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Abstract: We determine the phase diagram of complete asymptotically free SU(Nc)
gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according
to the fundamental representation of the gauge group. The analysis is performed at the
maximum known order in perturbation theory. We unveil a very rich dynamics and as-
sociated phase structure. Intriguingly we discover that the complete asymptotically free
conditions guarantee that the infrared dynamics displays long distance conformality, and in
a regime when perturbation theory is applicable. We conclude our analysis by determining
the quantum corrected potential of the theory and summarising the possible patterns of
radiative symmetry breaking. These theories are of potential phenomenological interest as
either elementary or composite ultraviolet finite extensions of the Standard Model.
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1 Introduction

Gauge theories featuring gauge, scalar and fermion degrees of freedom constitute the back-
bone of the Standard Model of particle interactions. It is therefore important to unveil
their perturbative and non-perturbative dynamics.

Furthermore according to their ultraviolet properties these theories can be classified into
fundamental and effective low energy descriptions. Fundamental theories are, according to
Wilson, the ones featuring in the UV non-interacting (free) [1–4] or interacting (safe) [5, 6]
fixed points. If multiple couplings are present one can have complete asymptotic freedom
(CAF) [1, 7–14], or safety (CAS) [6, 15, 16], or mixed possibilities [12, 16, 17]. Exact
non-perturbative results on the possible asymptotically (un)safe nature of supersymmetric
gauge theories were investigated in [18] impacting the very existence of time-honoured super
grand unified theories [19]. The existence of controllable non-supersymmetric theories with
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interacting UV fixed points led to the recent discovery [20] that the addition of positive mass-
squared terms leads to calculable radiative symmetry breaking in the IR, a phenomenon akin
to the radiative symmetry breaking that occurs in the Supersymmetric Standard Model [21].
We will not consider gravitational corrections which, however, are the subject of interesting
related work [22–24].

Here we focus our attention on the dynamics of SU(Nc) gauge theories with Ns complex
scalars and Nf Dirac quarks transforming in the fundamental representation of the gauge
group. Surprisingly despite the in depth study within the supersymmetric context, mostly
due to the remarkable work by Intriligator and Seiberg [25], very little is known about the
non-supersymmetric version with only one complex species of scalar quarks in addition to
the ordinary quarks.

We therefore wish to partially close this gap by providing an in depth study of these
theories within a perturbative RG analysis along with the study of the associated quantum
effective potential in the fully calculable regime. We discover a very rich physics associated
to the various possible phases in which the theories can be.

The choice to study these theories stems from the past and recent interest in elemen-
tary [1, 7–12, 14] and composite extensions of the Standard Model featuring scalar quarks
both in models of (super) bosonic Technicolor [26–29] as well as in models of composite
Higgs dynamics [30–32] embodying explicit realisations [33, 34] of the partial composite
mechanism for standard model mass generation [35]. The underlying realisations1 of these
composite extensions are dubbed fundamental partial composite theories [33].

For the theories at hand we first investigate the CAF conditions. We then examine the
infrared dynamics of the unveiled CAF theories to the maximum known order in perturba-
tion theory, allowing us to determine the perturbative phase diagram. Since theories with
scalars can undergo a radiative symmetry breaking phenomenon because of the Coleman
Weinberg (CW) mechanism [38], we carefully investigate this possibility here using the im-
proved Gildener Weinberg (GW) approach [39, 40]. We show that under certain conditions
these theories feature, besides CAF, also large distance conformality.

We now lay out the structure of the paper. In section 2, we introduce the theories, their
beta functions and spell out the conditions for CAF. We move to show the emergence of
controllable interacting infrared fixed points to the maximum known order in perturbation
theory. We discover that the phase diagram is rich and that the CAF conditions lead also to
infrared conformality, at least in some coupling direction. Spontaneous radiative symmetry
breaking is analyzed in section 3. Here we pay special attention to the possible patterns
of symmetry breaking in the scalar sector. The analysis is performed in steps, with the
zeroth order corresponding to a tree-level analysis and the quantum corrections studied
at the one-loop order. The presence of multiple couplings leads to different limits in the
parameter space of the theory that can affect the radiative breaking scenarios. We conclude
in section 4 and add a number of appendices containing further technical details.

1A list of underlying fundamental theories for near conformal dynamics and composite Higgs theories,
before considering fermion mass generation, can be found in [36, 37].
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2 Ultraviolet and infrared properties of the theory

In this work, we consider an SU(Nc) gauge theory involving Ns complex scalars S and Nf

vector-like fermions Q in the fundamental representation. The Lagrangian is

L = −1

2
TrFµνFµν + Tr

(
Q̄i /DQ

)
+ Tr

(
DµS

†DµS
)
− v

(
TrS†S

)2
− uTr

(
S†S

)2
, (2.1)

where Fµν = F aµνt
a
(
a = 1 · · · , N2

c − 1
)
is the field strength tensor and ta are the SU(Nc)

generators in the fundamental representation satisfying Tr
(
tatb
)

= (1/2)δab. In our nota-
tion, the fermion fields Q and the scalar fields S are rectangular matrices with dimensions
Nf ×Nc and Ns ×Nc respectively.

Note that for specific colour choices, withNc ≤ 4 andNs ≤ 4, additional renormalizable
terms in the Lagrangian appear. Here for example for Nc = Ns we can construct the
operator detS. Similarly, for Nc = 4 and Ns = 2 or Nc = 2 and Ns = 4 we have terms
of the form εabεcdε

ijklSai S
b
jS

c
kS

d
l . Furthermore for Nc = 3 a Yukawa term can be written

involving one scalar and two quarks. Additional terms of these types would give additional
contributions to the beta functions, which are not considered in this work.

Fields Gauge Symmetries Global Symmetries
SU(Nc) SU(Nf )L SU(Nf )R U(Ns)

Q � � 1 1
Q̃ � 1 � 1

S � 1 1 �

Table 1. Matter field content of the theory including the quantum symmetry group. Fermion fields
are presented in the left-handed spinor convention.

2.1 UV Behaviour: Completely Asymptotically Free (CAF)

Since the theory has three marginal couplings we now investigate its ultraviolet behaviour
and establish the conditions under which it can be complete asymptotically free. We are in-
terested in characterising the flow behaviour around the Gaussian fixed point, and therefore
one can use one-loop expressions for the beta functions.

Using the rescaled couplings, i.e. α = g2/(4π)2, λ1 = v/(4π)2, λ2 = u/(4π)2, the
one-loop beta functions are

βα = −1

3
(22Nc − 4Nf −Ns)α

2

βλ1 = 4(NcNs + 4)λ21 + 12λ22

+ λ1

[
8(Nc +Ns)λ2 −

6(N2
c − 1)

Nc
α

]
+

3(N2
c + 2)

4N2
c

α2

βλ2 = 4(Nc +Ns)λ
2
2 + λ2

[
24λ1 −

6(N2
c − 1)

Nc
α

]
+

3(N2
c − 4)

4Nc
α2. (2.2)

We note that, to this order, the gauge beta function only depends on the gauge coupling,
and it is of the form βα = −Bα2. Requiring asymptotic freedom (AF), is equivalent to
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restricting the coefficient B to be positive. The critical number of fermion flavors, N∗f , for
which asymptotic freedom is lost in the gauge coupling, B = 0, is N∗f = (22Nc − Ns)/4.
The gauge coupling will be AF for theories with non-negative integer values Nf < N∗f . We
thus have an upper bound on Ns, i.e. Ns ≤ 22Nc.

The two beta functions for the quartic couplings depend on all three couplings but only
on Nc and Ns.

For CAF to exist we first need to find solutions to the following fixed flow relation

(βα, βλ1 , βλ2) = c(α, λ1, λ2) , (2.3)

for an arbitrary non-zero constant c.
We will now outline the criteria under which solutions exist and count the number of

solutions. The fixed flow solution for α > 0 will necessarily satisfy c = −Bα, which can be
substituted into the remaining equations. Since βλ2 depends linearly on λ1, we can easily
solve for λ1(λ2, α) and substitute this into the equation for βλ1 . The result is a quartic
equation in λ2. The coefficients of this equation depend on Nc, Ns, B. Introducing the
quantity Nx = N∗f − Nf , we can express B = 4Nx/3. The number of fixed flow solutions
corresponds to the number of real roots of the quartic polynomial, which can be calculated
using the discriminant method. The full expression for the quartic polynomial and the
expressions for classifying the nature of the roots can be found in Appendix A. For a fixed
value of Nx, we find a region with two distinct real solutions (Region I) and a smaller region
with four distinct real solutions (Region II). The upper border of the Region II is shared
with Region I.

In Fig. 1 we show how the borders of these regions change when varying the number of
fermion flavours (Nx ∈ {0, 1, 2, 3, 4}). It should be noted, that for small values of Nx, the
effect of increasing Nx is to move the upper border of Region I downward, while the borders
of Region II largely remains unchanged. Furthermore, we note that in the limit Nx = 0

(Nf = N∗f ), Eq. (2.3 no longer describes fixed flows, since the one loop beta function for
gauge coupling is vanishing. Nonetheless, solving the resulting quartic function corresponds
to finding pseudo fixed points in the subsystem βλ1 , βλ2 , i.e. fixed points in λ1, λ2, where α
is treated as a constant. The region with two distinct sets of pseudo fixed points is marked
with light gray in Fig. 1, while the region with four distinct sets of pseudo fixed points is
marked with gray. From Fig. 1, we note that for small values of Nx, the theories with fixed
flow solutions also possess pseudo fixed points in the βλ1 , βλ2 subsystem. In Appendix B,
we elucidate the connection between the existence of fixed flow solutions and pseudo fixed
points. From Fig. 1, we see that for fixed values of Ns ≥ 2 and Nx > 0, there exists a
lower bound of Nc above which the theories have two fixed flow solutions and are CAF. For
even higher values of Nc, two additional fixed flow solutions appear. Increasing either Nx

(i.e. lowering Nf ) or Ns will push the lower bound on Nc towards higher values, whereas
the transition from two to four fixed flow solutions is only mildly dependent on Nx. In
Table 2 the values of Nc, Ns, Nf for theories with CAF are tabulated.

