

LHCP2017 Shanghai, China 15-20 May 2017

Boosted production at ATLAS and CMS

M. Romano (INFN – Bologna) On behalf of the ATLAS and CMS collaborations

Introduction

vn-merged boosted W boosted W c 200 GeV 200 - 350 GeV

Why boosted tops?

- LHC is a 'top factory'
 - Large center-of-mass energy combined with high luminosity 00(10) increase in cross section passing from 8 to 13 TeV

for $\Delta R \sim 1.0$

- Access to phase space regions never explored before
- Feasibility of differential measurements
 - Stronger constraints to SM parameters
 - Sensitivity to BSM processes

A challenging topology...

- Individual top decay products cannot be resolved
 - Boosted tops appear as large-R jets
 - Rule of thumb: $R \sim 2M/p_T$
- Mitigate pileup contamination
 - O Jet grooming: remove soft particles coming from pileup
- o Top-tagging: exploit substructure properties (like m_{jet}) to reject jets originated by light partons

Top tagging in ATLAS

Top tagging efficiency

JHEP 1606 (2016) 093 ATL-PHYS-PUB-2015-053

✓ Large-R jet reconstruction:

- Anti-kt with R=1.0, $|\eta|<2$, $p_T>200~{\rm GeV}$
- **O Trimming**: subjets with R=0.3-0.2 (at 8 and 13 TeV) and $p_T > 0.05 \cdot p_T^J$ are **removed**
- Trimmed jet mass corrected to particle top jet using MC

- Large-R jet mass
- N-subjettiness: shape variable related to the hypothesis of having N subjets:
 - τ₃₂ provides discrimination between jets originated by 3 body decays and 2 body decays
- Kt splitting scale: $\sqrt{d_{ij}} = \min(p_{T,i}, p_{T,j}) \cdot \Delta R_{ij}$
 - $o \sqrt{d_{12}} \sim m_{top}/2$
 - Used only at 8 TeV

Top tagging in CMS at 13 TeV

O Large-R jet reconstruction:

- Low p_T (~500 GeV): Cambridge/Aachen particle flow jets with R = 1.5 (CA15)
- High p_T : Anti-kt particle flow jets with R = 0.8 (AK8)

O High p_T top tagging:

- *N*-subjettiness and softdrop mass ($\beta = 0, z = 0.1$)
- Low p_T top tagging:
 - O HEP Top tagger version 2. Discriminating variables:
 - om_{123} : reconstructed top mass from three subjets obtained after a massdrop unclustering
 - Reconstructed W to top mass double-ratio f_{Rec}
 - *N*-subjettiness with AC15 jets after softdrop ($\beta = 1$, z = 0.2)
- b-tagging: Multivariate CSV algorithm
 - For CA15: use the three HTT subjets
 - For AK8: use the subjets after the softdrop mass

CMS-PAS-JME-16-003

Top cross section measurements

18/05/17

Differential cross section (l+jets) in ATLAS

- Precisely measure differential cross-section of top pair at high pT:
 - O Critical test of Standard Model.
 - Monte Carlo generator tuning, constraints to the PDF of the proton.
 - Sensitive to new physics search / background to BSM.
- o 8 TeV: Parton and particle level absolute differential cross section $\left(\frac{d\sigma}{dv_T^t}\right)$
- *o* **13 TeV**: **Particle** level *absolute* and *relative* differential cross section as a function of p_T^t and $|y_t|$
- Semi-leptonic (e/μ) channel
- Hadronic top tagging:
 - o 8 TeV: $m_{jet} > 100$ GeV and $\sqrt{d_{12}} > 40$ GeV
 - o 13 TeV: 80% WP based on m_{jet} and au_{32}
- 13 TeV measurement already systematic-limited
 - main uncertainty: large-R JES
 - 8 TeV: extrapolation to parton level affected by an increased signal modelling uncertainty

Phys. Rev. D 93, 032009 (2016)

$$\sqrt{s} = 8 \text{ TeV}, L = 20.3 \text{ fb}^{-1}$$

ATLAS-CONF-2016-040

$$\sqrt{s} = 13 \text{ TeV}, L = 3.2 \text{ fb}^{-1}$$

Parton level $d\sigma/dp_T^t$ in ATLAS and CMS

Parton level measurements allow direct comparisons among experiments

Phys. Rev. D 93, 032009 (2016)

Phys. Rev. D 94, 072002 (2016)

Compatible trends observed wrt different generators

Differential cross section (full hadronic) in

ATLAS

- O Relative differential cross section in the full had channel
 - Two large-R jet $(p_T^1 > 500 \text{ GeV} \text{ and } p_T^2 > 350 \text{ GeV},$ mass in [122.5, 222.5] GeV)
 - Top tagging WP @50%
 - At least two small-R jet (used for b-tagging)
- Main challenge: QCD background estimation
 - O Data driven ABCD method

