have shown more explicitly how the structure of the non-UFD models relates to the
resolved geometry describing these matter contents, with full details of the resolution worked
out for a concrete example in Appendix C. It would be interesting to understand these struc-
tures better from the geometric point of view, possibly also using the string junction motivated
approach of deformations explored in [41, 42].

While the constructions of non-UFD models we have carried out here are much more
general than those encountered previously, it would be good to have a more complete picture
of the range of possibilities. In particular, this could be done by removing redundancies in
the Weierstrass models for these compactifications and explicitly determining the number of
independent degrees of freedom and comparing to anomaly cancellation.

Among other things, the analysis presented here gives a clear picture of which spectra
that appear to be allowed from low-energy anomaly constraint considerations can be realized
in F-theory. This has allowed us to identify a specific subset of models that are in the apparent
“swampland” with no string realization and no clear low-energy inconsistency. Further study
of these models could lead to an improved understanding of quantum consistency conditions
for supergravity, and to a better understanding of whether string theory is in fact universal
for 6D supergravity theories [37].

The analysis done here of possible matter content for nonabelian factors in 6D F-theory
models also fits into the general program of systematically classifying all elliptic Calabi-Yau
threefolds by identifying all allowed bases B [43–46] and then carrying out all possible tunings
of Weierstrass models over each base [47, 48]. In particular, the analysis here seems to com-
plete the picture of what possible codimension two singularities may arise in principle from
nonabelian charged matter, associated with distinct Calabi-Yau threefold tunings over a given
base. The detailed questions, however, of which anomaly-allowed combinations of two- and
three-index symmetric matter can be explicitly realized in F-theory, however, must also be
addressed to complete the classification of associated Calabi-Yau threefold geometries.
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A Weierstrass models with symmetric matter

For the Weierstrass models that admit symmetric matter summarized below, we assume the
gauge group is tuned on a curve of form

h ≡ p(2)η2a + 2p(1)ηaηb + p(0)η
2
b = 0. (A.1)

The double points at ηa = ηb = 0 support symmetric matter.
Below we give the tunings for SU(3), SU(4), SU(2k) and SU(2k+1). The SU(3) and SU(4)

tunings can be generated from the expressions for SU(2k + 1) and SU(2k). However, since
SU(3) and SU(4) are referenced frequently, we include the explicit expressions for convenience.

A.1 SU(3) with symmetric matter

f and g are given by

f = − 1

48
φ2 + f1h+ f2h

2 + f3h
3 (A.2)

g =
1

864
φ3 − 1

12
φf1h+ g2h

2 + g3h
3. (A.3)

φ, f1 and g2 are given by

φ = (νaηa + νbηb)
2 − 2νaν

(
p(1)ηa + p(0)ηb

)
+ 2νbν

(
p(2)ηa + p(1)ηb

)
+ ν2

(
p2(1) − p(2)p(0)

)
, (A.4)

f1 = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (A.5)

and

g2 = (ψaηa + ψbηb)
2 − 2ψaψ

(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
− 1

12
φf2. (A.6)

Other parameters are untuned. The leading order term in the discriminant is given by

∆ =
[φ2

16

[
2 (νbψa − νaψb)

(
ν (ψaηa + ψbηb)− ψ (νaηa + νbηb)

)
− ν2

(
p(0)ψ

2
a − 2p(1)ψaψb + p(2)ψ

2
b

)
− ψ2 (

p(0)ν
2
a − 2p(1)νaνb + p(2)ν

2
b

)
+ 2νψ

(
p(0)ψaνa − p(1)ψaνb − p(1)ψbνa + p(2)ψbνb

) ]
+ 4f31 −

φ2

2
f1f2 −

9

2
φf1g2 +

1

192
φ4f3 +

1

16
φ3g3

]
h3 +O(h4) (A.7)
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A.2 SU(4) with symmetric matter

f and g are given by

f =− 1

48
φ2 − 1

6
φφ1h+ f2h

2 + f3h
3 (A.8)

g =
1

864
φ3 +

1

72
φ1φ

2h+
1

36
φ
(
φ21 − 3f2

)
h2

− 1

27

(
9φ1f2 +

9

4
φf3 + φ31

)
h3 + g4h

4 (A.9)

Here, φ is as given in (A.4) and all other parameters are untuned. The leading order term in
the discriminant is given by

∆ =
1

576
φ2
(

36φg4 + 12φφ1f3 − 4
(
3f2 + φ21

)2)
h4 +O(h5) (A.10)

A.3 SU(2k) with symmetric matter

f and g are given by

f = −1

3
υ2 +O(hk) (A.11)

g = − 1

27
υ3 − 1

3
υf +O(h2k), (A.12)

with
υ =

1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (A.13)

φ is again as given in (A.4) and all other parameters are untuned.