Existence of fixed flows implies that at least the points along one direction of each of
the flow lines flow out of the Gaussian fixed point. However, to complete the picture, we
need information about the behaviour of the RG trajectories in the neighborhood of the
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Figure 1. Regions in Nc, Ns for constant Nx for which the theory is CAF. The solid lines show
the borders of the region with two fixed flow solutions (Region I) for Nx ∈ {0, 1, 2, 3, 4} The blue
boundary Nx = 0 represents a limit and does not satisfy CAF. The light gray (gray) region marks
the region where two (four) real distinct sets of pseudo fixed points exist. The dashed black lines
are the asymptotic behavior of the borders of the two fixed flow solution region.

fixed flow lines. To investigate this, we parametrise the couplings (α, λ1, λ2) using spherical
coordinates

α = r sin θ cosφ, λ1 = r sin θ sinφ, λ2 = r cos θ , (2.4)

and obtain expressions for the RG beta functions of (r, θ, φ), i.e. (βr, βθ, βφ).
At one loop, the beta functions, βθ, βφ, depend only multiplicatively on the radial

coordinate, and the direction (θ, φ) therefore does not depend on r. Factoring out the radial
coordinate r, we can examine the UV behavior in a reduced space of only two parameters.
This is shown in Fig. 2 for a theory in Region I (top panels) and a theory in Region II
(bottom panels), with the arrows pointing from UV to IR.

In order for a trajectory to be connected to the Gaussian UV fixed point, the radial
coordinate has to go to zero in the UV. Within the one-loop approximation, the change in
r is of the form βr = r2 f(θ, φ). The radial coordinate is thus only decreasing in regions
of (θ, φ) where f(θ, φ) < 0. In Fig. 2, the transition (f(θ, φ) = 0) is shown as dashed
grey lines. The regions with flows that cross this line, and are thus not connected to the
Gaussian UV fixed point, are colored grey. Similarly we mark the regions with red and
blue, where the flows cross the tree level symmetry breaking boundary lines (dashed red
and blue lines), derived in Sec. 3.1.

We show the UV behavior for the full phase space in the case of two solutions in the
upper left panel of Fig. 2, and a close-up of the region around the two fixed flow points
in the upper right panel. We note that one point is completely repulsive, while the other
has one repulsive direction and one attractive direction. For the mixed case, the repulsive
direction separates the flows originating from the UV fixed point from the ones that are UV
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Figure 2. UV behavior around the fixed flow solutions in spherical coordinates (θ, φ). Upper left:
Full phase space in case of two fixed flow solutions. Upper right: Close-up at the region close to
the two fixed points. Lower left: Full phase space in case of four fixed flow solutions. Lower right:
Close-up at the region close to the four fixed points. Flows not connected to the UV fixed point
are in grey regions. Flows between fixed flows that do not cross the tree level symmetry breaking
lines are in white regions; those that do cross are in red or blue regions as discussed in Sec. 3.1.

divergent. The attractive direction separates the two tree level symmetry breaking regions.
In the lower two panels of Fig. 2 we show the case of four fixed flow solutions. In this case,
the two additional fixed points for the fixed flow open up a two-dimensional region where
the flows are between fixed points without crossing the tree level symmetry breaking lines.
This region is marked with white. One of the two additional fixed points for the fixed flows
is fully attractive, while the other is with mixed properties. For the fully attractive one,
only this exact relation of the three couplings is connected to the UV. This case therefore
offers full predictability in the IR. This will be further discussed in Sec. 2.3.
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Nc = 5 Nc = 6 Nc = 7 Nc = 8 Nc = 9 Nc = 10 Nc = 11 Nc = 12

Ns = 2 25− 26 29− 32 33− 37 37− 43 41− 48 44− 54 48− 59 52− 65

Ns = 3 31− 32 35− 37 38− 43 42− 48 46− 54 50− 59 54− 65

Ns = 4 36− 37 40− 42 44− 48 48− 53 52− 59 55− 64

Ns = 5 37 41− 42 45− 48 49− 53 53− 59 57− 64

Ns = 6 47 51− 53 55− 58 59− 64

Ns = 7 52− 53 56− 58 60− 64

Ns = 8 58 62− 63

Ns = 9 63

Table 2. Windows in Nf for Ns = {2, 9}, Nc = {5, 12} for which the theory is CAF, i.e. allow for
fixed flow solutions to Eq. (2.3. There exist two fixed flow solutions for every value of Nf in each
window. There are no solutions for Nc = {3, 4} and Ns > 1.

In the results discussed above, we factor out the r-dependence of the couplings, which
is valid within the one-loop approximation of the beta functions. Therefore Fig. 2 is only
adequate for describing the behavior close to the Gaussian UV fixed point. Starting from
a point where r � 1, such that the beta functions are well approximated by the one-loop
expressions, we trust the flows in the backward direction (towards higher energies) outside
the grey regions, since r is decreasing. On the contrary, we cannot follow the flows too
far forwards, since the approximation is getting worse (r increasing). Still, seen from the
UV perspective of the Gaussian fixed point, we expect the four-solution case to offer more
possibilities to flow from the UV Gaussian fixed point to a possible IR fixed point because
of the fully attractive fixed flow solution, which provides a region that seemingly does not
cross the symmetry breaking lines.

Here we summarize our conclusions from restricting the theory to be CAF :

• For fixed values of Ns and Nc within the regions of Fig. 1 there exists a window in
Nf (with upper endpoint given by N∗f ), for which the theories are CAF.

• The size of the window depends on the position in the grey region of Fig. 1. Close to
the upper border (i.e. Nx = 0 line) of the light grey region, the size of the window is
vanishing. This behaviour is evident from Table 2, where we show the range of the
window in Nf for the lowest combinations of Ns and Nc.

• We find that the theories which are CAF, i.e. where UV attractive fixed flows exist,
are a subset of the theories which have pseudo fixed points in the subsystem βλ1 , βλ2 ,
i.e. fixed points in λ1, λ2, where α is treated as a constant. In App. A and B, we
show that this statement is independent of the value of α, as long as α > 0. In the
next section, we will argue that the pseudo fixed points at higher loop order become
physical fixed points.

• In Fig. 2, we illustrate the UV behavior in the vicinity of the Gaussian fixed point.
In the two fixed flow solution case, there is one fully UV attractive direction and one
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with mixed properties. In the four fixed flow solution case, one of the two additional
directions is fully UV repulsive while the other is mixed.

2.2 Long distance conformality

In the previous section, we found that the theories which are CAF in the UV, possess pseudo
fixed points in the βλ1 , βλ2 subsystem at one-loop for a fixed value of α. In other words,
if the gauge coupling has a fixed point (βα = 0), then we already know that there exist
values λ1, λ2 satisfying βλ1 = 0, βλ2 = 0 at one loop in the quartic subsystem. Following
the ordering from the Weyl-consistency conditions [41–43], we should treat the system at
three loops in the gauge beta function together with the one-loop quartic beta functions.
To keep the analysis in the main section light, we study here the two-loop gauge beta
function together with the one-loop quartic beta functions, while the full result is presented
in the appendix. At this order, the running of the gauge still decouples from the quartic
couplings. We derive the gauge fixed point, and compute the accompanying fixed points
values of the quartic couplings. We find that in most cases all three couplings at the fixed
points are perturbatively small, and we therefore do not expect the three-loop contributions
to the running of the gauge couplings to quantitatively change the preliminary findings of
the this section. In fact, we find that each higher loop order contribution will be suppressed
by a factor of Nx/Nc. This on the other hand requires us to restrict our IR analysis to
theories close to losing AF, such that Nx � Nc, to achieve perturbative control of the loop
expansion. In the generalized Veneziano-limit, where Nc, Ns, Nf → ∞ in such a way that
all ratios are kept constant, the loop suppression can be arbitrarily small, whereas for finite
values of Nf , Ns and Nc the smallest value for Nx is Nx = 1/4. Further details are found
in Appendix C.

If we write the two-loop gauge beta function as βα = −Bα2 +Cα3, then the non trivial
fixed point occurs for α∗ = B/C. For B > 0 and C > 0, this is an IR fixed point. The two
loop coefficient for the gauge beta function takes the form

C =
8

3
NcNs −

68N2
c

3
−

2Nf

Nc
+

26NcNf

3
− 2Ns

Nc
(2.5)

The critical number of fermion flavors for this coefficient to be positive is

N̄f =
34N3

c − 4N2
cNs + 3Ns

13N2
c − 3

(2.6)

and since in our case, where Nc > 2, we always have that N∗f > N̄f , the functions N̄f and
N∗f define the window of existence for the infrared fixed point in the gauge coupling. From
requiring the theory to be CAF, we already know from the UV analysis, that if the gauge
beta function has a non-trivial fixed point, then so does the quartic coupling subsystem.
Therefore, the window for the existence of IR fixed points is the grey region in Fig. 1 for
Nf within Nf ∈ [N̄f , N

∗
f ]. The result is summarized in Table 3, where the fixed points are

determined numerically, and non-perturbative fixed points (α, λi > 1) have been discarded.
Comparing table 2 with table 3, we conclude that the CAF condition is stronger than the

– 8 –



condition for the existence of IR fixed points, meaning that any CAF theory displays long
distance conformality.

In order for the results not to be significantly altered by higher order contributions,
we need to show that these higher loop-contributions are suppressed. This is shown in the
appendix. Here it is sufficient to say that a Banks-Zaks-like analysis is possible.

Nc = 4 Nc = 5 Nc = 6 Nc = 7 Nc = 8 Nc = 9 Nc = 10 Nc = 11 Nc = 12

Ns = 2 11− 21 14− 26 16− 32 19− 37 21− 43 24− 48 27− 54 29− 59 32− 65

Ns = 3 13− 26 16− 32 18− 37 21− 43 24− 48 26− 54 29− 59 31− 65

Ns = 4 16− 31 18− 37 21− 42 23− 48 26− 53 29− 59 31− 64

Ns = 5 18− 37 20− 42 23− 48 26− 53 28− 59 31− 64

Ns = 6 20− 42 23− 47 25− 53 28− 58 31− 64

Ns = 7 22− 47 25− 53 28− 58 30− 64

Ns = 8 27− 58 30− 63

Ns = 9 30− 63

Table 3. Window in Nf that allow for IR fixed points with perturbative couplings, i.e. α, λi < 1

for Ns = {2, 9}, Nc = {4, 12}. There are no solutions for Nc = 3 for Ns > 1.

