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Chains of superconducting radio-frequency resonators are key components of modern particle
accelerators such as the European XFEL, which is currently under construction in the north of Germany.
In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special
interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in
general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized
between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain
has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex
structures is computationally challenging and is therefore often avoided. In this article, the challenge is
faced by using the so-called state-space concatenation approach, which is a combination of domain
decomposition and model-order reduction. The technique allows for a reduction of the number of degrees
of freedom by a factor of ≈ 1.471 × 10−4. The method is employed to generate a compendium of
eigenmodes in the chain of third harmonic cavities for the European XFEL. The results are discussed in
detail and are compared with experimental measurements. The compendium serves as a reference for
experiments (inter alia for diagnostics based on higher order modes) at the third harmonic cavity string
of the European XFEL, it allows for qualitative understanding of resonant effects appearing in chains of
cavities, and it is meant to be a proof of principle of the state-space concatenation approach to handle very
long and complex radio-frequency structures. To the authors’ knowledge, it is the first time that a modal
compendium of a structure with the given complexity is generated. The article presents geometrical details
of the chain, defines quantities relevant to superconducting radio-frequency cavities, and describes the
employed computational approach.

DOI: 10.1103/PhysRevAccelBeams.20.042002

I. INTRODUCTION

A. Motivation and aims of the paper

Key elements of modern particle accelerators, such as the
European X-ray Free Electron Laser (XFEL) [1], are super-
conducting radio-frequency (SRF) cavities made of niobium.
The cavities are arranged in chains and are accommodated
in cryomodules. These modules provide cryogenic infra-
structure to cool down the cavities to approximately 2 K.
At this temperature level, the niobium is superconducting.
Profound knowledge of electromagnetic effects inside the

cavities is of significant relevance to design and to operate
the entire accelerator. Unfortunately, measurements of elec-
tric or magnetic field distributions inside the cavities are
challenging. Such measurements are typically performed
in ex situ experiments using bead-pulling techniques [2,3].
In contrast, in situ investigations are typically restricted to
measurements of the rf transmissions from one external port
of a cryomodule to other external ports using dedicated
vector network analyzers.
Another way to gain insight into the electromagnetic

properties of cavities is numerical modeling and simula-
tion. In particular, these techniques allow for the determi-
nation of 3D field distributions inside the cavities.
Literature provides a vast amount of articles related to
numerical studies for cavities (see [4–22] and many more).
The different contributions address different emphases and
approaches such as the numerical computation of wakefield
effects or of scattering parameters. Other types of articles

*thomas.flisgen@uni‑rostock.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 042002 (2017)

2469-9888=17=20(4)=042002(18) 042002-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevAccelBeams.20.042002
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.042002
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.042002
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.042002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


are related to the eigenmodes of the rf structures.
Eigenmodes can be considered as electromagnetic resonan-
ces of the closed, lossless, charge-free, and nonexcited
structure. The eigenmodes are characterized by their reso-
nant frequency and their resonant field pattern. Modal
compendia such as [12–18] list the set of eigenmodes of
the structure under study in a defined frequency range.
In addition to resonant frequencies and resonant field
patterns, quantities which describe the coupling of the
eigenmodes either to the waveguide ports or to bunches
of charged particles are often provided. Knowledge of the
eigenmode spectrum of a structure allows for characterizing
its dynamical properties. Following for instance [23] and
references therein, eigenmodes enable the quantification of
the interaction between cavities and charged particles that
traverse them.
All aforementioned numerical studies have in common

that a multitude of effects is not regarded in the underlying
computational models, since these models result from
balancing model accuracy against numerical demands.
For instance, geometrical variations from the ideal cavity
shape, which result from fabrication tolerances or cooling
effects, or additional reflections from cavity couplers are
often not regarded. Here, not only the additional computa-
tional burden but also the lack of knowledge prevents to
model these effects. Another severe simplification of the
numerical models is the restriction to single cavities with
couplers as it is performed in most studies such as in the
modal compendia [12–18]. This is a valid approximation
for modes whose resonant frequency is smaller than the
fundamental cutoff frequency of the circular waveguide-
like beam pipe, because these are confined in the cavity.
However, this approximation becomes invalid for modes
above cutoff as their electromagnetic field can couple to
both ends of the structure, i.e. through the beam pipes. The
restriction to a single cavity neglects the fact that its
resonances can couple to resonances of other cavities in
the chain, so that field patterns become much more
complex and bands are more densely populated with
modes. In addition, resonant modes with field energy
localized between adjacent cavities are not modeled at all.
Another effect which arises from restricting to single

entities is the inaccurate estimation of the decay times of
resonances. The ends of the beam pipes are usually equipped
with waveguide boundary conditions for the computation of
mode decay times. These waveguide boundary conditions
ensure that the energy of waves which are scattered into the
waveguide boundaries is not reflected back into the structure.
However, in chains additional reflections arise from the
adjacent cavities above the cutoff frequencies so that decay
times tend to be larger for these cases. Larger decay times
can be dangerous for the operation of the entire accelerator,
because it is not guaranteed that the energy is extracted fast
enough (e.g. by dedicated couplers) from the cavities to
avoid harmful interactions with subsequent bunches.

Increasing the computational domain and accounting for
entire chains significantly raises the computational demands
as the number of degrees of freedom resulting from
reasonable discretization techniques is increased. In addition,
drastically more resonant modes exist in chains in a finite
frequency range. According to the estimation presented in
chapter 6 of [24], doubling the length of a cavity chain leads
to doubling the number of degree of freedoms and, in the
best case, to computing times for eigenmode computations
being 4 times longer. Typically, high performance computers
in combination with special software are required for
eigenmode computations for chains of superconducting
cavities as demonstrated for instance in [25,26]. The usage
of such computers comes along with a set of drawbacks such
as costs for hardware and for maintenance, limited amount
of free computational time, difficulties in generating an
appropriate mesh, and high energy consumption.
The recently proposed state-space concatenation (SSC)

[24,27–30] algorithm allows for computing eigenmodes
of long chains by combining a model-order reduction
approach with a domain decomposition technique. The
SSC approach is a further development of the coupled
S-parameter calculation (CSC) [31–33] scheme, which has
been employed in [34] to compute the scattering parameters
of a four-cavity string with couplers. In contrast to CSC or
other concatenation approaches based on sampled scatter-
ing matrices such as the GSM technique [35], SSC directly
delivers the electromagnetic field information inside the
complex rf structure.
This article describes the generation of a compendium

of resonant modes in the string of eight third harmonic
cavities, which is accommodated in the injector of the
European XFEL [1] in the north of Germany. Basically,
there are four main motivations for the generation of the
modal compendium.
1. The generated modal compendium serves as a

reference for experiments at the third harmonic module
of the European XFEL [1]. Past and ongoing measurements
aim at using higher order mode (HOM) coupler signals for
diagnostic purposes such as it is conducted in [36] for the
third harmonic module of the FLASH machine [37] at
DESY. One goal of this compendium is to allow for a more
profound interpretation of the spectra measured at the
European XFEL.
2. The modal compendium allows for qualitatively under-

standing effects which arise when full chains of cavities
at other accelerators are considered, e.g. the existence of
multicavity modes (modes whose field energy is present
along the entire string) or of intercavity modes (modes
whose field energy is trapped between adjacent cavities).
3. Comparison between simulation and measurements to

get a sense for the discrepancy between both, in particular
for structures of the given complexity with a vast number of
uncertainties.
4. The computation of eigenmodes for a string with eight

cavities is in fact a proof of principle for the SSC scheme.
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To the authors’ best knowledge, it is the first time that a
systematic wideband eigenmode analysis of a structure
with the given complexity has been performed.