C _	1	G	H		\mathcal{C}
$S_{QCD} =$	2	\sqrt{A}		×	L

	0 t	1 <i>t</i>	2 <i>t</i>
0 <i>b</i>	A	D	G
1 <i>b</i>	В	E	Н
2 <i>b</i>	С	F	S

- Validated in region F
- Main uncertainties: large-R jes, signal modelling, btag

ATLAS-CONF-2016-100

$$\sqrt{s} = 13 \text{ TeV}, L = 14.7 \text{ fb}^{-1}$$

Differential and inclusive cross section (full hadronic) in CMS CMS-Top-16-013 \sqrt{s} = 13 TeV, L = 2.53 fb⁻¹

Inclusive cross section, detector and parton level differential cross section

- Two anti-kt (R=0.8) jets ($p_T^1 > 450$ GeV and $p_T^2 > 200$ GeV) containing a b-subjets
 - O Top tagging:
 - Leading jet soft-drop mass $150 < m_{SD} < 200 \text{ GeV}$
 - ${\color{red} {\it o}}$ Event Fisher discriminant built from τ_{21} and τ_{32}
- o Signal and QCD bkg extracted via a fit of m_{SD}
 - QCD templates built from data in control region and corrected with MC to the signal region
- Limited by the statistical, QCD modelling (low pT), JES and bTag uncertainties

$$\sigma_{tt} = 727 \pm 125$$
 (stat+syst+lumi) pb $\sigma_{tt}^{th} = 832^{+20}_{-29} (\text{scale}) \pm 35 \text{ (PDF+}\alpha_{s}) \text{ pb}$

Top properties measurements

18/05/17

Charge asymmetry in ATLAS

$$A(\Delta) = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)}$$

Phys. Lett. B756 (2016) 52

$$\sqrt{s} = 8 \text{ TeV}, L = 20.3 \text{ fb}^{-1}$$

do/dy

- o Top pair production via $q\overline{q}$ gives non-zero forward-backward asymmetry
 - Measured at Tevatron ($\Delta = y_t y_{\bar{t}}$):

$$A_{FB} = 0.164 \pm 0.047$$
, $A_{FB}^{MCFM} = 0.073 \pm 0.022$ (Phys. Rev. D 87, 092002)

- o A_C (charge asymmetry) can be measured instead ($\Delta = |y_t| |y_{\bar{t}}|$)
- Diluted by the dominant gg production

- o Boosted tops can probe A_C at high invariant mass
- Sensitive to BSM effects
- O Dominated by theoretical and large-R JES uncertainties

'Inclusive' measurement $(m_{tt} > 750 \text{ GeV})$ $A_C = (4.2 \pm 3.2)\%$ $A_C^{NLO} = (1.60 \pm 0.04)\%$

ATLAS

Jet mass distribution in CMS

- \circ A better modeling of jet mass m_{jet} distribution is crucial for measurements in the boosted topologies
 - o m_{jet} is very sensitive to the angular spread of the jet wrt the top (35% of Pwg+Py events have $\Delta R(jet, top) > 1.2$)
- o m_{jet} is sensitive to the top mass \rightarrow additional way to measure m_t

Inclusive and **differential** $\frac{d\sigma}{dm_{jet}}$ cross section measurement

- Exactly two C/A (R=1.2) jets with $p_T>150$ GeV ($p_T^1>400$ GeV)
 - No top tag
- Limited by the statistical uncertainty
- o m_t extracted from a χ^2 fit of the *relative* differential cross section

$$omega m_t = 171.8 \pm 9.5 \text{ GeV}$$

arXiv:1703.06330

$$\sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^{-1}$$

Total cross section $(140 < m_{jet} < 350 \text{ GeV})$

Data: 101 ± 19 fb

Powheg+Pythia: 133^{+18}_{-28} fb Madgraph+Pythia: 159^{+17}_{-18} fb

Summary

LHC offers a unique opportunity to explore extreme topologies through boosted tops

Several boosted top reconstruction algorithms have been (and are being) developed by ATLAS(1)(2) and CMS(3)

- Jet grooming procedures allow for stability in high pileup conditions
- Use of substructure variables improves the background discrimination
- O Boosted tops have been used in SM measurements and BSM searches (not presented in this talk)
 - ◆ Lepton+jets differential cross section in ATLAS⁽⁴⁾⁽⁵⁾ and CMS⁽⁶⁾
 - Full hadronic differential and inclusive cross section in ATLAS⁽⁷⁾ and CMS⁽⁸⁾
 - Lepton+jets charge asymmetry in ATLAS⁽⁹⁾
 - Jet mass distribution in CMS⁽¹⁰⁾

We are entering an era where data statistics is not the limiting factor

- Main uncertainties: large-R jets and signal modelling
- The measurements are "self improving" → can be used to improve future analyses
 - O By adding better constraints to the generator parameters
 - By improving the understanding of the jet mass distribution
 - Stay tuned for new and improved measurements using the full 13 TeV data!