In the following, we will characterize the IR fixed points. To find eigendirections of the
IR fixed points, we need to study the following matrix:

M =


∂βα
∂α

∂βα
∂λ1

∂βα
∂λ2

∂βλ1
∂α

∂βλ1
∂λ1

∂βλ1
∂λ2

∂βλ2
∂α

∂βλ2
∂λ1

∂βλ2
∂λ2


∣∣∣∣∣∣∣
α=α∗,λ1=λ∗1,λ2=λ

∗
2

, (2.7)

where (α∗, λ∗1, λ
∗
2) corresponds to the coupling solutions at the IR fixed points. In the

convention that RG flow runs from UV to IR, the positive (negative) eigenvalues represent
IR attractive (repulsive) directions. In the region, where we have perturbative control of our
IR fixed points, they inherit their characteristics from the corresponding fixed flow solutions.
The third eigendirection, which is not part of the fixed flow picture (Fig. 2), is dominated
by the gauge coupling, and is always IR attractive. Within the region with two IR fixed
points, we have one, which has two repulsive eigendirections, while the other fixed point has
one repulsive and one attractive eigendirection. Combined with the third eigendirection,
we can conclude that the one with two repulsive directions is only connected to the UV
along a single trajectory, while the other one is connected through a one parameter family
of trajectories. These trajectories all originate from the fully repulsive fixed flow direction.
There is also a trajectory connecting the two IR fixed points. In Fig. 3, we show the
flow behavior around the IR fixed points on the plane of constant α = α∗ in spherical
coordinates. This allows us to see the similarities with the UV picture (Fig. 2). In the case
with four IR fixed points, we have additionally one fixed point with mixed properties and
one which is fully IR attractive. Unlike from the previous case, the fully IR attractive fixed
point has a three dimensional basin of attraction, implying IR conformal stability in all
directions. In Fig. 3, this is illustrated by a two dimensional region, since α is kept fixed.
In table 4, we provide a summary of the IR fixed points.
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Figure 3. IR flow behavior around the IR fixed points in spherical coordinates (θ, φ) with α

kept fixed at the IR fixed point, α∗ = B/C. Left: Close-up of the case with two IR fixed points.
Right: Full phase space in the case of four IR fixed points. Each fixed point (magenta dot), has
its eigendirections superimposed. Color coding: Red is IR attractive, Blue IR repulsive. The red
dashed lines are the projections of the third eigen-directions (IR attractive) of the fixed point in
(r, θ, φ) onto the (θ, φ)-subspace. The shaded white region marks the region in (θ, φ), where the
quartic couplings become comparable to the gauge coupling at the fixed point, λ21 + λ22 = 5α2

∗, and
higher order corrections are expected.
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Figure 4. Renormalisation group running of all couplings from the fully IR attractive fixed point to
the fully UV repulsive fixed flow. All couplings are normalised in units of α∗. We use the one-loop
beta functions for the quartic couplings together with the one-loop (dotted), two-loop (dashed) and
three-loop (solid) gauge beta function.
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Fixed Point Eigenvalue
FP1 + – –
FP2 + – +
FP3 + + +
FP4 + + –

Table 4. Summary of IR fixed points and the number of their relevant and irrelevant eigenvalues.

We learn that CAF theories with spin zero and spin half quarks also feature IR inter-
acting fixed points. In Appendix B, we explore the connection in detail. In short, we can
show that for fixed flows to exist with both λ1 and λ2 positive, there must be pseudo fixed
points in the quartic subsystem of beta functions. These pseudo fixed points become phys-
ical fixed points since the gauge coupling has an IR fixed point as well (C > 0 in the region
with pseudo fixed points). The case where both λ1 and λ2 are negative can be discarded by
demanding a stable scalar potential. The cases with one of the quartic coupling negative,
could be realised without the existence of pseudo fixed points. However, for the particular
Nc and Ns dependence of the coefficients for this model, this does not occur.

2.3 Phase Diagram

From the previous section, we know there exist two kinds of phase structures; one with two
IR fixed points and another with four IR fixed points. On one hand, the four IR fixed points
case requires quite large number of colours Nc and flavours Nf even for small values of Ns.
On the other hand, this scenario provides a fully IR predictive case. In other words, this
group of theories possesses a fully UV repulsive fixed flow, for which all relations among
couplings are fixed, and we can thus fully determine the IR fate of the theory at the highest
known order in perturbation theory. We will in the following do this for the minimal choice
of colors, i.e. Nc = 26, which in order to satisfy the CAF conditions requires Ns = 2 and
Nf = 138. Afterwards, we will focus our attention on the general phases of the two types
of phase structures.

In Fig. 4, for our particular choice of Nc, Ns and Nf , we show the running of the
couplings from the UV (with coupling ratios fixed by the fully repulsive fixed flow) towards
the IR. We show the result from using both the one-, two- and three-loop gauge beta
function together with the one-loop beta function for the quartic couplings. It is evident,
that both in the two-loop and three-loop gauge case, the IR fate of the theory is long
distance conformality.

Similarly, we can solve the differential equations for each direction out of the Gaussian
UV fixed point, and determine the IR fate anticipating and using the symmetry breaking
conditions derived in Sec. 3. In this way, we distinguish between three IR phases connected
to the Gaussian UV fixed point. Long distance conformality (white) along with two kinds
of spontaneous symmetry breaking (blue and red). Gray regions are not connected to the
Gaussian UV fixed point.

In the left panel of Fig. 5, we show the result of this analysis for a representative
theory with the two IR fixed point phase structure. We see that practically all directions
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Figure 5. Phase diagram for the case of two (four) fixed flows are shown in the left (right) panel
in spherical coordinates θ and φ. The initial radial coordinate, r, is chosen close to the Gaussian
fixed point, i.e. r � 1. The phases are then determined by analyzing the numerical solutions to
the beta functions at three-loop order in the gauge coupling, together with the one-loop for the
quartic couplings. The diagrams illustrate three IR phases connected to the Gaussian UV fixed
point. Long distance conformality (white), two different spontaneous symmetry breaking patterns
(blue and red). Directions with trajectories not originating from the Gaussian UV fixed point are
colored gray. The light red and light blue regions correspond to initial conditions with unbounded
tree level scalar potentials.

connected to the UV, lead to spontaneous symmetry breaking. On the separatrices of the
two symmetry breaking regions, we find fine-tuned solutions reaching the IR fixed points,
and solutions crossing the intersection of the two symmetry breaking lines.

In the right panel of Fig. 5, the phase diagram for the other phase structure with four
IR fixed points is shown. Here we have all three IR phases present.

We notice that the phase diagrams are basically identical to the UV picture in Fig. 2.
From this we conclude, that the lowest order approximations to the symmetry breaking
conditions together with the one-loop beta functions are good indicators for the IR fate of
CAF theories. This is tightly connected to the relation between fixed flows in the UV and
fixed points in the IR. Moreover, the CAF conditions require the couplings to reach fixed
flows in the UV, and at this point the symmetry breaking conditions are well approximated
by the leading order result.

For values of the gauge coupling larger than the one at the IR fixed points, other phases
exists. However, these are not UV free and are therefore outside the focus of this work.

In Fig. 6, we show the RG flow of the couplings projected onto the (α, λi)-planes
and (λ1, λ2)-plane with the third coupling fixed. In each panel we show the lines where
spontaneous symmetry breaking occurs using the one-loop result form Sec. 3.2. In the
upper left panel, it is clear that the flows above the fixed flow line are not originating from
the UV Gaussian fixed point (blue dot), whereas the flows below (unless in the broken
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Figure 6. Projected RG flow of the couplings onto the (α, λi)-planes (upper left and right) and
(λ1, λ2)-plane with the third coupling fixed to α = 0 (lower left) and α = α∗ (lower right). In each
panel we show the lines where spontaneous symmetry breaking occurs (red and blue) including
one-loop effects. The gray regions here are the broken phases. Solid dots are fixed points in the
full system, while circles mark fixed points in the reduced systems with one coupling kept fixed.
Dashed lines mark the fixed flow lines for the reduced systems.

phase, marked with gray) all emanate from the fixed point along the other fixed flow line.
The same features are seen in the upper right panel. In the lower left panel, we see that
only flows in the broken phase originate from the Gaussian UV fixed point, when the gauge
coupling is kept fixed, α = 0. The lower right panel, shows the two IR fixed points on the
plane α = α∗. We see that the symmetry breaking lines both with α = 0 and α = α∗ seem
to be identical. This illustrates that for couplings less than or comparable to α∗, the tree
level result is still a good approximation. From these diagrams it is clear that the fixed
points are all in the unbroken phase.

We have so far uncovered the conditions for the theories to be complete asymptotically
free and shown numerically that these conditions are stronger than the conditions for the
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existence of IR fixed points. Furthermore, we have described the phase structure of the
theories anticipating three infrared phases (two types of radiative symmetry breaking and a
phase of long distance conformality) using conditions which will be derived in the following
section.

3 Symmetry Breaking

In order to understand the infrared phases of the theories we now address the question
of radiative stability of the scalar potential. In this section we will derive the tree-level
stability conditions (flat directions) for the relevant vacuum configurations and derive their
corresponding symmetry breaking patterns. Afterwards, we will address the same problem
beyond the tree-level analysis, referring the reader to the appendix for the computational
details.

3.1 Tree Level Analysis

The tree level analysis is the limiting case when the gauge contributions are turned off
(i.e. α = 0) and higher order terms proportional to λn (n > 1) are ignored. Thus, the
boundary of the broken phase is a line in the λ1 − λ2 coupling space rather than a 2
dimensional surface in the λ1 − λ2 − α space.

The tree level potential has the following form:

V = m2 TrS†S + λ1

(
TrS†S

)2
+ λ2 Tr

(
S†S

)2
, (3.1)

where the Nc ×Ns scalar field matrix S is invariant under SU(Nc)× U(Ns) rotations. To
illustrate the symmetry breaking pattern, it will be useful to write the matrix S in the
form:

S(x) = U †c (x)D(x)Us(x) (3.2)

where Uc and Us are unitary matrices and D is a matrix which is diagonal in a Ns×Ns block
(with real coefficients) and zero everywhere else, assuming that Nc > Ns (which is true for
the CAF conditions to be satisfied). Although this is a well known result we summarize
the proof in Appendix D. Thus the potential can be rewritten as

V = m2 TrD†D + λ1

(
TrD†D

)2
+ λ2 Tr

(
D†D

)2
, (3.3)

i.e. all the dependence on the unitary matrices Uc and Us vanishes. The 1-loop effective
potential will likewise depend only on the components of D and so only the components of
D can obtain non-zero vacuum expectation values.