B. Structure of this article

The paper is organized as follows: Section I C presents a
brief introduction to the European XFEL and discusses
geometric details of the structure under consideration, i.e.
the chain of third harmonic cavities. In Sec. II A relevant rf
properties of superconducting cavities are revised in order
to have a concise nomenclature. Section II B discusses the
numerical approach used to model the chain of cavities.
In particular, it highlights how the relevant quantities are
determined by the employment of the SSC approach. In
Sec. III A the most important rf properties of the cavity
chain, which are delivered by SSC, are discussed.
Section III B compares measurements with the generated
numerical model in order to estimate its accuracy. A final
discussion is provided in Sec. IV. Tables containing the
properties of the eigenmodes in the interval 1 to 8 GHz are
available in the Supplemental Material of this article [38].
In addition, the Supplemental Material [38] provides the
field patterns of these modes.

C. The European XFEL and its chain of
superconducting third harmonic cavities

The European XFEL [1] is a free-electron laser currently
under construction in the northern part of Germany. The
facility is able to generate 27,000 laser light pulses per
second shorter than 100 fs with a tunable wavelength
between 4.7 and 0.05 nm. In consequence, the machine
enables the observation of very fast processes on a
subatomic scale. The entire installation has an overall
length of 3.4 km starting at the DESY campus in
Hamburg and ending in the south of Schenefeld in

Schleswig-Holstein. Its main components are the injector,
the linear accelerator, the beam distribution system, the
undulators, the photon beam lines, and the experimental
stations. In the beginning of the injector, bunches of
electrons with a charge from 0.02 to 1 nC are generated
by using the photoelectric effect and are accelerated to
130 MeV. Subsequently, they are guided to the linear
accelerator. The 1.6 km linear accelerator comprises
accelerating cryomodules, dipole and quadrupole magnets
for bending and focusing of the beam, bunch compressors
as well as diagnostic monitors. The linear accelerator is
capable to accelerate electrons to 17.5 GeV. Subsequently,
the accelerated bunches are distributed to different beam
lines in the beam distribution system. The two beam lines
contain different undulators so that various needs of the
users for different experiments are satisfied. The undulators
are periodic structures of dipole magnets and enforce the
charged particles of the bunch to transversely oscillate
and thus to longitudinally radiate energy. Laser light is
generated at the undulators using the self-amplified sponta-
neous emission principle [39]. The light is directed by the
photo beam lines, which are equipped with optical ele-
ments, filters and mirrors, to the experimental stations.
Cryomodules which accommodate TESLA cavities [4]

are incorporated in the linac section. The TM01-π mode
of the cavities is employed to accelerate the charged
particles. In addition, a third harmonic module is installed
in the linac section of the European XFEL. Its purpose is
the linearization of the longitudinal dependency of the
accelerating electric fields. In combination with a suitable
bunch compressing scheme, this allows for higher peak
currents [40]. The third harmonic cryomodule accommo-
dates eight superconducting elliptical nine-cell resonators
[13,14]. The TM01-π mode of the cavities resonates at
3.9 GHz, which is in fact 3 times the frequency of the
TM01-π mode of a TESLA cavity. Figure 1 depicts the

(a)

(b)

FIG. 1. (a) Chain of eight superconducting third harmonic cavities. The electron gun is positioned on the right-hand side of the string.
Each cavity is equipped with a HOM coupler and a pickup on its left-hand side (downstream) and a HOM coupler with a power coupler
on the right-hand side (upstream). Couplers of cavities with an even index are rotated by an angle of 180° around the longitudinal axis.
Bellows are mounted between the cavity-coupler combinations. (b) Magnification of the red rectangle in (a), i.e. the first two cavities
with couplers. HOM couplers are placed on the left-hand side and HOM couplers with power couplers are mounted on the right-hand
side. The HOM couplers are based on the one-leg design [see Fig. 3(a) in [34]]. The length LCa of the cavity with couplers is 505.92 mm
whereas the length of the bellows is 102 mm. Both (a) and (b) are modifications of Fig. 4 in [41].
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layout of the third harmonic cavity string. In particular,
Fig. 1(a) sketches the entire chain of eight cavities, whereas
Fig. 1(b) shows the magnification of the first two cavities in
the string, so that details become visible. Adjacent cavities
are attached to each other by bellows to compensate for
geometric tolerances. The geometric parameters of the third
harmonic cavities are available in [13,14]. At each right end
of a cavity, a power coupler is mounted, which is connected
via a waveguide feeding system with a klystron. The power
couplers are used to excite the TM01-π-mode of the
cavities. In order to damp unwanted HOMs, which are
excited by bunches of charged particles traversing the
structure, HOM couplers are attached to both ends of each
cavity. The HOM couplers have a notch effect at 3.9 GHz
so that they do not couple to the TM01-π mode (see Fig. 5 in
[34]). The HOM couplers of the third harmonic cryomod-
ule of the European XFEL are based on the one-leg design
[see Fig. 3(a) in [34]]. The length of the cavities with beam
pipes is LCa ¼ 505.92 mm, whereas the length of the
bellows is LBe ¼ 102 mm. Consequently, the total length
of the string is ≈ 4;761 mm. In order to guarantee a strong
coupling of the HOM couplers to all polarizations of the
modes, they are rotated against each other by an angle of
115°. Moreover, every second cavity is rotated by an angle
of 180° around the longitudinal axis.

II. THEORY

A. Quantities for the characterization of
superconducting radio-frequency resonators

1. Eigenmodes and their properties

One of the most important property of superconducting
resonators is its eigenmode spectrum. The eigenmodes can
be considered as resonances of the nonexcited, closed,
lossless and charge-free structure. Combining Maxwell’s
equations and employing the aforementioned conditions
delivers the Helmholtz equation for electric fields:

ΔEnðrÞ þ k2nEnðrÞ ¼ 0 on Ω: ð1Þ

Here, Δ denotes the vector Laplace operator and Ω the
domain under consideration. The electric field distribution
EnðrÞ of the nth eigenmode is dependent on the spatial
coordinate r. The angular wave number of the nth mode is
given by

kn ¼
ωn

c
¼ 2πfn

c
ð2Þ

with the resonant angular frequency ωn, the resonant
frequency fn (both of the nth eigenmode), and the speed
of light c. The partial differential equation (1) comes along
with the perfect electric conducting boundary condition,

n ×EnðrÞ ¼ 0 on ∂ΩPEC; ð3Þ

and the perfect magnetic conducting boundary condition,

n ·EnðrÞ ¼ 0 on ∂ΩPMC: ð4Þ

Here, n is the unit vector which is normal to the boundary
∂Ω of the domain of interest Ω. The perfect electric
conducting boundary is denoted by ∂ΩPEC, whereas the
perfect magnetic conducting boundary is described by
∂ΩPMC. Note that for perfectly symmetric structures, the
eigenmodes are classified according to their azimuthal
properties, into monopole, dipole, quadrupole modes,
etc. However, the input and HOM couplers break the
symmetry of the cavity chain so that the aforementioned
mode classification is not valid anymore in a strict manner.
Nonetheless, the classification is often used, because the
couplers only slightly perturb the symmetry of the struc-
ture. Therefore, the features of monopole, dipole, quadru-
pole, etc. modes are approximately preserved if the field
energy is strongly localized in the rotational symmetric
resonators.
An important property of the eigenmodes in the context

of particle acceleration is the normalized geometrical
impedance

Rn

Qn
¼ 1

ωnWn

����
Z

d

0

En;zðx ¼ 0; y ¼ 0; zÞejωnz=cdz

����2: ð5Þ

Here, Wn refers to the energy stored in the nth eigenmode
and En;zðx ¼ 0; y ¼ 0; zÞ to its longitudinal electric field
on the ideal trajectory of the charged particles. The quantity
d is the length of the structure while it begins at the
origin z ¼ 0. The geometrical impedance is a measure of
the coupling of the nth eigenmode with a charged particle
which traverses the structure with the velocity c. This
impedance is solely dependent on the shape of the structure
under consideration. Large geometrical impedances
describe a strong coupling, whereas small impedances
are a result of a weak coupling. In addition to the given
definition of the geometrical impedance, other definitions
[p. 589, (16.48) of [42]] are often used. They differ from (5)
by a factor of 2.
For the sake of completeness it is remarked that (5)