A.4 SU(2k + 1) with symmetric matter

f and g are given by

f = −1

3
υ2 + zkh

k +O(hk+1) (A.14)

g = − 1

27
υ3 − 1

3
υf + γ2kh

2k +O(h2k+1), (A.15)

with
υ =

1

4
φ+ φ1h+ φ2h

2 + . . .+ φk−1h
k−1. (A.16)

φ is again as given in (A.4), and zk and γ2k are given by

zk = (νaηa + νbηb) (ψaηa + ψbηb)−
(
νaψ + ψaν

) (
p(1)ηa + p(0)ηb

)
+
(
νbψ + ψbν

) (
p(2)ηa + p(1)ηb

)
+ νψ

(
p2(1) − p(2)p(0)

)
, (A.17)

and

γ2k = (ψaηa + ψbηb)
2 − 2ψaψ

(
p(1)ηa + p(0)ηb

)
+ 2ψbψ

(
p(2)ηa + p(1)ηb

)
+ ψ

2
(
p2(1) − p(2)p(0)

)
.

(A.18)
Other parameters are untuned.
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B SU(2) Weierstrass model with three-index symmetric matter

The SU(2) gauge group is tuned on a curve of form

t ≡ t(3)η3a + 3t(2)η
2
aηb + 3t(1)ηaη

2
b + t(0)η

3
b = 0. (B.1)

The ηa = ηb = 0 triple points support three-index symmetric matter. f and g are given by

f = f0 + f1t+O(t2) g = g0 + g1t+O(t2), (B.2)

with

f0 = − 1

48

[ (
haη

2
a + 2hbηaηb + hcη

2
b

)2
+ 2φ (haηa + hbηb) τηa

+ 2φ (hbηa + hcηb) τηb + φ
2
τsq

]
, (B.3)

g0 =
1

864

[ (
haη

2
a + 2hbηaηb + hcη

2
b

)3
+ 3φ

(
haη

2
a + 2hbηaηb + hcη

2
b

)
[(haηa + hbηb) τηa + (hbηa + hcηb) τηb]

+ 3φ
2 (
haη

2
a + 2hbηaηb + hcη

2
b

)
τsq + φ

3
τcu

]
, (B.4)

f1 = λaηa + λbηb, (B.5)

g1 =
φ
2

576

[
ηa
(
hct(3) − 2hbt(2) + hat(1)

)
+ ηb

(
hct(2) − 2hbt(1) + hat(0)

)
− φ

3

(
t(3)t(0) − t(2)t(1)

)]
− 1

12

(
haη

2
a + 2hbηaηb + hcη

2
b

)
(λaηa + λbηb)−

1

12
φ (λaτηa + λbτηb) . (B.6)

τηa, τηb, τsq and τcu are defined as

τηa =− t(2)η2a − 2t(1)ηaηb − t(0)η2b (B.7)

τηb =t(3)η
2
a + 2t(2)ηaηb + t(1)η

2
b (B.8)

τsq =
(
t2(2) − t(3)t(1)

)
η2a +

(
t(2)t(1) − t(3)t(0)

)
ηaηb +

(
t2(1) − t(2)t(0)

)
η2b (B.9)

τcu =
(
t(3)t(2)t(1) − t3(2)

)
η3a + 3

(
t(3)t

2
(1) − t(1)t

2
(2)

)
η2aηb (B.10)

+ 3
(
t(3)t(1)t(0) − t2(2)t(0)

)
ηaη

2
b +

(
t3(1) − 2t(2)t(1)t(0) + t(3)t

2
(0)

)
η3b . (B.11)

All other parameters are untuned.
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C Symmetric matter and resolutions

The non-UFD nature of the split condition plays a key role in the singularity structure for
symmetric matter. To see this, we must analyze the resolution of elliptic fibration singularities
at double points, which is described in [5]. Consider an SU(4) model with symmetric matter
located at double points, where the A3 gauge singularity enhances to a codimension-two A7

singularity. For simplicity, we assume we are working in six dimensions. Near a double point,
the SU(4) gauge curve will appear to consist of two components. The global structure of the
gauge curve connects these two components, but if one focuses on a sufficiently small region
near the double point, the two components look disconnected except for their intersection at
the double point. For the purposes of the resolution, it is therefore sufficient to consider the
limit in which the SU(4) gauge curve factorizes. Suppose the curve takes the form

σ = ξ2 − bη2, (C.1)

as in §3. To analyze the double points at ξ = η = 0, we can consider the case where b becomes
a perfect square:

b→ β2. (C.2)

Then, the SU(4) gauge curve factorizes into two components, given by

ξ ± βη. (C.3)

Of course, we eventually have to account for the fact that these two components are in fact
connected. The details of this connection determine whether the double point contributes
symmetric or adjoint matter.