The relevant degrees of freedom relevant in understanding the behaviour of the effective
potential are the diagonal part diag(ρ1, ρ2, · · · , ρNs) of D. The tree level potential can thus
be simplified into the following form:

V = m2
Ns∑
i=1

ρ2i + λ1

(
Ns∑
i=1

ρ2i

)2

+ λ2

Ns∑
i=1

ρ4i , (3.4)
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where m2 could be positive, zero or negative. For a positive mass term, i.e. m2 > 0, the
potential has minimum at ρi = 0, and this excludes symmetry breaking, while for m2 < 0,
we will have spontaneous symmetry breaking as long as the potential is bounded. One can
further show that the non-trivial vacuum configurations for the m2 < 0 case are the same
as in the massless case dictated by the sign of λ2.

Restricting to the m2 = 0 case2, we will now follow Ref. [40] to determine the rays
along which the potential vanishes. Without loss of generality we constrain the ρi’s on an
Ns-dimensional hypersphere, i.e.

∑Ns
i=1 ρ

2
i = l. The constraint is imposed on the potential

through a Lagrange multiplier L, leading to:

V = λ1l
2 + λ2

Ns∑
i=1

ρ4i + L

(
Ns∑
i=1

ρ2i − l

)
. (3.5)

The condition to minimize the potential is then given by:

∂V

∂ρj
= 4λ2ρ

3
j + 2Lρj = 0 , (3.6)

providing the solutions:

ρ2j = − L

2λ2
or ρ2j = 0 . (3.7)

It is clear that at the extrema of V on the sphere, all non-zero elements of ρ2i will be equal.
Suppose there are k non-zero elements with value ρ, then we find that ρ2 = l

k , and we
obtain:

V |ext = l2
(
λ1 +

λ2
k

)
. (3.8)

When λ2 > 0, the potential attains a minimal value at the extremum with k as large as
possible, leading to k = Ns

V |min = l2
(
λ1 +

λ2
Ns

)
, for λ2 > 0 ., (3.9)

whereas if λ2 < 0, the potential will be minimal for k = 1, i.e.

V |min = l2 (λ1 + λ2) , for λ2 < 0 . (3.10)

In order for the direction to be flat, we require the V |min = V (ρi = 0) = 0 to obtain
a ray on which loop effects can induce spontaneous symmetry breaking. These rays exist
under two conditions:

For λ2 > 0 : Nsλ1 + λ2 = 0 (3.11)

For λ2 < 0 : λ1 + λ2 = 0 . (3.12)

These lines are summarized in Fig. 7. In the figure we overlap two sets of coordinates
2The massless case corresponds to classically conformal models which possess many interesting features

such as providing naturally light Higgs in asymptotically safe or free scenarios [17] (see also earlier works
[44–46]).
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λ2; (x2)

λ1; (x1)

I

II

Figure 7. Boundary lines in the parameter space λ1 − λ2 (x1 − x2), with xi = λi/α, across which
symmetry breaking can occur. In region I the tree level potential is bounded from below, whereas
it is unbounded in region II.

(λ1, λ2) and (x1, x2), with xi = λi/α, for which the lines coincide. Requiring the potential
to be bounded from below, implies the RG flow in the UV (t → ∞) to be in region I.
However for a complete asymptotically free theory, λi = 0. To plot these theories in the
diagram, it is useful to use the alternative parameters xi, for which the UV fixed point is
not at the origin. This condition was used in Sec. 2.1 to correctly find the CAF theories.
For spontaneous symmetry breaking to occur, the RG flow (from UV to IR) must run from
region I to region II, irregardless of the chosen set of coordinates.

We will now discuss the symmetry breaking patterns. These can be directly read from
the vacuum configurations as follows.

For λ2 < 0, V is minimized when there is only one non-zero ρi, which leads to the
following form of the vacuum configuration:

〈Sia〉 = ρδi1δa1 .

The corresponding symmetry breaking pattern is

SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1). (3.13)

For λ2 > 0, V is minimized when there are Ns non-zero ρi providing:

〈Sia〉 = ρδia .

In this case the symmetry breaking pattern is

SU(Nc)× U(Ns)→ SU(Nc −Ns)× SU(Ns)× U(1). (3.14)

These symmetry breaking patterns are worked out in detail in App. E.
This concludes the tree level analysis, naturally leading to the question as to whether

or not higher orders can affect these findings. This will be discussed momentarily.
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3.2 Quantum corrections

At the quantum level interesting possibilities for the vacuum structure of the theory may
emerge when scalar and gauge couplings start competing. However in the deep UV the
scalar couplings λi scale linearly with α and therefore in this region the classical analysis
remains intact. This is in line with the expectation that radiative corrections (due to the
gauge coupling) start becoming relevant for λi ∼ α2. However if the RG running of the
couplings crosses the line Eq. (3.11) or (3.12), while λi � α2, quantum corrections can
induce spontaneous symmetry breaking along the corresponding tree level flat directions
derived in Sec. 3.1.

As it can be seen from the UV picture in Fig. 2, there are UV free trajectories which
run arbitrarily close to the origin in (λ1, λ2)-space (indicated by a black dot), where the
inequality λi < α2 holds. In these cases, the tree-level potential is approximately flat in
all directions, and the symmetry breaking is dominated by the gauge loop-contributions.
The symmetry breaking is therefore no longer restricted to the symmetry breaking patterns
discussed in the previous section. This possibility was firstly pointed out in [40]. This
scenario is phenomenologically interesting, since when all directions are flat, the theory
could radiatively generate a spectrum for all the scalar masses (see e.g. [46–48]), as compared
to the Gildener-Weinberg scenario [39], where the only radiatively generated scalar mass is
the mass of the scalon.

There are two main ways to implement the one loop effects: explicit logarithmic sum-
mation (see e.g. [47–50]) or implicit logarithmic summation (see e.g. [51]). In the latter
case, the renormalization group improved effective potential is:

V ({ρi}) =

λ1 (t)

(
Ns∑
i=1

ρ2i

)2

+ λ2 (t)

Ns∑
i=1

ρ4i

 exp

(
4

∫ t

0
dt′γ

(
t′
))

, (3.15)

where γ (t) is the anomalous dimension of the scalar field and t is defined as t = log
[∑Ns

i=1 ρ
2
i /µ

2
]

with renormalization scale µ. At one loop level, the anomalous dimension depends only on
the Yukawa couplings, which are not present in our model, and we can set γ (t) = 0. We
can therefore further simplify the RG improved effective potential, Eq. (3.15), to:

V ({ρi}) = λ1 (t)

(
Ns∑
i=1

ρ2i

)2

+ λ2 (t)

Ns∑
i=1

ρ4i ≡ λ1(t)f1(ρi) + λ2(t)f2(ρi) , (3.16)

where we introduced functions f1 and f2 for convenience.
The RG improved minimization condition is given by:

V (1)
ρi ≡

∂V

∂ρi
=

2∑
j=1

(
dλj
dt

∂t

∂ρi
fj + λj

∂fj
∂ρi

)
=

2∑
j=1

(
βλj

∂t

∂ρi
fj + λj

∂fj
∂ρi

)
. (3.17)

Now it is clear that although the effective potential is of the form of the tree level potential,
the one loop information is encoded through the RG functions (βλ1 , βλ2).

In order for alternative vacuum configurations to exist, we need either a number of
distinct values of ρi to satisfy Eq. (3.17), or the minimum to be at different number of
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non-zero ρi’s than at tree level. For each distinct non-zero value of ρi, the minimization
condition corresponds to a non-trivial constraint on the couplings. Since we have three
marginal couplings (α, λ1, λ2), we therefore expect that at most there could be two distinct
vacuum expectation values to fully determine symmetry breaking lines in (α, λ1, λ2)-space.
For three distinct vacuum expectation values, all three couplings will be fully determined.
An exception to this is when λ2 = 0; then there is only a single constraint on the remaining
couplings which depends on f1 and f2.

We assume in the following that the vacuum configuration to be such that n1 values of
ρi are ρ, n2 are κρ, with κ positive and different from unity, and Ns− n1− n2 values equal
to zero. From Eq. (3.17) we get two constraints on the couplings.

Furthermore, the effective potential needs to be stable at the vacuum configuration, we
therefore derive the eigenvalues of the Hessian matrix

V (2)
ρiρj ≡

∂2V

∂ρi∂ρj

∣∣∣∣
vacuum

, (3.18)

where all three RG functions (βλ1 , βλ2 , βα) are encoded. A stable vacuum and physical
scalar masses requires the eigenvalues to be non-negative.

We find that these requirements cannot be met unless n2 = 0, and n1 is either 1 or Ns,
which are exactly the tree level vacuum configurations, implying no alternative symmetry
breaking patterns are found in this model beyond the two discussed at the tree level analysis,
i.e. Eq. (3.13) and Eq. (3.14).

In App. F, we carry out the analysis of the case with (Nc = 6, Ns = 3, Nf = 31). We
find that the RG improved boundary lines (F.3) and (F.5) for the broken phases actually
shift the tree level boundary lines when λi ∼ α2 � 1. While, when λi ∼ α � 1 the RG
improved reduces to the tree level result. In this way, Fig. 14 provides a detailed view of
region near the origin of Fig. 7.

Similarly, in App. G, we perform the same analysis based on the explicitly calculated
one-loop effective potential in the Coleman-Weinberg renormalization scheme. There are
differences in the exact conditions on the couplings for spontaneous symmetry breaking,
but the corresponding vacuum configurations, and thus symmetry breaking patterns, are
identical and the regions satisfying the vacuum stability conditions (comparing Fig. 16 with
Fig. 12) are similar and consistent in both renormalization schemes.

4 Summary

We have simultaneously carried out a detailed study of the UV behaviour and a classification
of the IR phases of SU(Nc) gauge theories with Ns complex scalars and Nf vector-like
fermions in the fundamental representation.