evaluates to zero for dipole, quadrupole, etc. modes in
perfectly rotationally symmetric structures. However,
HOM and input couplers break the symmetry in the
structure under study and give rise to a nonzero value of
(5). In the framework of the entire article, (5) is used as
it indicates the excitation of dipolelike and other higher
order modes due to the couplers breaking the rotational
symmetry of the multicavity system.
A further quantity of relevance is the external quality

factor

Qext;n ¼
ωnWn

Pext;n
ð6Þ
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of the nth mode. The losses Pext;n result from a propagation
of energy through the waveguide ports, which are assumed
for this case to be open. The external quality factor of the
nth mode can be estimated by a perturbation approach from
the lossless electric and magnetic field distributions of the
eigenmodes and appropriate constraints on the tangential
electric and magnetic fields on the waveguide port planes
(refer to Sec. II B 6). For the sake of completeness it is
remarked that the resonant frequencies and field patterns of
the mode change, when losses are considered. The external
quality factor describes the coupling of the mode to the
waveguide ports. Strong coupling of the mode to the ports
results in small external quality factors and a fast expo-
nential decay (or rise) of the field energy. In contrast, weak
coupling leads to large external quality factors and a slow
exponential decay (or rise) of the field energy. Large quality
factors of higher order modes are potentially dangerous,
since their beam-excited fields remain long in the cavity
and can deflect following bunches from their design
trajectories. Therefore, it is desirable to have small external
quality factors for higher order modes.

2. Scattering parameters

Scattering parameters are a common concept to charac-
terize linear time-invariant radio-frequency circuits or
structures in frequency domain. Scattering parameters
relate signals scattered into waveguide ports to signals
which are incident to the ports. The incident signals are
collated in the vector

að jωÞ ¼ ½a1;1ðjωÞ a1;2ðjωÞ
… ap;mðjωÞ … aP;MP

ðjωÞ�T; ð7Þ

whereas the scattered signals are listed by

bðjωÞ ¼ ½b1;1ðjωÞ b1;2ðjωÞ
… bp;mðjωÞ … bP;MP

ðjωÞ�T: ð8Þ

The indices p and m denote that the respective quantity
refers to the mth port mode at the pth port. In total, P ports
are considered and Mp modes at the pth port. The incident
signals determine the scattered signals via

bðjωÞ ¼ SðjωÞaðjωÞ: ð9Þ

All quantities are complex-valued, because they contain
information related to amplitudes as well as phases. For a
more detailed description of the concept of scattering
parameters, the reader is referred to [43,44].

B. Numerical approach

In order to compute the eigenmode spectrum of the chain
of eight cavities with bellows and couplers, the state-space

concatenation (SSC) approach [24,27–30] is employed.
The method is a combination of domain decomposition
and model-order reduction. The scheme is directly dis-
cussed hereinafter by help of the structure under study.
A validation of the scheme can be found in [24,29].

1. Decomposition of the chain into segments

In a first step, the long chain of rf cavities (refer to
Fig. 1) is decomposed into individual segments. The
decomposition planes are allocated at regions of longi-
tudinally constant cross section in order to keep the
number of required waveguide port modes at these cut
planes small. For further details related to the choice of
the cut plane locations, the reader is referred to chap-
ter 4.1 of [24]. Figure 2 depicts the segments which are
considered in this paper, namely (a) and (b) HOM/power
coupler, (c) and (d) HOM coupler, (e) bellow, and
(f) nine-cell third harmonic cavity. A CAD file of the
entire chain is available in the Supplemental Material
files of this article [45].

(a) (b)

(c) (d)

(e)

(f)

FIG. 2. Segments considered in the framework of this paper:
(a) beam pipe with HOM coupler and power coupler, (b) beam
pipe with HOM coupler and power coupler 180° rotated, (c) beam
pipe with HOM coupler, (d) beam pipe with HOM coupler 180°
rotated, (e) bellow, and (f) nine-cell third harmonic cavity. The
segments (a)–(f) arise from the decomposition of the chain of
cavities (refer to Fig. 1). Table II discusses further details of the
segments.
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Note that pickups are not modeled at the couplers.
Additionally, the HOM couplers of the computational
model are rotated by 90° rather than by 115°, because
CST MICROWAVE STUDIO® [46] requires that wave-
guide ports are aligned with Cartesian coordinate planes
when a hexahedral mesh is used. For the same reason, the
power couplers are placed to the opposite of the HOM
couplers, i.e. power couplers and HOM couplers are not
rotated by an angle of 150°. A hexahedral mesh is
employed for technological reasons as discussed in
Sec. II B 2. It is worth mentioning that the HOM/power
couplers (a) and (b) as well as the HOM couplers (c) and (d)
are the same geometries but are rotated around the
longitudinal axis. In principal, rotation matrices (see
Appendix A2 in [34]) can be employed to account for
the respective rotations, so that an individual treatment of
the four segments is not required at all. However, the
introduction of rotation matrices is an additional error
source in the computation and is therefore avoided.
After the decomposition of the string, waveguide ports

accounting for eight 2D port modes are assigned to facets
which are generated by the decomposition (see Table I),
and to both ends of the cavity string. In fact, all 2D port
modes are considered whose cutoff frequency fco is
smaller than the maximal considered frequency fmax ¼
8 GHz plus an additional set of three evanescent wave-
guide modes. At the coaxial port of the HOM couplers
solely the TEM port mode is regarded, whereas the TEM
port mode and the first two TE11 port modes are
considered at the coaxial port of the power coupler. In
other words, at the coaxial ports exclusively 2D port
modes which propagate at fmax are regarded. A so-called
modal voltage and a modal current corresponds to each
waveguide mode. The modal voltage vr;p;mðtÞ is a tran-
sient weighting coefficient of the tangential electric field
of the 2D port mode allocated in the port plane.
Correspondingly, the modal current ir;p;mðtÞ is a transient
weighting coefficient of the tangential magnetic field of
the port mode. The subscript r, p, m indicates that the
quantity refers to the mth 2D port mode at the pth
waveguide port of the rth segment.

2. Generation of reduced-order models

In order to generate the reduced-order models of the R
segments, each individual substructure is discretized by
means of CST MICROWAVE STUDIO® (CST MWS) [46]
using a hexahedral grid. A hexahedral grid is chosen in the
framework of this paper, because it is much more conven-
ient to export matrices from CST MWS resulting from a
hexahedral discretization than for a tetrahedral discretiza-
tion. The discrete formulation of the wave equation with
excitation for the lossless rth segment leads to a second-
order state-space system of the form

d2

dt2
xrðtÞ ¼ ArxrðtÞ þ Br

d
dt
irðtÞ ð10Þ

with the time-dependent state vector xrðtÞ ∈ RNd,
the system matrix Ar ∈ RNd×Nd , the input matrix
Br ∈ RNd×Nt , and the time-dependent excitation term
irðtÞ ∈ RNt . The excitation term comprises modal port
currents ir;p;mðtÞ at the waveguide ports. The corresponding
modal port voltages vr;p;mðtÞ, which are listed in the vector
vrðtÞ, are available via

vrðtÞ ¼ BT
rxrðtÞ: ð11Þ

In the upper equations, Nd is the number of degrees of
freedom of the state-space system. The state matrix is
constructed by means of

Ar ¼ −M−1=2
ε;r CT

rM−1
μ;rCrM

−1=2
ε;r ; ð12Þ

where Cr is the discrete representation of the curl operator.
The diagonal matrices Mε;r and Mμ;r contain properties
of the grid and averaged material parameters. The three
matrices are constructed according to the finite-integration
technique (FIT) [47,48]. The input matrix (or output matrix
transposed) is created by

Br ¼ M−1=2
ε;r Rr; ð13Þ

where the columns of the matrix Rr contain the field
distributions of the 2D port modes in a lexicographic order.
The 3D electric field strength in the rth segment is available
in a lexicographic order via

erðtÞ ¼ D−1
s;rM

−1=2
ε;r xrðtÞ: ð14Þ

The diagonal matrix Ds;r holds the lengths of the edges
of the primary grid. Each coefficient of the vector erðtÞ
represents an electric field strength which is sampled at the
midpoint of the edges of the primary grid. Note that the
introduced matrices Cr, Ds;r, Mε;r, Mμ;r, and Rr refer to
the rth segment.

