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ABSTRACT

We discuss features of Toda theories based on nonsimply-laced algebras by treating as an explicit
example the case of the agzl theory. We review the failure of such theories to have exact,
factorizable S-matrices and describe how by extending them to include fermions one obtains
theories with satisfactory S-matrices. We explain why, although the bosonic theories have
higher spin conserved currents at the quantum level, certain on-shell singularities of Feynman
amplitudes lead to a breakdown of the charge conservation arguments used in the bootstrap
construction of exact S-matrices.
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1. Introduction

Two-dimensional Toda field theories are represented by lagrangians of the form

1o = ey
L= _§¢D¢ -5 g (1.1)

Here the &; are the simple roots of a rank r Lie algebra augmented by (the negative of ) a maximal
root and ¢ = (¢1, b2, ...¢,) are bosonic fields describing r massive particles, with masses rigidly
controled by properties of the Lie algebra [1]. The Ka¢ labels g; are chosen so as to set the
vacuum expectation value of & to zero. These theories are classically integrable: the lagrangian
above admits an infinite number of symmetries described by conserved currents Ji’) of increasing
spin s [2]. Assuming the symmetries survive quantization they can be used to prove that the
n-body S-matrices of these theories factorize into products of two-body S-matrices satisfying
Yang-Baxter equations as well as conservation of individual particle momenta, so that particles
of mass m, m’ only scatter into particles of the same mass. With additional, standard S-matrix
assumptions, it then follows that these elastic S-matrices can be determined exactly [3].

In practice, the procedure that has been used in the recent literature 14, 5] starts with a
knowledge of the mass spectrum and some information about the three-point couplings, pos-
tulates the symmetries, constructs a suitable S-matrix (this construction is essentially unique),
and checks that it agrees in low orders of perturbation theory with that computed from the par-
ticular Toda lagrangian. (More deductive methods exist for the case of the sine-Gordon theory,
as well as cases where the quantum group structure is sufficiently well understood [6].) This pro-
cedure has been successful for the case of simply-laced Lie algebras (equal length simple roots)
but has failed for the nonsimply-laced Lie algebras (roots of different length). It is generally
believed that Toda theories based on nonsimply-laced algebras, though classically integrable,
do not possess factorizable S-matrices, both because no suitable matching has been found in
perturbation theory, and because radiative corrections distort the mass spectrum of the Toda
lagrangians in a manner that seems incompatible with the existence of any exact S-matrix [5)].

For certain cases the situation can be improved by introducing fermions. The resulting
theories are Toda theories naturally based on suitable Lie superalgebras [7]. Contributions
from fermionic loops remove the above-mentioned distortions of the mass spectrum [8] and also
lead to a singularity structure of Feynman diagrams (double poles, etc.) which is consistent
with that determined by exact S-matrix considerations [9, 10]. However, this approach has not
been extended to all cases. Furthermore, until now one had achieved little understanding of
the reasons for the failure of the nonsimply-laced bosonic theories to maintain their classical
integrability.

We present here, as a pedagogical example, the case of the Toda theory based on the
nonsimply-laced affine Lie algebra a?) and its fermionic extension based on the superalgebra
A®(0,3). We review briefly the bootstrap ideas behind the S-matrix construction and describe
it for the case of the fermionic theory. We then outline possible reasons for the failure of this
construction for the bosonic theory.



2. The af” and the AP(0,3) theories

We consider the lagrangian
1 1
L= —5(;51[]@51 _ §¢2D¢52 _ e—¢1 ~¢2 _ e—¢1+¢2 _ 62051 (21)

The simple roots are the two-dimensional vectors & = (—1,1) and &, = (2, 0) while the maximal
root is &,, = @1 + & = (1,1). It describes two particles of masses m; = V6 and m, = /2. We
note for future reference that the three-point couplings are —¢? and 1d192. In our conventions

the lagrangian enters the functional integral as exp (ﬁ I E). We use light-cone coordinates
with O = 26+3_.