This entailed a careful analysis of the conditions for complete asymptotic freedom
(CAF). Interestingly, due to the presence of fundamental scalars, CAF requires a large
number of colors, Nc, and a large number of fermions. We find for specific combinations of
Nc and Ns a window in Nf for which the CAF conditions are satisfied. The most minimal
case is Nc = 5 with Ns = 2. The CAF allowed number of fermions, Nf , is found to be
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close to the loss of asymptotic freedom in the gauge beta function. We show that the CAF
conditions are, remarkably, more restrictive than the requirement for the theory to have IR
fixed points, when considering higher orders. This means that any CAF theory of this kind
displays long distance conformality, at least in some coupling direction. We stress that our
results are within perturbative control.

When considering the infrared fate of the theory, we discover two distinct phase struc-
tures. For most combinations of Nc, Nf and Ns we have two IR fixed points, while for larger
values of Nc and Nf with Ns small, four IR fixed points exist. For the theories featuring
two IR fixed points, neither of them are fully IR attractive and furthermore they reside on
the separatrix between two radiatively broken phases. However for theories featuring the
four IR fixed points we observe that a fully IR attractive fixed point appears allowing for a
stable phase of long distance conformality.

To investigate the possible existence of radiative symmetry breaking, we performed
analyses both at tree- and one- loop levels. For the tree level analysis, we used the con-
ventional Gildener-Weinberg method, while at the quantum level, we used the renormal-
ization group improved effective potential. The same two symmetry breaking patterns
were found for both analyses: SU(Nc) × U(Ns) → SU(Ns) × SU(Nc − Ns) × U(1) and
SU(Nc)×U(Ns)→ SU(Nc− 1)×U(Ns− 1)×U(1). This is despite the fact that the loop
level analysis allows one to study regions of phase space, where quantum corrections are
dominating the vacuum configuration of the scalar fields.

Our analysis has shed light on the UV behaviour and rich low energy phase structure of
minimal extensions of QCD-like theories featuring scalar quarks. We discovered that ensur-
ing these theories to be fully asymptotically free is related to the presence of long-distance
conformality. Our results can be useful when constructing extensions of the standard model
featuring vector-like dynamics.
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A Quartic polynomial and classification of its roots

Here we provide the details for the procedure outlined in Sec. 2.1 of reducing the fixed flow
equation (2.3) to a quartic equation in a single coupling, λ2. We will use the discriminant
method to classify the roots of the equation.

We want to find solutions to

(βα, β1, β2) = c(α, λ1, λ2) , (A.1)

in the case where c < 0 and the beta functions are given by Eq. (2.2). First we note that βα
is only a function of α itself. We can therefore find the fixed flow solution for α 6= 0 must
satisfy c = −Bα, where B = 1

3 (22Nc − 4Nf −Ns). Clearly, the condition c < 0 is only
satisfied when B > 0. We can now substitute c = −Bα into the remaining components
of Eq. (A.1). For α 6= 0 it is convenient to introduce the rescaled couplings, λi = λis α,
for which we can factor out the gauge coupling dependence of the last two components of
Eq. (A.1). In other words, the two equations, α−2 (βi − cλi) = 0, can be written as

4(NcNs + 4)λ21s + 12λ22s + λ1s

[
8(Nc +Ns)λ2s +B − 6(N2

c − 1)

Nc

]
+

3(N2
c + 2)

4N2
c

= 0 ,

4(Nc +Ns)λ
2
2s + λ2s

[
24λ1s +B − 6(N2

c − 1)

Nc

]
+

3(N2
c − 4)

4Nc
= 0 .

(A.2)

In the case, where B = 0, the equations above no longer describe solutions to Eq. (A.1),
instead they correspond to the equations βi = 0 for constant α 6= 0. These solutions we
refer to as pseudo fixed points, since in general the gauge coupling is not fixed.

Now, for B > 0, we can solve the second equation in Eq. (A.2) for λ1s and substitute
into the first in order to obtain a quartic polynomial in λ2s (after multiplying with λ22s)

a λ42s + b λ32s + c λ22s + d λ2s + e = 0 , (A.3)

where

9a = Ns

(
Ns

(
2N2

c +NcNs − 8
)

+ (Nc − 4)Nc(Nc + 4)
)
− 8N2

c + 108 ,

18Ncb = (Nc(B − 6Nc) + 6) (Ns +Nc) (NcNs − 5) ,

144N2
c c = 144− 2Nc

(
B2Nc − 12B

(
N2
c − 1

)
+ 6Nc

(
7N2

c − 25
))

+NcNs

((
B2 − 108

)
N2
c − 12BN3

c + 12BNc + 42N4
c + 6

(
N2
c − 4

)
NcNs + 84

)
,

96N2
c d =

(
N2
c − 4

)
(Nc(B − 6Nc) + 6) (NcNs + 1) ,

256N2
c e =

(
N2
c − 4

)2
(NcNs + 4) . (A.4)

In Sec. 2.1, we define the critical number of fermions, N∗f , for which B = 0. Then defining
Nx = N∗f −Nf , we can express B = 4Nx/3. Following Ref. [52], the nature of the roots of

– 20 –



a quartic equation of the form Eq. (A.3) is described by the following functions

∆ = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4

+ 144ab2ce2 − 6ab2d2e− 80abc2de+ 18abcd3 + 16ac4e

− 4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2

P = 8ac− 3b2

Q = b3 + 8da2 − 4abc

∆0 = c2 − 3bd+ 12ae

D = 64a3e− 16a2c2 + 16ab2c− 16a2bd− 3b4 (A.5)

Since we are interested in real roots, we have the following relevant cases:

i) If ∆ < 0, then equation has two distinct real roots.

ii) If ∆ < 0, while P < 0 and D < 0 then all four roots are real and distinct.

iii) If ∆ = 0, then the equation has a multiple root and several scenarios exist.

Only when D = 0, P > 0 and Q = 0 are none of the roots real.

In Fig. 1, we show the regions in Nc and Ns for Nx ∈ {0, 1, 2, 3, 4}. The upper region
satisfies condition (i), the lower region satisfies condition (ii), while the borders satisfy the
condition ∆ = 0. In the range Nc ∈ [3, 20], Ns ∈ [2, 20] and Nx ∈ [0, 20], there are no
integer solutions to the last condition.

B Connection between fixed flows and fixed points

In Section 2, we found that the set of theories that are CAF is a subset of the theories with
interacting IR fixed points. This result was based on a numerical study of the two-loop
gauge beta function together with the one-loop beta functions for the quartic couplings.
The same study with three-loop gauge beta function is done in App. C. However restricting
to the two-loop gauge beta function, we know that the running of the gauge coupling is
independent of the quartic couplings. Within this approximation and inspecting the gauge
coupling in isolation, the statement above appears easy to disprove. Writing the gauge beta
function as βα = −Bα2 + Cα3, the set of theories with AF is characterized by satisfying
the condition, B > 0, while the interacting IR fixed point is realized only when both B > 0

and C > 0. In other words, requiring the theory to have an interacting IR fixed point is
a stronger condition than for the gauge coupling to be AF. This is the well known result
from Caswell, Banks and Zaks [53, 54].

Adding on top of this the beta functions for the quartic couplings, we know from App. A
that the CAF condition reduces to B > 0 and at least a real solution to Eq. (A.2), while
the existence of an interacting IR fixed point requires at least a real solutions to Eq. (A.2)
with B = 0 (not a constraint on Nc, Ns and Nf ) with at least one IR attractive direction.
The direction towards the Gaussian fixed point will be IR attractive if B > 0 and C > 0.
Clearly, our numerical findings in Section 2 can be restated as follows: the set of {Nc, Ns}
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for which there are solutions to Eq. (A.2) with B > 0 (constraint on Nf ) is a subset of the
set of {Nc, Ns} for which there are solutions to Eq. (A.2) with B = 0, and simultaneously
the set {Nc, Ns, Nf} satisfying the CAF conditions is a subset of the {Nc, Ns, Nf} satisfying
C > 0, such that the seemingly additional constraint is always implied.

The first inclusion was shown pictorially in Fig. 1 for specific choices of Nf close to
N∗f . In the following we will discuss this relation further and investigate the last inclusion
in more depth.

Clearly, B > 0 is a common condition for both sets, while the CAF condition takes the
form Eq. (A.2), the existence of fixed points in λ1 and λ2 for α 6= 0, are the solutions to
α−2βi = 0, which can be written as

4(NcNs + 4)λ21s + 12λ22s + λ1s

[
8(Nc +Ns)λ2s −

6(N2
c − 1)

N

]
+

3(N2
c + 2)

4N2
c

= 0 ,

4(Nc +Ns)λ
2
2s + λ2s

[
24λ1s −

6(N2
c − 1)

Nc

]
+

3(N2
c − 4)

4Nc
= 0 , (B.1)

in rescaled couplings. Notice, that this equation is equivalent to Eq. (A.2) without the
B-terms. However, this derives from the fact that fixed points are solutions to βi = 0,
while fixed flows are solutions to βi = −Bαλi. In other words, B = 0 is not a constraint
for the fixed point equation, but a limit in which Eq. (A.2) reduces to Eq. (B.1.

It is not an easy task to show that the set of {Nc, Ns} with real solutions to Eq. (B.1)
is bigger than for Eq. (A.2) with B > 0. However, we can make some simple observations.
Consider only solutions where both λ1 and λ2 are positive. Then since both equations,
evaluated at λis = 0, are positive for Nc > 2, it is clear that there have to be a solution
to βi = 0 before there can be a solution to βi = −Bαλi, since the latter are negative. For
the cases where one or both of the two λis’s are negative, this reasoning does not hold.
By demanding a stable scalar potential, the case where both λ1 and λ2 are negative can
be discarded. In this way we are left with the cases with one of the quartic couplings
being negative. Here we do not need to cross βi = 0 for both beta functions to satisfy
βi = −Bαλi and for general coefficients of Eq. (A.2), this can be realized. However, for the
particular Nc and Ns dependence of the coefficients for this model, it is not the case. For
0 ≤ N∗f −Nf < 8/

√
3, the coefficient C is always positive. For N∗f −Nf ≥ 8/

√
3, the sign

of C depends on the Nc and Ns. However, since C > 0 for large values of Nc, even when
Ns ∼ Nc, and C is a continuous function in Nc, Ns and Nf , we can solve for Nf in C = 0,
and check for real solutions to Eq. (A.2). Using the same method described in App. A, we
find no real solutions with C = 0; we conclude, since we know that the region with real
solutions is connected, that C > 0 for all obtained solutions. In Fig. 8 we illustrate this
fact by plotting the lower value of Nc (blue line), as a function of Nx, above which there
are solutions, together with the value of Nc (red line) below which C < 0 for Ns = 1. The
two lines never intersect, and this supports the statement, that C > 0 in the whole region
of solutions to Eq. (A.2).

