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Abstract: We present an approach to the momentum-space resummation of global, recursively
infrared and collinear safe observables that can vanish away from the Sudakov region. We fo-
cus on the hadro-production of a generic colour singlet, and we consider the class of observables
that depend only upon the total transverse momentum of the radiation, prime examples being the
transverse momentum of the singlet, and φ∗ in Drell-Yan pair production. We derive a resum-
mation formula valid up to next-to-next-to-next-to-leading-logarithmic accuracy for the considered
class of observables. We use this result to compute state-of-the-art predictions for the Higgs-boson
transverse-momentum spectrum at the LHC at next-to-next-to-next-to-leading-logarithmic accu-
racy matched to fixed next-to-next-to-leading order. Our resummation formula reduces exactly
to the customary resummation performed in impact-parameter space in the known cases, and it
also predicts the correct power-behaved scaling of the cross section in the limit of small value of
the observable. We show how this formalism is efficiently implemented by means of Monte Carlo
techniques in a fully exclusive generator that allows one to apply arbitrary cuts on the Born vari-
ables for any colour singlet, as well as to automatically match the resummed results to fixed-order
calculations.ar
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1 Introduction

After the discovery of the Higgs boson [1, 2], the precise measurements from Run 2 of the LHC
programme have so far confirmed the Standard Model with remarkable precision. Given that signals
of new physics will most likely be elusive, it is important to define and study observables that can
be both experimentally measured and theoretically predicted with a few-percent uncertainty. In
this scenario, a prominent role is played by processes featuring the production of a colour singlet
of high invariant mass, for instance gluon-fusion Higgs and Drell-Yan, where quantities like the
transverse momentum of the singlet or angular observables defined on its decay products have been
studied with increasing accuracy in the last decades.

The differential study of these processes not only is important from a purely phenomenological
perspective, but also because it represents the ideal baseline for a more fundamental understanding
of the underlying theory. Their structural simplicity indeed allows one to provide predictions that
include several orders of perturbative corrections, hence probing in depth many non-trivial features
of QCD.
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In this paper, we consider the hadro-production of a heavy colour singlet, and we study the
class of observables, henceforth denoted by the symbol v, which are both transverse (i.e. which do
not depend on the rapidity of the radiation) and inclusive (i.e. that depend only upon the total
momentum of the radiation). As such, they only depend on the total transverse momentum of the
radiation. Specifically, we concentrate on the transverse-momentum distribution of a Higgs boson
in gluon fusion, but we stress that the same formulae hold for the whole class of transverse and
inclusive observables, for instance the φ∗ angle in Drell-Yan pair production. Moreover, although we
limit ourselves to inclusive observables, the formalism presented in this work can be systematically
extended to all transverse observables in colour-singlet hadro-production.

Inclusive and differential distributions for gluon-fusion Higgs production are nowadays known
with very high precision. The inclusive cross section is now known at next-to-next-to-next-to-
leading-order (N3LO) accuracy in QCD [3, 4] in the heavy top-quark limit. The N3LO correction
amounts to a few percent of the total cross section, indicating that the perturbative series has
started to manifest convergence and that missing higher-order corrections are now getting under
theoretical control. Current estimates show that they are very moderate in size [5]. The state-of-
the-art results for the Higgs transverse-momentum spectrum in fixed-order perturbation theory are
the next-to-next-to-leading-order (NNLO) computations of refs. [6–9], which have been obtained in
the heavy top-quark limit. The impact of quark masses on differential distributions in the large-
transverse-momentum limit is still poorly known beyond leading order, while in the moderate-pt
region, next-to-leading-order (NLO) QCD corrections to the top-bottom interference contribution
were recently computed [10–12].

Although fixed-order results are crucial to obtain reliable theoretical predictions away from the
soft and collinear regions of the phase space (v ∼ 1), it is well known that regions dominated by
soft and collinear QCD radiation — which give rise to the bulk of the total cross section — are
affected by large logarithmic terms of the form αns lnk(1/v)/v, with k ≤ 2n − 1, which spoil the
convergence of the perturbative series at small v. In order to have a finite calculation in this limit,
the subtraction of the infrared and collinear divergences requires an all-order resummation of the
logarithmically divergent terms. The logarithmic accuracy is commonly defined in terms of the
perturbative series of the logarithm of the cumulative cross section Σ as

ln Σ(v) ≡ ln

∫ v

0

dv′
dσ(v′)

dv′

=
∑
n

{
O
(
αns lnn+1(1/v)

)
+O (αns lnn(1/v)) +O

(
αns lnn−1(1/v)

)
+ . . .

}
. (1.1)

One refers to the dominant terms αns lnn+1(1/v) as leading logarithmic (LL), to terms αns lnn(1/v) as
next-to-leading logarithmic (NLL), to αns lnn−1(1/v) as next-to-next-to-leading logarithmic (NNLL),
and so on.

The resummation of the pt spectrum of a heavy colour singlet was first analysed in the seminal
work by Parisi and Petronzio [13], where it was shown that in the low-pt region the spectrum vanishes
as dσ/dpt ∼ pt, instead of vanishing exponentially as suggested by Sudakov suppression. This
power-law behaviour is due to configurations in which pt vanishes due to cancellations among the
non-vanishing transverse momenta of all emissions. Around and below the peak of the distribution,
this mechanism dominates with respect to kinematical configurations where pt becomes small due
to all the emissions having a small transverse momentum, i.e. the configurations which would yield
an exponential suppression. In order to properly deal with these two competing mechanisms, in
ref. [14] it was proposed to perform the resummation in the impact-parameter (b) space, where both
effects leading to a vanishing pt are handled through a Fourier transform.

Using the b-space formulation, the Higgs pt spectrum was resummed at NNLL accuracy in [15,
16] using the formalism developed in [14, 17], as well as in [18] by means of a soft-collinear-effective-
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theory (SCET) approach [19, 20]. A study of the related theory uncertainties in the SCET for-
mulation was presented in ref. [21]. More recently, all the necessary ingredients for the N3LL
resummation were computed [22–26], with the exception of the four-loop cusp anomalous dimen-
sion which is currently unknown. This paves the way to more precise predictions for transverse
observables in the infrared region. The impact of both threshold and high-energy resummation on
the small-transverse-momentum region was also studied in detail in refs. [27–35].

The problem of the resummation of the transverse momentum distribution in direct (pt) space
received substantial attention throughout the years [36–38], but remained unsolved until recently.
Due to the vectorial nature of these observables, it is indeed not possible to define a resummed cross
section at a given logarithmic accuracy in direct space that is simultaneously free of any subleading
logarithmic contributions and of spurious singularities at finite values of pt > 0. Last year some
of us proposed a solution to this problem by formulating a resummation formalism in direct space
up to NNLL order [39], and used it to match the NNLL resummation to the NNLO Higgs pt
spectrum. The problem of direct-space resummation for the transverse-momentum distribution was
also considered more recently in ref. [40] following a SCET approach, where the renormalisation-
group evolution is addressed directly in momentum space. In this article we explain in detail the
formalism introduced in [39]. Furthermore, we extend it to N3LL, and formulate it in general terms,
so that a direct application at this logarithmic accuracy to all transverse, inclusive observables is
possible. We point out that our final result lacks the contribution of the unknown four-loop cusp
anomalous dimension, which is set to zero in the following.

The paper is structured as follows: in Section 2.1 we sketch the main features of our formalism,
based on and extending the one developed in ref. [41], through the derivation of a simplified NLL
formula relevant to the case of scale-independent parton densities. Section 2.2 discusses the choice
of the resolution variable and kinematic ordering in the evolution of the radiation. In Section 2.3
we discuss the structure of higher-order corrections, and in particular in Section 2.3.2 we treat
the inclusion of parton densities and of hard-collinear radiation, thereby making our formalism
fully capable of dealing with initial-state radiation. In Section 2.4 we prove that our method is
formally equivalent to the more common b-space formulation of transverse-momentum resummation.
Section 3 shows how to evaluate our formula to N3LL order and in Section 3.2 we present a study
of the scaling property of the differential distribution in the pt → 0 limit, and compare our findings
to the classic result by Parisi and Petronzio [13]. Finally, in Section 4 we discuss the matching
to NNLO, and in Section 4.4 we present N3LL accurate predictions for the Higgs-boson transverse
momentum spectrum at the LHC, matched to NNLO.

In Appendix A we show that, at NLL, the approach used here is equivalent to a backward-
evolution algorithm for this class of observables, while Appendix B collects some of the relevant
equations used in the article.

2 Derivation of the master formula

We consider the resummation of a continuously global, recursive infrared and collinear (rIRC)
safe [41] observable V in the reaction pp → B, B being a generic colourless system with high
invariant mass M . It is instructive to work out in detail the case of NLL resummation first. This
will be done in Section 2.1, where we assume that the parton densities are independent of the scale.
We then discuss the inclusion of higher-order corrections in Section 2.3, and the correct treatment
of the parton luminosity will be dealt with in Section 2.3.2. Finally, in Section 2.4, we discuss the
connection to the impact-parameter space formulation for transverse-momentum resummation.
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2.1 Cancellation of IRC divergences and NLL resummation

In the present subsection we assume that the parton densities are independent of the scale and set
to one for the sake of simplicity. To set up the notation we work in the rest frame of the produced
colour singlet, and we introduce two reference light-like momenta that will serve to parametrise the
radiation

p̃1 =
M

2
(1, 0, 0, 1) , p̃2 =

M

2
(1, 0, 0,−1) , (2.1)

where M is the invariant mass of the colour singlet with momentum pB that in this frame reads

pB = p̃1 + p̃2. (2.2)

The directions of the two momenta in Eq. (2.1) coincide with the beam axis at the Born level.
Beyond the Born level, radiation of gluons and quarks takes place, so that the final state consists
in general of n partons with outgoing momenta k1, . . . , kn, and of the colour singlet. Due to this
radiation, the singlet acquires a transverse momentum with respect to the beam direction. We
express the final-state momenta by means of the Sudakov parametrisation

ki = (1− y(1)
i )p̃1 + (1− y(2)

i )p̃2 + κ̃ti , (2.3)

where κ̃ti are space-like four-vectors, orthogonal to both p̃1 and p̃2. In the reference frame (2.1)
each κ̃ti has no time component, and can be written as κ̃ti = (0,

~̃
kti), such that κ̃2

ti = −k̃2
ti. Notice

that since ki is massless

k̃2
ti = (1− y(1)

i )(1− y(2)
i )M2 =

2(p̃1ki)2(p̃2ki)

2(p̃1p̃2)
.

In the chosen parametrisation, the emission’s (pseudo-)rapidity ηi in this frame is

ηi =
1

2
ln

1− y(1)
i

1− y(2)
i

. (2.4)

The observable V is in general a function of all momenta, and we denote it by V ({p̃}, k1, . . . , kn);
without loss of generality we assume that it vanishes in Born-like kinematic configurations. The
transverse observables considered in this paper are those which obey the following general parametri-
sation for a single soft emission k collinear to leg `:

V ({p̃}, k) ≡ V (k) = d` g`(φ)

(
kt
M

)a
, (2.5)

where kt is the transverse momentum with respect to the beam axis, g`(φ) is a generic function
of the angle φ that ~kt forms with a fixed reference vector ~n orthogonal to the beam axis, d` is a
normalisation factor, and a > 0 due to collinear and infrared safety. In particular, in this work
we focus on the family of inclusive observables that will be defined in the next section. Examples
of such observables are the transverse momentum of the colour-singlet system (corresponding to
d` = g`(φ) = a = 1)1, and φ∗ [42] (corresponding to d` = a = 1 , g`(φ) = | sin(φ)|). In the latter
case, the reference vector ~n is chosen along the direction of the dilepton system in the rest frame
of the Z boson.

The transverse momentum of the parametrisation (2.3) is related to the one relative to the
beam axis, which enters the definition of the observable, by recoil effects due to hard-collinear

1Without loss of generality we have introduced a dimensionless version of the transverse momentum by dividing
by the singlet’s mass.
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emissions off the same leg `. To find the relationship, we consider the radiation collinear to p̃1. The
momentum of the initial-state parton before any radiation p1 is related to the latter as follows

p1 = p̃1 +
∑
j∈1

kj , (2.6)

where the notation j ∈ 1 indicates all emissions ki radiated off leg 1. The above equation can be
recast as

p1 = (1 +
∑
j∈1

(1− y(1)
j ))p̃1 +

∑
j∈1

(1− y(2)
j )p̃2 +

∑
j∈1

κ̃tj . (2.7)

We can use the above equation to express p̃1 as a function of p1. By plugging the resulting equation
into Eq. (2.3), we find that the transverse momentum of emission ki with respect to p1 is

~kti =
~̃
kti −

1− y(1)
i

1 +
∑
j∈1

(1− y(1)
j )

∑
j∈1

~̃
ktj

 . (2.8)

Generalising the above equation for ki emitted off any leg ` = 1, 2 we obtain

~kti =
~̃
kti −

1− y(`)
i

1 +
∑
j∈`

(1− y(`)
j )

∑
j∈`

~̃
ktj

 , (2.9)

where with the notation j ∈ ` we refer to partons that are emitted off the same leg p̃` as ki. When
only one emission is present, the above relation reduces to

~kti =
~̃
kti

2− y(`)
i

. (2.10)

In the soft approximation the two quantities coincide as y(`)
i ' 1. In the present section we work

under the assumption of soft kinematics in order to introduce the notation and derive the NLL
result. The treatment of hard-collinear emissions will be discussed in detail in Section 2.3.2, where
we extend the results derived here to the general case of initial-state radiation.

The central quantity under study is the resummed cumulative cross section for V smaller than
some value v, Σ(v), defined as

Σ(v) =

∫ v

0

dv′
dσ(v′)

dv′
. (2.11)

In the infrared and collinear (IRC) limit, Σ(v) receives contributions from both virtual correc-
tions and soft and/or collinear real emissions. The IRC divergences of the form factor exponentiate
at all orders (see, for instance, refs. [43, 44] and references therein), and we denote them by V(ΦB)

in the following discussion, where ΦB is the phase space of the underlying Born. Therefore we can
recast Eq. (2.11) as follows

Σ(v) =

∫
dΦBV(ΦB)

∞∑
n=0

∫ n∏
i=1

[dki]|M(p̃1, p̃2, k1, . . . , kn)|2 Θ (v − V ({p̃}, k1, . . . , kn)) , (2.12)

whereM is the matrix element for n real emissions (the case with n = 0 reduces to the Born matrix
element MB), and [dki] denotes the phase space for the emission ki. The Θ function represents the
measurement function for the observable under consideration. Finally, to keep the notation concise,
we have defined dΦB ≡ dx1dx2dΦn(2π)dδ(p̃µ1 + p̃µ2 − p

µ
B), where dΦn is the n-body phase space
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of the singlet system, and we have absorbed the partonic flux factor 1/(4 p̃1 · p̃2) into the squared
amplitude |M |2 (and analogously in |MB |2 below).

The renormalised squared amplitude for n real emissions (pp → B + n gluons) can be conve-
niently decomposed as 2

|M(p̃1, p̃2, k1, . . . , kn)|2 = |MB(p̃1, p̃2)|2


 1

n!

n∏
i=1

|M(ki)|2

+

∑
a>b

1

(n− 2)!

 n∏
i=1
i 6=a,b

|M(ki)|2

∣∣∣M̃(ka, kb)
∣∣∣2 +

∑
a>b

∑
c>d

c,d 6=a,b

1

(n− 4)!2!

 n∏
i=1

i 6=a,b,c,d

|M(ki)|2

∣∣∣M̃(ka, kb)
∣∣∣2 ∣∣∣M̃(kc, kd)

∣∣∣2 + . . .



+

 ∑
a>b>c

1

(n− 3)!

 n∏
i=1

i 6=a,b,c

|M(ki)|2

∣∣∣M̃(ka, kb, kc)
∣∣∣2 + . . .

+ . . .

 , (2.13)

where we have introduced the n-particle correlated matrix elements squared |M̃(ka, . . . , kn)|2, which
are defined recursively as follows

|M̃(ka)|2 =
|M(p̃1, p̃2, ka)|2

|MB(p̃1, p̃2)|2
= |M(ka)|2,

|M̃(ka, kb)|2 =
|M(p̃1, p̃2, ka, kb)|2

|MB(p̃1, p̃2)|2
− 1

2!
|M(ka)|2|M(kb)|2,

|M̃(ka, kb, kc)|2 =
|M(p̃1, p̃2, ka, kb, kc)|2

|MB(p̃1, p̃2)|2
− 1

3!
|M(ka)|2|M(kb)|2|M(kc)|2

− |M̃(ka, kb)|2|M(kc)|2 − |M̃(ka, kc)|2|M(kb)|2 − |M̃(kb, kc)|2|M(ka)|2, (2.14)

and so on. These represent the contributions to the n-particle squared matrix element that vanish in
strongly-ordered kinematic configurations, that can not be factorised in terms of lower-multiplicity
squared amplitudes. Each of the correlated squared amplitudes admits a perturbative expansion

|M̃(ka, . . . , kn)|2 ≡
∞∑
j=0

(
αs(µ)

2π

)n+j

nPC(j)(ka, . . . , kn), (2.15)

where µ is a common renormalisation scale, and αs is the strong coupling constant in the MS

scheme. The notation nPC in Eq. (2.13) stands for “n-particle correlated” and it will be used
throughout the article.

The rIRC safety of the observables considered here guarantees a hierarchy between the different
blocks in the decomposition (2.13), in the sense that, generally, correlated blocks with n particles
start contributing at one logarithmic order higher than correlated blocks with n−1 particles [41, 45].
In the present article, we focus on the family of inclusive observables V for which

V ({p̃}, k1, . . . , kn) = V ({p̃}, k1 + · · ·+ kn) . (2.16)

2The decomposition above can be extended to the case in which some of the n emissions are quarks by properly
changing the multiplicity factors in front of each term.
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In this case, we can integrate the nPC blocks for n > 1 inclusively prior to evaluating the observable.
Hence, starting from Eq. (2.13) for the pure gluonic case, we can replace it with the following squared
amplitude

∞∑
n=0

|M(p̃1,p̃2, k1, . . . , kn)|2 −→ |MB(p̃1, p̃2)|2

×
∞∑
n=0

1

n!

{
n∏
i=1

(
|M(ki)|2 +

∫
[dka][dkb]|M̃(ka, kb)|2δ(2)(~kta + ~ktb − ~kti)δ(Yab − Yi)

+

∫
[dka][dkb][dkc]|M̃(ka, kb, kc)|2δ(2)(~kta + ~ktb + ~ktc − ~kti)δ(Yabc − Yi) + . . .