TABLE I. Properties of waveguide port modes considered at
decomposition planes (beam pipes radius r ¼ 20 mm) as well as
at both ends of the chain.

Mode No. Mode type Polarization fco=GHz

1 TE11 Horizontal 4.3920
2 TE11 Vertical 4.3920
3 TM01 5.7371
4 TE21 Horizontal 7.2858
5 TE21 Vertical 7.2858
6 TE01 9.1412
7 TM11 Horizontal 9.1412
8 TM11 Vertical 9.1412
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Typically, the number of degrees of freedom Nd of the
state-space equations is large (see the second row of
Table II) to represent the distributed nature of the under-
lying partial differential equation, i.e. the wave equation
with excitation. Fortunately, the number of degrees of
freedom can be significantly reduced if the rf properties of
the segments are only of interest up to a finite frequency
fmax. To reduce the number of degrees of freedom of (10),
the state vector is expressed by a so-called reduced state
vector xrd;rðtÞ ∈ RNdr :

xrðtÞ ¼ Wrxrd;rðtÞ: ð15Þ

The semiorthogonal reduction matrix Wr ∈ RNd×Ndr is
constructed based on an incomplete set of eigenvectors
of the matrix Ar in addition to a set of frequency-domain
field distributions of the state-space system (10). The
matrix has many more rows than columns, i.e.
Nd ≫ Ndr. This guarantees the reduced-order state vector
to be small on the one hand. On the other hand, too few
degrees of freedom of the reduced state vector result in a
poor approximation. The algorithm used to determine Wr
is designed so that a sufficient number of degrees of
freedom based on the matrix Ar and Br is chosen to stay
below a certain residual-based accuracy criterion. For
further information about constructing the reduction
matrix, the reader is referred to chapter 4.2 of [24].
Substituting (15) in (10), multiplying the obtained

equation from the left-hand side with WT
r , and using the

semiorthogonality of the reduction matrix (WT
rWr ¼ I)

results in the reduced-order state-space equation

d2

dt2
xrd;rðtÞ ¼ WT

rArWr|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ard;r

xrd;rðtÞ

þWT
rBr|fflffl{zfflffl}

Brd;r

d
dt
irðtÞ: ð16Þ

Replacing (15) in (11) delivers the reduced-order output
equation

vrðtÞ ¼ BT
rWr|fflffl{zfflffl}
BT

rd;r

xrd;rðtÞ: ð17Þ

Table II collects relevant information of the (reduced) state-
space models of the respective segments.

3. Combination of reduced-order models

In a next step, the reduced-order state-space models
of the individual segments are concatenated to obtain a
compact model for the full structure. For this sake, the
reduced-order state-space models are collated in terms of
the block system

d2

dt2
xbðtÞ ¼ AbxbðtÞ þ Bb

d
dt
ibðtÞ; ð18Þ

whose state vector embraces the reduced state vectors of all
segments:

xbðtÞ ¼

0
BBBBBBBB@

xrd;1ðtÞ
xrd;2ðtÞ
� � �

xrd;rðtÞ
� � �

xrd;RðtÞ

1
CCCCCCCCA
: ð19Þ

The system matrix Ab and the input matrix Bb are block-
diagonal matrices holding the system and input matrices of
the individual segments on its main block diagonal:

Ab ¼ diagðArd;1;Ard;2;…;Ard;RÞ; ð20Þ

Bb ¼ diagðBrd;1;Brd;2;…;Brd;RÞ: ð21Þ

The vector with the current excitations ibðtÞ is constructed
according to

ibðtÞ ¼

0
BBBBBBBB@

i1ðtÞ
i2ðtÞ
� � �
irðtÞ
� � �
iRðtÞ

1
CCCCCCCCA
: ð22Þ

TABLE II. Number of degrees of freedom of the state-space models of the individual segments (refer to Fig. 1). The numbers of
degrees of freedom arising from the FIT approach are denoted by Nd, whereas the numbers of degrees of freedom of the corresponding
reduced-order models are given by Ndr. The wall-clock time required for the model-order reduction is specified by Tmor. The model-
order reduction is performed on an Intel(R) Xeon(R) CPU E5-2687W v2 @ 3.40 GHz machine which is equipped with 256 GB RAM.

HOM coupler Cavity HOMP coupler Bellow HOM coupler (rotated) HOMP coupler (rotated)

Nd 411,015 1,119,963 585,915 427,119 411,015 585,915
Ndr 138 258 164 145 138 164
Tmor 46 min 2 h 26 min 1 h 39 min 23 min 46 min 1 h 33 min
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In addition to the block state-space system (18), all output
equations of the segments are combined to

vbðtÞ ¼ BT
bxbðtÞ; ð23Þ

while the vector vbðtÞ collates the modal voltages at all
internal and all external ports:

vbðtÞ ¼

0
BBBBBBBBB@

v1ðtÞ
v2ðtÞ
� � �
vrðtÞ
� � �
vRðtÞ

1
CCCCCCCCCA
: ð24Þ

According to [24,27], the order of the modal voltages and
currents is rearranged to a so-called sorted order by means
of the permutation matrix P:

isrtðtÞ ¼
�
iintðtÞ
iextðtÞ

�
¼ PTibðtÞ; ð25Þ

vsrtðtÞ ¼
�
vintðtÞ
vextðtÞ

�
¼ PTvbðtÞ: ð26Þ

Each row and each column of a permutation matrix has
only one coefficient being equal to one, while the remain-
ing coefficients are equal to zero. The permutation matrix
has full rank and is orthogonal, i.e. PT ¼ P−1. It is
constructed so that modal currents and voltages of internal
ports (those which arise from the decomposition) are
collected in iintðtÞ and vintðtÞ and modal currents and
voltages of external ports in iextðtÞ and vextðtÞ. It is of
crucial relevance that modal voltages and currents of
terminals which need to be connected are listed below
each other in iintðtÞ and vintðtÞ. Figure 3 shows the abstract
counterpart of the cut plane between the first HOM coupler
(r ¼ 1) and the first cavity (r ¼ 2) of the chain. According
to the sketch, the vectors with the internal quantities are
organized as follows:

iintðtÞ ¼ ½i1;3;1ðtÞ i2;1;1ðtÞ i1;3;2ðtÞ i2;1;2ðtÞ
… i1;3;8ðtÞ i2;1;8ðtÞ …�T; ð27Þ

vintðtÞ ¼ ½v1;3;1ðtÞ v2;1;1ðtÞ v1;3;2ðtÞ v2;1;2ðtÞ
… v1;3;8ðtÞ v2;1;8ðtÞ …�T; ð28Þ

i.e. quantities of terminals which have to be connected are
listed below each other.
In a next step, the orthogonality of the permutation

matrix P, (25) and (26) are employed to obtain

d2

dt2
xbðtÞ ¼ AbxbðtÞ þ BbP|{z}

B̄b

d
dt
isrtðtÞ ð29Þ

and

vsrtðtÞ ¼ PTBT
b|fflffl{zfflffl}

B̄T
b

xbðtÞ: ð30Þ

The segmentation

B̄b ¼ ðB̄b1 B̄b2Þ ð31Þ

allows for the following separation of internal and external
quantities in (29) and (30) to obtain

d2

dt2
xbðtÞ ¼ AbxbðtÞ þ B̄b1

d
dt
iintðtÞ þ B̄b2

d
dt
iextðtÞ; ð32Þ

vintðtÞ ¼ B̄T
b1xbðtÞ ð33Þ

and

vextðtÞ ¼ B̄T
b2xbðtÞ: ð34Þ

Note that the block B̄b1 is selected to have as many columns
as internal terminals exist and the block B̄b2 to have as
many columns as external terminals exist. For concatenated
segments, the currents in iintðtÞ lose their linear independ-
ence. Following Kirchhoff’s current law, the currents
flowing into the nodes are equal to currents flowing out
of the node. For the cut plane depicted in Fig. 3, this
reads as i1;3;1ðtÞ ¼ −i2;1;1ðtÞ, i1;3;2ðtÞ ¼ −i2;1;2ðtÞ, and