We will now present the morphology of the phase diagram of the rescaled beta functions
given by the left sides of Eq. (B.1). A study of the curves, where each one of the two beta
functions is zero, leads to the conclusion, that in the region where the two distinct real
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Figure 8. The blue line marks the lower value of Nc, as a function of Nx, above which there are
solutions to Eq. (A.2). The red solid line is the value of Nc for which the curve, C = 0, intersects
Ns = 1. Below this line there is a region with Ns >= 1 for which C < 0. For Nx < 8/

√
3 the

curve with C = 0 does not intersect Ns = 1 (marked with gray dashed line). The dashed red line
is straight line Nc = Nx below which the suppression of higher loop contributions to the IR fixed
points are of order one.

roots exist, both roots will be positive and the phase diagram looks schematically like
shown (dashed gray) in left panel Fig. 9. In the dark gray region of Fig. 1, two roots
are similar to the previous case and still positive, while the two additional roots in λ2s
are positive, but larger„ and paired with negative values of λ1s. The corresponding phase
diagram is shown (dashed gray) in the right panel of Fig. 9.
The fixed points (gray dots) are solutions to Eq. (B.1) where the gauge dependence

is factored out. The relation to the actual couplings is λi = λis α, and the position of
these points will therefore move unless the gauge coupling has a non-trivial fixed point. For
theories with CAF, we already know that there exists interacting IR fixed points, α∗ = B/C.

In the UV, the gauge coupling is AF and the solutions in λis are pseudo fixed points
which all go to zero. If we require the quartic couplings also to be AF, they need to be fixed
in this geometrical rescaling of the pseudo fixed points. Possible candidates are the points
where the flow is pointing towards the origin, i.e. (βλ1 , βλ2) = c(λ1, λ2) with c < 0, i.e. the
last two equations in Eq. (2.3). Factoring out the gauge coupling, the condition becomes,

α−2(β1, β2) = cs(λ1s, λ2s) (B.2)

where cs = c/α. When cs = −B this equation equals Eq. (A.2). Solving the equation for
cs < 0 gives the blue solid lines in Fig. 9, whereas the solutions for cs > 0 are shown as
dashed red lines.
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Figure 9. Morphology of the quartic phase diagram. Each gray dashed curve represent the zero-
contour of one of the rescaled quartic beta functions. The blue solid lines (red dashed lines) mark
the curves where the flow is pointing towards (away from) the origin. The grey dots are the pseudo
fixed points. Right: For the case of two solutions. Left: For the case of four solutions.
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Figure 10. This shows the corresponding beta function of the flows along the lines shown in Fig. 9,
parametrized by λ1s. The dashed line is where the cs = 2B. The grey dots are the pseudo fixed
points, and the blue dots are solutions to the fixed flow. Right: For the case of two solutions. Left:
For the case of four solutions.

In order to leave the geometry with respect to the pseudo fixed points unchanged, the
magnitude of the flow needs to match the change in the gauge coupling, α, i.e. corresponding
to a uniform contraction.

(βα, βλ1 , βλ2) = c(α, λ1, λ2) (B.3)

This condition is the fixed flow equations Eq. (2.3) for the gauge and quartic couplings
introduced in Sec. 2.1. Here we showed that c = −B α. This means that the solutions to
the CAF condition are specific points along the blue curves. In Fig. 10, we plot the rescaled
beta function, β2s = α−2β2, for λ2 along the line given by Eq. (B.2) parametrized by λ1s.
In the same picture, we superimpose the condition cλ2 for c < 0. From this plot, we see
the relation between the fixed flow solutions (blue dots) and the pseudo fixed points (gray
dots). Furthermore, we see why they come in pairs, and since we assume the shape to be
characteristic for the whole solution space, we understand why we always have pseudo fixed
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points when we have fixed flow solutions.

C Three loop gauge contribution analysis

As discussed in section 2.2, for a Weyl-consistent approach we would have to include the
three loop correction to the gauge renormalization group equation in our IR analysis. This
takes the form:

β(3)α = (−2Nsλ
2
1 − 2NcN

2
s λ

2
1 − 4NcNsλ1λ2 − 4N2

s λ1λ2 − 2Nsλ
2
2 − 2NcN

2
s λ

2
2)α

2 (C.1)

+

(
NcNsλ1 −

2Nsλ1
Nc

+ 2N2
s λ1 + 2Nsλ2 −

2N2
s λ2
Nc

+NcN
2
s λ2

)
α3

+
(1709N2

cNf

27
− 2857N3

c

27
−

187Nf

18
−

Nf

2N2
c

+
11N2

f

9Nc
−

102NcN
2
f

27
− 1651Ns

77

+
29Ns

8N2
c

+
1315N2

cNs

56
+

73NfNs

36Nc
−

335NcNfNs

108
+

49N2
s

77Nc
− 143NcN

2
s

216

)
α4

We notice that the gauge coupling is no longer decoupled from the quartic coupling
system, which makes a similar approach to the one performed in section 2.1 unavailable.
We can however say some general things about the structure of the beta function, which
now takes the form βα = −B′α2 + C ′α3 + Dα4, where B′ and C ′, unlike the case of the
2-loop beta function, depend on the quartic couplings. Close to the Gaussian fixed point,
following the reasoning of Sec. 2.1, the quartic couplings scale as λi ∝ α� 1, and the new
terms in B′ and C ′ become of order α4, such that B′ and C ′ in this limit become B and C
from the 2-loop case.

Similarly, we know from App. B that λ∗i = λ∗isα
∗, so as long as λ∗is ∼ O(1) and α∗ � 1,

we obtain the same result that the dependence of the quartic couplings is moved to the D
coefficient.

Here we will first argue that λ∗is ∼ O(1) or smaller, and then use this result to show
that the three-loop contribution to α∗ is sub leading in certain limits. Afterwards we will
use a numerical approach to determine the IR fixed points and produce a table similar to
Table 3.

Studying the rescaled one-loop beta functions (left hand side of Eq. (B.1) in the large
Nc and Ns, but fixed Ns/Nc = k, limit, we find the rescaled couplings to be roughly of the
order (leading term)

FP1 =

{
3−
√

9− 3k

4k

1

Nc
,
3−
√

6− 3k

4(k + 1)

}
FP2 =

{
3 +
√

9− 3k

4k

1

Nc
,
3−
√

6− 3k

4(k + 1)

}
FP3 = FP4 =

{
−
√

3(k + 1)
√
k (k2 − k + 10) + 9k

4 (k3 − k2 + k)

1

Nc
,
3 +
√

6− 3k

4(k + 1)

}
, (C.2)

where format is FPi = {λ1s, λ2s}, and FP1, FP2 are the two fixed points we have in regions
with two solutions, while FP3, FP4 are the additional ones in the four solution region. The
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Figure 11. Estimate of the relative size of the three-loop contribution. The dots mark integer
values of Nc, Ns and Nf such that Nx = 1/4 in the left panel and Nx = 10 on the right. The
excluded regions does not satisfy the CAF conditions. The dashed contours are values of Nf , while
colored regions show the relatica size of the three-loop contribution as log10 |α∗

3 − α∗
2| /α∗

2, with α∗
2

given by Eq. (C.3), while α∗
3 is the three loop result assuming for simplicity that λ1 = λ2 = α.

value of k is constrained from the slopes of the borders of the grey regions on Fig. 1, which
means k ∈ [0, 0.84]. Notice, they all are of the order {O (1/Nc) ,O (1)}.

The fixed point at two loop order is given by

α∗2 =
B

C
=

8NxNc

150N3
c +N2

c (3Ns − 52Nx)− 66Nc − 9Ns + 12Nx
, (C.3)

which in the same limit as taken above is

α∗2 =
8

3(k + 50)

Nx

N2
c

+O
(
N2
x

N3
c

)
(C.4)

With these results at hand, we can determine the dominating terms in Eq. (C.1).
There are N3-terms (counting Nc, Ns and Nf as N) coming from both B′, C ′ and D,
where the contributions from B′ (C ′) depend quadratically (linearly) on λ2s. However,
when α∗ ∝ Nx/N

2
c , these terms are suppressed by a factor of Nx/Nc and will thus only

contribute to the sub leading terms of Eq. (C.4). The degree of suppression can roughly be
estimated by comparing the blue solid line with the dashed red line in Fig. 8. Assuming
instead λ1s = λ2s = 1, we can easily calculate the size of the corrections. These are shown
in Fig. 11 for Nx = 1/4 and Nx = 10, respectively.

Following the numerical approach to determine the existence of IR fixed points, by
solving (βα, β1, β2) = 0, we the results in Table 5.

As expected, when comparing Table 3 and 5 we see that the upper boundary of the
window in Nf remains unchanged when including the 3-loop contribution to the gauge beta
function. The lower boundary, however, is lowered. Furthermore, we find the existence of
another lower limit of Nf which lies above the CAF solutions. For any value of Nf above
this limit the system exhibits IR fixed points. These are not shown in the table.
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Nc = 4 Nc = 5 Nc = 6 Nc = 7 Nc = 8 Nc = 9 Nc = 10 Nc = 11 Nc = 12

Ns = 2 10− 21 10− 26 11− 32 13− 37 15− 43 17− 48 19− 54 21− 59 23− 65

Ns = 3 10− 26 11− 32 13− 37 15− 43 17− 48 19− 54 21− 59 22− 65

Ns = 4 11− 31 13− 37 14− 42 16− 48 18− 53 20− 59 22− 64

Ns = 5 12− 37 14− 42 16− 48 18− 53 20− 59 22− 64

Ns = 6 14− 42 16− 47 17− 53 19− 58 21− 64

Ns = 7 15− 47 17− 53 19− 58 21− 64

Ns = 8 19− 58 21− 63

Ns = 9 20− 63

Table 5. Window in Nf that allow for perturbative IR fixed points for Ns = {2, 9}, Nc = {4, 12},
when including the three loop contributions of the gauge coupling beta function. There are no
solutions for Nc = 3 for Ns > 1.