) }

≡ |MB(p̃1, p̃2)|2
∞∑
n=0

1

n!

n∏
i=1

|M(ki)|2inc, (2.17)

where Yabc... is the rapidity of the ka + kb + kc + . . . system in the centre-of-mass frame of the
collision. We refer to this treatment of the squared amplitude as to the inclusive approximation.3

With the above notation, we can rewrite Eq. (2.12) as

Σ(v) =

∫
dΦB |MB(p̃1, p̃2)|2V(ΦB)

∞∑
n=0

1

n!

∫ n∏
i=1

[dki]|M(ki)|2inc Θ (v − V ({p̃}, k1, . . . , kn)) , (2.18)

where |M(ki)|2inc is defined in Eq. (2.17).

Once the logarithmic counting for the squared amplitude has been set up, as a next step we
need to discuss the cancellation of the exponentiated divergences of virtual origin against the real
ones. At all perturbative orders at a given logarithmic accuracy, we need to single out the IRC
singularities of the real matrix elements, which can again be achieved by exploiting [41, 45, 47] the
rIRC safety of the observable V ({p̃}, k1, . . . , kn) that we are computing.

We then order the inclusive blocks described by |M(ki)|2inc according to their contribution to
the observable V (ki), i.e. V (k1) > V (k2) > · · · > V (kn). We consider configurations where the
radiation corresponding to the first (hardest) block |M(k1)|2inc has occurred, where we use the fact
that the contribution with n = 0 in Eq. (2.18) (which does not have any real emissions) vanishes
since it is infinitely suppressed by the pure virtual corrections V(ΦB) The rIRC safety of the
observable allows us to introduce a resolution parameter ε� 1 independent of the observable such
that all inclusive blocks with V (ki) < εV (k1) can be neglected in the computation of the observable
up to power-suppressed corrections O(εpV (k1)), that eventually will vanish once we take the limit
ε → 0. Therefore, we classify inclusive blocks k as resolved if V (k) > εV (k1), and as unresolved if
V (k) < εV (k1). This definition is collinear safe at all perturbative orders. With this separation
Eq. (2.18) becomes

Σ(v) =

∫
dΦB |MB(p̃1, p̃2)|2V(ΦB)

×
∫

[dk1]|M(k1)|2inc

 ∞∑
l=0

1

l!

∫ l+1∏
j=2

[dkj ]|M(kj)|2inc Θ(εV (k1)− V (kj))


3For non-inclusive observables, namely the ones that do not fulfil Eq. (2.16), this reorganisation is not correct

starting at NNLL. Therefore in that case one must correct for the non-inclusive nature of the observables. The full
set of NNLL corrections for a generic global, rIRC safe observable is defined in refs. [45, 46]. In the rest of this article
we refer to observables of the type (2.16).
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×

( ∞∑
m=0

1

m!

∫ m+1∏
i=2

[dki]|M(ki)|2inc Θ(V (ki)− εV (k1))Θ (v − V ({p̃}, k1, . . . , km+1))

)
. (2.19)

The phase space of the unresolved real ensemble is now solely constrained by the upper resolution
scale, since it does not contribute to the evaluation of the observable. As a consequence, it can be
exponentiated directly in Eq. (2.19) and employed to cancel the divergences of the virtual correc-
tions V(ΦB).

We can now proceed with an explicit evaluation of Eq. (2.19) at NLL order. As we mentioned
earlier, at different logarithmic orders the cross section will receive contributions from different
classes of correlated blocks. This, for instance, means that double-logarithmic terms of the form
αns ln2n(1/v) entirely arise from 1PC(0) blocks, in particular from their soft-collinear part.
If one wants to control all the leading-logarithmic terms of order αns lnn+1(1/v) in ln (Σ(v)) (Eq. (1.1))
then the leading (soft-collinear) term of the 1PC(1) and 2PC(0) blocks must be included as well. In
particular, within the inclusive approximation defined in Eq. (2.17) we find that

|M(k)|2inc ' |M(k)|2 +

∫
[dka][dkb]|M̃(ka, kb)|2δ(2)(~kta + ~ktb − ~kt)δ(Yab − Y )

=
αs(µ)

2π
1PC(0)(k)

(
1 + αs(µ)

(
β0 ln

k2
t

µ2
+
K

2π

)
+ . . .

)
, (2.20)

where β0 is the leading term of the QCD beta function (see Appendix B). Moreover, the QCD
coupling is renormalised in the MS scheme. The contribution of the one-loop cusp anomalous
dimension K, defined as

K =

(
67

18
− π2

6

)
CA −

5

9
nf , (2.21)

enters at NLL order, and it will be considered later in this section. Up to, and including, the
NLL term proportional to K in Eq. (2.20), one can integrate inclusively over the invariant mass
of the 2PC(0) block, while keeping the bounds on the rapidity Y as computed from the massless
kinematics. This approximation neglects terms which are at most NNLL, and are denoted by the
ellipsis in the second line of Eq. (2.20).

We notice that the leading soft-collinear terms proportional to β0 in Eq. (2.20) can be entirely
encoded in the running of the coupling of the single-emission squared amplitude 1PC(0)(k) through
a proper choice of the scale µ at which the latter is evaluated. It is indeed easy to see from Eq. (2.20)
that this is achieved by setting µ to the kt (equal to k̃t for soft radiation) of each emission k in the
parametrisation (2.3) [48, 49]. The inclusive matrix element squared and phase space controlling
all αns lnn+1(1/v) terms are thus

[dk]|M(k)|2inc ' [dk]M2
sc(k) =

∑
`=1,2

2C`
αs(kt)

π

dkt
kt

dz(`)

1− z(`)
Θ
(

(1− z(`))− kt/M
)

Θ(z(`))
dφ

2π
,

(2.22)
where we use Msc(k) to denote the amplitude in the soft approximation. We denoted by C` the
Casimir relative to the emitting leg (C` = CF for quarks, and C` = CA for gluons).

For initial-state radiation, 1 − z(`) is the fraction of the incoming momentum (entering the
emission vertex) that is carried by the emitted parton. This will in general differ from the y(`)

fractions of the Sudakov parametrisation (2.3) when some emissions are not soft. In particular, while
(1− z(`)) ≤ 1, this is not true in general for the (1− y(`)) appearing in our initial parametrisation.
However, in the soft limit, the energy of the emission is much smaller than the singlet’s mass M ,
which restricts y(`)

i to positive values in this limit.
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For a single emission, the two variables are related by

1− y(`) =
1− z(`)

z(`)
, (2.23)

from which is clear that in the soft limit z(`) ' 1 one has z(`) ' y(`). The upper bound for z(`) in
the single-emission case can be worked out by imposing that y(`) < 1 − k̃t/M , and subsequently
relating k̃t to kt relative to the beam axis. This yields

z(`) < 1− kt/M +O(k2
t ). (2.24)

To extend the above discussion to all NLL terms of order αns lnn(1/v) in the logarithm of Σ(v),
we must include the less singular part of the 1PC(1) and 2PC(0) blocks in the soft limit, that is
the term proportional to K in Eq. (2.20) that was previously ignored. This simply amounts to
replacing the inclusive (soft) matrix element in the r.h.s. of (2.22) with

[dk]M2
CMW(k) =

∑
`=1,2

2C`
αs(kt)

π

(
1 +

αs(kt)

2π
K

)
dkt
kt

dz(`)

1− z(`)
Θ
(

(1− z(`))− kt/M
)

Θ(z(`))
dφ

2π
.

(2.25)
The above operation is also known as the Catani-Marchesini-Webber (CMW) scheme [50] for the
running coupling.4

At this logarithmic order the cross section also receives contributions from the hard-collinear
part of the 1PC(0) block, that we ignored so far. Thus, one has to modify Eq. (2.25) as

[dk]|M(k)|2inc = [dk]M2
CMW(k)

+
∑
`=1,2

dk2
t

k2
t

dz(`)

1− z(`)

dφ

2π

αs(kt)

2π

(
(1− z(`))P (0)(z(`))− lim

z(`)→1

[
(1− z(`))P (0)(z(`))

])
,

(2.26)

where P (0)(z(`)) is the leading-order unregularised splitting function, reported in Appendix B.5 At
NLL order, the above hard-collinear contribution can be treated by neglecting the effect of recoil
both in the phase-space boundaries of other emissions and in the observable, both of which enter at
NNLL order. Therefore, also for this contribution we can use the soft kinematics derived in the first
part of this section. Moreover, in colour-singlet production, we can use the azimuthally averaged
splitting functions (see Appendix B) up to NNLL accuracy. At N3LL, corrections from azimuthal
correlations arise [51], and they will be introduced in Section 2.3.3.

We insert Eq. (2.26) back into Eq. (2.19). At NLL accuracy, we can neglect the constant terms
of the virtual corrections. The remaining singular structure of the virtual corrections only depends
upon the invariant mass of the singlet M2

V(ΦB) ' V(M2) = exp

{
−
∫

[dk]|M(k)|2inc

}
at NLL. (2.27)

The combination of unresolved real and virtual contributions is thus finite and gives rise to a
Sudakov suppression factor

V(M2) exp

{∫
[dk]|M(k)|2inc Θ(εV (k1)− V (k))

}
4Although in the present article we are considering only inclusive observables, it can be shown [41, 45, 47] that

for all rIRC safe observables (also non-inclusive ones) the inclusive approximation is accurate at NLL order.
5For emissions off gluonic legs, P (0) receives contributions from both P

(0)
gg and P

(0)
gq , as it will be discussed in

Sec. 2.3.3. In this case, we implicitly exploit the symmetry of P (0)
gg under z ↔ 1− z to recast it such that it has only

a z → 1 singularity.
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' exp

{
−
∫

[dk]|M(k)|2inc Θ(V (k)− εV (k1))

}
= e−R(εV (k1)), (2.28)

where R is the radiator which at this order reads [41, 45]

R(v) ' RNLL(v) ≡
∫

[dk]M2
CMW(k)Θ

(
ln

(
kt
M

)a
− ln v

)
+

∫
[dk]M2

CMW(k) ln d̄` δ

(
ln

(
kt
M

)a
− ln v

)
+
∑
`=1,2

C`B`

∫
dk2
t

k2
t

αs(kt)

2π
Θ

(
ln

(
kt
M

)a
− ln v

)
,

(2.29)

where

ln d̄` =

∫ 2π

0

dφ

2π
ln d`g`(φ) , (2.30)

and

C`B` =

∫ 1

0

dz(`)

1− z(`)

(
(1− z(`))P (0)(z(`))− lim

z(`)→1

[
(1− z(`))P (0)(z(`))

])
. (2.31)

The next and final step is to treat the resolved real blocks ki for which V (ki) > εV (k1). It
is therefore necessary to work out the kinematics and phase space in the presence of additional
radiation, which modifies the relations (2.23) and (2.24) obtained in the single-emission case. For
this we use the fact that the radiation is ordered in V (ki). For a given inclusive block of total
momentum ki, one then has6

1− y(`)
i =

1− z(`)
i

z
(`)
1 z

(`)
2 . . . z

(`)
i

, (2.32)

where emissions k1, k2, . . . , ki−1 have been radiated off the same hard leg before ki. In general,
this implies that the phase space available for each emissions is changed by the previous resolved
radiation. At the NLL order considered in this section, as already stressed, the real-radiation
kinematics can be approximated with its soft limit [41, 45]. This allows us to approximate y(`)

i ' z
(`)
i

and kt ' k̃t for all real emissions and therefore the phase space of each emission becomes in fact
independent of the remaining radiation in the event.

The squared matrix element (2.26) and phase space for a resolved real emission can be parametrised
by introducing the functions

R′1

(
v

d1g1(φ̄)

)
=

∫
[dk]|M(k)|2inc (2π)δ(φ− φ̄) vδ (v − V (k)) Θ(y(2) − y(1)) ,

R′2

(
v

d2g2(φ̄)

)
=

∫
[dk]|M(k)|2inc (2π)δ(φ− φ̄) vδ (v − V (k)) Θ(y(1) − y(2)) ,

(2.33)

and

R′(v, φ) = R′1

(
v

d1g1(φ)

)
+R′2

(
v

d2g2(φ)

)
. (2.34)

From the generic form of the rIRC safe observable V (k) (2.5), it is easy to verify that the R′

functions only depend upon the ratio v/(d`g`(φ̄)) up to regular terms, which are neglected [41, 45].
Indeed, the only non-trivial integration in Eqs. (2.33) is the one over the rapidity of k, which can
be performed inclusively since the observable V (k) does not depend on it (see Eq. (2.5)). Then
the final integral only depends on the ratio of the two remaining scales, i.e. the invariant mass
of the singlet M , and its transverse momentum that is set to (v/(d`g`(φ̄)))1/aM by the constraint

6See also discussion in the appendix E of ref. [41].
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δ (v − V (k)). Upon inclusive integration over the rapidity of momentum k, by using Eq. (2.26), we
can parametrise the inclusive squared amplitude and its phase space as

[dki]|M(ki)|2inc =
dvi
vi

dφi
2π

∑
`i=1,2

R′`i

(
vi

d`ig`i(φi)

)
=
dζi
ζi

dφi
2π

∑
`i=1,2

R′`i

(
ζiv1

d`ig`i(φi)

)
, (2.35)

where we defined vi = V (ki) and ζi = V (ki)/V (k1).
With the above considerations, Eq. (2.19) finally becomes

Σ(v) = σ(0)

∫
dv1

v1

∫ 2π

0

dφ1

2π
e−R(εv1)

∑
`1=1,2

R′`1

(
v1

d`1g`1(φ1)

)
×

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

∑
`i=1,2

R′`i

(
ζiv1

d`ig`i(φi)

)
Θ (v − V ({p̃}, k1, . . . , kn+1)) , (2.36)

where we introduced the total Born cross section

σ(0) =

∫
dΦB |MB(p̃1, p̃2)|2. (2.37)

Eq. (2.36) resembles equation (2.34) of ref. [41] which after a number of approximations leads
to the general NLL formula of the CAESAR method for global rIRC observables in processes with two
hard legs. We remind the reader that additional corrections coming from the parton luminosities
start at NLL order, and they will be discussed in Section 2.3.2.

Eq. (2.36) can be directly evaluated using Monte-Carlo (MC) techniques since it is finite in four
dimensions. However, as it is formulated now it contains effects that are logarithmically subleading
with respect to the formal NLL accuracy we are considering in this section. For observables that
vanish only in the Sudakov limit, these subleading effects can be systematically disposed of by means
of a few approximations, as described in ref. [41]. We now briefly review such approximations on
Eq. (2.36), and show that in the case of observables that vanish away from the Sudakov region they
lead to a divergent result, hence they cannot be trivially performed.

In order to neglect subleading corrections from Eq. (2.36), we need to consistently treat the
resolved squared amplitude and the corresponding Sudakov radiator. In particular, with NLL
accuracy, ref. [41] suggests to perform the following Taylor expansions in Eq. (2.36)

R(εv1) =R(v) +
dR(v)

d ln(1/v)
ln

v

εv1
+O

(
ln2 v

εv1

)
,

R′`i

(
vi

d`ig`i(φi)

)
=R′`i(v) +O

(
ln
vd`ig`i(φi)

vi

)
. (2.38)

This is motivated by the fact that at NLL the resolved real emissions are such that vi ∼ v1 ∼ v,
and hence the terms neglected in the above expansions are at most NNLL. Only by expanding
consistently (i.e. to the same logarithmic order) the ε dependence in the Sudakov and in the
resolved real emissions we are sure that the result is completely ε-independent.

We observe that, since we expanded out the φi dependence in R′, we have dR(v)/d ln(1/v) =∑
`R
′
`(v) and Eq. (2.36) becomes

Σ(v) ' σ(0)

∫
dv1

v1

∫ 2π

0

dφ1

2π
e−R(v)e−

∑
` R
′
`(v) ln v

εv1

∑
`1=1,2

R′`1 (v)×

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

∑
`i=1,2

R′`i (v) Θ (v − V ({p̃}, k1, . . . , kn+1)) . (2.39)
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At this stage, the integration over v1 can be performed analytically, and Eq. (2.39) reproduces
exactly the known CAESAR formula.7

However, in order to perform the latter expansions about the observable’s value v, one has to
make sure that the ratio vi/v remains of order one in the real-emission phase space. rIRC safety
ensures that emissions with vi � v do not contribute to the observable, and are fully exponentiated
and accounted for in the Sudakov radiator. Therefore, the condition vi/v ∼ 1 is fulfilled only if
configurations in which vi � v never occur.

While the latter condition holds true for most rIRC observables, it is clearly violated for observ-
ables that vanish away from the Sudakov limit. An example is given by the transverse momentum
of a colour singlet, which can vanish even in the presence of several emissions with a finite (non-
zero) transverse momentum. In that case, as shown in ref. [39], Eq. (2.39) has a divergence at∑
`R
′
`(v) ' 2. For a different observable vanishing away from the Sudakov limit, the divergence

will occur at a different, non-zero value of v.
For such observables, Eq. (2.36) cannot be expanded around v. As we will discuss in detail in

Section 3.1, we suggest to perform the following alternative expansion about the observable’s value
of the hardest block v1

R(εv1) =R(v1) +
dR(v1)

d ln(1/v1)
ln

1

ε
+O

(
ln2 1

ε

)
,

R′`i

(
vi

d`ig`i(φi)

)
=R′`i(v1) +O

(
ln
v1d`ig`i(φi)

vi

)
. (2.40)

In this way, the rIRC safety of the observable guarantees that vi ∼ v1 (ζi ∼ 1) and therefore
the terms neglected in Eqs. (2.40) are at most NNLL. However, a class of higher-order terms still
remains in Eq. (2.40) through the dependence of the considered terms on v1. These higher-order
terms cannot be disposed of entirely, as they regularise the divergence discussed above. Therefore,
while the resulting equation is finite and accurate at NLL order also for rIRC-safe observables
that vanish away from the Sudakov limit, subleading corrections beyond NLL cannot be entirely
removed.

The above approximations make the evaluation of Eq. (2.36) considerably simpler than its
original form, as it will be shown in Section 3. Its implementation can be carried out efficiently
with MC methods as described in detail in Section 4.3.

2.2 Choice of the resolution and ordering variable

The derivation that we carried out for the resummation formalism relies to a large extent on the
introduction of a resolution variable that separates resolved real blocks from unresolved ones as
discussed in the previous section. This resolution variable acts on the total momentum of each of
the correlated blocks.