FIG. 3. Abstract counterpart of the cut plane between the first
HOM coupler and the first cavity in the chain. At the cut plane
eight 2D port modes are considered. They are accounted for by
eight terminals. The subscripts r, p, m of the modal current
ir;p;mðtÞ and the modal voltage vr;p;mðtÞ indicate that the
quantities refer to the mth 2D mode at the pth port of the rth
segment.
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i1;3;8ðtÞ ¼ −i2;1;8ðtÞ. Expressing Kirchhoff’s current law
for all internal currents delivers

iintðtÞ ¼ FîintðtÞ; ð35Þ

where

F ¼ diag

��
1

−1

�
;…;

�
1

−1

��
: ð36Þ

The vector îintðtÞ contains the linearly independent cur-
rents. In comparison to iintðtÞ, îintðtÞ contains half the
number of currents. In addition to Kirchhoff’s current
law, Kirchhoff’s voltage law has to hold for the voltages
of coupled terminals. It claims that the directed sum of the
voltage around a closed circuit is zero. For instance, this
results for the voltages in Fig. 3 in v1;3;1ðtÞ ¼ v2;1;1ðtÞ,
v1;3;2ðtÞ ¼ v2;1;2ðtÞ, and v1;3;8ðtÞ ¼ v2;1;8ðtÞ. Expressing
Kirchhoff’s voltage law for all internal voltages results in

FTvintðtÞ ¼ FTB̄T
b1xbðtÞ ¼ 0: ð37Þ

Note that the formulation of Kirchhoff’s laws by means
of (35) and (37) is exclusively feasible, because quantities
of terminals which are concatenated to each other are
arranged below each other via the permutation matrix P.
Multiplying (32) from the left-hand side with FTB̄T

b1 and
replacing iintðtÞ by (35) yields

d2

dt2
FTB̄T

b1xbðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

¼ 0 ¼ FTB̄T
b1AbxbðtÞ

þ FTB̄T
b1B̄b1F

d
dt
îintðtÞ

þ FTB̄T
b1B̄b2

d
dt
iextðtÞ: ð38Þ

The equation can be rearranged to obtain the time derivative
of the internal currents:

d
dt
îintðtÞ ¼ −½FTB̄T

b1B̄b1F�−1FTB̄T
b1AbxbðtÞ

− ½FTB̄T
b1B̄b1F�−1FTB̄T

b1B̄b2
d
dt
iextðtÞ: ð39Þ

Employing this expression to replace the time derivative
of îintðtÞ in (32) yields

d2

dt2
xbðtÞ ¼ K

�
AbxbðtÞ þ B̄b2

d
dt
iextðtÞ

�
ð40Þ

with the idempotent (K2 ¼ K) and symmetric matrix
(K ¼ KT)

K ¼ ½I − B̄b1FðFTB̄T
b1B̄b1FÞ−1FTB̄T

b1�: ð41Þ

As a matter of fact, (40) is an orthogonal projection of
the expression in the square brackets in the null space of
FTBT

b1. The projection ensures that the system evolves on a
subspace of xbðtÞ so that the algebraic side constraints (35)
and (37) are fulfilled. The semiorthogonal basis of the null
space of FTB̄T

b1 is given by

M ¼ NullðFTB̄T
b1Þ; ð42Þ

where MTM ¼ I. The semiorthogonal basis is now
employed to remove as many internal states as connected
terminals exist:

xbðtÞ ¼ MxcðtÞ ¼ KMxcðtÞ: ð43Þ

This equation is now used to substitute xbðtÞ in (40)
and (34). This delivers the state-space system of the
concatenated structure

d2

dt2
xcðtÞ ¼ MTKAbKM|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ac

xcðtÞ þMTKB̄b2|fflfflfflfflffl{zfflfflfflfflffl}
Bc

d
dt
iextðtÞ ð44Þ

and the corresponding output equation

vextðtÞ ¼ B̄T
b2KM|fflfflfflffl{zfflfflfflffl}
BT

c

xcðtÞ: ð45Þ

The number of degrees of freedom of this state-space
system is again reduced using a semiorthogonal reduction
matrix Wc, which is generated based on an incomplete set
of eigenvectors and a set of frequency-domain states of the
system. Using the ansatz

xcðtÞ ¼ WcxcrðtÞ ð46Þ

to express the state vector in terms of a reduced-order state
vector delivers the final state-space equation for the entire
chain

d2

dt2
xcrðtÞ ¼ WT

cAcWc|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Acr

xcrðtÞ þWT
cBc|fflffl{zfflffl}
Bcr

d
dt
iextðtÞ; ð47Þ

with the output equation

vextðtÞ ¼ BT
cWc|fflffl{zfflffl}
BT

cr

xcrðtÞ: ð48Þ

This state-space model has Ndr ¼ 2,931 degrees of free-
dom, i.e. xcrðtÞ ∈ RNdr . Note that a direct concatenation
of the full state-space models (10) and (11) without the
application of model-order reduction delivers a state-space
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model for the eight-cavity chain with couplers with
Nd ¼ 19,924,977 degrees of freedom. In other words,
the proposed technique allows for an overall reduction
of the degrees of freedom by a factor of Ndr=Nd ≈
1.471 × 10−4.

4. Computation of scattering parameters

To compute the scattering parameters of the eight-cavity
chain with couplers, the frequency-domain transfer func-
tion of the system (47) and (48),

ZðjωÞ ¼ jωBT
cr½ðjωÞ2I −Acr�−1Bcr ð49Þ

is evaluated on 320,200 discrete samples in the frequency
range 4 to 5.6 GHz. These values are chosen on the basis of
the available measured transmission spectra of the third
harmonic module of the European XFEL. The frequency-
domain transfer function (49) is in fact the impedance
matrix of the structure under consideration. The entire
structure has 56 external terminals (one per HOM port,
three per fundamental power coupler and eight per beam-
pipe flange) so that the complex-valued impedance matrix
has 56 rows and columns, i.e. ZðjωÞ ∈ C56×56. In a
subsequent step, the impedance matrices ZðjωÞ are con-
verted to scattering matrices using the well-known formula

SðjωÞ ¼ ½D−1=2
z ðjωÞZðjωÞD−1=2

z ðjωÞ − I�
� � � ½D−1=2

z ðjωÞZðjωÞD−1=2
z ðjωÞ þ I�−1: ð50Þ

Here, DzðjωÞ is a frequency-dependent diagonal matrix
holding the wave impedances of the 2D port modes on its
diagonal, i.e.

DzðjωÞ ¼ diag½ZTE
w1ðjωÞ; ZTE

w2ðjωÞ; ZTM
w3 ðjωÞ;

ZTE
w4ðjωÞ;…; ZTEM

w9 ;…�: ð51Þ

The wave impedances of the TE port modes are determined
by means of

ZTE
w ðjωÞ ¼ Z0

jωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjωÞ2 þ ω2

co

p ð52Þ

and the wave impedances of TM port modes by

ZTM
w ðjωÞ ¼ Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjωÞ2 þ ω2

co

p
jω

: ð53Þ

Here, ωco ¼ 2πfco is the angular cutoff frequency of the
respective waveguide mode. The frequency-independent
and real-valued impedances of TEM port modes are
determined based on the radius ri of the inner conductor
and on the radius ro of the outer conductor,

ZTEM
w ¼ 1

2π
Z0 ln

�
ro
ri

�
: ð54Þ

In the upper equations, Z0 ≈ 120πΩ is the impedance of
free space.