ATL-PHYS-PUB-2017-004

- (1)JHEP 1606 (2016) 093
- ATL-PHYS-PUB-2015-053
- CMS-PAS-JME-19-003
- Phys. Rev. D 93, 032009 (2016) (4)
- ATLAS-CONF-2016-040 (5)
- Phys. Rev. D 94, 072002 (2016) (6)
- ATLAS-CONF-2016-100 (7)
- CMS-Top-16-013
- Phys. Lett. B756 (2016) 52
- (10) arXiv:1703.06330

Backup

18/05/17

14

Top tagging in CMS at 13 TeV

Large-R jet reconstruction:

○ Low p_T (~500 GeV): Cambridge/Aachen particle flow jets with R = 1.5 (CA15)

• High p_T : Anti-kt particle flow jets with R = 0.8 (AK8)

O High p_T top tagging:

- *N*-subjettiness and softdrop mass ($\beta = 0, z = 0.1$)
 - O Recursive pair-wise declustering, rejecting the softer jets not satisfying $\frac{\min(p_T^1, p_T^2)}{p_T^1 + p_T^2} > z \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$
- Low p_T top tagging:
 - HEP Top tagger version 2. Discriminating variables:
 - om_{123} : reconstructed top mass from three subjets obtained after a massdrop unclustering
 - Reconstructed W to top mass ratio $f_{Rec} = \min_{ij} \left| \frac{\frac{m_{ij}}{m_{123}}}{\frac{m_W}{m_t}} 1 \right|$
 - *N*-subjettiness with AC15 jets after softdrop ($\beta = 1, z = 0.2$)
- b-tagging: Multivariate CSV algorithm
 - For CA15: use the three HTT subjets
 - For AK8: use the subjets after the softdrop mass
- O Top tagging at 8 TeV based on subjets from primary and secondary decomposition

CMS-PAS-JME-16-003

Top tagging in CMS at 8 TeV

- *o* Large-*R* jet reconstruction:
 - O Cambridge/Aachen (C/A) jets with R=0.8, $|\eta|<2.4$, $p_T>350$ GeV
- Top tagging algorithm:
 - Primary decomposition: recursively declusters the jet to find two well separated hard subclusters
 - Secondary decomposition: declusters the previously found subclusters
- O Top tagging based on subcluster variables:
 - O Jet mass
 - Number of subclusters
 - Minimum Pairwise Mass among the three hardest subjets:

$$m_{min} = \min(m_{12}, m_{13}, m_{23})$$

Other top tagging algorithms: N-subjetness and HEP Top tagger

Top tagging in ATLAS

JHEP 1606 (2016) 093 ATL-PHYS-PUB-2015-053

Large-R jet reconstruction:

• Anti-kt with R=1.0, $|\eta|<2$, $p_T>200~{\rm GeV}$

7 Trimming: subjets with R=0.3-0.2 (at 8 and 13 TeV) and $p_T > 0.05 \cdot p_T^J$ are **removed**

Trimmed jet mass corrected to particle top jet using MC

O Top tagging based on substructure variables:

Large-R jet mass

✓ N-subjettiness: shape variable related to the hypothesis of having N subjets:

$$\tau_N = \frac{\sum_{i=1}^{n_{costintuents}} p_{T,i} \, \Delta R_i^{min}}{\sum_{i=1}^{n_{costintuents}} p_{T,i} R}$$

o $\tau_{32} = \tau_3/\tau_2$ provides discrimination between jets originated by 3 body decays and 2 body decays

• Kt splitting scale: $\sqrt{d_{ij}} = \min(p_{T,i}, p_{T,j}) \cdot \Delta R_{ij}$

$$o \sqrt{d_{12}} \sim m_{top}/2$$

Used only at 8 TeV

Differential and inclusive cross section (l+jets) in CMS Phys. Rev. D 94, 072002 (2016) $\sqrt{s} = 8$ TeV, L = 19.7 fb⁻¹

- Integrated ($p_T > 400$ GeV) and differential $\left(\frac{d\sigma}{dp_T^t}\right)$ and $\frac{d\sigma}{dy^t}$ cross section at particle and parton level
- Event selection 1 lepton (e/μ) + jets
 - C/A large-R jet (R = 0.8), $p_T > 400$ GeV; mass ~ [140, 250] GeV
 - CMS Top Tagger
- Signal yield extracted via maximum likelihood fit in (0t, 1t+0b, 1t+1b) exclusive categories
 - Background normalizations and uncertainties treated as nuisance parameters
- Inclusive cross section compared to Powheg+Pythia6, normalized to NNLO total cross section
 - o Parton level: $\frac{\sigma_{meas}}{\sigma_{th}} = 0.86 \pm 0.19$
 - o Particle level: $\frac{\sigma_{meas}}{\sigma_{th}} = 0.86 \pm 0.16$
- Opening Dominated by theoretical and top tagging uncertainties