One has some freedom in choosing the resolution variable. In principle, the only necessary
property for a good resolution variable is that it must guarantee, at all orders, the cancellation of
the IRC divergences of the exponentiated virtual corrections, and hence has to be rIRC safe. A
particular choice is motivated by convenience in formulating the calculation. For instance, choosing
a variable that shares the same leading logarithms with the resummed observable allows for a much
easier implementation of the all-order result, as it will be discussed in Section 3. A natural choice,

7Some extra simplifications can be made at NLL: in the resolved real squared matrix elements R′` one can keep
only the term proportional to M2

sc as remaining terms are subleading. In order to guarantee the cancellation of the
divergences in the ε regulator, the same approximation has to be made in the term

∑
`R
′
`(v) ln v

εv1
coming from the

expansion of the Sudakov radiator. Finally, the observable can be treated in its soft-collinear approximation given
that, at NLL, the real emissions constitute an ensemble of soft-collinear gluons.
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which fulfils the above requirements, is the value of observable in its soft-collinear approximation,
as discussed in refs. [41, 45, 46, 52].

However, we note that for the whole class of transverse observables (that scale like Eq. (2.5)
for a single emission), a more convenient choice for the resolution variable is V (k) = (kt/M)a, k
being the sum of the four-momenta in each correlated block. While this exactly coincides with the
above prescription for observables with d` = g`(φ) = 1, it is a legitimate choice also for observables
with d` 6= 1, g`(φ) 6= 1 since the dependence on d`g`(φ) first enters at NLL order, hence the leading
logarithms of the resolution variable are the same as for the resummed observable.

The advantage of the latter choice, besides the simplifications in the implementation to be
discussed in Section 3, is that it leads to a universal Sudakov radiator for all observables with
the same a in the parametrisation (2.5), while the resolved real radiation will correctly encode the
full observable dependence through the measurement function Θ (v − V ({p̃}, k1, . . . , kn+1)). In the
present article, we adopt this choice, and we present explicitly the case for a = 1. The generalisation
to any a > 0 is straightforward following our derivation. With this choice, Eq. (2.36) reads

Σ(v) = σ(0)

∫
dkt1
kt1

∫ 2π

0

dφ1

2π
e−R(εkt1)

∑
`1=1,2

R′`1 (kt1)×

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

∑
`i=1,2

R′`i (ζikt1) Θ (v − V ({p̃}, k1, . . . , kn+1)) , (2.41)

where, with a little abuse of notation, we redefined ζi = kti/kt1. As it will be described in Section 4.3,
the above equation can be efficiently evaluated as a simplified shower of primary emissions off the
initial-state legs, ordered in transverse momentum. This choice of the ordering variable is dictated
by the choice of the resolution scale, that in turn leads to the Sudakov radiator for a kt ordered
evolution in Eq. (2.41).

2.3 Structure of higher-order corrections

In deriving the main result of the previous section, Eq. (2.36), we made two approximations. Firstly,
we ignored nPC correlated blocks with n > 2 in the squared amplitudes (2.17). Secondly, we
did not specify a complete treatment of hard-collinear radiation. Indeed, the only hard-collinear
contribution entering at NLL (in Eq. (2.26)) has been treated with soft kinematics. We discuss how
to relax both approximations in the next two subsections.

2.3.1 Correlated blocks at higher-logarithmic order

Higher-order corrections require the inclusion of higher-multiplicity and higher-order blocks with
respect to those relevant to Eq. (2.36). The relevant blocks necessary to a given order are sum-
marised in Table 1. For instance, at NNLL, for the observables (2.16), one has to include 2PC(0)

(i.e. the fully correlated double emission), and 1PC(1) both in the soft and in the hard-collinear
limit, and 3PC(0), 2PC(1), and 1PC(2) blocks in the soft-collinear limit. Given the inclusive nature
of the observables (2.16) that we are treating in this article, the inclusion of higher-order blocks
can be done in a simple systematic way by adding more terms to the r.h.s. of Eq. (2.17).

We remind the reader of the fact that, while at NLL the bounds for rapidity Yi of the inclusive
block |M(ki)|2inc can be approximated with their massless limit (see Eq. (2.20) and comments below
it), starting at NNLL the integration over the rapidity Yi must be performed exactly.

2.3.2 Hard-collinear emissions and treatment of recoil

In order to repeat the procedure that led to Eq. (2.36) at higher logarithmic accuracy, we need to
handle the phase space in the multiple-emission kinematics. In the NLL case derived in the previous
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Logarithmic order Blocks required

LL {1PC(0) (sc)}

NLL {1PC(0), 1PC(1) (sc)}; {2PC(0) (sc)}

NNLL {1PC(m≤1), 1PC(2) (sc)}; {2PC(0), 2PC(1) (sc)};
{3PC(0) (sc)}

N3LL {1PC(m≤2), 1PC(3) (sc)}; {2PC(m≤1), 2PC(2) (sc)};
{3PC(0), 3PC(1) (sc)}; {4PC(0) (sc)}

...
...

NkLL {1PC(m≤k−1), 1PC(k) (sc)}; · · · ; {(k + 1)PC(0) (sc)}

Table 1. Blocks to be included in the squared-amplitude decomposition at a given logarithmic order. At
each order, the higher-rank blocks are to be included in the soft-collinear limit (“sc” in the table).

section, indeed, all resolved real emissions are soft and collinear and therefore they do not modify
each other’s phase space. However, starting at NNLL one or more real emissions can be hard and
collinear to the emitting leg and this changes the available phase space for subsequent real emissions.
More precisely, at NNLL we need to work out the corrections due to a single hard-collinear resolved
emission within an ensemble of soft-collinear radiation. Similarly, at N3LL, one has to consider up
to two resolved hard-collinear emissions embedded in an ensemble of soft-collinear radiation. The
kinematics and the proper treatment of hard-collinear emissions, still missing in our formulation,
will be discussed in this section.

To correctly include the evolution of the hard-collinear radiation in our formulation, we first
consider how initial-state radiation modifies the real-emission kernels, illustrating this in the single-
emission case for the sake of clarity. Throughout this section and in the rest of this article we use
the tree-level splitting functions as reported in Appendix B.

We start by formulating the single-emission probability for a gluon-initiated process. For the
sake of concreteness, all prefactors in this subsection are given under the assumption that the colour
singlet is a single particle, e.g. a Higgs boson. We express the probability of emitting either a gluon
or a quark off leg 1 (an analogous term can be written for an emission off leg 2), for an observable
v, as

Σ(v) = 2π |MB |2gg
∫
dx1dx2δ(x1x2s−M2)

∫
dkt
kt

αs
π

dφ

2π

×
(∫ 1−kt/M

x1

dz

[
2
P

(0)
gg (z)

z
fg(µF ,

x1

z
) +

P
(0)
gq (z)

z

(
fq(µF ,

x1

z
)+fq̄(µF ,

x1

z
)
)]

fg(µF , x2)Θ(v − v(k))

−
∫ 1−kt/M

0

dz
[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2)

−
(
P̂ (0)
gg ⊗ fg

)
(x1)fg(µF , x2)−

(
P (0)
gq ⊗ fq

)
(µF , x1)fg(µF , x2)−

(
P (0)
gq ⊗ fq̄

)
(µF , x1)fg(µF , x2)

)
+ constant terms , (2.42)

where fg(µF , x) is the gluon density renormalised in the MS scheme, evaluated at a factorisation
scale µF , and P̂ denotes the regularised splitting function. Since P̂ (0)

gq (z) = P
(0)
gq (z) (see Ap-

pendix B), the regularised label “ˆ” applies only to P (0)
gg . The second, third, and fourth line of

Eq. (2.42) denote the real emission, the virtual corrections, and collinear counterterm, respectively.
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For the virtual correction, we simply use the first-order expansion of the resummed form factor
V(ΦB) [43] expressed in terms of leading-order splitting functions, of which we take the limit in
four dimensions. The unregulated soft and collinear divergences of the four-dimensional virtual
corrections manifestly cancel against the ones in the real emissions at the integrand level. We stress
once again that in colour-singlet production we can use the azimuthally averaged splitting func-
tions (see Appendix B) up to NNLL accuracy. At N3LL, corrections from azimuthal correlations
arise [51], and they will be introduced in Section 2.3.3.

In general, the upper bound of the z integration in the virtual corrections is different from
the one in the real correction when more than one hard-collinear emission is present, since the
available phase space for the real emissions is changed by the presence of the hard-collinear radiation.
However, for the single-emission case treated in Eq. (2.42), the upper bound, derived in Eq. (2.24),
is identical for the real and virtual contributions.

Eq. (2.42) also contains constant contributions arising from both the finite terms of the virtual
form factor in MS, and the O(αs) collinear coefficient functions. For the sake of simplicity, in the
following discussion we neglect these NNLL constant terms, which we will however include in our
final formula.

We now add and subtract the term

2π |MB |2gg
∫
dx1dx2δ(x1x2s−M2)

∫
dkt
kt

αs
π

dφ

2π

×
∫ 1−kt/M

0

dz
[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2)Θ(v − v(k)) , (2.43)

and recast Eq. (2.42) as

Σ(v) = 2π |MB |2gg
∫
dx1dx2δ(x1x2s−M2)

∫
dkt
kt

αs
π

dφ

2π

×
(∫ 1−kt/M

x1

dz 2
P

(0)
gg (z)

z
fg(µF ,

x1

z
)fg(µF , x2)Θ(v − v(k))−

∫ 1

x1

dz
P̂

(0)
gg (z)

z
fg(µF ,

x1

z
)fg(µF , x2)

−
∫ 1−kt/M

0

dz
[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2)Θ(v − v(k))

+

∫ 1−kt/M

0

dz
[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2) (Θ(v − v(k))− 1)

+

∫ 1

x1

dz
P

(0)
gq (z)

z

(
fq(µF ,

x1

z
)+fq̄(µF ,

x1

z
)
)
fg(µF , x2) (Θ(v − v(k))− 1)

−
∫ 1

1−kt/M
dz
P

(0)
gq (z)

z

(
fq(µF ,

x1

z
)+fq̄(µF ,

x1

z
)
)
fg(µF , x2)Θ(v − v(k))

)
. (2.44)

By using the symmetry of the Pgg splitting function under z ↔ 1− z, one finds that

∫ 1

x1

dz 2
P

(0)
gg (z)

z
fg(µF ,

x1

z
)−

∫ 1

0

dz
(
P (0)
gg (z) + nfP

(0)
qg (z)

)
fg(µF , x1) =

∫ 1

x1

dz
P̂

(0)
gg (z)

z
fg(µF ,

x1

z
) ,

(2.45)
which allows us to recast the previous equation as

Σ(v) = 2π |MB |2gg
∫
dx1dx2δ(x1x2s−M2)

∫
dkt
kt

αs
π

dφ

2π

×
{∫ 1

x1

dz
P̂

(0)
gg (z)

z
fg(µF ,

x1

z
)fg(µF , x2) (Θ(v − v(k))− 1)
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+

∫ 1−kt/M

0

dz
[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2) (Θ(v − v(k))− 1)

+

∫ 1

x1

dz
P

(0)
gq (z)

z

(
fq(µF ,

x1

z
)+fq̄(µF ,

x1

z
)
)
fg(µF , x2) (Θ(v − v(k))− 1)

−
∫ 1

1−kt/M
dz

(
2
P

(0)
gg (z)

z
fg(µF ,

x1

z
)fg(µF , x2)−

[
P (0)
gg (z) + nfP

(0)
qg (z)

]
fg(µF , x1)fg(µF , x2)

+
P

(0)
gq (z)

z

(
fq(µF ,

x1

z
)+fq̄(µF ,

x1

z
)
)
fg(µF , x2)

)
Θ(v − v(k))

}
. (2.46)

Analogously, it is straightforward to show that the logarithmic part for a quark-initiated process
with an emission off the leg 1 reads

Σ(v) = 2π |MB |2qq̄
∫
dx1dx2δ(x1x2s−M2)

∫
dkt
kt

αs
π

dφ

2π

×
{∫ 1

x1

dz
P

(0)
qg (z)

z
fg(µF ,

x1

z
)fq̄(µF , x2) (Θ(v − v(k))− 1)

+

∫ 1−kt/M

0

dzP (0)
qq (z)fq(µF , x1)fq̄(µF , x2) (Θ(v − v(k))− 1)

+

∫ 1

x1

dz
P̂

(0)
qq (z)

z
fq(µF ,

x1

z
)fq̄(µF , x2) (Θ(v − v(k))− 1)

−
∫ 1

1−kt/M
dz

(
P

(0)
qq (z)

z
fq(µF ,

x1

z
)fq̄(µF , x2)− P (0)

qq (z)fq(µF , x1)fq̄(µF , x2)

+
P

(0)
qg (z)

z
fg(µF ,

x1

z
)fq̄(µF , x2)

)
Θ(v − v(k))

}
, (2.47)

where we have set P̂ (0)
qg (z) = P

(0)
qg (z).

In Eqs. (2.46) and (2.47), the last integral from 1 − kt/M to 1 gives rise to regular terms and
can therefore be neglected. As far as the remaining terms are concerned, we notice that the squared
matrix element for an initial-state emission, which corresponds to the terms containing a Θ function
in Eqs. (2.46) and (2.47), can be separated into two pieces:

• The first one, encoded in the third line of Eqs. (2.46) and (2.47), modifies neither the flavour
nor the momentum fraction of the incoming partons, and the bounds of the relative z integra-
tion are those of the corresponding virtual phase space. This contribution is fully analogous
to the case treated in Sec. 2.3, that gives rise to R′ in Eq. (2.36). When evaluating this term
explicitly, we can further split it, as done in Eq. (2.26), into a soft term and a hard-collinear
contribution. The exact upper bound of the z integral is only relevant in the soft contribution,
while it can be extended up to 1 in the hard-collinear term up to regular (non logarithmic)
terms. In the following, we will refer to this term as the R′ contribution.

• The second one (second and fourth lines of Eqs. (2.46) and (2.47)) does modify both flavour
and momentum fraction. This contribution corresponds to an exclusive step of DGLAP
evolution. The corresponding z integration can be extended up to the soft limit (z = 1) as
this limit is regularised by the plus distribution in the corresponding splitting function. We
stress once again that the latter extension of the upper bound of the z integration in the
hard-collinear radiation’s phase space is correct up to regular terms that are ignored in our
treatment. We will refer to this term as the exclusive DGLAP evolution step.
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This decomposition is only a convenient way of expressing the squared amplitude and phase space
for an initial-state emission, and only the sum of all logarithmic terms in Eqs. (2.46) and (2.47) is
physically well defined. The considerations above will be useful in the rest of this section when the
all-order kinematics is discussed.

As anticipated in the beginning of this subsection, in order to achieve N3LL accuracy, one has to
consider configurations with up to two resolved hard-collinear emissions together with any number
of soft-collinear partons in the final state. We therefore study how the presence of hard-collinear
emissions affects the phase space of the remaining radiation in the all-order picture.8 We consider
again the emissions ordered according to their transverse momentum. In this picture, the relation
between the z(`) variable and the Sudakov variable y(`) for a given emission k will be modified by
the radiation that occurred before k as described in Eq. (2.32).

We consider the case of an ensemble of resolved emissions off a leg ` of which a single one
is hard and collinear, while all the remaining radiation is soft. We can group the emissions into
the following three sets: the soft emissions that occur before the hard-collinear parton is emitted
(i.e. at larger transverse momenta), the hard-collinear emission itself, and the soft emissions that
occur after the hard-collinear one (at smaller transverse momenta). The soft radiation emitted
before the hard-collinear emission has z(`)

i ' y
(`)
i ' 1 and therefore kti ' k̃ti, so its phase space

boundaries are as described in Section 2.1. For the hard-collinear emission khc the relation between
z

(`)
hc and y(`)

hc is reported in Eq. (2.23) and the corresponding z(`)
hc integration bound is in Eq. (2.24).

Finally, soft emissions that occur after the hard-collinear one will again have kti ' k̃ti but now
1− y(`)

i ' (1− z(`)
i )/z

(`)
hc . The upper bound of their z(`)

i integral is therefore

z
(`)
i < 1− z(`)

hc kti/M. (2.48)

From the above equation we see that the phase space of the soft radiation emitted after the hard-
collinear emission is modified by the presence of the latter. However, the squared amplitude and
phase space for emissions in the soft limit only depend on z(`)

i through dz(`)
i /(1− z(`)

i ). Therefore,
using the relation

dz
(`)
i

1− z(`)
i

=
dy

(`)
i

1− y(`)
i

, (2.49)

and using the fact that kti ' k̃ti for these emissions, we can replace the integral over z(`)
i with an

integral over y(`)
i whose upper bound is given by

y
(`)
i < 1− kti/M. (2.50)

This allows one to disentangle the phase space of all emissions in the considered kinematic config-
uration and, hence, to iterate the procedure at all orders.

The remaining kinematic configuration to be considered in a N3LL resummation is given by
an ensemble of soft-collinear emissions accompanied by two hard-collinear ones. We label the two
hard collinear emissions by khc1 and khc2 and we assume, without any loss of generality, that khc1 is
emitted before khc2 (hence it has a larger transverse momentum in our picture). The upper bounds
of the corresponding z(`) integrals for the real contribution will now be complicated functions of the
transverse momenta khct1 and khct2 that can be obtained starting from Eqs. (2.9), (2.32). However,
things are much simplified if we use the decomposition described in the first part of this section, as
follows. We recall that the real matrix element can be decomposed as a sum of the R′ contribution
(that does not modify the momentum fraction of the emitter, and whose kinematics is soft by
construction), and an exclusive DGLAP step that modifies the momentum fraction of the emitting

8We thank A. Banfi for fruitful discussions on this point.
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leg, as shown in Eqs. (2.46), (2.47). In the latter term, the upper bound of the z(`) integration can
be extended to 1 (hence it becomes independent of the kinematics of the rest of the event) since
the soft limit is regularised by the plus prescription in the corresponding splitting functions. As for
the R′ contributions relative to khc1 and khc2 , they can be further decomposed into a soft-collinear
term and a term that contains the hard-collinear part of the matrix element (which however does
not modify the momentum fraction of the emitting leg). Once again, in the latter contribution the
z(`) integration can be extended to 1, while in the soft-collinear contribution one can simply replace
the z(`) integral with an integral over y(`) by means of Eq. (2.49). Moreover, using the fact that
for a soft emission k̃t ' kt, the corresponding upper bound of the y(`) integral can be replaced by
1− kt/M .

This procedure allows one to disentangle completely the phase space of the R′ contributions
(whose kinematics is soft by construction) from that of the exclusive DGLAP evolution step which
are by construction hard and collinear. The lower bounds in the z(`) integrals of multiple resolved
DGLAP evolution steps are entangled as each of them modifies significantly the momentum available
for the subsequent hard-collinear ones, resulting in a convolution between the splitting kernels and
the corresponding parton density.