5. Computation of eigenmodes and
normalized shunt impedances

All eigenmodes are computed assuming perfect mag-
netic conducting boundary conditions on the waveguide
port surfaces. As the tangential magnetic fields on the port
planes have to be zero for this case, the modal excitation
currents have to be equal to zero as well (recall that the
modal currents correspond to the tangential magnetic fields
on the port surfaces). Choosing iextðtÞ ¼ 0 and transform-
ing the state equation (47) of the concatenated structure into
frequency domain results in the eigenvalue problem:

AcrxcrðjωÞ|fflfflffl{zfflfflffl}
vcr;n

¼ −ω2|{z}
λn

xcrðjωÞ|fflfflffl{zfflfflffl}
vcr;n

: ð55Þ

It is worth mentioning that this eigenvalue problem can be
directly solved, because of the small size of the matrix Acr.
Moreover, the eigenvectors vcr;n as well as the eigenvalues
are real-valued on account of the symmetry of the matrix
Acr. All eigenvalues are smaller or equal to zero (λn ≤ 0)
as a result of the negative semidefiniteness of Acr. The
frequencies of eigenmodes of the entire chain are deter-
mined from the eigenvalues via

fn ¼
ωn

2π
¼ 1

2π

ffiffiffiffiffiffiffiffi
−λn

p
∈ R: ð56Þ

Note that the frequencies are real-valued, because λn is
smaller than or equal to zero. Based on the experiences
gained in [24], the relative error in the resonant frequencies
is expected to be in the order of 10−3. The field distributions
of the eigenmodes are constructed based on the eigenvec-
tors vcr;n. First, the state vector of the block system (18) is
determined by means of

vb;n ¼ MWcvcr;n: ð57Þ

Subsequently, the vector vb;n is decomposed according to
its definition in (19), i.e.

vb;n ¼

0
BBBBBBBB@

vrd;1;n
vrd;2;n
� � �

vrd;r;n
� � �

vrd;R;n

1
CCCCCCCCA
: ð58Þ
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In a next step, the reduced-order state vectors vrd;r;n of
the individual segments are used to determine the field
distribution of the nth mode in the rth segment:

er;n ¼ D−1
s;rM

−1=2
ε;r Wrvrd;r;n: ð59Þ

The 3D field distributions, which are stored in a lexico-
graphic order in er;n, are exported to ParaView [49].
A ParaView script is used to automatically generate field
plots of all modes with resonant frequencies in the interval
1 to 8 GHz. In addition, the 3D field distribution is used to
extract the longitudinal component of the electric field
En;zðx ¼ 0; y ¼ 0; zÞ of the nth mode on the ideal trajec-
tory. Together with the resonant angular frequency ωn of
the nth eigenmode, this delivers the normalized longi-
tudinal geometrical impedance Rn=Qn. Note that all
eigenvectors are normalized such that the total field energy
equals one Joule, i.e. Wn ¼ 1 J.

6. Estimation of external quality factors

To compute the external quality factors of the
eigenmodes, a perturbation approach is employed. Based
on the eigenmodes of the lossless closed structure, the
modes of the open structure are estimated. Note that the
described approach does not account for the mutual
coupling of the different eigenmodes which is introduced
by the open waveguide ports. Moreover, the problem is
linearized by evaluating the wave impedances of the port
modes at the resonant frequencies of the respective 3D
eigenmodes.
To estimate the external quality factor of the resonant

modes, the negative semidefinite state matrix in the
frequency-domain transform of (47) is substituted by its
eigendecomposition Acr ¼ VcrΛcrVT

cr, i.e.

s2xcrðsÞ ¼ VcrΛcrVT
cr|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Acr

xcrðsÞ þ sBcriextðsÞ ð60Þ

with the complex-valued angular frequency s. The columns
of the real-valued orthogonal matrix Vcr are the eigenvec-
tors of Acr whereas the elements of the diagonal matrix Λcr
are the real-valued eigenvalues λn of Acr. The multiplica-
tion of this equation with the orthogonal matrix VT

cr from
the left-hand side gives

s2VT
crxcrðsÞ|fflfflfflfflffl{zfflfflfflfflffl}
~xcrðsÞ

¼ ΛcrVT
crxcrðsÞ|fflfflfflfflffl{zfflfflfflfflffl}
~xcrðsÞ

þ sVT
crBcr|fflfflffl{zfflfflffl}
~Bcr

iextðsÞ ð61Þ

with a new state ~xcrðsÞ and a new input matrix ~Bcr. On
account of the diagonality of Λcr, the states in the state-
space equation (61) are not mutually coupled. In conse-
quence, (61) can be written elementwise:

s2 ~xcr;nðsÞ ¼ λn ~xcr;nðsÞ þ s ~bcr;niextðsÞ: ð62Þ

Here, ~xcr;nðsÞ is the nth coefficient of the vector ~xcrðsÞ and
~bcr;n the nth row of the matrix ~Bcr. In case of open or
matched waveguide ports, waves which are propagating
from the inner domain to the port are not reflected back
into the structure. To emulate these conditions, the external
modal excitation currents are determined according to the
modal voltages by means of

iextðsÞ ¼ −D−1
z ðsÞvextðsÞ; ð63Þ

where DzðsÞ is the diagonal matrix defined in (51).
Employing this equation to substitute the external currents
in (61) delivers

s2 ~xcr;nðsÞ ¼ λn ~xcr;nðsÞ − s ~bcr;nD−1
z ðsÞvextðsÞ: ð64Þ

Subsequently, the influence of the nth mode on the external
modal voltage is considered by

vextðsÞ ¼ ~bT
cr;n ~xcr;nðsÞ: ð65Þ

Combining (64) and (65) gives

s2 þ s ~bcr;nD−1
z ðsÞ ~bT

cr;n − λn ¼ 0: ð66Þ

Evaluating the wave impedances at the resonant angular
frequency sn ¼ jωn ¼ j

ffiffiffiffiffiffiffiffi
−λn

p
of the unperturbed mode

delivers a polynomial of degree 2:

s2 þ s ~bcr;nD−1
z ðsnÞ ~bT

cr;n − λn ¼ 0: ð67Þ

Finally, the external quality factors are determined from
the complex-valued roots ~sn of the polynomial (67) by
means of

Qext;n ¼ −
jℑf~sngj
2ℜf~sng

; ð68Þ

where ℑf~sng denotes the imaginary part of ~sn and ℜf~sng
the real part, respectively.

III. RESULTS

A. Eigenmodes in the cavity chain

The SSC approach, which is described in Sec. II B,
delivers 1,479 eigenmodes in the interval 1 to 8 GHz. The
properties of all computed modes can be found in the
eigenmode compendium which is available in terms of
Supplemental Material [38]. Note that the resonant
frequencies are specified at maximum with seven digits.
This does not mean that the error in the resonant frequen-
cies is in the order of kHz. According to Sec. II B, the error
is expected to be in the order of several MHz. Nonetheless,
more digits are presented so that modes with similar
resonant frequencies can be distinguished. In other words,
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restricting to the significant digits results in nondegenerated
modes appearing with the same resonant frequency.
Figure 4 presents the external quality factor and the

geometrical impedance of each mode in the chain of eight
third harmonic cavities [see Fig. 1(a)]. The bands of a
single rotationally symmetric third harmonic cavity without
couplers are highlighted with rectangles: orange rectangles
for monopole bands, green for dipole bands, and purple for

quadrupole bands. The locations of the bands are taken
from the eigenmode computations presented in [15].
It is crucial to note that a large set of modes exists in

addition to modes in the bands of the rotational symmetric
third harmonic cavity. For instance, modes with a fre-
quency smaller than the fundamental monopole band of
the cavity are observed at approximately 2.60 GHz and
at approximately 3.18 GHz. An inspection of the field

(a)

(b)

(c)