Ljets differential cross section in CMS

- o signal extraction maximum likelihood fit in 3 categories based on top and b tag
 - Signal and all background yields determined by fit
 - ODiscriminant variables: lepton |eta| used in (0t, 1t+0b), mvtx used in 1t+1b
 - Background normalizations and experimental uncertainties treated as nuisance parameters.
- O Unfolding in 2 steps: reco → particle, particle → parton
 - Regularized unfolding (SVD)
 - Electron and muon channel unfolded separately and combined with weighted mean

Ljets differential cross section in ATLAS

Ø 8 TeV vs 13 TeV comparison

18/05/17

Ljets differential cross section in ATLAS

08 TeV vs 13 TeV uncertainty comparison

18/05/17

Full had cross section in ATLAS

O Differential cross section measurements performed as a function of several kinematic variables of the tt system:

- op_T , |y| $(t_1, t_2, t\bar{t})$ and $m(t\bar{t})$
- $o \chi^{tt} = \exp 2|y^*|$ (y^* : rapidity of the top in the $t\bar{t}$ rest frame)
- $OY_B^{tt} = \frac{1}{2}(y^{t_1} + y^{t_2})$: longitudinal boost in the lab frame
- o $\Delta\phi^{tt}$ azimuthal angular separation between the tops
- $o|p_{out}^{tt}|$: projection of top-quark momentum onto the direction perpendicular to a plane defined by the other top quark and the beam

ATLAS Preliminary

mtt [TeV]

22

Forward-backward asymmetry at Tevatron

Definition:
$$A_{\Delta} = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)}$$

@ Tevatron leading production is $q\bar{q}$ (asimmetric initial state)

At Tevatron
$$\Delta_{FB} \equiv y_t - y_{\bar{t}}$$

CDF measured
$$A_{FB} = 0.158 \pm 0.074$$

(both l +jets and di-leptonic channels)
 $A_{FB}^{\text{MCFM}} = 0.058 \pm 0.009$ (agreement ~2 σ)

Important features: dependence on $m_{t\bar{t}}$, Δy $m_{t\bar{t}} < 450$ GeV compatible with SM ~ 1.8 sigma $m_{t\bar{t}} > 450$ GeV difference >3 sigma

Superseded by
$$A_{FB} = 0.160 \pm 0.045$$

 $A_{FB}^{NNLO} = 0.095 \pm 0.007$
(CDF/ANAL/TOP/PUB/11161)

Charge asymmetry at LHC

- @ LHC leading production channel is gg in symmetric pp collisions
- o Forward-backward is not visible at the LHC, but we can measure A_{Q} (charge asymmetry) in the central and forward region

$$OA_Q = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$

$${}^{o}A_{QF} = \frac{N_{t}(|y| > y_{0}) - N_{\bar{t}}(|y| > y_{0})}{N_{t}(|y| > y_{0}) + N_{\bar{t}}(|y| > y_{0})}$$

$${}^{o}A_{QC} = \frac{N_{t}(|y| < y_{0}) - N_{\bar{t}}(|y| < y_{0})}{N_{t}(|y| < y_{0}) + N_{\bar{t}}(|y| < y_{0})}$$

 A_Q was found to be the most sensitive variable to new physics effects Tests performed using a parametrized BSM asymmetry:

$$1 - f(m_{tt}) \tanh \Delta y$$
, $f(m_{tt}) = \frac{m_{tt}}{200} - 2$

http://www.hep.phy.cam.ac.uk/theory/webber/MCEGforLHC.pdf

Introduction

Why boosted tops?

- LHC is a 'top factory'
 - Large center-of-mass energy combined with high luminosity
 - The cross section in boosted phase space will benefit most from the energy increase

Cross section	8 TeV	13 TeV
Total	240.6 pb ⁽¹⁾	818 ⁽³⁾ pb
Boosted (pt>300GeV)	5.5pb ⁽²⁾	O(10)x

- (1) ATLAS-CONF-2014-053, CMS-PAS-TOP-14-016
- (2) PRD 93, 032009 (2016)
- (3) PLB 761 (2016) 136
- Access to phase space regions never explored before
- Feasibility of differential measurements in boosted topologies
 - Stronger constraints to SM parameters

This talk:

- Boosted top tagger algorithms in ATLAS and CMS
- ATLAS and CMS precision measurements with boosted quarks
 - Inclusive and differential cross sections at 8 and 13 TeV
 - Top properties: charge asymmetry and jet mass distribution
 - Exotic searches will not be covered