The above treatment of the double-hard-collinear case is valid up to regular terms. In this sec-
tion we neglected the constant terms that arise from the finite part of the renormalised form factor,
and from the collinear coefficient functions, which are relevant already for a NNLL resummation.
For inclusive observables considered in this article, the collinear coefficient functions factorise in
front of the Sudakov factor and, for the processes considered here, they were computed to O(α2

s)

in refs. [22–24]. These will be introduced in the following section when we iterate the arguments
discussed here at all perturbative orders in αs.

2.3.3 Resummed formula for initial-state radiation

The arguments derived in the previous section can be used to formulate the structure of the cross
section at all orders by iterating the single-emission picture defined above. Given the inclusive
nature of the observables studied here, the inclusion of higher-order logarithmic corrections can be
achieved in a simple way by just adding the relevant correlated blocks (as reported in Table 1) in
the inclusive approximation (2.17). The contribution to the cross section from each inclusive block,
in turn, can be split into an R′-type contribution (which does not modify either the momentum
fraction or the flavour of the emitting leg), and a DGLAP step (inclusive in the content of each
correlated block, but differential in its transverse momentum), and hence it can be treated in a fully
analogous way to what done for single emissions in the previous subsection. This simple prescription
allows us to discuss the inclusion of the parton densities by referring to emissions (for the sake of
simplicity), while keeping in mind that they are to be thought of as inclusive sums of correlated
blocks as defined in Eq. (2.17).

To show how the parton densities are accounted for, we start by evaluating them at a scale µ0

that is assumed to be smaller than all transverse momenta in the event. We consider the situation
in which the emissions are ordered in transverse momentum, and the hardest (resolved) emission k1

occurred. The phase-space diagram for any secondary emission ki with i > 1 is depicted in Fig. 1
in the ln(kt/M) − η (Lund) plane, where now η denotes the rapidity in the centre-of-mass frame
of the incoming partons which are extracted from the proton at a factorisation scale µ0, and the
transverse momentum kt is taken with respect to the beam direction. As stated in Section 2.1,
due to rIRC safety, only emissions that take place in the strip between εkt1 and kt1 (labelled with
“REAL EMISSIONS” in Fig. 1) modify the observable significantly and are resolved. The remaining
unresolved real emissions (kti < εkt1) are combined with the virtual corrections, which populate
the whole region below the two diagonal lines that denote the upper rapidity limits. The result of
this combination is indeed the Sudakov form factor associated with the first emission that vetoes

– 18 –



secondary emissions in the yellow region (labelled with “SUDAKOV SUPPRESSION” in Fig. 1) of
the Lund plane. In addition, the combination of virtual and unresolved emissions gives also rise to a
constant term that multiplies the Sudakov and encodes both the finite part of the virtual corrections
and the constant contribution due to soft and/or collinear emissions exactly at the edges of their
phase space, encoded in the collinear coefficient functions.

In the initial-state-radiation case at hand, hard-collinear emissions define the evolution of the
parton densities. These emissions occur on a strip (labelled with “DGLAP” in Fig. 1) along the
upper rapidity bounds, and their evolution is encoded in the DGLAP equations. In the unresolved

REAL EMISSIONS

D
G
L
A
P

D
G
L
A
P

SUDAKOV

SUPPRESSION

ln( kt,1 /M )

ln( ϵkt,1/M )

ln(1/ϵ)

η

ln( kt / M )

Figure 1. Phase space for a secondary real emission.

region (kti < εkt1), the DGLAP evolution can be performed inclusively since emissions in this phase-
space region do not affect the value of the observable. On the other hand, when kt1 > kti > εkt1
the corresponding hard-collinear emissions modify significantly the observable’s value and therefore
must be treated exclusively, namely unintegrated in kt.

In addition to the parton densities, starting at O(αs), one needs to include the coefficient func-
tions that emerge from their renormalisation, and originate from emissions that occur at the edges
of the phase space in Fig. 1. The coefficient functions contribute to the logarithmic structure only
through the scale of their running coupling, which is the transverse momentum of the emission(s)
they are associated with. As done for the parton densities, one can evaluate them initially at a scale
µ0 smaller than any transverse momentum in the event, and subsequently evolve them inclusively
up to the resolution scale εkt1. Their evolution must be instead treated exclusively in the resolved
strip kt1 > kti > εkt1.

In order to introduce the all-order result, it is convenient to simplify the flavour structure of
the evolution for the time being. We neglect real-emission kernels that modify the flavour of the
emitting leg, namely those that do not have a soft singularity Pqg and Pgq. This ensures that the
flavour of the initial parton densities is only modified by the coefficient functions and is conserved
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by the resolved real radiation. This approximation is made without any loss of generality, and
for the only sake of simplicity. The extension to the full flavour case will be trivial once the final
formula is obtained.

For the remaining part of the section, it is useful to introduce a matrix notation to simplify
the structure of our expressions in flavour space. We define f as the array containing the 2nf + 1

partonic densities, where nf denotes the number of active flavours. To handle different Born
configurations with different incoming flavours c`, we then define the coefficient-function matrix
Cc` as a (2nf + 1)× (2nf + 1) diagonal matrix in flavour space whose entries are

[Cc` ]ab = Cc`f(a)δab, (2.51)

where Cij are the collinear coefficient functions, c` is the flavour of the leg ` entering the Born
process, and f(a) is the flavour corresponding to the a-th entry of the parton-density array. For
instance, we explicitly show the above convention in the case of Higgs production, considering only
a single quark flavour q. By defining the array f = (fg, fq, fq̄)

T , the matrix Cg reads

Cg =

Cgg 0 0

0 Cgq 0

0 0 Cgq̄

 . (2.52)

The evolution of (2.51) between two scales is entirely encoded in the evolution of the running
coupling. By introducing the corresponding anomalous-dimension matrix Γ(C)

Γ(C)(αs(kt)) = 2β(αs(kt))
d ln Cc`(αs(kt))

dαs(kt)
, (2.53)

we can write the Renormalisation-Group evolution (RGE) of the coefficient function matrix as

Cc`(αs(µ)) = exp

{
−
∫ µ0

µ

dkt
kt

Γ(C)(αs(kt))

}
Cc`(αs(µ0)). (2.54)

In principle, the matrix Γ(C) should also explicitly carry a label c` to specify that it evolves the
coefficient function Cc` associated with the Born flavour c`. We omit this label as the notation in
what follows is unambiguous. We stress however that the flavour of the coefficient function is not
modified by its RG evolution, indeed it is manifestly flavour diagonal.

The iterative structure of the squared amplitudes appears more transparent if we work in
Mellin space, where convolutions become products. We therefore introduce the Mellin transform of
a function g(x) as

gN` ≡
∫ 1

0

dxxN`−1g(x). (2.55)

The DGLAP [53–55] evolution of the parton-density vector f can be conveniently written in
Mellin space as

fN`(µ) = P exp

{
−
∫ µ0

µ

dkt
kt

αs(kt)

π
ΓN`(αs(kt))

}
fN`(µ0). (2.56)

In the previous equation P is the path-ordering symbol, and the matrix Γ is defined as

[ΓN`(αs(µ))]ab =

∫ 1

0

dz zN`−1P̂f(a)f(b)(z, αs(µ)) ≡ γN`;f(a)f(b) =

∞∑
n=0

(
αs(µ)

2π

)n
γ

(n)
N`;f(a)f(b),

(2.57)

where P̂f(a)f(b) are the regularised splitting functions (see Appendix B). We stress that, within
the simplifying assumption made above on flavour-conserving real-emission kernels, no splitting
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functions involving a real quark emission are included, therefore the matrix Γ is diagonal. Within
this assumption, the path ordering in Eq. (2.56) can be lifted.

With this notation, the hadronic cumulative cross section, differential with respect to the Born
phase space ΦB , can be written as

dΣ(v)

dΦB
=

∫
C1

dN1

2πi

∫
C2

dN2

2πi
x−N1

1 x−N2
2

∑
c1,c2

d|MB |2c1c2
dΦB

fTN1
(µ0)Σ̂c1,c2

N1,N2
(v)fN2

(µ0), (2.58)

where the sum runs over all possible Born configurations and we employed a double inverse Mellin
transform. The contours C1 and C2 are understood to lie along the imaginary axis to the right of
all singularities of the integrand. In Eq. (2.58), and from now on, we define the notation

d|MB |2c1c2
dΦB

≡
∫
dΦ′B |MB |2c1c2δ(x1 − x′1)δ(x2 − x′2)δ(ΩB − Ω′B) ,

where ΩB denotes any set of internal phase-space variables used to parametrise the colour-singlet
system. The right-hand side differs from the squared amplitude |MB |2c1c2 simply by a jacobian factor.

The matrix Σ̂ encodes the effect of the all-order radiation that evolves the partonic cross
section and the corresponding parton densities. To write down an all-order expression for Σ̂ for
the observables (2.16), we need to iterate the single-emission probability derived in the previous
section. Given that the phase space of the R′ contributions and the exclusive DGLAP evolution
steps are completely disentangled in the resolved real radiation, this operation can be performed
straightforwardly in Mellin space, yielding

Σ̂c1,c2
N1,N2

(v) =
[
Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))
] ∫ M

0

dkt1
kt1

∫ 2π

0

dφ1

2π

× e−R(εkt1) exp

{
−

2∑
`=1

(∫ µ0

εkt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) +

∫ µ0

εkt1

dkt
kt

Γ
(C)
N`

(αs(kt))

)}
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1 (αs(kt1)) + Γ

(C)
N`1

(αs(kt1))

)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

2∑
`i=1

(
R′`i (kti) +

αs(kti)

π
ΓN`i (αs(kti)) + Γ

(C)
N`i

(αs(kti))

)
×Θ (v − V ({p̃}, k1, . . . , kn+1)) , (2.59)

where now ζi = kti/kt1 since we are using the transverse momentum as a resolution and ordering
variable. R′` is a diagonal matrix in flavour space: given the flavour c` of the Born leg `, it describes
the flavour-conserving resolved radiation off leg `. It is defined as

[R′`]ab = R′`δab, (2.60)

and R′` is defined in Eq. (2.33). The Sudakov operator R is then defined as

R(εkt1) =

2∑
`=1

∫ M

εkt1

dkt
kt

R′`(kt). (2.61)

The terms proportional to R′ in Eq. (2.59) encode the contribution of the radiation which is
flavour-diagonal, and does not modify the momentum fraction of the incoming partons. This is the
analogue of what has been derived in Sec. 2.1 in the case of scale-independent parton densities. In

– 21 –



addition, the real emission probability now involves the exclusive evolution for the parton densities
and coefficient functions.

The matrices Σ̂c1,c2 are diagonal in flavour space within the flavour assumption that we are
making here. The first line of Eq. (2.59) contains the factor

[
Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))
]

that encodes the hard-virtual corrections to the form factor and the collinear coefficient functions.
Explicit expressions for these quantities will be given later (see Sec. 3.1 and references therein). As
discussed above, the coupling of the coefficient functions here is evaluated at µ0 and subsequently
evolved up to εkt1 by the operator containing the diagonal matrix Γ

(C)
N`

in the second line of (2.59).
Similarly, the parton densities are evolved from µ0 up to εkt1. As it was shown in ref. [51], starting
at a given order in perturbation theory one needs to include the contribution from the collinear
coefficient functions G, that describe the azimuthal correlations with the initial-state gluons. Such
a contribution starts at O(α2

s) (i.e. N3LL) for gluon-fusion processes, and at yet higher orders for
quark-initiated ones. It is included in the above formulation by simply adding to Eq. (2.59) an
analogous term where one makes the replacements[

Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))
]
→
[
Gc1;T
N1

(αs(µ0))H(µR)Gc2
N2

(αs(µ0))
]
, (2.62)

and
Γ

(C)
N`

(αs(kt))→ Γ
(G)
N`

(αs(kt)), (2.63)

where Γ
(G)
N`

is defined analogously to Eq. (2.53), and the flavour structure of G is analogous to the
one of the C matrix. In what follows this contribution, whenever not reported, is understood.

Eq. (2.59) has been derived by iterating the single-emission probability. As discussed above,
higher-order logarithmic corrections are simply included by adding higher-order correlated blocks.
Specifically, this amounts to including higher-order logarithmic corrections to the radiator R and
its derivative R′, as well as in the anomalous dimensions which drive the evolution of the parton
densities and coefficient functions.

We conclude the discussion by pointing out that even if the all-order formulation has been
conveniently obtained in Mellin space, it is possible to evaluate Eq. (2.58) directly in momentum
space at any given logarithmic order. We will describe how to do this in Sec. 3.1. Eq. (2.59)
holds for all inclusive observables (see definition in Sec. 2.3) that do not depend on the rapidity of
the initial-state radiation. In the remaining part of this article we specialise to the study of the
transverse-momentum case, but analogous conclusions will apply to other observables of the same
class.

2.4 Equivalence with impact-parameter-space formulation

In this section we show how to relate our Eq. (2.58) to the impact-parameter-space formulation
of [13]. We show the equivalence for the differential partonic cross section (2.59) in the case of the
transverse momentum pt. An analogous proof can be carried out in the case of the φ∗.

Our starting point is the differential partonic cross section, where we now set µ0 = µR = M

without loss of generality:

d

d2~pt
Σ̂c1c2
N1,N2

(pt) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M))

∫ M

0

dkt1
kt1

∫ 2π

0

dφ1

2π

× e−R(εkt1) exp

{
−

2∑
`=1

(∫ M

εkt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) +

∫ M

εkt1

dkt
kt

Γ
(C)
N`

(αs(kt))

)}

×
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1 (αs(kt1)) + Γ

(C)
N`1

(αs(kt1))

)
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×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

2∑
`i=1

(
R′`i (kti) +

αs(kti)

π
ΓN`i (αs(kti)) + Γ

(C)
N`i

(αs(kti))

)
× δ(2)

(
~pt −

(
~kt1 + · · ·+ ~kt(n+1)

))
. (2.64)

We transform the δ function into b-space as

δ(2)
(
~pt −

(
~kt1 + · · ·+ ~kt(n+1)

))
=

∫
d2~b

4π2
e−i

~b·~pt
n+1∏
i=1

ei
~b·~kti , (2.65)

and we evaluate the azimuthal integrals, which simply amounts to replacing each of the factors
e±i

~b·~kt with a Bessel function J0(bkt). It is now straightforward to see that the sum in Eq. (2.64)
gives rise to an exponential function, yielding

d

dpt
Σ̂c1c2
N1,N2

(pt) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(ptb)

∫ M

0

dkt1
kt1

×
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1 (αs(kt1)) + Γ

(C)
N`1

(αs(kt1))

)
J0(bkt1)

× exp

{
−

2∑
`=1

∫ M

kt1

dkt
kt

(
R′` (kt) +

αs(kt)

π
ΓN`(αs(kt)) + Γ

(C)
N`

(αs(kt))

)
J0(bkt)

}

× exp

{
−

2∑
`=1

∫ M

εkt1

dkt
kt

(
R′` (kt) +

αs(kt)

π
ΓN`(αs(kt)) + Γ

(C)
N`

(αs(kt))

)
(1− J0(bkt))

}
.

(2.66)

We finally notice that we can set ε → 0 in the above formula, given that now the cancellation of
divergences is manifest. The kt1 integrand is a total derivative and it integrates to one, leaving

d

dpt
Σ̂c1c2
N1,N2

(pt) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(ptb)

× exp

{
−

2∑
`=1

∫ M

0

dkt
kt

(
R′` (kt) +

αs(kt)

π
ΓN`(αs(kt)) + Γ

(C)
N`

(αs(kt))

)
(1− J0(bkt))

}
. (2.67)

We now insert the resulting partonic cross section back into the definition of the hadronic cross
section (2.58), and use the second and third terms in the exponent of Eq. (2.67) to evolve the parton
densities and the coefficient functions down to b0/b, with b0 = 2e−γE . After performing the inverse
Mellin transform, and neglecting N4LL corrections, we obtain (hereafter we simplify the notation
for the parton densities by omitting their x1 and x2 dependence, which is determined by the Born
kinematics ΦB)

d2Σ(v)

dΦBdpt
=
∑
c1,c2

d|MB |2c1c2
dΦB

∫
b db ptJ0(ptb) fT (b0/b)C

c1;T
N1

(αs(b0/b))H(M)Cc2
N2

(αs(b0/b))f(b0/b)

× exp

{
−

2∑
`=1

∫ M

0

dkt
kt

R′` (kt) (1− J0(bkt))

}
. (2.68)

Eq. (2.68) represents indeed the b-space formulation of transverse-momentum resummation. Com-
monly, it is expressed in the equivalent form [14]9

d2Σ(v)

dΦBdpt
=
∑
c1,c2

d|MB |2c1c2
dΦB

∫
b db ptJ0(ptb) fT (b0/b)C

c1;T
N1

(αs(b0/b))HCSS(M)Cc2
N2

(αs(b0/b))f(b0/b)

9This corresponds to a change of scheme of the type discussed in ref. [56].
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× exp

{
−

2∑
`=1

∫ M

0

dkt
kt

R′CSS,` (kt) Θ(kt −
b0
b

)

}
. (2.69)

where R′CSS,` and HCSS(M) are the Sudakov and hard function commonly used for a b-space
formulation [14]. As shown in ref. [51], and as already stressed above, both Eqs. (2.68) and (2.69)
receive an extra contribution due to the azimuthal correlations which are parametrised by the
G coefficient functions. We omit them in this comparison for the sake of simplicity, however it
is clear that analogous considerations apply in that case. The comparison between Eqs. (2.68)
and (2.69) allows us to extract the N3LL ingredients from the latter formulation as obtained in
refs. [22, 23, 25, 26], that will be reported in the next section.

We start by using the relation10

(1− J0(bkt)) ' Θ(kt −
b0
b

) +
ζ3
12

∂3

∂ ln(Mb/b0)3
Θ(kt −

b0
b

) + . . . , (2.70)

where we ignored N4LL terms. In the above formula the derivative in the second term of the
right-hand-side is meant to act on the integral whose bounds are set by Θ(kt − b0

b ). This yields, at
N3LL,

d2Σ(v)

dΦBdpt
=
∑
c1,c2

d|MB |2c1c2
dΦB

∫
b db ptJ0(ptb) fT (b0/b)C

c1;T
N1

(αs(b0/b))H(M)Cc2
N2

(αs(b0/b))f(b0/b)

× exp

{
−

2∑
`=1

(∫ M

b0/b

dkt
kt

R′` (kt) +
ζ3
12

∂3

∂ ln(Mb/b0)3

∫ M

b0/b

dkt
kt

R′` (kt)

)}
. (2.71)

The second term in the exponent of Eq. (2.71) starts at N3LL, so up to NNLL the two definitions
(the one in terms of a J0 and the one in terms of the theta function) are manifestly equivalent. To
relate the two formulations we recall the definition of R′ in Eq. (2.60) and we express the Sudakov
radiators as (2.61)

R(b) =

2∑
`=1

∫ M

b0/b

dkt
kt
R′` (kt) =

2∑
`=1

∫ M

b0/b

dkt
kt

(
A`(αs(kt)) ln

M2

k2
t

+B`(αs(kt))

)

RCSS(b) =

2∑
`=1

∫ M

b0/b

dkt
kt
R′CSS,` (kt) =

2∑
`=1

∫ M

b0/b

dkt
kt

(
ACSS,`(αs(kt)) ln

M2

k2
t

+BCSS,`(αs(kt))

)
.