D Diagonalization of S

We start by left-multiplying S by an appropriate SU(Nc) matrix. To find it, note that an
arbitrary unitary matrix satisfies the following two properties:

• Each row i satisfies
∑

j |Uij |2 = 1. This imposes a constraint on one degree of freedom
for each row.

• Each pair of columns (i,j) with i 6= j satisfies
∑

k U
∗
kiUkj = 0. Each of these imposes

a constraint on two degrees of freedom (one complex number).

Proceeding row-by-row, the first row has 2Nc − 1 degrees of freedom (only the first con-
straint) and the nth row now has 2Nc − 2n + 1 degrees of freedom (first constraint and
n − 1 second constraints). Now, this matrix multiples the Nc × Ns complex matrix. We
can conclude that

• If 2Nc − 2n+ 1 ≥ 2Ns we have enough freedom to set all entries of the n-th row of S
to 0. Solving for n we can conclude that we can set Nc −Ns rows to 0.

• For row numbers greater than Nc − Ns we will have 2Ns − 2Nc + 2n − 1 degrees of
freedom remaining. Starting from n = Nc−Ns+1 we will be left with 1, 3, 5, . . . degrees
of freedom, which translates to one real number and 0, 1, 2, . . . complex numbers.

Having cast S into a triangular form, we can right-multiply it by an SU(Ns) matrix and
repeat the argument to arrive with matrix that is diagonal in one Ns ×Ns block.

Decomposing D in terms of a vacuum expectation value part (Σ) and a diagonal per-
turbation (H), the field S can finally be written in the form:

S = eiπ
a
c (x)t

a
c/fc (Σ +H(x)) e−iπ

a
s (x)t

a
s/fs (D.1)

From the Σ term we can find the combination of generators which do not leave the vac-
uum invariant, which will define our symmetry breaking pattern. These generators will
correspond to the Goldstone bosons. Note that the Goldstone fields corresponding to the
colour symmetry, πc, can be set to zero by an appropriate choice of gauge (unitary gauge),

– 27 –



in which some of the vector bosons become massive. The Goldstone fields corresponding
to flavour symmetry on the other hand become real, massless degrees of freedom.

E Symmetry Breaking Patterns

In Sec. 3.1, we found from the tree-level analysis two possible vacuum configurations of the
scalar fields.

For λ2 < 0, the tree-level potential is minimized when there is only one non-zero
vacuum expectations value of the scalar matrix, S, i.e.

〈Sia〉 = ρδi1δa1. (E.1)

For λ2 > 0, the potential is minimized when there is Ns non-zero elements, i.e.

〈Sia〉 = ρδia. (E.2)

In the following we will derive the corresponding symmetry breaking patterns. To do
so, we return to eq. D.1 and note first that canonical normalisation of π fields requires
fc = fs =

√
ρ in both symmetry breaking cases. We are looking for combinations of πac and

πas , which leave the vacuum state invariant, in other words satisfy the relation

πac (x)tacΣ− πbsΣtbs = 0. (E.3)

We will now consider both cases separately, starting with the Σia = ρδia case. Assuming
Nc > Ns, we can divide the total of N2

s +N2
c −1 generators (including Nc+Ns−1 diagonal

ones) of SU(Nc)× U(Ns) into four different categories:

1. All colour generators, with non-zero entries when both indices are in range Ns +

1, . . . , Nc (total: (Nc−Ns)
2−1 out of which Nc−Ns−1 are diagonal). These clearly

satisfy E.3 with πas = 0. These generators form an SU(Nc −Ns) algebra.

2. All colour generators with non-zero entries when both indices are in 1, . . . , Ns range
and all flavour generators except identity (total 2N2

s − 2 out of which 2Ns − 2 are
diagonal). In this case we can choose the generators such that tac = tas = ta, and
noting that all ta commute with Σ (because it is a diagonal matrix), we can write E.3
as

(πac − πas )ta = 0, (E.4)

which implies that πac = πas by linear independence of SU(N) generators. This implies
that there are N2

s − 1 unbroken generators when πac = πas , which form an algebra of
SU(Ns) and N2

s − 1 broken generators.

3. Remaining diagonal generators (total: 2). These are the identity matrix of U(Ns) and
one matrix from the Cartan subalgebra of SU(Nc), which we will call t0. We require
Trt0tac = 0 for all a 6= 0 and in particular for all the diagonal Cartan subalgebra
generators. But we have already considered above all the generators which form an
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SU(Ns) Cartan subalgebra on the first Ns entries and are zero on the remaining ones
and all the generators that form a Cartan subalgebra on the last Nc−Ns entries and
are zero in the first Ns entries. The only way the trace condition can be satisfied is
if t0 is separately proportional to the identity matrix on the first Ns entries and on
the last Nc − Ns entries, with proportionality constants chosen in such a way that
it is traceless (as required by the algebra of SU(Nc)). But the fact that the matrix
is proportional to the identity on the first Ns entries implies that t0Σ ∝ Σ and we
can choose the coefficient π0c together with the coefficient of the identity matrix in
flavour space in such a way that the symmetry is unbroken. As a consequence, we
have one unbroken generator, which corresponds to the U(1) symmetry, while the
other generator is broken.

4. The next type of generator we will consider are off-diagonal generators with non-zero
entries where one index is in (1 . . . Ns) range and the other is in (Ns+ 1, . . . Nc) range
(2(Nc − Ns)Ns total). These will necessarily break the vacuum, because the second
term of eq. E.3 would need to transform a row of zeroes into one containing a ρ.

We have thus classified all the generators of SU(Nc)× U(Ns) and conclude that the sym-
metry breaking pattern corresponding to vacuum 1 is

SU(Nc)× U(Ns)→ SU(Nc −Ns)× SU(Ns)× U(1) . (E.5)

The other symmetry breaking pattern has the vacuum configuration which is zero
everywhere except for the (1,1) entry. We again discuss the broken and unbroken generators
by splitting N2

c +N2
s − 1 generators into three different groups.

1. All generators of SU(Nc) and U(Ns) with vanishing first row and column ((Nc−1)2+

(Ns−1)2−1 generators, including Nc+Ns−3 diagonal ones) These generators anni-
hilate the vacuum by themselves and are therefore all unbroken. The corresponding
symmetry subgroup is SU(Nc − 1)× U(Ns − 1)

2. All off-diagonal generators with non-vanishing entries in the first row and column
(2(Nc +Ns − 2) generators) The generators of SU(Nc) will change the row in which
ρ appears, while the generators of SU(Ns) will change the column in which the ρ
appears, so there is no combination, which will leave the vacuum invariant - all these
generators are broken.

3. Remaining diagonal generators (2 generators) The remaining generators are one SU(Nc)

generator and one SU(Ns) generator, which are diagonal with non-zero first entry.
This implies that the action of each of these generators on the vacuum will be pro-
portional to the vacuum state, and we can tune the corresponding fields so that
the symmetry generator corresponding to this linear combination vanishes, as before.
We are therefore left with one broken generator and one unbroken generator, which
corresponds to anouther U(1) symmetry.

In conclusion, the symmetry breaking pattern in this case is

SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1) . (E.6)
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F Renormalization group improved effective potential

The formalism for studying spontaneous symmetry breakdown using the RG improved
effective potential was introduced in Sec. 3.2. Here we will analyze the derived conditions
for the case with (Nc = 6, Ns = 3, Nf = 31).

We first focus on the case where κ = 1, which corresponds to the case of eq. (3.14) and
plot the results in figure 12. We calculate the Hessian matrix using Eq. (3.18). The first
two eigenvalues are degenerate and lead to the following constraint:

λ2 ≥
1

16

(
−17g4 − 16λ1

)
, (F.1)

where we have already ignored the higher order terms λni (n ≥ 2) and gm (m ≥ 4) in the
above expression. The above vacuum stable line is shown in red in figure 12. The third
mass eigenvalue will lead to (again ignoring higher order terms)

λ2 ≥
1

16

(
−119g4 − 48λ1

)
(F.2)

which is shown in green in figure 12. In addition, the RG improved boundary line will be
given by eq. (3.17) with respect to k = 1, leading to

35g2 − 240λ1 − 2 +
√
−611g4 + 13440g2λ1 − 140g2 + 38592λ21 − 768λ1 + 4 = 0 , (F.3)

which is the blue line in figure 12.
We combine the above two vacuum stability lines with the RG improved boundary

line for the broken phase in figure 12. It is very clear that when RG flows run into the
shaded region (shown in blue), the symmetry is broken and we have the symmetry breaking
pattern: SU(Nc)× U(Ns)→ SU(Nc −Ns)× SU(Ns)× U(1).
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λ1
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-0.0002

0.0002

0.0004

λ2

Figure 12. In this figure we choose a particular slice at g = 0.1 perpendicular to the gauge coupling
direction. The blue line corresponds to the symmetry breaking boundary line while the green and
red lines come from two vacuum stability conditions. The blue shaded region represent the broken
phase SU(Nc)× U(Ns)→ SU(Nc −Ns)× SU(Ns)× U(1).
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We likewise plot in figure 13 the results for κ = 0. In this case the two degenerate mass
eigenvalues and one non-degenerate mass eigenvalue provide the following two constraints

λ2 ≥
1

144

(
−805g4 − 144λ1

)
; λ2 ≤

1

96

(
35g2 − 96λ1 −

√
305g4 + 4992λ21 − 384λ1

)
,

(F.4)
which correspond to the purple and orange lines respectively in figure 13. Furthermore, by
using eq. (3.17) with respect to κ = 0, the RG improved boundary line for the broken phase
(κ = 0) is

λ2 ≤
1

96

(
35g2 − 96λ1 − 2

√
305g4 − 140g2 + 4992λ21 + 4

)
(F.5)

and is shown in black in figure 13. The two vacuum stability lines and the RG improved
boundary line for the broken phase (for κ = 0 case) are together illustrated in figure 13.