Using the classical field equations it is straightforward to check the conservation @_J_(:) +

3+J£s) = 0 of spin two and spin four currents, where the spin two current is the stress tensor,
while

TP = Tpiir = (01602(0162)* + (8262)? + 20,610, 6202 ¢ (2.2)
with a suitable expression for T, They define corresponding spin one and spin three charges
QW= [da*Tys , QY= [da*Tipes (2.3)

whose presence would guarantee the existence of factorizable elastic S-matrices[11]. Unitarity,
analyticity, crossing and bootstrap assumptions would then allow one to construct explicitly
these S-matrices. However, this does not seem to be the case. First, identifying the location of
simple poles of the S-matrix with the masses of the theory would require that these masses stay
in the ratio m;/m; = /3 to all orders of perturbation theory. However, one-loop calculations
[8] change the ratio by *
g 7h

5( mz) =-= (2.4)
Second, such S-matrices have higher order poles which are normally interpreted as anomalous
threshold singularities [12, 5, 9]. Their position and coefficients are again rigidly controlled. No
successful matching with singularities of Feynman diagrams computed from the lagrangian in
Eq. (2.1) has been possible. There is little doubt that the S-matrix of the a:(f) Toda theory does
not have all of the simple properties predicted by the existence of the charges in Eq. (2.3).

The situation changes dramatically when fermions are added. The Toda lagrangian obtained
from the Lie superalgebra A®)(0, 3)

1 : | |
L = —561061 — 56206 — Zp-0p_ + 2610 9y
—e— P12 _ e—¢1+¢2 — 24 _ ¢+¢_6¢'1 (2.5)

“We have multiplied the result in [8] by a factor of 27 o account for a different normalization in the functional
integral.
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Figure 1: Factorization of the S-matrix

has the same bosonic mass spectrum, couplings, and tree level amplitudes as the one in Eq.
(2.1), and there exist corresponding conserved spin two and spin four currents, but the addition
of the fermions leads to very different behavior at the loop level. First, radiative corrections
due to the fermions, when added to those due to the bosons, restore the classical mass ratios
[8]. Second, one can construct exact S-matrices for this system [9] which agree in perturbation
theory with those calculated from the lagrangian above (at least up to the one-loop level). In
the next section we outline this construction.

3. The S-matrix of the A®(0,3) theory

In a theory with higher spin conserved currents the factorization and elasticity of the scat-
tering amplitudes follow from the following arguments [3]: by Lorentz invariance, single particle
states of momentum p = (p,,p—) are cigenstates of the spin s charge with eigenvalues propor-
tional to {p})*:

QWip) = wpilp) (3.1)
(throughout we work with charges of one definite chirality, hence the dependence on p,. Similar
statements can be made about the other chirality). Acting on a product of wave-packets the
operator expiQ(?, s > 1, displaces them relative to each other so that if Q®) commutes with
the S-operator a multiparticle scattering amplitude is equal to one where well-separated wave-
packets scatter pairwise [13], as illustrated in Fig. 1. The same argument implies the validity
of the Yang-Baxter equations, as indicated by the second equality in the figure.

The elasticity is based on the charge conservation relation for the process
Patmp+...—p;+p,+ ..

waPoy + wePhy + . = wyPyy F gy o (3.2)

which can be satisfied, generically, only if the outgoing momenta are at most a permutation of
the incoming momenta.



Since we will have to come back to Eq. (3.2) let us describe one standard derivation of this
statement [14]: from the current conservation equation it follows that

— /dzmeik‘z_a_.ffﬂ)(m) = /dzxeik‘x_3+.]£s+1)(x) = /d2m8+ (e“'k‘fJESH)(x)) =0 (3.3)

The relation

(out| /dzme"k“fﬁ_Jf+1)($)|in) =0 (3.4)

has the graphical interpretation shown in Fig. 2: One inserts the current operator carrying
momentum k = (0,%_) in all possible ways in the Feynman diagrams for the process (out|in)
and the result must be zero.

When inserted in external lines with on-shell momentum p for which {p|Q|p) # 0 one gets
from Eq. (3.1) a factor wpst!, an additional factor k_, and a factor

1 1
(p+k)?2—m?2  pyk_
When the current is inserted inside the Feynman diagram one gets contributions which do not
have a pole singularity in the limit k_ — 0 but still have the numerator factor k_. Therefore,
in this limit one finds (¥ w;pf, ){out|in) = 0, implying that scattering amplitudes vanish for
processes where the charge is not conserved.

(3.5)

As we shall discuss later, the italicized statement above is not true for the nonsimply laced
bosonic theory. But for the moment we shall assume it holds for the fermionic theory and
proceed with the derivation of the S-matrix [9].