(2.72)

The anomalous dimensions A` and B` relative to leg ` and the hard function H admit an expansion
in the strong coupling as

A`(αs) =

4∑
n=1

(αs
2π

)n
A

(n)
` , B`(αs) =

3∑
n=1

(αs
2π

)n
B

(n)
` , H(M) = 1 +

2∑
n=1

(
αs(M)

2π

)n
H(n)(M).

(2.73)
The relation between the coefficients that enter at N3LL can be deducted by equating Eqs. (2.68)
and (2.69), obtaining

A
(4)
` = A

(4)
CSS,` − 32A

(1)
` π3β3

0ζ3,

B
(3)
` = B

(3)
CSS,` − 16A

(1)
` π2β2

0ζ3,

H(2)(M) = H
(2)
CSS(M) +

8

3
πβ0ζ3

2∑
`=1

A
(1)
` . (2.74)

10See appendix of ref. [57] for a derivation.
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The above equations constitute the ingredients for our N3LL resummation. Physically, the extra
terms proportional to ζ3 arise from the fact that the O(α2

s) terms proportional to δ(1 − z) in
the coefficient functions in momentum space differ from their b-space counterpart. This difference
precisely amounts to the new contributions in Eqs. (2.74). We stress that only the combination of
A

(4)
` , B(3)

` , H(2) and C(2) is resummation-scheme invariant, hence our choice of absorbing the new
terms into A(4)

` , B(3)
` , H(2) is indeed arbitrary. One could analogously define an alternative scheme

in which the extra terms are directly absorbed into the O(α2
s) coefficient functions, thus leaving the

two-loop form factor unchanged.

3 Evaluation up to N3LL

In this section we evaluate our all-order master formulae (2.58) and (2.59) explicitly up to N3LL
accuracy. The latter equations can already be evaluated as they are by means of Monte Carlo
techniques; however, at any given logarithmic order it is possible, and convenient, to further ma-
nipulate them in order to evaluate them directly in momentum space, without the need of the Mellin
transform.

3.1 Momentum-space formulation

We firstly focus on the partonic cross section (2.59). There are three main ingredients: the Sudakov
radiator and its derivative, the block containing coefficient functions C(αs) and hard-virtual cor-
rections to the form factor H(µR), and the anomalous dimensions that rule the evolution of parton
densities and coefficient functions.

For colour-singlet production, the coefficients entering the Sudakov radiator satisfy A
(n)
1 =

A
(n)
2 = A(n), and B(n)

1 = B
(n)
2 = B(n). Coefficients A(1), A(2), A(3), B(1), B(2) have been known

for several years [19, 58, 59], and they are collected, for instance, in the appendix of ref. [57]. The
N3LL coefficient B(3) can be extracted from the recent result [25, 26]. For gluon processes it reads:

B(3) = C3
A

(
22ζ3ζ2

3
− 799ζ2

81
− 5π2ζ3

9
− 2533ζ3

54
− 77ζ4

12
+ 20ζ5 −

319π4

1080
+

6109π2

1944
+

34219

1944

)
+ C2

Anf

(
103ζ2

81
+

202ζ3
27

− 5ζ4
6

+
41π4

540
− 599π2

972
− 10637

1944

)
+ CACFnf

(
2ζ4 −

π4

45
− π2

12
+

241

72

)
− 1

4
C2
Fnf + CAn

2
f

(
−2ζ3

27
+

5π2

162
+

529

1944

)
− 11

36
CFn

2
f − 32CAπ

2β2
0ζ3

≈ −492.908− 32CAπ
2β2

0ζ3, (3.1)

while for quark processes

B(3) = C2
ACF

(
22ζ3ζ2

3
− 799ζ2

81
− 11π2ζ3

9
+

2207ζ3
54

− 77ζ4
12
− 10ζ5 −

83π4

360
− 7163π2

1944
+

151571

3888

)
+ C3

F

(
4π2ζ3

3
− 17ζ3 + 60ζ5 −

2π4

5
− 3π2

4
− 29

8

)
+ C2

Fnf

(
34ζ3

3
+ 2ζ4 −

7π4

54
− 13π2

36
+

23

4

)
+ CAC

2
F

(
−2

3
π2ζ3 −

211ζ3
3
− 30ζ5 +

247π4

540
+

205π2

36
− 151

16

)
+ CACFnf

(
103ζ2

81
− 128ζ3

27
− 5ζ4

6
+

11π4

180
+

1297π2

972
− 3331

243

)
+ CFn

2
f

(
10ζ3
27
− 5π2

54
+

1115

972

)
− 32CFπ

2β2
0ζ3 ≈ −116.685− 32CFπ

2β2
0ζ3. (3.2)

The remaining N3LL anomalous dimension A(4) is currently incomplete given that the four-loop
cusp anomalous dimension is still unknown. Here we compute A(4) according to Eq. (71) of ref. [19]
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or Eq. (4.6) of ref. [60], using the results of refs. [25, 26] for the soft anomalous dimension, and
setting the four-loop cusp anomalous dimension to zero. For gluon-initiated processes we get

A(4) = C4
A

(
121

3
ζ3ζ2 −

8789ζ2
162

− 19093ζ3
54

− 847ζ4
24

+ 132ζ5 +
3761815

11664

)
+ C3

Anf

(
−22

3
ζ3ζ2 +

2731ζ2
162

+
4955ζ3

54
+

11ζ4
6
− 24ζ5 −

31186

243

)
+ C2

ACFnf

(
272ζ3

9
+ 11ζ4 −

7351

144

)
+ C2

An
2
f

(
−103ζ2

81
− 47ζ3

27
+

5ζ4
6

+
13819

972

)
+ CACFn

2
f

(
−38ζ3

9
− 2ζ4 +

215

24

)
+ CAn

3
f

(
−4ζ3

9
− 232

729

)
− 64CAπ

3β3
0ζ3

≈ −2675.68− 64CAπ
3β3

0ζ3, (3.3)

while for quark-initiated ones

A(4) = C3
ACF

(
121

3
ζ3ζ2 −

8789ζ2
162

− 19093ζ3
54

− 847ζ4
24

+ 132ζ5 +
3761815

11664

)
+ C2

ACFnf

(
−22

3
ζ3ζ2 +

2731ζ2
162

+
4955ζ3

54
+

11ζ4
6
− 24ζ5 −

31186

243

)
+ CAC

2
Fnf

(
272ζ3

9
+ 11ζ4 −

7351

144

)
+ CACFn

2
f

(
−103ζ2

81
− 47ζ3

27
+

5ζ4
6

+
13819

972

)
+ C2

Fn
2
f

(
−38ζ3

9
− 2ζ4 +

215

24

)
+ CFn

3
f

(
−4ζ3

9
− 232

729

)
− 64CFπ

3β3
0ζ3

≈ −1189.19− 64CFπ
3β3

0ζ3. (3.4)

We have left the additional terms arising from Eq. (2.74) unexpanded to facilitate the comparison
to the existing literature. The remaining quantities are evaluated with nf = 5. The expression of
the Sudakov radiator is analogous to the b-space one, i.e.

R(εkt1) =

2∑
`=1

∫ M

εkt1

dkt
kt
R′` (kt) =

2∑
`=1

∫ M

εkt1

dkt
kt

(
A`(αs(kt)) ln

M2

k2
t

+B`(αs(kt))

)
, (3.5)

and, as above, we define R′ as the logarithmic derivative of R

R′`(kt1) =
dR`(kt1)

dL
, (3.6)

where we defined
L = ln

M

kt1
. (3.7)

In order to make the numerical evaluation of our master formula Eq. (2.59) more efficient, we
can make a further approximation on the integrand without spoiling the logarithmic accuracy of
the result. Before we describe the procedure in detail, we stress that this additional manipulation
is not strictly necessary and one could in principle implement directly Eq. (2.59) in a Monte-Carlo
program.

Since the ratios kti/kt1 for all resolved blocks are of order 1, we can expand R and its derivative
about kt1, retaining terms that contribute at the desired logarithmic accuracy. At N3LL one has

R(εkt1) = R(kt1) +R′(kt1) ln
1

ε
+

1

2!
R′′(kt1) ln2 1

ε
+

1

3!
R′′′(kt1) ln3 1

ε
+ . . .

R′(kti) = R′(kt1) +R′′(kt1) ln
1

ζi
+

1

2!
R′′′(kt1) ln2 1

ζi
+ . . . , (3.8)
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where the dots denote N4LL terms, and we have employed the usual notation ζi = kti/kt1.
We recall that the transverse momenta of blocks in the resolved ensemble are parametrically of

the same order. This is because rIRC safety ensures that blocks k with kt � kt1 do not contribute
to the observable and are encoded in the Sudakov radiator. Therefore, since ln(1/ζi) in the above
formula is the logarithm of an O(1) quantity, each term in the right-hand-side of Eq. (3.8) is
logarithmically subleading with respect to the one to its left.

The logarithms ln(1/ε) in the first line of Eq. (3.8) are a parametrisation of the IRC divergences
arising from the combination of real-unresolved blocks and virtual corrections, expanded at a given
logarithmic order. The ε dependence exactly cancels against the corresponding terms in the resolved
real corrections (denoted by the same-order derivative of R) upon integration over ζi, as it will
be shown below. This is a convenient way to recast the subtraction of IRC divergences at each
logarithmic order in our formulation.

The terms proportional to R′(kt1) are to be retained starting at NLL, those proportional to
R′′(kt1) contribute at NNLL and, finally, the ones proportional to R′′′(kt1) are needed at N3LL.
Starting from the NLL ensemble, we note that correcting a single block with respect to its R′(kt1)

approximation (i.e. including for that block the subleading terms of Eq. (3.8)) gives rise at most
to a NNLL correction of order O(αnsL

n−1) in our counting. Modifying two blocks would lead to a
relative correction of order O(αnsL

n−2), i.e. N3LL, and so on. Therefore, at any given logarithmic
order, it is sufficient to keep terms beyond the R′(kt1) approximation only for a finite number of
blocks (namely a single block at NNLL, two blocks at N3LL, and so forth). Consistently, one has to
expand out the corresponding terms in the Sudakov that cancel the ε divergences of the modified
real blocks to the given logarithmic order. This prescription has been derived and discussed in
detail at NNLL in ref. [45], and will be used later in this section.

As a next step we address the evolution of the parton densities and relative coefficient functions
encoded in Eq. (2.59), whose anomalous dimensions ΓN and Γ

(C)
N have been defined in Eqs. (2.56),

and (2.54). Only a finite number of terms in their perturbative series needs to be retained at
a given logarithmic accuracy: in particular, contributions from the O(αns ) term in ΓN enter for
a Nn+1LL resummation (we recall that the series of ΓN starts at O(α0

s), hence these terms start
contributing at NLL). On the other hand, the contribution of the coefficient functions, and therefore
of the corresponding anomalous dimension, starts at NNLL. Therefore the O(αms ) term in Γ

(C)
N is

necessary at Nm+1LL, since its expansion starts at O(αs).
We can then perform the same expansion about kt1 for the terms in Eq. (2.59) containing Γ

and Γ(C). Up to N3LL we expand the exponent of the evolution operators as∫ µ0

εkt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) =

∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) +

d

dL

∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) ln

1

ε

+
1

2

d2

dL2

∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) ln2 1

ε
+ . . . (3.9)∫ µ0

εkt1

dkt
kt

Γ
(C)
N`

(αs(kt)) =

∫ µ0

kt1

dkt
kt

Γ
(C)
N`

(αs(kt)) +
d

dL

∫ µ0

kt1

dkt
kt

Γ
(C)
N`

(αs(kt)) ln
1

ε
+ . . . , (3.10)

and the corresponding resolved real-emission kernels as

αs(ktj)

π
ΓN`(αs(ktj)) =

αs(kt1)

π
ΓN`(αs(kt1)) +

d

dL

αs(kt1)

π
ΓN`(αs(kt1)) ln

1

ζj
+ . . . (3.11)

Γ
(C)
N`

(αs(ktj)) = Γ
(C)
N`

(αs(kt1)) + . . . , (3.12)

where as usual L = ln(M/kt1). The first terms on the right-hand side of Eqs. (3.9), and (3.10) repre-
sent the evolution operator that runs the parton densities and the coefficient functions, respectively,
from µ0 up to kt1. The remaining terms describe the exclusive evolution of the parton densities and
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of the coefficient functions in the resolved strip. In particular, the ε-dependent terms completely
cancel against the corresponding terms in the real-emission kernel of Eqs. (3.11), and (3.12) upon
integration over the resolved-radiation phase space.

At NLL the coefficient functions are an identity matrix in flavour space, and therefore their
evolution operator is trivial. The contribution of the ΓN in the exponent starts at NLL, while
the exclusive evolution of the parton densities in the resolved strip starts at NNLL since it corre-
sponds to emissions in the hard-collinear edge of the phase space. Therefore, at NLL one only
needs to retain the first term in the right-hand side of Eq. (3.9), and ignore everything else
in Eqs. (3.9), (3.10), (3.11), and (3.12), which corresponds to evaluating the parton densities at
µF = kt1. At this order, the evolution can be carried out by means of the tree-level anomalous
dimension γ(0)

N .
Similarly, at NNLL one needs to take into account the second term in the r.h.s. of Eq. (3.9) and

the first term in the r.h.s. of Eq. (3.11), where now the anomalous dimension ΓN is evaluated at one-
loop accuracy (i.e. including γ(1)

N ). At this order also the coefficient functions start contributing with
their inclusive evolution, therefore one needs to add the first term in the r.h.s. of Eq. (3.10). The
corresponding exclusive evolution of the coefficient functions in the resolved strip, encoded in the
r.h.s. of Eq. (3.12) only starts at N3LL. At higher orders, one simply needs to add subsequent terms
from the above equations, and evaluate the anomalous dimensions at the appropriate perturbative
accuracy.

As discussed above for the Sudakov radiator, at any given logarithmic order beyond NLL, it is
sufficient to include the extra ε-dependent terms from Eqs. (3.9), (3.10) in the exponent, and the
corresponding terms in the resolved real radiation from Eqs. (3.11), (3.12) only for a finite number
of emissions, namely a single emission at NNLL, two emissions at N3LL, and so forth.

Finally, we need to deal with the block Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0)) in Eq. (2.59). As
discussed in the previous section, for a generic process this block receives a contribution from the
gluon collinear correlations G, as in Eq. (2.63). Since the contribution of the G functions starts at
N3LL, at this order one can drop the ε dependence in their evolution; namely, in the analogue of
Eq. (3.10) with Γ

(C)
N → Γ

(G)
N , only the first term on the right-hand side needs to be retained. This

amounts to evaluating the coupling of the G coefficient functions at kt1.
With the expansions detailed above, Eq. (2.59) becomes

Σ̂c1c2
N1,N2

(v) = Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))

∫ M

0

dkt1
kt1

∫ 2π

0

dφ1

2π

× e−R(kt1)−R′(kt1) ln 1
ε−

1
2!R
′′(kt1) ln2 1

ε−
1
3!R
′′′(kt1) ln3 1

ε+...

× exp

{
−

2∑
`=1

(∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) +

d

dL

∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) ln

1

ε

+
1

2!

d2

dL2

∫ µ0

kt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt)) ln2 1

ε
+ . . .

+

∫ µ0

kt1

dkt
kt

Γ
(C)
N`

(αs(kt)) +
d

dL

∫ µ0

kt1

dkt
kt

Γ
(C)
N`

(αs(kt)) ln
1

ε
+ . . .

)}

×
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1 (αs(kt1)) + Γ

(C)
N`1

(αs(kt1))

)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

2∑
`i=1

{
R′`i (kt1) + R′′`i (kt1) ln

1

ζi
+

1

2
R′′′`i (kt1) ln2 1

ζi
+ . . .

+
αs(kt1)

π
ΓN`i (αs(kt1)) +

d

dL

(
αs(kt1)

π
ΓN`i (αs(kt1))

)
ln

1

ζi
+ . . .
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+ Γ
(C)
N`i

(αs(kt1)) + . . .

}
Θ (v − V ({p̃}, k1, . . . , kn+1)) + {C→ G; Γ(C) → Γ(G)} . (3.13)

Following the procedure of ref. [45], we can express the ln(1/ε) singularities in the exponent of
Eq. (3.13) as integrals over dummy real emissions as follows

ln
1

ε
=

∫ 1

ε

dζ

ζ
,

1

2
ln2 1

ε
=

∫ 1

ε

dζ

ζ
ln

1

ζ
,

1

3!
ln3 1

ε
=

1

2

∫ 1

ε

dζ

ζ
ln2 1

ζ
, (3.14)

and subsequently expand out the divergent part of the exponent, retaining the terms necessary at
a given logarithmic order. We further introduce the average of a function G({p̃}, {ki}) over the
measure dZ∫

dZ[{R′, ki}]G({p̃}, {ki}) = εR
′(kt1)

∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

R′(kt1)G({p̃}, k1, . . . , kn+1) ,

(3.15)

where we simplified the notation by using

R′(kt1) =
∑
`=1,2

R′`(kt1). (3.16)

The dependence on the regulator ε cancels exactly in Eq. (3.15).