Before turning to the specific way in which the split condition affects the resolution, let us
outline the basic resolution procedure. There are A3 singularities along the two components.
These singularities are resolved via blow-ups that introduce three exceptional P1’s per compo-
nent, giving six exceptional curves in total. The intersection pattern of the three exceptional
curves forms an A3 Dynkin diagram, and the three curves correspond to the positive simple
roots of A3. Other −2 curves, given by linear combinations of the three exceptional curves,
correspond to the other A3 roots. At the double point, the singularity type enhances from
A3 × A3 to A7. There are now seven exceptional curves forming an A7 Dynkin diagram,
and appropriate linear combinations of these curves fill out the A7 roots. Some of these A7

curves correspond to the A3 × A3 roots for the two components. The remaining A7 curves
correspond to the weights of charged matter localized at the double point. The intersection
numbers of these remaining curves with the A3×A3 exceptional curves give (the negative of)
the Dynkin indices for the weights. From this information, one can read off the representations
supported at the double point. As described so far, this process would seem to give A3 × A3

representations, such as (4,4) or (4, 4̄). Based on the global structure of the curve, an A3

exceptional curve for one component can be identified with an exceptional curve in the other
component. The identification then allows one to convert the A3×A3 representations into A3

representations such as the symmetric or adjoint representations.
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To proceed further, we consider the standard I4 Weierstrass model

y2 = x3 + fx+ g, (C.4)

with

f = − 1

48
φ2 − 1

6
φφ1σ + f2σ

2 (C.5)

g =
1

864
φ3 +

1

72
φ1φ

2σ +
1

36
φ
(
φ21 − 3f2

)
σ2 − 1

27

(
9φ1f2 + φ31

)
σ3 + g4σ

4. (C.6)

If we define
x′ = x− 1

12
φ− 1

3
φ1σ, (C.7)

the Weierstrass model can be written as

y2 = x′
3

+

(
φ

4
+ φ1σ

)
x′

2
+

(
f2 +

1

3
φ21

)
σ2x′ + g4σ

4. (C.8)

We let σ factorize into the two components in Equation (C.3). In addition, we assume the
split condition is satisfied with φ = φ20. For now, we do not specify the form of φ0, although
we will return to this issue shortly. Up to the inclusion of higher order terms in x′ and σ, this
model is similar to that in [5]. However, φ0 and f2 + 12φ21 were set to constants in [5]. Thus,
the expressions for the exceptional curves given there have a hidden dependence on φ0. This
dependence on φ0 must be considered to obtain a full understanding of the double points.
Nevertheless, the steps of the resolution are identical, so we do not describe the full resolution
procedure. Below, we discuss the end result of the resolution, focusing in particular on how
parameters such as φ0 and β affect the exceptional curves.

Along either of the two components, the blow-ups introduce three exceptional curves that
form an A3 Dynkin diagram, as illustrated in Figure 4. For one of the components, we label the
exceptional curves C−1 , C2, and C+

1 . The plus and minus subscripts describe the dependence
of the exceptional curves on φ0. The explicit expressions for C+

1 and C−1 are nearly identical,
except for the replacement of φ0 with −φ0. As a result, sending φ0 to −φ0 while leaving the
other parameters unchanged exchanges C+

1 and C−1 . In C2, φ0 only appears in even powers, so
there is no exchange involving C2 when φ0 → −φ0. For the second component, the resolution
produces three different exceptional curves, C̃−1 , C̃2, and C̃+

1 , that form a distinct A3 Dynkin
diagram. The C̃±1 have similar expressions related by φ0 → −φ0 and are thus exchanged when
the sign of φ0 is flipped. Moreover, the C+

1 and C̃+
1 expressions are nearly identical, except for

the fact that they are associated with different components. If one were to exchange the two
components by sending β → −β (while keeping other parameters fixed), C+