We are dealing with a system of three particles with masses

my=6 , mi=mj=2 (3.6)

The elasticity of the two-body amplitudes does allow transitions from states with particle 2
to states with fermions, but not with particle 1. We have therefore the following coupled
amplitudes:

B=(22022) , F=(ffIff) , D=(ff122)
T=(f12f) , R=(2f|f2) (3.7)

KJ,

2

Figure 2: Illustrating the derivation of charge conservation
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Figure 3: Yang-Baxter diagrams for the amplitudes in Eq. (3.7). Solid limes represent bosons,
dashed lines represent fermions.

as well as amplitudes (12|12), {1f]1f), and (11]11). The amplitudes satisfy Yang-Baxter equa-
tions, as depicted in Fig. 3, corresponding to relations such as

B(O)R(6 + 0)B(8') — D(6)F(0 + 8)D(8') = R(8)B(6 + 0')R(¢') + T(O)R(6 + 0)T () (3.8)

etc. We have introduced rapidity variables defined by py = met?,

Setting one of the variables to zero in such equations, as well as in equations obtained by
taking one derivative, one ends up with differential equations which can be solved for ratios of
the amplitudes. One finds, after using some tree-level information, etc.

z

R(§) = ’Ysz.nh%GT(ﬁ’)

D) = 1oz

BO) = (1+ Vo) TO)

Fo) = (_H%inz;ﬁe) T() (3:9)
where ~ is an integration constant. We write v* = sin’7f), and also n = —%8  Unitarity and

crossing symmetry determine then
T(0) = 1(ON(ix —0)

(o) = < T(np—Q+1+3{1—)I(p+Q+14+3(0-1))
T BT -2+ 143 DT +Q+143(-3)
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Figure 4: Illustrating Eq. (3.12)

T(p+143(1—))T(n+3(1-1)) (3.10)
; .

T+ 1480 —1)T(n+30—1)

One can check that on the physmal sheet 0 < Im@ < x, T(0) has no poles whereas D, B, and
F have a pole at 8}, = —m which corresponds to the ex1stence of an intermediate state part1cle
of mass m? = 6. In the bootstrap approach one identifies this with the particle described by @;.
The amplitudes involving this particle are then determined by looking again at Yang-Baxter
equations in the vicinity of this pole. Asillustrated in Fig. 4 one obtains, denoting 52 = (12(12)

Res[B(03,)ISH(6) = ReslB@L) B0+ 303)B(0 - LoL)

1

~Res[D(O3)|R(6+ 503)R(0 — 503,) (3.11)

which leads to 3
7 = { 5} (3.12)
We are using a standard notation [5]

(z — 1)z +1) 2) = sinh(f + £1)
(e—1+2Q0z+1~29) ° "~ sinh(f — Zg)

2h

{} =

(3.13)

where f, the Coxeter number of the Lie algebra, is here equal to 3. In a similar fashion one
finds the remaining two-body amplitudes

Sho= {142}
Sy = {g} (3.14)

The factorization assumption determines then all n-particle amplitudes.
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That the above amplitudes do indeed describe scattering for the theory given by the Toda
lagrangian Eq. (2.5) is not immediately obvious. One used as input some information gleaned
from the tree level amplitudes but even at the tree level complete agreement with all the two-
body amplitudes was not guaranteed. A much more stringent test is agreement at the one-loop
level. The amplitudes we have obtained above have double-pole singularities, and an important
check is to ascertain that these singularities match the anomalous threshold singularities of
one-loop Feynman diagrams constructed from the Toda lagrangian. This we have done [9].

4, Why does the agg) Toda theory fail to have a simple S-matrix?

Affine Toda theories for simply-laced algebras such as for instance that for agl), given by the

lagrangian . )
L= —§¢1D¢1 - §¢52D¢2 _ et~V _ 1 tVBh _ 2 (4.1)

have exact, factorizable S-matrices. Compared to the theory we are discussing the coeflicients
in the exponentials (and therefore masses and coupling constants) are slightly different and this
difference is crucial.

Since the arguments that lead to the factorization and elasticity of the S-matrix rely heavily
on the existence of conserved charges, it might be suspected that the conservation of the spin
four current we have exhibited earlier (or some other higher spin current) breaks down at the
quantum level due to anomalies. But this is not the case.

The quantum conservation laws can be studied by conventional methods. One can either
rely on the BPHZ procedures used for the sine-Gordon system [15], or on OPE (massless per-
turbation theory) methods which treat the complete exponentials in the interaction lagrangian
as a perturbation. The calculations are straightforward. Using the Gell-Mann-Low formula one

computes _
i (TP (z)..) = <T (Jf)(z)... exp (% Ji L:,-m))> (4.2)

A_{J¥(z)...) = 8;.(local expression) (4.3)

and checks whether

For the present case this is not so, but we found that by adding local terms which renormalize
the current in Eq. (2.2), the quantum operator is indeed conserved. At the one-loop level it 1s
given by:

IO = (@4 D00 + (1 BRNE) — (00 (4.0
(006t — 5(@0)! + (24 300401049203 92



Figure 5: Diagrams showing the breakdown of the naive charge conservation law.