We can plug Eq. (3.13) into the definition of the hadronic cross section (2.58). We define the
derivatives of the parton densities by means of the DGLAP evolution equation

∂f(µ, x)

∂ lnµ
=
αs(µ)

π

∫ 1

x

dz

z
P̂ (z, αs(µ))f(µ,

x

z
), (3.17)

where P̂ (z, αs(µ)) is the regularised splitting function

P̂ (z, αs(µ)) = P̂ (0)(z) +
αs(µ)

2π
P̂ (1)(z) +

(
αs(µ)

2π

)2

P̂ (2)(z) + . . . (3.18)

Moreover, we introduce the following parton luminosities

LNLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

fc(kt1, x1) fc′(kt1, x2) , (3.19)

LNNLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
kt1,

x1

z1

)
fj

(
kt1,

x2

z2

)
(
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H(1)(µR)

)

+
αs(µR)

2π

1

1− 2αs(µR)β0L

(
C

(1)
ci (z1)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′j}

))
, (3.20)

LN3LL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
kt1,

x1

z1

)
fj

(
kt1,

x2

z2

)
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{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H(1)(µR) +

α2
s(µR)

(2π)2
H(2)(µR)

)
+
αs(µR)

2π

1

1− 2αs(µR)β0L

(
1− αs(µR)

β1

β0

ln (1− 2αs(µR)β0L)

1− 2αs(µR)β0L

)
×
(
C

(1)
ci (z1)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2
s(µR)

(2π)2

1

(1− 2αs(µR)β0L)2

((
C

(2)
ci (z1)− 2πβ0C

(1)
ci (z1) ln

M2

µ2
R

)
δ(1− z2)δc′j

+ {z1 ↔ z2; c, i↔ c′, j}

)
+
α2
s(µR)

(2π)2

1

(1− 2αs(µR)β0L)2

(
C

(1)
ci (z1)C

(1)
c′j (z2) +G

(1)
ci (z1)G

(1)
c′j(z2)

)
+
α2
s(µR)

(2π)2
H(1)(µR)

1

1− 2αs(µR)β0L

(
C

(1)
ci (z1)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)}
, (3.21)

where

x1 =
M√
s
eY , x2 =

M√
s
e−Y , (3.22)

and Y is the rapidity of the colour singlet in the centre-of-mass frame of the collision at the Born
level. |MB |2cc′ is the Born squared matrix element, and L = ln(1/v1), with v1 = kt1/M , v = pt/M .
We transform back to momentum space, thus abandoning the matrix notation used so far, by means
of the following identities, valid up to N3LL

d|MB |2c1c2
dΦB

fTN1
(kt1)

(
2∑
`=1

αs(kt1)

π
ΓN`(αs(kt1))

)
fN2(kt1)

→ αs(kt1)

π
P̂ (z, αs(kt1))⊗ LNLL(kt1) = −∂LLNLL(kt1)

d|MB |2c1c2
dΦB

fTN1
(kt1)Cc1;T

N1
(αs(kt1))H(µR)

(
2∑
`=1

(
αs(kt1)

π
ΓN`(αs(kt1))

+Γ
(C)
N`

(αs(kt1))
))

Cc2
N2

(αs(kt1))fN2
(kt1)→ −∂LL(kt1)

d|MB |2c1c2
dΦB

fTN1
(kt1)

(
2∑
`=1

d

dL

(
αs(kt1)

π
ΓN`(αs(kt1))

))
fN2(kt1)→ 2

β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1)

d|MB |2c1c2
dΦB

fTN1
(kt1)

(
2∑

`i=1

αs(kt1)

π
ΓN`i (αs(kt1))

) 2∑
`j=1

αs(kt1)

π
ΓN`j (αs(kt1))

 fN2
(kt1)→

→ α2
s(kt1)

π2
P̂ (z, αs(kt1))⊗ P̂ (z, αs(kt1))⊗ LNLL(kt1) ' α2

s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

(3.23)

where we defined ∂L = d/dL. Since we evaluated explicitly the sum over the emitting legs `i, the
convolution of a regularised splitting kernel P̂ (0) with the NLL parton luminosity is now defined as

P̂ (0) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB |2cc′
dΦB

{(
P̂ (0) ⊗ f

)
c

(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ f

)
c′

(kt1, x2)

}
. (3.24)
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The term P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) is to be interpreted as

P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB |2cc′
dΦB

{(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c

(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c′

(kt1, x2) + 2
(
P̂ (0) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ f

)
c′

(kt1, x2)

}
.

(3.25)

Including terms up to N3LL, we can therefore recast Eqs. (3.13), (2.58) as

dΣ(v)

dΦB
=

∫
dkt1
kt1

dφ1

2π
∂L

(
−e−R(kt1)LN3LL(kt1)

)∫
dZ[{R′, ki}]Θ (v − V ({p̃}, k1, . . . , kn+1))

+

∫
dkt1
kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs
ζs

dφs
2π

{(
R′(kt1)LNNLL(kt1)− ∂LLNNLL(kt1)

)
×
(
R′′(kt1) ln

1

ζs
+

1

2
R′′′(kt1) ln2 1

ζs

)
−R′(kt1)

(
∂LLNNLL(kt1)− 2

β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1) ln

1

ζs

)
+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}{
Θ (v − V ({p̃}, k1, . . . , kn+1, ks))−Θ (v − V ({p̃}, k1, . . . , kn+1))

}

+
1

2

∫
dkt1
kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs1
ζs1

dφs1
2π

∫ 1

0

dζs2
ζs2

dφs2
2π

R′(kt1)

×

{
LNLL(kt1) (R′′(kt1))

2
ln

1

ζs1
ln

1

ζs2
− ∂LLNLL(kt1)R′′(kt1)

(
ln

1

ζs1
+ ln

1

ζs2

)

+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
{

Θ (v − V ({p̃}, k1, . . . , kn+1, ks1, ks2))−Θ (v − V ({p̃}, k1, . . . , kn+1, ks1))−

Θ (v − V ({p̃}, k1, . . . , kn+1, ks2)) + Θ (v − V ({p̃}, k1, . . . , kn+1))

}
+O

(
αns ln2n−6 1

v

)
. (3.26)

Until now we have explicitly considered the case of flavour-conserving real emissions, for which we
derived Eq. (3.26). We now turn to the inclusion of the flavour-changing splitting kernels, that
enter purely in the hard-collinear limit and contribute to the DGLAP evolution.

We observe that at a given logarithmic order only a finite number of hard-collinear emissions
are actually necessary. As we mentioned several times in the above sections, at N3LL one needs
to account for the effect of up to two hard-collinear resolved partons. Therefore, the inclusion of
the flavour-changing kernels can be done directly at the level of the splitting functions and parton
luminosities in Eq. (3.26).

In the above expressions for the luminosity we have used the following expansions in powers of
the strong coupling for the functions C, H and G, up to N3LL:

Cab(αs(µ)) = δ(1− z)δab +

2∑
n=1

(
αs(µ)

2π

)n
C

(n)
ab (z), (3.27)

H(µR) = 1 +

2∑
n=1

(
αs(µR)

2π

)n
H(n)(µR), (3.28)
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Gab(αs(µ)) =
αs(µ)

2π
G

(1)
ab (z), (3.29)

where µ is the same scale at which the parton densities are evaluated, and µR is the renormalisation
scale.

The expressions for C(1) and H(1) have been known for a long time, and are collected, for
instance, in the appendix of ref. [57]. The hard-virtual coefficient H(µR) is defined as the finite part
of the renormalised QCD form factor in the MS renormalisation scheme, divided by the underlying
Born squared matrix element. The hard coefficients for gluonic processes up to O(α2

s) evaluated at
the invariant mass of the colour singlet H(1)(M) and H(2)(M) read [61–63]

H(1)
g (M) = CA

(
5 +

7

6
π2

)
− 3CF ,

H(2)
g (M) =

5359

54
+

137

6
ln
m2
H

m2
t

+
1679

24
π2 +

37

8
π4 − 499

6
ζ3 + CA

16

3
πβ0ζ3 , nf = 5, (3.30)

where the last term in H
(2)
g was deliberately left symbolic to stress its origin from Eq. (2.74).

Analogously, for quark-initiated reactions one has [64–66]

H(1)
q (M) = CF

(
−8 +

7

6
π2

)
,

H(2)
q (M) = −57433

972
+

281

162
π2 +

22

27
π4 +

1178

27
ζ3 + CF

16

3
πβ0ζ3 , nf = 5. (3.31)

The renormalisation-scale dependence of the first two hard-function coefficients is given by

H(1)(µR) = H(1)(M) + 2dBπβ0 ln
µ2
R

M2
, (3.32)

H(2)(µR) = H(2)(M) + 4dB

(
1 + dB

2
π2β2

0 ln2 µ
2
R

M2
+ π2β1 ln

µ2
R

M2

)
+ 2 (1 + dB)πβ0 ln

µ2
R

M2
H(1)(M), (3.33)

where dB is the strong-coupling order of the Born squared amplitude (e.g. dB = 2 for Higgs
production).

The C(2) and G(1) functions for gluon-fusion processes are obtained in refs. [22, 24], while for
quark-induced processes they are derived in ref. [23]. In the present work we extract their expressions
using the results of refs. [22, 23]. For gluon-fusion processes, the C(2)

gq and C(2)
gg coefficients normalised

as in Eq. (3.27) are extracted from Eqs. (30) and (32) of ref. [22], respectively, where we use the
hard coefficients of Eqs. (3.30) without the new term proportional to β0 in the H(2)

g (M) coefficient.11

The coefficient G(1) is taken from Eq. (13) of ref. [22]. Similarly, for quark-initiated processes, we
extract C(2)

qg and C
(2)
qq from Eqs. (32) and (34) of ref. [23], respectively, where we use the hard

coefficients from Eqs. (3.31) without the new term proportional to β0 in the H(2)
q (M) coefficient.

The remaining quark coefficient function C
(2)
qq̄ , C

(2)
qq̄′ and C

(2)
qq′ are extracted from Eq. (35) of the

same article.
Eq. (3.26) resums all logarithmic towers of ln(1/v) (with v = pt/M) up to N3LL, therefore

neglecting subleading-logarithmic terms of order αns ln2n−6(1/v). Constant terms of order O(α3
s)

relative to the Born will be extracted automatically from a matching to the N3LO cumulative cross
section in Section 4. This will allow us to control all terms of order αns ln2n−6(1/v) in the matched
cross section, therefore neglecting terms O

(
αns ln2n−7(1/v)

)
. We have split the result into a sum

of three terms. The first term (first line of Eq. (3.26)) starts at LL and contains the full NLL

11These must be replaced by H(1) → H(1)/2 and H(2) → H(2)/4 to match the convention of refs. [22, 23].
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corrections. The second term of Eq. (3.26) (second to fourth lines) is necessary to achieve NNLL
accuracy, while the third term (fifth to ninth lines) is purely N3LL.

Since Eq. (3.26) still contains subleading-logarithmic terms (i.e. starting at N4LL in ln(M/pt)),
one could, even if not strictly required, perform further expansions on each of the terms of Eq. (3.26)
in order to neglect at least some of the corrections beyond the desired logarithmic order. For
instance, for a N3LL resummation, the full N3LL radiator is necessary in the first term of Eq. (3.26),
while the radiator can be evaluated at NNLL in the second term, and at NLL in third term.
Analogously, for a NNLL resummation, the NLL radiator suffices in the second term of Eq. (3.26).
Furthermore, at NNLL, one could split R′(kt1) into the sum of a NLL term R̂′(kt1) and a NNLL one
δR̂′(kt1), and expand Eq. (3.26) about the former retaining only contributions linear in δR̂′(kt1).
The last two considerations relate Eq. (3.26) to Eq. (9) of ref. [39] where this approach was first
formulated at NNLL for the Higgs-boson transverse-momentum distribution.

Eq. (3.26) can be evaluated in its present form with fast Monte Carlo techniques, as we will
discuss in Section 4.

We performed numerous tests to verify the correctness of Eq. (3.26). Firstly, we performed the
expansion of Eq. (3.26) to O(α3

s) relative to the Born for the transverse momentum of the boson
as well as for the φ∗ distribution in Drell-Yan production, and compared it to the corresponding
result from the b-space formulation, finding full agreement for the N3LL terms. This is a highly
non-trivial test of the logarithmic structure of Eq. (3.26). The differential O(α2

s) expansion for
both observables was also compared to MCFM [67] and we found that the difference between the two
predictions vanishes in the logarithmic region. Finally, we checked numerically that the coefficient
of the scaling Σ(pt) ∝ p2

t in the small-pt limit of Eq. (3.26) agrees with the prediction obtained with
the b-space formulation. The agreement of the NNLL prediction obtained using our formula (3.26)
with the b-space result from the program HqT [16] across the spectrum was shown in ref. [39].

3.2 Perturbative scaling in the pt → 0 regime

In this section we show that our formulation of the transverse-momentum resummation of Eq. (3.26)
reproduces the correct scaling in the pt → 0 limit as first observed in [13]. Moreover, we obtain
a correspondence between the logarithmic accuracy and the perturbative accuracy in this limit.
To perform a comparison with the results of [13], we consider NLL resummation and neglect the
evolution of the parton densities with the energy scale. However the same procedure can be easily
extended to the general case. We have

d2Σ(v)

d2~ptdΦB
= σ(0)(ΦB)

∫
dkt1
kt1

dφ1

2π
e−R(kt1)R′(kt1)

∫
dZ[{R′, ki}]δ(2)

(
~pt −

(
~kt1 + · · ·+ ~kt(n+1)

))
,

(3.34)

where

σ(0)(ΦB) ≡ dσ(0)

dΦB
, (3.35)

and dZ[{R′, ki}] is defined in Eq. (3.15). In order to evaluate the integral over dZ[{R′, ki}] analyt-
ically we proceed as in Sec. 2.4. After integrating over the azimuthal direction of ~pt we obtain

d2Σ(v)

dptdΦB
= σ(0)(ΦB) pt

∫
b dbJ0(ptb)

∫
dkt1
kt1

e−R(kt1)R′(kt1)J0(bkt1)

× exp

{
−R′ (kt1)

∫ kt1

0

dkt
kt

(1− J0(bkt))

}
. (3.36)

Before proceeding to the evaluation of Eq. (3.36), a remark is in order. At NLL one would be
tempted to perform the replacement (see Sec. 2.4)

(1− J0(bkt)) ' Θ(kt −
b0
b

) + . . . , (3.37)
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and recast Eq. (3.36) as

d2Σ(v)

dptdΦB
= σ(0)(ΦB) pt

∫
b dbJ0(ptb)

∫
dkt1
kt1

e−R(kt1)R′(kt1)J0(bkt1)

(
b0
bkt1

)R′(kt1)

= σ(0)(ΦB) pt

∫
dkt1
kt1

e−R(kt1)R′(kt1)

(
b0
kt1

)R′(kt1)
21−R′(kt1)

(p2
t + k2

t1)
1−R′(kt1)/2

× Γ (1−R′ (kt1) /2)

Γ(R′(kt1)/2)
2F1

(
2−R′ (kt1)

4
, 1− R′ (kt1)

4
, 1,

4p2
tk

2
t1

(p2
t + k2

t1)
2

)
. (3.38)

The above result is singular for R′ (kt1) ≥ 2, owing to the fact that the integrand scales as b1−R
′(kt1)

in the b → 0 limit. This singular behaviour is however entirely due to the approximation in
Eq. (3.37), where all power-suppressed terms are neglected, while Eq. (3.36) is regular, as the
integral in its exponent vanishes as O(b2) for small b. Therefore, when using Eq. (3.37) one must
regularise the b → 0 limit, for instance by means of modified logarithms as in ref. [15]. In our
formalism, instead, Eq. (3.36) is evaluated numerically without further approximations so that the
b→ 0 region is correctly described.

It is interesting to study the scaling of Eq. (3.36) in the small-pt limit. In this limit, the
dominant mechanism that produces a vanishing pt involves several soft and collinear emissions with
finite transverse momentum that mutually balance in the transverse plane.

In this kinematic configuration one has kt1 � pt, thus expanding kt1 about pt in Eq. (3.36) is
not allowed: such an operation would give rise to spurious singularities at R′(pt) ≥ 2, as reported
several times in the literature [19, 37, 39, 40, 52, 68].

We therefore evaluate the b integral of Eq. (3.36) and observe that in the limit where M �
kt1 � pt it gives∫

b dbJ0(ptb)J0(bkt1) exp

{
−R′ (kt1)

∫ kt1

0

dkt
kt

(1− J0(bkt))

}
' 4

k−2
t1

R′ (kt1)
, (3.39)

namely it is constant in pt in first approximation. In this regime Eq. (3.36) becomes

d2Σ(v)

dptdΦB
= 4σ(0)(ΦB) pt

∫
dkt1
k3
t1

e−R(kt1). (3.40)

In order to directly compare with the result of ref. [13], we specialise to the case of the Drell-Yan
process, and compute R(kt1) at the lowest order using the leading-order running coupling expressed
in terms of the QCD scale ΛQCD (with nf = 4),

αs(kt) =
12

25
π

1

ln(k2
t /Λ

2
QCD)

.

We obtain (A(1) = 2CF in this case)

R(kt1) =
16

25
ln

M2

Λ2
QCD

ln

 ln M2

Λ2
QCD

ln
k2t1

Λ2
QCD

− 16

25
ln
M2

k2
t1

.

We now integrate over kt1 in Eq. (3.40) from ΛQCD up to the invariant mass of the Drell-Yan pair,
obtaining

d2Σ(v)

dptdΦB
= 4σ(0)(ΦB) pt

∫ M

ΛQCD

dkt1
k3
t1

e−R(kt1) ' 2σ(0)(ΦB)pt

(
Λ2

QCD

M2

) 16
25 ln 41

16

, (3.41)
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that reproduces the scaling of ref. [13].12 We stress that this power-like scaling is not due, by any
means, to higher-order effects that one would be missing in performing the naive expansion of kt1
about pt, but rather to a collective kinematical effect that requires the presence of any number of
emissions. Indeed, the expansion of Eq. (3.36) to any order in the strong coupling only gives rise to
logarithmic effects and no terms scaling as O(pt) arise. To reproduce the correct scaling an all-order
treatment is necessary.

In order to study how this result is modified by the inclusion of higher-order logarithmic cor-
rections, we evaluate Eq. (3.40) in the fixed-coupling-constant approximation. This is a simple toy
model for the more complicated running coupling case. At lowest order one has

R(kt1) = A(1)αs
π
L2, (3.42)

with A(1) = 2C (with C = CA for gluons and C = CF for quarks), and L = lnM/kt1. In the
perturbative regime Eq. (3.40) therefore reads

d2Σ(v)

dptdΦB
' 4σ(0)(ΦB)

pt
M2

π

2

e
π

2Cαs

√
2Cαs

(
1 + Erf

( √
π√

2Cαs

))
. (3.43)

Eq. (3.43) shows that in the small-pt limit the differential spectrum features a non-perturbative
scaling in αs (see also Eq. (2.12) of ref. [13]13). However, the coefficient of this scaling can be
systematically improved in perturbation theory: the inclusion of NLL terms αnsLn in the right-hand
side of Eq. (3.40) contributes an O(1) correction to the right-hand side of Eq. (3.43). Analogously,
NNLL terms αnsLn−1 will produce an O(αs) correction relative to the non-perturbative factor
eπ/(2Cαs)/

√
2Cαs, and so on. In particular, with our N3LL calculation we have control over the

terms of relative order O(α2
s). From this scaling we deduce that the correspondence L ∼ 1/αs is

still valid in the deep infrared regime. However, this does not mean that the above prediction is
accurate in this limit: indeed non-perturbative effects due to soft-gluon radiation below ΛQCD, as
well as due to the intrinsic transverse momentum of the partons in the proton, feature a similar
scaling. This is because the colour singlet’s transverse momentum is sensitive to non-perturbative
dynamics only through kinematical recoil, that is the same mechanism that drives the scaling (3.41).