FIG. 4. Properties of the modes in the chain of eight third harmonic cavities [see Fig. 1(a)]. The orange rectangles denote the location
of the monopole bands, the green rectangles the location of the dipole bands, and the purple rectangles the location of the quadrupole
bands. The locations of the bands result from an eigenmode computation for a rotational symmetric cavity without couplers [15].
(a) External quality factors, (b) geometrical impedances, and (c) the product of the external quality factors and geometrical impedances
for the eigenmodes in the XFEL chain of third harmonic cavities.
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distributions of these modes reveals that the energy is
highly localized in the HOM couplers. Thus, they are
referred to as HOM coupler modes. Figure 5 shows the
absolute value of the electric field of these eigenmodes on a
cut plane which is transverse to the ideal trajectory of the
beam. The energy of the mode at approximately 2.60 GHz
is solely localized between the antenna tip and the so-called
formteil of the HOM coupler, as shown in Fig. 5(a). The
energy of the eigenmode at approximately 3.18 GHz is
localized between the formteil and the housing and in the
coaxial connector, as depicted in Fig. 5(b). Both modes
appear 16 times in the chain as sixteen couplers exist and
there is almost no coupling of these modes via the chain.
The resonant frequency of these modes slightly depends on
their position: Modes which exist in the HOM couplers
with input couplers have a resonant frequency higher than
those which exist at the other HOM couplers without input
couplers. This effect results from the input couplers slightly
perturbing the field distribution of the HOM coupler mode.
Note that the properties of these coupler modes change
when enlarging the length of the coaxial connector. This
particularly holds for the eigenmode depicted in Fig. 5(b),
because it has a significant amount of field energy close to
the end of the coaxial connector. However, both modes are
of vital relevance for the operation of the entire structure,
because they are partly responsible for the notch effect of
the HOM couplers.
The next set of modes in Fig. 4 belongs to the first TM01

band of the third harmonic cavity. These modes are trapped
in the respective cavities as their resonant frequencies
are smaller than the cutoff frequencies of the fundamental
waveguide modes of the beam pipe (see Table I). Per cavity,
nine modes exist so that the entire chain has in total 72
eigenmodes in this band. The most prominent represent-
atives of this band are the eight TM01-π-modes at approx-
imately 3.9 GHz. On purpose, these modes have the largest
geometrical impedance (Rn=Qn ≈ 756 Ω) in the considered
frequency interval. Figure 6(a) depicts the normalized
absolute value of the electric field of the TM01-π-mode
in the third cavity as an example.

The next relevant set of modes is between the first
monopole band and the first dipole band of the third
harmonic cavity, i.e. between 3.9000 and 4.2979 GHz.
These modes have comparably large external quality
factors (Qext ≈ 106) and small geometrical impedances
(Rn=Qn < 1 Ω). The field patterns reveal their TE11-like
character and that their energy is predominantly allocated
in the vicinity of the HOM couplers (without input
couplers). In this set eight modes with quality factors
larger than 106 are observed. Despite the fact that the
energy of the modes is closely stored in the vicinity of the
HOM couplers, the coupling to the coaxial part of the HOM
coupler is very weak, so that large external quality factors
result. Figure 6(b) presents the absolute value of the electric
field of a mode with field energy present in the left end cells
of the cavities close to the HOM couplers (without input
couplers) as an example.
So far, properties of eigenmodes whose energy is solely

localized in parts of the chain are discussed. Since
frequencies considered hereinafter are larger than the
fundamental cutoff frequency of the circular waveguidelike
beam pipe (refer to Table I), higher order modes may be
distributed along the entire chain. The first dipole band of
the third harmonic cavity is densely populated with
eigenmodes. Most of these modes are distributed along
the entire chain of cavities, i.e. they are multicavity modes.
In consequence, they do have comparably small external
quality factors as their field energy can couple very well to
the flanges of the beam pipes at the beginning and the end
of the structure. Figure 6(c) depicts the absolute value of
the electric field of a mode belonging to this band. The plot
depicts the multicavity character of the eigenmode.
Another set of eigenmodes of the chain with interesting

properties exists between the first dipole band and the
second dipole band of the third harmonic cavity, i.e. in
the interval 4.9162 to 5.3518 GHz. In this interval,
seven modes with relatively large external quality factors
(Qext;n > 104) exist. An inspection of the field distributions
of the respective eigenmodes reveals that their energy is
highly localized in the bellows. Thus, these modes are

(a) (b) (c)

FIG. 5. Absolute value of the normalized electric fields of the HOM coupler modes. (a) HOM coupler mode with the resonant
frequency of approximately 2.60 GHz. The energy of this mode is predominantly localized between the formteil of the coupler and the
antenna tip. (b) HOM coupler mode with the resonant frequency of approximately 3.18 GHz. The energy of this mode is localized in the
gap between the formteil and the housing as well as in the coaxial connector of the coupler. (c) Legend for the field plots.
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referred to as intercavity or bellow modes. Their coupling
to the HOM and input couplers is comparably weak, so that
a quality factor in the order of 104 results. As an example,
Fig. 6(d) depicts the normalized absolute value of the
electric field of one of those eigenmodes. The field energy
in this case is located in the first bellow.
Another important set of modes corresponds to the

second dipole band of the third harmonic cavity in the
interval 5.3518 to 5.4944 GHz. These are distributed
along the cavity chain (multicavity modes). They do have
comparably small geometrical impedances. As a result of
their distributed character, they do couple comparably well
to waveguide ports located at both ends of the chain. Thus,
these modes have external quality factors Qext smaller than
104. Figure 6(e) presents the field distribution of the mode
from this set with the highest external quality factor.

Despite the fact that the single third harmonic cavity
does not have eigenmodes in the interval 5.5 to
6.5638 GHz, resonances of the chain are observed in this
region. An inspection of the field distributions of these
modes shows that their field energy is primarily located in
the bellows and beam pipes which connect the adjacent
cavities. On account of the special geometric properties
of the structure, the connections between the eight third
harmonic cavities can be considered as seven cavities as
well. Figure 6(f) shows a typical eigenmode between the
second dipole and the first quadrupole band of the third
harmonic cavity.
In the interval 6.5638 to 6.7961 GHz a quadrupole band

of the third harmonic cavity exists. Modes belonging to
this band do have small geometrical impedances and
quality factors larger than 105. Figure 6(g) depicts the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 6. Absolute value of the normalized electric fields of a set of several example eigenmodes in the chain. (a) TM01-π mode located
in the third cavity: modal index n ¼ 99, fn ¼ 3.897618 GHz, Rn=Qn ≈ 743 Ω, Qext;n ≈ 6.34 × 105. (b) Dipolelike eigenmode with
energy predominantly allocated in the end cells next to the HOM couplers without input couplers: modal index n ¼ 130,
fn ¼ 4.135416 GHz, Rn=Qn ≈ 0 Ω, Qext;n ≈ 2.51 × 106. (c) Dipolelike eigenmode whose energy is distributed along the entire
cavity chain (multicavity mode): modal index n ¼ 238, fn ¼ 4.582944 GHz, Rn=Qn ≈ 0 Ω, Qext;n ≈ 4.68 × 102. (d) Eigenmode with
field energy between the cavities (bellow or intercavity mode): modal index n ¼ 359, fn ¼ 5.152407 GHz, Rn=Qn ≈ 1.44 Ω,
Qext;n ≈ 2.17 × 104. (e) Dipolelike eigenmode with field energy distributed along the entire chain: modal index n ¼ 507,
fn ¼ 5.485864 GHz, Rn=Qn ≈ 0 Ω, Qext;n ≈ 5.06 × 103. (f) Eigenmode with energy predominantly allocated at the connection
between the first and the second cavity: modal index n ¼ 536, fn ¼ 5.556085 GHz, Rn=Qn ≈ 0.26 Ω, Qext;n ≈ 4.40 × 101.
(g) Quadrupolelike eigenmode which is distributed along the chain: modal index n ¼ 689, fn ¼ 6.572043 GHz, Rn=Qn ≈ 0 Ω,
Qext;n ≈ 8.45 × 105. (h) Eigenmode with field energy between adjacent cavities: modal index n ¼ 741, fn ¼ 6.672766 GHz,
Rn=Qn ≈ 0 Ω, Qext;n ≈ 7.00 × 101. (i) Higher order mode with the largest observed geometrical impedance: modal index
n ¼ 1360, fn ¼ 7.670048 GHz, Rn=Qn ≈ 294 Ω, Qext;n ≈ 4.23 × 102. (j) Legend for the field plots.
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field distribution of an eigenmode with quadrupole char-
acter from this band. In addition, eigenmodes with field
energy predominantly localized between the adjacent
cavities exist in this frequency interval as well [see
Fig. 6(h) for an example].
The situation becomes more complex if eigenmodes

beyond the first quadrupole band are considered. In this
regime, the second monopole, the third dipole, and the
second quadrupole band overlap. A mutual coupling of
these modes is introduced by the symmetry breaking
couplers. Figure 6(i) shows the absolute value of the
electric field of that mode in this interval with the largest
geometrical impedance.