1 and C̃+
1 would

then be exchanged. The same is true for C−1 and C̃−1 .
At the ξ = η = 0 points, the singularity type enhances to A7. We now have seven

exceptional curves, denoted by the symbol γ, whose intersections are summarized by the
Dynkin diagram in Figure 5. These curves, together with other −2 curves given by linear
combinations of the γ’s, fill out the 28 positive roots of A7. Some of these positive roots
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C−1 C2 C+
1 C̃+

1C̃2C̃−1

φ0 → −φ0 φ0 → −φ0

β → −ββ → −β

× × × ×

Figure 4. Exceptional curves for the A3 ×A3 resolution. Circles denote the exceptional curves, with
x’s marking the intersections. Arrows indicate how exceptional curves are exchanged under φ0 → −φ0
and β → −β. Colors indicate which C and C̃ curves are identified for the case with symmetric matter.

correspond to the A3 exceptional curves from before. In particular, the C and C̃ exceptional
curves become linear combinations of the γ curves at the double point:

C±1 → γ±1 C2 → γ−2 + γ−3 + γ4 + γ+3 + γ+2 C̃±1 → γ±3 C̃2 → γ4 (C.9)

Likewise, the other A3 roots, formed by linear combinations of the C’s and C̃’s, become linear
combinations of the γ’s at the double point. Thus, 12 of the 28 positive A7 roots represent the
positive A3 roots from before. The remaining positive A7 roots correspond to the weights of
the charged matter localized at the double point. One can calculate the intersection numbers
of these curves with those in Equation (C.9) to obtain the (negative of) the Dynkin indices
of the weights. An explicit analysis of the weights shows that the charged matter consists of
bifundamentals; since we are essentially dealing with an SU(4) × SU(4) gauge group, this is
the expected result. In particular, the curve γ∗ = γ−3 +γ4 +γ+3 +γ+2 +γ+1 has the intersection
numbers

γ∗ · C−1 = 0 γ∗ · C2 = 0 γ∗ · C+
1 = −1 (C.10)

γ∗ · C̃−1 = −1 γ∗ · C̃2 = 0 γ∗ · C̃+
1 = 0 (C.11)

The corresponding root therefore has Dynkin indices [0, 0, 1] and [1, 0, 0], which are those for
the highest weight of the bifundamental.

Now, we can return to the situation where the gauge curve does not factorize. Near
the double point, the curve still appears to consist of two distinct components, but the two
components are connected by the global structure of the curve. The two A3’s from the two
components should therefore be identified with each other. In particular, an exceptional curve
for one component should be identified with a specific exceptional curve for the other branch.
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γ−1 γ−2 γ−3 γ4 γ+3 γ+2 γ+1

C−1 C̃−1 C+
1C̃+

1C̃2

C2

× × × ×

Figure 5. Embedding of A3×A3 → A7 at a double point. Black dots represent exceptional curves for
the A7 singularity, with the lines between them denoting intersections between the exceptional curves.
Colored lines indicate the combinations of γ curves corresponding to the A3 ×A3 exceptional curves.
Colors indicate which C and C̃ curves are identified for the case with symmetric matter.

In the setup described above, the two components are essentially identical except for the sign
of β. We therefore need to examine how the forms of the exceptional curves change when β is
sent to −β while other parameters are unchanged. Suppose we have a standard, UFD tuning,
where φ0 does not depend on β. Then, when β → −β, the curve C+

1 becomes C̃+
1 , indicating

that C+
1 and C̃+

1 should be identified. Importantly, φ0 was unaffected by letting β → −β,
implying that C+

1 should be identified with C̃+
1 and not C̃−1 . The A7 curve γ∗ corresponding

to the highest weight intersects two curves that are not identified, C+
1 and C̃−1 . Once the

global structure of the gauge curve is accounted for, the Dynkin index is [1, 0, 1], that for the
highest weight for adjoint matter. This implies that in the UFD situation, the double point
contributes adjoint matter.

For the non-UFD tuning from §3, φ0 is proportional to B̃. Note that β in some sense
plays the same role as B̃, so φ0 is essentially proportional to β. Taking β → −β therefore
changes the sign of φ0 as well. C+

1 is now identified with C̃−1 , not with C̃+
1 . Since γ∗ intersects

both C+
1 and C̃−1 , the highest weight now has Dynkin indices [2, 0, 0], signaling the appearance

of symmetric matter. This alternative identification relies crucially on the fact that φ0 has a
particular structure based on the form of the gauge curve. An arbitrary φ0, such as that in
the UFD tuning, leads to an identification corresponding to adjoint matter. The non-UFD
implementation of the split condition is thus a vital feature of the models with symmetric
matter.
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