4 Numerical implementation

In order to have a prediction that is valid accross different kinematic regions of the spectrum, one
needs to match the resummed calculation, valid in the small-v limit, to a fixed-order calculation that
describes the hard (large-v) region. In this section we discuss the matching of the result described
in the previous sections, in particular Eq. (3.26), to a fixed-order prediction that is NNLO accurate
in the hard region of the phase space. We then describe how to evaluate Eq. (3.26) exactly using
a Monte Carlo Markov process, and discuss the implementation in a parton-level generator that is
fully differential in the Born kinematics.

4.1 Normalisation constraint and resummation-scale dependence

In order to match the resummed calculation to a fixed-order prediction one has to ensure that the
hard region of the phase space receives no contamination from resummation effects. We therefore
need to modify Eq. (3.26) so that at large v (v = pt/M in the transverse-momentum case) all
resummation effects vanish. At N3LL, it reduces to

dΣ(v)

dΦB
= LN3LL(µF )|L=0, (4.1)

12In the last step we have neglected a factor of 1/Λ2
QCD ln(M2/Λ2

QCD), as done in ref. [13].
13Please note that only the leading contribution for αs � 1 is reported in the right-hand side of that equation.
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where LN3LL is defined in Eq. (3.21). The normalisation constraint (4.1) can be implemented in
several ways; in what follows we impose it by modifying the structure of the logarithms L everywhere
in Eq. (3.26), as commonly done for this observable in the literature.

Before defining the modified logarithms, it is convenient to have a way to estimate the re-
summation uncertainties due to higher-order logarithmic corrections that are not included in the
calculation. To this aim, we introduce the dimensionless resummation scale xQ by using the identity

L ≡ ln
1

v1
= ln

xQ
v1
− lnxQ, (4.2)

and then we expand the right-hand side about ln(xQ/v1) to the nominal logarithmic accuracy (in
terms of ln(xQ/v1)), neglecting subleading corrections. In the transverse-momentum case one has
v1 = kt1/M and xQ = Q/M , where Q, the resummation scale, has dimension of a mass. A variation
of xQ will therefore provide an estimate of the size of higher-order logarithmic corrections.

The normalisation constraint can now be imposed by replacing the resummed logarithms
ln(xQ/v1) by

ln
xQ
v1
→ L̃ =

1

p
ln

((
xQ
v1

)p
+ 1

)
, (4.3)

where the positive real parameter p is chosen in such a way that resummation effects vanish rapidly
enough at v1 ∼ xQ. Eq. (4.3) amounts to imposing unitarity by introducing in the resummed
logarithms power-suppressed terms that scale as (xQ/v1)p, which ultimately give rise to terms of
order v−p in the cumulative cross section Σ(v). Given that the differential spectrum tends to zero
with a power law (∼ v−n with positive n) at large v, it follows that one should have p ≥ n − 1

in order not to affect the correct fixed-order scaling at large v. However, since we are interested
in turning off the resummation at transverse momentum values of the order of the singlet’s mass,
the relevant scaling n to be considered in the choice of p is the one relative to the differential
distribution in this region. We stress, finally, that the prescription (4.3) is only one of the possible
ways of turning off resummation effects in the hard regions of the spectrum. For instance one could,
analogously, directly constrain the first block to have kt1 ≤ Q, which would naturally suppress
radiation effects at large v. This solution would however lead to more complicated integrals in the
expansion of the resummation formula used in the matching to fixed order. For this reason, we
stick to prescription (4.3) while leaving the study of alternative solutions for future work.

We notice that, with the prescription (4.3), the single-emission event in the first line of Eq. (3.26)
is not a total derivative any longer. One can however restore this property by introducing the
jacobian factor

J (v1/xQ, p) =

(
xQ
v1

)p(
1 +

(
xQ
v1

)p)−1

(4.4)

in all integrals over v1 = kt1/M in Eq. (3.26). This jacobian tends to one at small v1 and therefore
does not modify the logarithmic structure. Moreover, in the large-v region where the single-emission
event dominates, this prescription prevents the proliferation of power-suppressed terms. The pre-
scription (4.3) effectively maps the point at which the logarithms are turned off onto infinity. This
also gives us the freedom to extend the upper bound of the integration over kt1 from M to ∞ in
Eq. (3.26) without spoiling the logarithmic accuracy.

We therefore implement the prescription (4.3) in the Sudakov radiator and its derivatives. We
denote all modified quantities by a ‘∼’ superscript. The expansion about ln(xQ/v) induces some
constant terms in the Sudakov radiator that are expanded out up to O(α2

s) and included in the
hard-function coefficients. The modified quantities in Eq. (3.26) are

R̃(kt1) = −L̃g1(αs(µR)L̃)− g2(αs(µR)L̃)− αs(µR)

π
g3(αs(µR)L̃)− α2

s(µR)

π2
g4(αs(µR)L̃),
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H̃(1)(µR,xQ) = H(1)(µR) +

(
−1

2
A(1) lnx2

Q +B(1)

)
lnx2

Q

H̃(2)(µR,xQ) = H(2)(µR) +
(A(1))2

8
ln4 x2

Q −
(
A(1)B(1)

2
+
A(1)

3
πβ0

)
ln3 x2

Q

+

(
−A(2) + (B(1))2

2
+ πβ0

(
B(1) +A(1) ln

x2
QM

2

µ2
R

))
ln2 x2

Q

−

(
−B(2) +B(1)2πβ0 ln

x2
QM

2

µ2
R

)
lnx2

Q +H(1)(µR) lnx2
Q

(
−1

2
A(1) lnx2

Q +B(1)

)
, (4.5)

where the functions gi are given in Appendix B. All derivatives of the R function are to be consis-
tently replaced by derivatives of R̃ with respect to L̃. Notice that no constant terms are present in
the radiator and therefore gi(0) = 0.

The same replacement must be consistently performed in the parton densities. In addition,
it is convenient to have the latter evaluated at a common factorisation scale µF at large v1, in
order to match the fixed-order convention. Both steps can be implemented by expressing the
parton densities f at the scale µF e−L̃, and expanding out the difference between f(µF e

−L̃, x) and
f(kt1, x) neglecting regular terms as well as logarithmic terms beyond N3LL. The relevant terms
in this expansion can be absorbed into a redefinition of the coefficient functions C(i)(z), thereby
introducing an explicit dependence upon µF and xQ. We obtain

C̃
(1)
ij (z,µF , xQ) = C

(1)
ij (z) + P̂

(0)
ij (z) ln

x2
QM

2

µ2
F

,

C̃
(2)
ij (z,µF , xQ) = C

(2)
ij (z) + πβ0P̂

(0)
ij (z)

(
ln2

x2
QM

2

µ2
F

− 2 ln
x2
QM

2

µ2
F

ln
x2
QM

2

µ2
R

)
+ P̂

(1)
ij (z) ln

x2
QM

2

µ2
F

+
1

2
(P̂ (0) ⊗ P̂ (0))ij(z) ln2

x2
QM

2

µ2
F

+ (C(1) ⊗ P̂ (0))ij(z) ln
x2
QM

2

µ2
F

− 2πβ0C
(1)
ij (z) ln

x2
QM

2

µ2
R

.

(4.6)

Finally, we also approximate the strong coupling in the terms proportional to α2
s(kt1) in Eq. (3.26),

featuring the convolution of one and two splitting functions with the NLL luminosity, by retaining
only terms relevant to N3LL as

αs(kt1) ' αs(µR)

1− 2αs(µR)β0L̃
. (4.7)

Summarising, the final formula that we employ in the matching to fixed order will be Eq. (3.26)
with the following replacements:

L→ L̃,
dkt1
kt1
→ J (v1/xQ, p)

dkt1
kt1

,

R→ R̃, R′ → dR̃/dL̃, R′′ → dR̃′/dL̃, R′′′ → dR̃′′/dL̃,

LNLL → L̃NLL, LNNLL → L̃NNLL, LN3LL → L̃N3LL. (4.8)

Moreover the coupling is treated according to Eq. (4.7) in the terms P̂ (0)⊗L̃NLL and P̂ (0)⊗ P̂ (0)⊗
L̃NLL, and the upper bound of the kt1 integration in Eq. (3.26) is extended to infinity. The modified
luminosity factors appearing in the previous equation are defined as

L̃NLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

fc

(
µF e

−L̃, x1

)
fc′
(
µF e

−L̃, x2

)
, (4.9)
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L̃NNLL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e

−L̃,
x1

z1

)
fj

(
µF e

−L̃,
x2

z2

)
(
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ)

)

+
αs(µR)

2π

1

1− 2αs(µR)β0L̃

(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′j}

))
, (4.10)

L̃N3LL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e

−L̃,
x1

z1

)
fj

(
µF e

−L̃,
x2

z2

)
{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)(µR, xQ) +

α2
s(µR)

(2π)2
H̃(2)(µR, xQ)

)

+
αs(µR)

2π

1

1− 2αs(µR)β0L̃

1− αs(µR)
β1

β0

ln
(

1− 2αs(µR)β0L̃
)

1− 2αs(µR)β0L̃


×
(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2
s(µR)

(2π)2

1

(1− 2αs(µR)β0L̃)2

(
C̃

(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)

+
α2
s(µR)

(2π)2

1

(1− 2αs(µR)β0L̃)2

(
C̃

(1)
ci (z1, µF , xQ)C̃

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j(z2)

)
+
α2
s(µR)

(2π)2
H̃(1)(µR, xQ)

1

1− 2αs(µR)β0L̃

(
C̃

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)}
.

(4.11)

4.2 Matching to fixed order

To match the above result to a fixed-order calculation we design a scheme belonging to the class
of multiplicative matchings [68, 69]. This, at present, is preferable to the more common additive R
scheme [48], since the O(α3

s) constant terms of the cumulative cross section are currently unknown
analytically (except for the three-loop corrections to the form factor that were computed in ref. [70–
72]) and they can therefore be recovered numerically from our matching procedure. This ensures
that our matched prediction controls all terms up to and including O(αns ln2n−6(1/v)). Moreover,
the multiplicative scheme has the feature of being less sensitive to numerical instabilities of the
fixed-order prediction close to the infrared and collinear regions.

However, the multiplicative scheme in hadronic collisions can give rise to higher-order terms in
the high-pt tail, due to the cross product of parton luminosities. These are effectively subleading
and therefore they never spoil the perturbative accuracy, nevertheless they can be numerically
non-negligible, especially for processes featuring large K factors like Higgs production. In order to
suppress such spurious terms, we introduce a factor Z defined as

Z =

(
1−

(
v

v0

)u)h
Θ(v0 − v), (4.12)

where v0 is the point at which the fixed-order is recovered, while h and u are positive parameters.
h should be larger than two in order to avoid small kinks in the differential distribution. In our
predictions below we set v0 = 1/2 and h = 3, and check that the variations v0 = 1 and h = 1, 2 do
not produce sizeable differences. The parameter u will be discussed shortly. In what follows, with
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a slight abuse of notation, we denote by Σ(v,ΦB) the generic exclusive cross section dΣ(v)/dΦB .
We therefore define the matched cross section as

ΣMAT(v,ΦB) = (ΣRES(v,ΦB))
Z ΣFO(v,ΦB)

(ΣEXP(v,ΦB))
Z
, (4.13)

where ΣFO is the fixed-order cross section at order αns differential in the Born kinematics, and
ΣEXP is the expansion of the resummed cross section ΣRES to O(αns ). The factor Z ensures that
the resummation is smoothly turned off for v ≥ v0. We stress that at small v the factor Z leads
to extra terms which are suppressed as (v/v0)u. Therefore u can be chosen in order to make these
terms arbitrarily small, although they are already very suppressed in the small-v region. In our
case we simply set u = 1.

Up to N3LO we now express the fixed-order and the expanded cross sections as

ΣFO(v,ΦB) =

3∑
i=0

Σ
(i)
FO(v,ΦB),

Σ
(i)
FO(v,ΦB) = σ(i)(ΦB)−

∫
v

dv′
dΣ

(i)
FO(v′,ΦB)

dv′
= σ(i)(ΦB) + Σ̄

(i)
FO(v,ΦB),

ΣEXP(v,ΦB) =
3∑
i=0

Σ
(i)
EXP(v,ΦB), (4.14)

where Σ̄
(0)
FO(v,ΦB) = 0, Σ

(0)
EXP(v,ΦB) = σ(0), and we defined σ(i)(ΦB) = dσ(i)/dΦB as the i-th order

of the total cross section differential in the Born kinematics

σ(ΦB) =

3∑
i=0

σ(i)(ΦB). (4.15)

With this notation, Eq. (4.13) becomes

ΣMAT(v,ΦB) =

(
ΣRES(v,ΦB)

σ(0)(ΦB)

)Z {
σ(0)(ΦB) + σ(1)(ΦB) + Σ̄

(1)
FO(v,ΦB)− Z Σ

(1)
EXP(v,ΦB)

+ σ(2)(ΦB) + Σ̄
(2)
FO(v,ΦB)− Z Σ

(2)
EXP(v,ΦB) +

Z(1 + Z)

2

(Σ
(1)
EXP(v,ΦB))2

σ(0)(ΦB)

− Z Σ
(1)
EXP(v,ΦB)

σ(1)(ΦB) + Σ̄
(1)
FO(v,ΦB)

σ(0)(ΦB)

+ σ(3)(ΦB) + Σ̄
(3)
FO(v,ΦB)− Z Σ

(3)
EXP(v,ΦB)− Z (1 + Z)(2 + Z)

6

(Σ
(1)
EXP(v,ΦB))3

(σ(0)(ΦB))2

+
Z(1 + Z)

2

(
Σ

(1)
EXP(v,ΦB)

)2 σ(1)(ΦB) + Σ̄
(1)
FO(v,ΦB)

(σ(0)(ΦB))2
− Z Σ

(2)
EXP(v,ΦB)

σ(1)(ΦB) + Σ̄
(1)
FO(v,ΦB)

σ(0)(ΦB)

+ Z Σ
(1)
EXP(v,ΦB)

(1 + Z)Σ
(2)
EXP(v,ΦB)− σ(2)(ΦB)− Σ̄

(2)
FO(v,ΦB)

σ(0)(ΦB)

}
, (4.16)

where terms contributing at different orders in αs are separated by an extra blank line in the above
equation.

To work out the expansion, we start from the three contributions of Eq. (3.26) with the re-
placements discussed in Sec. 4.1. The first contribution starts with a single emission, the second
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features at least two emissions, and the third contributes to events with at least three emissions.
The single-emission term can be worked out analytically, since the integrand is a total derivative,
while the remaning terms can be expanded to O(α3

s) at the integrand level and integrated over
the real-emission phase space. When the integrand is expanded out, one can safely set ε = 0 as
the cancellation of all singularities is now manifest. The expanded result can be expressed as a
linear combination in terms of the following three classes of integrals (we write them in terms of
v1 = kt1/M):

I
(n,m)
2 (v) =

∫ ∞
0

dv1

v1

∫ 2π

0

dφ1

2π

∫ 1

0

dζ2
ζ2

∫ 2π

0

dφ2

2π
J (v1/xQ, p)L̃

n lnm
1

ζ2

×
{

Θ(v − V ({p̃}, k1, k2))−Θ(v − V ({p̃}, k1))
}
,

I
(n,m)
3 (v) =

∫ ∞
0

dv1

v1

∫ 2π

0

dφ1

2π

∫ 1

0

dζ2
ζ2

∫ 2π

0

dφ2

2π

∫ 1

0

dζ3
ζ3

∫ 2π

0

dφ3

2π
J (v1/xQ, p)L̃

n

(
lnm

1

ζ2
+ lnm

1

ζ3

)
×
{

Θ(v − V ({p̃}, k1, k2, k3))−Θ(v − V ({p̃}, k1, k2))

−Θ(v − V ({p̃}, k1, k3)) + Θ(v − V ({p̃}, k1))
}
,

I
(n)
3,R′′(v) =

∫ ∞
0

dv1

v1

∫ 2π

0

dφ1

2π

∫ 1

0

dζ2
ζ2

∫ 2π

0

dφ2

2π

∫ 1

0

dζ3
ζ3

∫ 2π

0

dφ3

2π
J (v1/xQ, p)L̃

n ln
1

ζ2
ln

1

ζ3

×
{

Θ(v − V ({p̃}, k1, k2, k3))−Θ(v − V ({p̃}, k1, k2))

−Θ(v − V ({p̃}, k1, k3)) + Θ(v − V ({p̃}, k1))
}
, (4.17)

where L̃ and J are defined in Eqs. (4.3) and (4.4), respectively. We stress that we extended the
upper bound of the integration over v1 to infinity, following the discussion of Sec. 4.1. The integral
over v1 can be evaluated analytically. The remaining integrations are carried out numerically and
the final results are tabulated with fine grids as a function of v/xQ.

4.3 Event generation

Before presenting a phenomenological application of this formalism, we comment briefly on how
Eq. (3.26) is implemented numerically using a Monte Carlo method. We follow a variant of the
procedure used in refs. [41, 45, 52]. For the first emission we generate v1 uniformly according to
the integration measure dv1/v1J (v1/xQ, p), and assign it a weight in terms of the Sudakov radiator
and parton luminosities. All the identical emissions belonging to the ensemble dZ[{R′, ki}] are
generated via a shower ordered in vi. This is done by expressing the term εR

′(kt1) as

e−R
′(kt1) ln 1

ε =

n+2∏
i=2

e
−R′(kt1) ln

ζi−1
ζi , (4.18)

with ζ1 = 1 and ζn+2 = ε. Each emission in dZ[{R′, ki}] now has a weight

dζi
ζi
R′(kt1)e

−R′(kt1) ln
ζi−1
ζi ,

and therefore it can be generated by solving for ζi the equation

e
−R′(kt1) ln

ζi−1
ζi = r, (4.19)

with r being a random number extracted uniformly in the range [0, 1]. The above equation has no
solution for ζi > ζi−1, therefore this amounts to a shower ordered in ζi (or, equivalently, in vi). The
procedure is stopped as soon as a ζi < ε is generated. The azimuthal angles are generated uniformly
in the range [0, 2π] for all emissions. Finally, the special emissions, denoted by the subscript s in
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Eq. (3.26), do not have an associated Sudakov suppression since their contribution is always finite
in four dimensions. Therefore we generate them according to their phase-space measure and weight
as they appear in the master formula.