B. Comparison with measurements

In order to estimate the accuracy of the generated
computer model, the results are compared to a set of
transmission spectra of the chain of eight third harmonic
cavities. The spectra are recorded at the European XFEL at
DESY in Hamburg by means of a vector network analyzer.
The cavities are in the superconducting state, whereas the
couplers and bellows are normal conducting. The trans-
mission spectra are recorded in the interval 4 to 5.6 GHz
containing the first two dipole bands (refer to the analysis
described in [15]). The chosen step size is Δf ¼ 50 kHz.

The ports of the HOM couplers are terminated with 50 Ω
loads to avoid signals to be reflected. The input couplers are
connected via cables and waveguides to the klystron.
Figure 7 presents the comparison between the

measured and the computed scattering spectra. The
computed spectra result from the approach described in
Sec. II B 4. Figure 7(a) depicts the transmission from the
left to the right HOM coupler of cavity 1, that is embedded
in the chain. Figure 7(b) illustrates the transmission
through the entire chain of eight cavities. In other words,
the transmission from the left (downstream) HOM coupler
of cavity 1 to the right (upstream) HOM coupler of
cavity 8. The noise floor of the measured curves is below
−80 dB. The agreement of the measured and computed
curves is of qualitative nature. General characteristics
such as the existence and the location of the first dipole
band (Δf ¼ 4.2953…4.9260 GHz) and the second dipole
band (Δf ¼ 5.3583…5.4982 GHz) of the third harmonic
cavities agree. Both bands are marked with green bars in
Fig. 7. In fact, it is difficult to relate measured peaks to
simulated peaks and vice versa. The measured spectra are
much more complex than the simulated ones as the black
curves have more peaks in the considered frequency
interval. For instance, the simulated transmission through
the entire cavity chain does not show peaks in the interval

(a)

(b)

FIG. 7. Comparison between measured (black curves) and simulated (red curves) scattering transmissions of the chain of eight third
harmonic cavities (refer to Fig. 1). The green rectangles indicate the location of the dipole bands of the single third harmonic cavities
[15]. (a) Transmission from the left (downstream) HOM coupler to the right (upstream) HOM coupler of cavity 1. The cavity is
embedded in the entire chain. (b) Transmission through the entire cavity chain, i.e. from the left (downstream) HOM coupler of cavity 1
to the right (upstream) one of cavity 8.
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Δf ¼ 4.6…4.68 GHz whereas the measured curve does.
Various reasons may lead to the observed differences:
1. Fabrication tolerances and geometrical perturbations

such as deformations due to cooling or tuning of the
individual cavities are not considered in the computer model.
2. The HOM couplers in the third harmonic cavities are

rotated by 115° (see Fig. 1), whereas the HOM couplers in
the SSCmodels are rotated by 90° (see Fig. 2) as CSTMWS
is not capable of defining arbitrary aligned waveguide ports
if a hexahedral mesh is employed. The latter, however, is
needed to allow for an export of the system matrices.
Additionally, the pickups of the cavities are not modeled.
3. The waveguide ports at both ends of the chain are

assumed to be ideal in the computer model so that no
energy is reflected into the structure. This means that
additional frequency-dependent reflections due to devices
in the beam line (i.e. upstream and downstream from the
cryomodule) and reflections from the cabling at the HOM
and input couplers are not accounted for.
4. Intrinsic losses are not considered in the SSC model at

all despite the fact that losses are introduced by the normal
conducting bellows, the normal conducting couplers, and
the normal conducting cabling. However, neglecting losses
does not explain the lack of peaks in the computed
transmissions.

IV. CONCLUSIONS AND OUTLOOK

The article presents the application of the SSC scheme
to systematically compute the eigenmodes of the XFEL
third harmonic cavity chain with HOM and input cou-
plers. The scheme is successfully employed to determine
the eigenfrequencies and eigenmodes on a wide band
(i.e. across several bands of a single third harmonic
cavity) using a workstation computer. The generated
modal compendium helps in understanding the spectra
of the chain under study. In addition, general effects
which arise in chains of cavities are discussed and
different classes of modes (i.e. cavity modes, multicavity
modes and intercavity modes) are introduced. A major
conclusion from this article is that the restriction to single
nine-cell cavities with couplers is not sufficient as multi-
cavity modes or intercavity modes are not covered in this
case. Consequently, the effects of these modes cannot be
estimated.
The presented comparison between simulation and

measurement shows a qualitative agreement: The measured
transmission spectra are much more complex than the
simulated ones for various reasons such as fabrication
tolerances, simplifications of the geometry of the computer
model, additional frequency-dependent reflections from the
couplers and the beam pipes, etc.
Despite the fact that progress has been made to numeri-

cally analyze large and complex rf structures, the
differences between simulated and measured rf properties
cannot be disregarded. Unfortunately, the aforementioned

effects, which are responsible for the deviation between
simulation and measurements, are difficult to incorporate
in the numerical model. For instance, knowledge of the
geometry of the chain is not exactly available as it is
accommodated in the cryomodule. Apart from fabrication
tolerances, the nonuniform shrinking of the structure due to
cooling leads to additional deviations from the design
shape. Furthermore, the tuners which are incorporated in
the cryomodules shift the resonant frequency of the
accelerating mode (i.e. the TM01-π mode) to the desired
frequency. The knowledge of the exact influence of the
tuners on the resonant frequencies and field patterns of the
HOMs remains scarce as well.
One approach to account for the aforementioned inac-

curacies of the numerical model is the introduction of, for
instance, free geometry parameters and free reflection
coefficients at the waveguide ports. The introduced param-
eters are subsequently determined by means of an opti-
mization using a suitable objective function, e.g. a function
related to the absolute difference between the simulated
and measured scattering parameters. Solving this inverse
problem requires a huge number of forward computations.
In other words, the partial differential equation has to be
solved for various perturbed geometries and various
reflection coefficients at the waveguide ports. As this
approach is computationally demanding, it is typically
only applied for very simple structures such as single cells
[50]. It is worth mentioning that the SSC scheme can be of
special advantage in this context, because the influence of
perturbed segments on rf properties of the full chain can be
determined without the direct consideration of the entire
chain: Reduced-order models for the perturbed segments
are constructed and are subsequently linked to the existing
reduced-order models of the unperturbed segments in a
postprocessing step.
Complementary to deterministic techniques, methods

to account for the quantification of uncertainties in the
computational model are applied for electromagnetic field
problems in general (see for instance [51,52] and references
therein) and for superconducting rf cavities [53–55] in
particular. Based on probability density distributions of
parameters of the model such as the geometrical details
or the frequency-dependent reflections at the beam pipe
flanges and the waveguide ports, probability density dis-
tributions of the rf parameters under study are delivered. In
this way, these approaches enable to model not known
properties of the problem under study as well. Like
deterministic techniques, statistical approaches require a
large number of forward computations. Therefore, it is
challenging to employ them for structures with the given
complexity.
Despite the limitations, SSC is, to our knowledge, the

first method which is able to deliver a modal compendium
of a structure with such a complexity like the European
XFEL third harmonic module.
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