-0.0008 -0.0006 -0.0004 -0.0002 0.0002
λ1

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

λ2

Figure 13. In this figure we choose a particular slice at g = 0.1 perpendicular to the gauge coupling
direction. The black line corresponds to the symmetry breaking boundary line while the orange
and purple lines come from two vacumm stability conditions. The blue shaded region represent the
broken phase SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1).

In figure 14 we combine the above two cases, with the two shaded regions representing
the broken phases SU(Nc)×U(Ns)→ SU(Nc−Ns)×SU(Ns)×U(1) and SU(Nc)×U(Ns)→
SU(Nc − 1) × U(Ns − 1) × U(1) respectively. Note that figure 14 is consistent with the
tree level diagram (figure 7) in the previous section. From the previous section it is clear
that the RG improved boundary lines (F.3) and (F.5) for the broken phases actually shift
the tree level boundary lines slightly, as described in (3.11) and (3.12), at the origin of
the coupling space (λ1, λ2). Magnification near the origin of figure 7 yields the detailed
structure shown in figure 14. When scalar couplings are large the coarse grained picture in
figure 7 emerges.

Combining the boundary lines for the broken phases and the vacuum stability lines
with the RG flows yields figure 15. We have chosen the particular slice at g = 0.044 which
is the coupling value of the Banks-Zaks fixed points. Note that the scalar quartic couplings
have been rescaled to be compatible with the stream plot; the couplings on the axes are
the rescaled couplings (with much larger values than the physical couplings).
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Figure 14. In this figure we choose a particular slice at g = 0.1 perpendicular to the gauge coupling
direction. The blue and black lines correspond to the symmetry breaking boundary lines while the
orange, purple, red and green lines come from four vacumm stability conditions respectively. The
two shaded regions represent the broken phases SU(Nc)×U(Ns)→ SU(Nc−Ns)×SU(Ns)×U(1)

and SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1) respectively.
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Figure 15. In this figure we choose a particular slice g = 0.044 which is the coupling value of the
Banks-Zaks fixed points. The two shaded regions represent the broken phases SU(Nc)× U(Ns)→
SU(Ns)×SU(Nc−Ns)×U(1) and SU(Nc)×U(Ns)→ SU(Nc−1)×U(Ns−1)×U(1) respectively.

The Banks Zaks fixed point shown in blue is fully repulsive in this slice and plays the
role of an interacting UV fixed point (in this 2D slice). It is very clear that there are RG
flows running from this interacting UV fixed point (blue) towards the CP3 region (where
λ ∼ O (gn) (n ≥ 4), shown in shaded blue). It is also clear that in the 2D slice there are also
RG flows running from interacting UV fixed point towards the Gildener Weinberg region
(where λ ∼ O

(
g2
)
) of the broken phase. Since there is no particular boundary between these

two regions, we obtain phases with complete asymptotic safety in the UV (with perturbative
couplings) and symmetry breaking in the IR regardless of whether scalar couplings scale
with lower powers of the gauge coupling (Gildener-Weinberg) or higher (CP3). Furthermore,
there are two attractive directions of the fixed point (one coming from the UV Gaussian
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fixed point and run into the plane (through back of the plane) the other one running into
the plane through the front). Hence, there are some flows that do not come directly from
the blue fixed point in this 2D slice but run from the UV Gaussian fixed point, passing
the IR fixed point and run towards the CP3 region. A similar conclusion holds for the
Gildener Weinberg region. Thus there exist phases that are completely asymptotically free
in the UV, symmetry breaking in the IR, and walking behaviour in the middle regardless of
whether scalar couplings scale with lower powers of the gauge coupling (Gildener-Weinberg)
or higher (CP3).

Scenarios Boundary Lines Symmetry Breaking Pattern
(tree) λ2 > 0 eq. (3.11) SU(Nc)× U(Ns)→ SU(Ns)× SU(Nc −Ns)× U(1)

(tree) λ2 < 0 eq. (3.12) SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1)

(loop) λ2 > 0 eq. (F.3) SU(Nc)× U(Ns)→ SU(Ns)× SU(Nc −Ns)× U(1)

(loop) λ2 < 0 eq. (F.5) SU(Nc)× U(Ns)→ SU(Nc − 1)× U(Ns − 1)× U(1)

Table 6. Two categories (tree level and loop level analysis) and four scenarios (according to whether
λ2 > 0 or λ2 < 0) are summarized in the table.

G One Loop Effective Potential

In section (3.2) we used RG improvement to analyze the effective potential. This approach
has several advantages:

• Loop level contributions are already encoded in the RG functions. No explicit calcu-
lations of loop contributions to the effective potential are required.

• No initial assumption about λ ∼ g4 is required. All orders of g are summed and
already encoded.

• Both gauge loop and scalar loop contributions are included.

• It is much easier to generalize this approach to different symmetry groups and repre-
sentations.

In this appendix we sketch an explicit way to analyze the effective potential. To simplify
the calculation, we study the SU(3c) × U(3s) case and assume the tree level contribution
O (λ) is comparable to the one loop gauge contribution g4 (i.e. λ ∼ g4), implying the next-
order scalar contributions can be ignored (λ2 ∼ g8). Explicit calculations are carried out
in the Coleman-Weinberg scheme, which satisfies the Coleman-Weinberg renormalization
conditions (discussed below) [38, 40].

The one loop effective potential is given by

V 1loop
eff = V0 + Vg + Vct (G.1)

where V0, Vg, Vct represent the tree level term, the gauge loop contribution and the counter-
terms respectively. The one loop gauge contribution can be further written as [55]

Vg =
3

64π2
Tr
[
M4 (S) logM2 (S)

]
, (G.2)
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where S is the scalar field under fundamental representation of SU(3c)× U(3s) and

M2
ab = g2tajit

b
ikS

f†
j S

f
k = g2tajit

b
ikχji χji = diag

(
ρ21, ρ

2
2, ρ

2
3

)
(a, b = 1, · · · 8) . (G.3)

The diagonalization of S is discussed in great detail below eq. (3.2). Using this, the one
loop effective potential can be explicitly written as

V = (a1 + λ1)

(
L∑
i=1

ρ2i

)2

+ (a2 + λ2)
L∑
i=1

ρ4i +
3g4

64π2

(
2

L∑
i=1

i−1∑
j=1

(
ρ2i + ρ2j

)2
log
(
ρ2i + ρ2j

)
+M2

− log (M−) +M2
+ log (M+)

)
, (L = 3)

(G.4)

where ρ2i +ρ2j (i, j = 1, 2, 3) are the six polynomial eigenvalues of the mass matrixM2
ab while

M+, M− are the two non-polynomial eigenvalues, written explicitly as

M± =
2

3

(
ρ21 + ρ22 + ρ23 ±

√
ρ41 − ρ22ρ21 − ρ23ρ21 + ρ42 + ρ43 − ρ22ρ23

)
, (G.5)

and a1, a2 are the counter-terms which are determined through the Coleman-Weinberg
renormazliation conditions.

The Coleman-Weinberg conditions are

1

4Nc (Nc − 1)

Nc∑
i−1

i−1∑
j=1

∂4V

∂ρ2i ∂ρ
2
j

∣∣∣∣
ρi=κiMR

= λ1 (Nc ≥ Ns)

1

4!Nc

Nc∑
i=1

∂4V

∂ρ4i

∣∣∣∣
ρi=κiMR

= λ1 + λ2 ,

(G.6)

whereMR is the renormalization scale and κi represents the relative ratio between different
scales. Using eq.(G.6) we can determine a1, a2. Inserting the result into eq. (G.4), we
further obtain the full expression for the effective potential V 1loop

eff . This expression is
extremely long and not particularly illuminating, so we do not present it.

The next step is to study the one loop level VEV conditions that determine the bound-
ary sheets (or lines) between the unbroken and broken phases. The vacuum configurations
and symmetry breaking patterns are determined from the κi and as discussed in section
(3.2), there is no alternative vacuum configuration found except for κi = 1 (i = 1, 2, 3) or
κi = δi1 (i = 1, 2, 3).

In the following, we illustrate the case κi = 1 (i = 1, 2, 3) as an example. The VEV
condition is

lim
κ3→1

∂V 1loop
eff

∂ρi

∣∣∣∣
ρ3=κ3MR
ρ1=ρ2=MR

= 0 (i = 1, 2, 3) , (G.7)

where the limit is implemented to get rid of the singularity, providing the following con-
straint

2

81
M3

(
−199g4

π2
+ 486λ1 + 162λ2

)
= 0 , (G.8)
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which corresponds to the blue line in figure 16. All three constraints are equivalent be-
cause of the permutation symmetry among ρ1, ρ2, ρ3. The couplings satisfying the above
constraint eq. (G.8) are evaluated at the broken scale in the Coleman-Weinberg scheme,
whereas the couplings satisfying the constraint eq. (F.3) are evaluated at the broken scale in
the Minimal-Subtraction scheme. We shall see that the coupling values evaluated in these
two schemes are quite different.

In order to make sure the solutions are at a local minimum the mass eigenvalues of the
Hessian mass matrix

Mij = lim
κ3→1

∂2V 1loop
eff

∂ρi∂ρj

∣∣∣∣
ρ3=κ3MR
ρ1=ρ2=MR

(G.9)

must be non-negative. This yields

2

27

(
−145g4

π2
+ 486λ1 + 162λ2

)
≥ 0, − 845g4

108π2
+ 12λ1 + 12λ2 ≥ 0 , (G.10)

which correspond to the red and green lines in figure 16 respectively.
It is clear that when the RG flows run into the shaded region shown in figure 16,

the symmetry is broken and we have the symmetry breaking pattern SU(Nc) × U(Ns) →
SU(Nc−Ns)×SU(Ns)×U(1). Comparing figure 16 with figure figure 12, the shape and the
structure of the shaded regions are very similar and consistent, while the coupling solutions
are very different in the different schemes. In the Coleman-Weinberg scheme both quartic
couplings could be positive and at the same time symmetry breaking is driven by the loop
contributions. In the Minimal Subtraction scheme, one of the two quartic couplings is
always negative.
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λ1

-0.000015
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0.000010
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Figure 16. In this figure we choose a particular slice g = 0.1. The shaded region represents the
broken phases SU(Nc)× U(Ns)→ SU(Nc −Ns)× SU(Ns)× U(1).
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