Since there are arguments [11] to claim that the conservation of two currents (e.g. the stress
tensor and the spin four currents) are enough to insure the factorization properties of the S-
matrix the problem lies elsewhere: although the current is indeed conserved, st is not the case
that the sum of the corresponding charges of incoming particles equals the sum of the charges
of outgoing particles. The argument presented earlier breaks down because in two dimensions,
and for the particular mass ratios of the theory at hand, Feynman diagrams where the current
is inserted inside a loop may have pole singularities as k_ — 0.

We will illustrate this on the simple case of the three-point function which is interesting in
its own right. Let us consider the vertex function with three external bosons ¢1, with momenta
evaluated on shell (this means they must be complex, but it does not affect the argument). We
emphasize that this vertex function is not zero, since the theory does have a ¢3 coupling.

In the center of mass frame where two of the particles have rapidity +:0 and the third one
has zero rapidity, the charge conservation laws in Eq.(3.2) (for the spin one momentum and
spin three charge) would give the two equations

2mqycosf = my

2unmicos3b = wymd (4.5)

The first equation implies # = /3 and when this value is substituted in the second equation it
implies that w; = 0, the charge of particle 1 vanishes. This is indeed the case at the classical
level, since the spin four current does not have a term quadratic in ¢,. Quite generally by the
above argument, if a particle has a cubic self-coupling, only certain higher spin charges can
be nonzero. However, as we shall discuss presently, at the quantum level the charge does not
vanish and we must conclude that there is some inconsistency in the arguments that lead to the
second equation in Eq. (4.5).

It is not difficult to find the source of the problem. Consider, up to the one-loop level, the
argument of section 3 as applied to the present situation. Since the classical current does not
contain a ¢} term one only gets the diagrams in Fig. 5, where the blob on the ¢; line indicates
one-loop corrections to the current. Tt turns out that the triangle diagrams with particle 2
inside have pole singularities as k. — 0. (In fact, on the mass shell the vertex function itself is
infinite, as can be seen by standard dual diagram arguments [9]. When the current is inserted
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Figure 6: Diagrams for the calculation of the charge of particle 1.

the corresponding expression is finite, but the infinity shows itself in the limit of zero momentum
k_.) Consequently the argument that the charge of one of the external particles equals the sum
of the charges of the other two, as would be suggested by the first diagram, breaks down and a
detailed analysis shows that the amount of breaking is indeed related to the residue of the pole
in the triangle diagram.

Although we have not yet studied the general situation, it seems clear that the above pathol-
ogy will affect the higher point functions and lead to a breakdown of some of the arguments in
favor of the existence of exact, factorizable S-matrices. (We note that triangle pole singularities
are a common occurence in theories with perfectly good S-matrices, but pathologies will not be
present unless the relevant particles have nonzero charges.)

As we have mentioned above, quantum corrections to the charge of particle 1, and therefore
w, are not zero, We have computed them at the one-loop level using the renormalized current
of Eq. (4.4) and evaluating the matrix element

(0l [ dz* I (@)ip) = 1 5 (olp) (16)

as indicated in Fig. 6. We find
w
S = —h—p 4.7
ATV (47

where §w; = wy — wi(classical) indicates the deviation of the charge from its (zero) classical
value.

Let us consider now the vertex function {(2,2|1} and go through the charge conservation
arguments for it. We observe that, at least at the one-loop level, this vertex function does not
have on-shell singularities so that the standard arguments should hold. In analogy with Eq.
(4.5) we have

2mqcosl = my

2umicosdd = wimd (4.8)

This time, at the classical level, from the first equation with m; = v/6, m, = v/2 we obtain
# = 7 /6 which when substituted in the second equation again would require w; = 0. However, at
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the quantum level wy # 0, but also, at the quantum level the masses receive radiative corrections
and the mass ratio is no longer v/3. From the above value of wy we can determine the mass
corrections, and compare with the values computed in Ref. [§]

Indeed, taking variations of the second equation above and examining O(#%) terms (on the

left hand side we can use the classical value w, = 1) we obtain

80 = —/3buw, (4.9)
Taking variations of the first equation, we obtain then

™ wh
bl — ) =—— 4.10

a result in agreement with Eq. (2.4).

We have thus obtained a verification of our calculations, but more importantly, we can draw
the conclusion that in situations such as this, if the higher spin charge of some particles gets
corrections at the quantum level, this implies corresponding corrections for mass ratios and is
the reason why no exact, factorizable S-matrices have been found. Presumably this is the case
for many Toda theories based on nonsimply-laced Lie algebras.
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