This recipe is sufficient to evaluate Eq. (3.26), and it can be implemented in a fast numerical
code. We stress that it is an exact procedure, meaning that no truncation at any perturbative order
is involved. The algorithm leads to the generation of an arbitrary number of emissions with ζi > ε,
while all unresolved emissions with ζi < ε are accounted for analytically in the Sudakov radiator.
This ensures that the whole singular part of the radiation phase space and all perturbative orders
are treated exactly. We choose conservatively ε = e−20 for our tests, although we observe that a
much larger value (e.g. ε ∼ e−7) can be chosen in practice given that emissions below this threshold
will be very soft and/or collinear, hence improving slightly the efficiency of the event generation.

We generate Born events using the LO matrix elements and phase-space-integrator routines of
MCFM [67], and we use HOPPET [73] to handle the evolution of the parton densities and the convolution
with the various coefficient functions.

For each Born event we run the above algorithm to produce the initial-state radiation, and
fill the histograms on the fly, thereby yielding dΣRES(v)/dΦB . As a byproduct, this allows us to
have exclusive events with N3LL accuracy for the observables treated in this article. For each Born
event we also generate a histogram filled with the expansion counterterm, which is computed as
described in the previous section. After the generation, the two histograms are combined with the
corresponding fixed-order cumulative distribution according to Eq. (4.16).

We point out that the Sudakov radiator has a singularity in correspondence of the Landau pole
at 2αs(µR)β0L̃ = 1 (see expressions in Appendix B). One could use different prescriptions to handle
this singularity, all differing by power-suppressed terms in the perturbative expansion. We choose
to set the result to zero below the singularity which, anyway, occurs at very small pt values. We
stress that other schemes can be adopted, and that this choice has no consequences above the scale
of the singularity.

The resummation and matching as described above are implemented in the program RadISH
that can simulate the production of any colour singlet with arbitrary phase-space cuts on the Born
kinematics. The code will be released in due course.

4.4 Predictions for Higgs-boson production at 13 TeV pp collisions

We now apply the method described in the previous sections to obtain the inclusive transverse-
momentum distribution of the Higgs boson at the LHC. We stress that the results shown in the
following are to be considered as a proof of concept of our method, and a more detailed phenomenol-
ogy discussion on the precise choice of the matching scheme as well as on the theory uncertainties
will be the subject of a forthcoming publication.

We perform the calculation in the large-top-mass limit, and we match our N3LL result to the
NNLO distribution that was computed in refs. [6, 7, 9]. In particular, here we use results obtained
with the code of ref. [8] with a cut on the Higgs transverse momentum at 5 GeV. The matched
distribution integrates to the inclusive N3LO cross section that is taken from ref. [3].

We consider 13 TeV collisions, and we use parton densities from the PDF4LHC15_nnlo_mc set [74–
79]. The value of the parameter p appearing in the modified logarithms L̃ is chosen considering the
scaling of the spectrum in the hard region, in order to make the matching to the fixed order smooth
in this region. On the other hand, its value should not be too large, in order to prevent the peak
of the distribution from being artificially pushed upwards due to the normalisation constraint. We
therefore set p = 2 as our reference value, but nevertheless checked that the choice p = 3 induces
negligible differences.

As central scales we employ µR = µF = mH , and xQ = Q/mH = 1/2. The perturbative
uncertainty is estimated by performing a seven-scale variation of µR, µF by a factor of two in either
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direction, while keeping 1/2 < µR/µF < 2 and xQ = 1/2; moreover, for central µR and µF scales,
xQ is varied around its central value in a range that we now turn to discuss. The total error is
defined as the envelope of all above variations.

In the case of the transverse momentum kt1 of a colour singlet of mass M , the resummation
scale Q is introduced by splitting the resummed logarithms as

ln
M

kt1
= ln

Q

kt1
+ ln

M

Q
, (4.20)

and subsequently assuming that

ln
Q

kt1
� ln

M

Q
. (4.21)

The latter condition is true at small kt1, and it allows one to expand ln(M/kt1) about ln(Q/kt1),
retaining only terms relevant to a given logarithmic accuracy. In this case, variations of Q give a
handle to estimate the size of subleading-logarithmic terms in the region where all-order effects are
important.

However, in the matching region kt1 ∼ M/2, condition (4.21) is violated for kt1 & Q2/M . In
this regime, the variation of the resummation scale is physically meaningless, since the logarithmic
hierarchy it is based upon is not valid at these scales. In particular, for Higgs production, a
variation of Q by a factor of two around mH/2 can have a couple of drawbacks. On the one hand,
for Q = mH/4, it leads to values of Q2/mH which are below the peak of the distribution, implying
that the corresponding resummation-scale variation is technically reliable only to the left of the
peak. On the other hand, for Q = mH , resummation effects are allowed to survive up to the Higgs
scale, which is a fairly hard region of the phase space, where one expects to be predictive with
the sole fixed-order calculation. In practice, however, in our matching procedure the resummed
contribution is subtracted up to the perturbative order one is matching to, which ensures that the
residual variations of Q away from the region of large logarithms induce effects that are numerically
very small.

For these two reasons, we believe that a more suitable variation range is given by Q ∈
[mH/3, 3mH/4], which corresponds to a variation by a factor of 3/2 around the central value
Q = mH/2. This range, that was already adopted in ref. [80], ensures that the resummation-scale
variation is reliable in the peak region and that resummation effects are turned off well below the
hard scale of the reaction, hence avoiding artifacts in the matched spectrum.

To study the impact of this choice, in the left panel of Figure 2 we show the comparison between
the pure resummed N3LL normalised spectra with two uncertainty prescriptions: in the green
coarse-textured band, Q is varied by a factor of two around mH/2, while the red fine-textured band
involves the aforementioned reduced variation by a factor of 3/2; in both cases µR and µF undergo
the seven-point variation described above. As expected, the choice Q ∈ [mH/3, 3mH/4] reduces the
impact of the resummation-scale uncertainty in the matching region where the logarithms are not
large, while leaving the uncertainty unchanged in the small-pt regime where the all-order treatment
is necessary.

The right panel of Figure 2 shows the comparison between the two prescriptions for the matched
N3LL+NLO distribution.14 In the NLO matching, the resummed component is subtracted up to
and including O(α2

s) terms relative to the Born. Therefore, in the region where the logarithms are
moderate in size, the issues due to the large scale variation are suppressed by O(α3

s), and we indeed
observe that the two bands differ negligibly at intermediate pt values.

We conclude that the resummation-scale variation by a factor of 3/2 still provides a wide enough
variation range to probe the size of subleading-logarithmic corrections, while avoiding that some

14Preliminary results at N3LL+NLO for this observable have been also shown at [81].
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moderate resummation effects persist away from the region where the logarithms are large. We
therefore adopt the modified variation in our prescription to estimate the perturbative uncertainty.
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Figure 2. Comparison between two different prescriptions for the resummation-scale-variation range, as
described in the text. The comparison is shown both at the resummation level (left) and with a matching
to NLO (right).

We next turn to the comparison with NNLL. The left panel of Figure 3 shows a comparison
between the pure resummed predictions for the normalised spectrum at N3LL and NNLL. In this
plot, the NNLL curve is normalised to the NLO total cross section, while the N3LL curve is nor-
malised to the NNLO total cross section. The plot shows that the inclusion of the N3LL corrections
leads to a reduction in the scale uncertainty of the resummed prediction compared to the NNLL
result.15
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Figure 3. Left: comparison between the resummed distributions at N3LL and NNLL; the lower panel
shows the ratio of the two distributions. Right: comparison between the matched N3LL+NLO and the
NNLL+NLO predictions for the inclusive Higgs spectrum; the lower panel shows the ratio of each distribu-
tion to its central value.

15An identical reduction in size is observed when varying Q by a factor of two around its central value.
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The right plot of Figure 3 shows the matching of the NNLL and N3LL predictions to NLO. Both
curves are now normalised to the NNLO total cross section. We observe that at the matched level,
the N3LL corrections amount to ∼ 10% around the peak of the spectrum, and they get slightly
larger for smaller pt values (. 10GeV). A substantial reduction of the total scale uncertainty is
observed for pt . 10GeV.

We notice that, at the matched level, the impact of the N3LL corrections is reduced with
respect to the sole resummation shown in the left plot of Figure 3. This is to a good extent
due to the matching scheme that we chose here. Indeed, in a multiplicative scheme we include the
O(α2

s) constant terms already at NNLL, although they are formally of higher-order accuracy. While
these terms enter at N3LL, they are numerically sizeable and therefore their inclusion reduces the
difference between the N3LL+NLO and the NNLL+NLO predictions.

To conclude this section, in Figure 4 we report the N3LL+NNLO prediction for the normalised
distribution. The latter is compared both to NNLL+NNLO and to the pure NNLO result. All curves
in the plot are now normalised to the total N3LO cross section. When matched to NNLO, the N3LL
corrections give rise to a few-percent shift of the central value with respect to the NNLL+NNLO
prediction around the peak of the distributions, while they have a somewhat larger effect for pt .
10GeV.We recall that some of the N3LL effects are already included in the NNLL+NNLO prediction
by means of the multiplicative matching scheme that we adopt here. As a consequence, this reduces
the difference between the N3LL+NNLO and the NNLL+NNLO curves. We also observe that the
matched N3LL and NNLL predictions are only moderately different in their theoretical-uncertainty
bands. While this is of course expected in the hard region of the spectrum, we point out that, in
the region pt . 30GeV, the latter feature is due (and increasingly so at smaller pt) to numerical
instabilities of the fixed-order runs with one of the scales (µR or µF ) set to mH/2. As we already
observed at NLO, it is indeed necessary to have stable fixed-order predictions for pt < 10GeV in
order to benefit from the uncertainty reduction due to the higher-order resummation. We leave this
for future work.
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Figure 4. Comparison among the matched normalised distributions at N3LL+NNLO, NNLL+NNLO, and
NNLO. The uncertainties are obtained as described in the text.
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5 Conclusions

In this article we presented a formulation of the momentum-space resummation for global, recursive
infrared and collinear safe observables that vanish far from the Sudakov limit because of kinematic
cancellations implicit in the observable’s definition. In particular, we studied the class of inclusive
observables that do not depend on the rapidity of the QCD radiation. Members of this class are,
among others, the transverse momentum of a heavy colour singlet and the φ∗ observable in Drell-
Yan pair production. We obtained an all-order formula that is valid for all observables belonging
to this class, and we explicitly evaluated it to N3LL up to effects due to the yet unknown four-
loop cusp anomalous dimension. In the case of the transverse momentum of a colour singlet, we
proved that our formulation is equivalent to the more common solution in impact-parameter space
at this accuracy. This evidence is also supported by the numerous checks that we have documented.
This equivalence allowed us to extract the ingredients necessary to compute the Sudakov radiator
at N3LL using the recently computed B(3) coefficient [25, 26]. The radiator is universal for all
observables of this class [45], which can therefore be resummed to this accuracy with our approach.
The all-order result was shown to reproduce the correct power-like scaling in the small-pt limit,
where the perturbative component of the coefficient of the intercept can be systematically improved
by including higher-order logarithmic corrections. We implemented our results in the exclusive
generator RadISH, which performs the resummation and the matching to fixed order, and allows
the user to apply arbitrary kinematic cuts on the Born phase space. Although we explicitly treated
the case of Higgs production, the code developed here can automatically handle any colour-singlet
system.

As a phenomenological application, we computed the Higgs transverse-momentum spectrum
at the LHC. In comparison to the NNLL+NLO prediction, we find that N3LL+NLO effects are
moderate in size, and lead to O(10%) corrections near the peak of the distribution and they are
somewhat larger for pt . 10GeV. The scale uncertainty of the matched calculation is reduced by
the inclusion of the N3LL corrections in the small transverse-momentum region. When matched
to NNLO, the effect of the N3LL is pushed towards lower pt values, leading to a few percent
correction to the previously known NNLL+NNLO prediction [39] around the peak, and to more
sizeable effects at smaller pt values. In order to further improve the theoretical control in the
small-medium transverse momentum region, it will be necessary to consider the deviations from
the large-mt approximation. Recently, progress has been made in this respect by computing the
NLO corrections to the top-bottom interference [12]. Higher-order effects due to the leading tower
of logarithms of pt/mb were addressed in ref. [82] and were found to be moderate in size. The
procedure for the inclusion of mass effects in the context of transverse-momentum resummation is
a debated topic. While some prescriptions are available [83, 84], further studies are necessary to
estimate these effects in the logarithmic region at this level of accuracy.
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A Connection with the backward-evolution algorithm at NLL

It is interesting to relate our formulation for the transverse-momentum resummation to a NLL-
accurate backward-evolution algorithm [85–87]. We start from Eq. (2.59), that was deduced by
considering only flavour-conserving real splitting kernels, for the sake of clarity. We briefly comment
on the general flavour case below.

After neglecting the effect of the hard and coefficient functions, which starts at NNLL, we recast
the NLL partonic cross section as

Σ̂c1,c2
N1,N2

(v) = 1(c1,c2)

∫ M

0

dkt1
kt1

∫ 2π

0

dφ1

2π
e−R(εkt1) exp

{
−

2∑
`=1

∫ µ0

εkt1

dkt
kt

αs(kt)

π
ΓN`(αs(kt))

}
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1 (αs(kt1))

) ∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

×
2∑

`i=1

(
R′`i (kti) +

αs(kti)

π
ΓN`i (αs(kti))

)
Θ (v − V ({p̃}, k1, . . . , kn+1)) , (A.1)

where 1(c1,c2) enforces the flavour of the two parton densities to be identical to that entering the
Born process, i.e. fT1(c1,c2)f = fc1fc2 . At NLL order, the emission probabilities involve only tree-
level splitting functions, whose coupling we evaluate in the CMW scheme, as discussed in Sec. 2.1:

αs(kt)

π
→ αCMW

s (kt)

π
=
αs(kt)

π

(
1 +

αs(kt)

2π
K

)
, (A.2)

where K is defined in Eq. (2.21). In order to perform the inverse Mellin transform of Eq. (A.1), we
observe that, when inverted into z space, each of the real-emission probabilities acts on a generic
parton distribution f(x`i) as described in Section 2.3.3:(
R′`i (kti) +

αs(kti)

π
γ

(0)
N`i

(αs(kti))

)
fN`i (µ)

→ αCMW
s (kti)

π

(∫ 1−kti/M

0

dz
(`i)
i P (0)(z

(`i)
i )f(µ, x`i) +

∫ 1

x`i

dz
(`i)
i

P̂ (0)(z
(`i)
i )

z
(`i)
i

f(µ,
x`i

z
(`i)
i

)

)
,

(A.3)

where we reintroduced the regular terms in the hard-collinear contribution to R′`, whose z
(`) upper

limit was set to 1 in Section 2.3.2.
Similarly, we can now restore the remaining power-suppressed terms in the single-emission

probability that we neglected in our discussion of Section 2.3.2, and recast the right-hand side of
Eq. (A.3) in terms of the unregularised splitting function as16

αCMW
s (kti)

π

∫ 1−kti/M

x`i

dz
(`i)
i

P (0)(z
(`i)
i )

z
(`i)
i

f(µ,
x`i

z
(`i)
i

). (A.4)

16We recall that Eq. (A.4) in the case of g → gg splitting also requires an extra symmetry factor of 2 to account
for the fact that the total probability to find a gluon with momentum fraction z(`) is the sum of the probability to
find either of the two gluons involved in the branching, as in Eq. (2.45).
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We furthermore introduce the shower Sudakov form factor ∆(Qi), that at NLL reads

∆(Qi) = exp

{
−

2∑
`=1

∫ Qi

εkt1

dkt
kt

∫ 1−kt/M

0

dz(`)α
CMW
s (kt)

π
P (0)(z(`))

}
, (A.5)

such that ∆(M) = exp {−RNLL(εkt1)} up to non-logarithmic terms included in ∆ but not in
exp {−R}.

As shown in the main text, in the all-order picture, the correct z(`) bounds for each emission
depend on the radiation that was emitted before it. Following the discussion of Section 2.1, however,
we recall that these effects contribute beyond NLL accuracy, and therefore can be neglected in the
present case. We then plug Eq. (A.1) into Eq. (2.58) and perform the inverse Mellin transform as
just described, obtaining
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×Θ (v − V ({p̃}, k1, . . . , kn+1)) , (A.6)

with ∆(εkt1) = 1 and

w`i = x`i/

 i−1∏
j=1
`j=`i

z
(`j)
j

 , x̄1 = x1/

n+1∏
j=1
`j=1

z
(`j)
j

 , x̄2 = x2/

n+1∏
j=1
`j=2

z
(`j)
j

 . (A.7)

We stress again that the z(`)
i limits in Eq. (A.6) are obtained in the approximation of soft kinematics

which is valid at NLL accuracy. To implement Eq. (A.6) in a Markov process we can now impose an
ordering in the transverse momentum of the emissions, which amounts to performing the following
replacement in Eq. (A.6) (we remind that ζi = kti/kt1)

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi
→
∫ 1

ε

dζ2
ζ2

∫ ζ2

ε

dζ3
ζ3
· · ·
∫ ζn

ε

dζn+1

ζn+1
. (A.8)

With this replacement, Eq. (A.6) reproduces the backward-evolution equation for a shower of pri-
mary gluons emitted off the two initial-state legs (see e.g. Eq. (49) of ref. [87]), ordered in transverse
momentum. The only relevant difference with the common parton-shower formulation is in the fact
that, unlike a parton shower, Eq. (A.6) does not contain a no-emission event. This term is in-
deed infinitely suppressed in our case and therefore it does not contribute to the final result. As
a consequence, the cutoff (represented by εkt1 in our formula) is replaced by a fixed cut Q0 in the
trasverse momentum of the emissions. In order for Eq. (A.6) to be NLL accurate for the transverse-
momentum distribution, the recoil of all initial-state emissions must be entirely absorbed by the
colour singlet. This shows that a branching algorithm for initial-state radiation that fulfils the
above conditions is NLL accurate for this observable (see also [50]). Analogous considerations ap-
ply to other rIRC safe, global observables of the type (2.5). To extend the above discussion to the
generic flavour case, one is forced to relax the assumption of kt ordering in order to implement the
above solution in a Markov-chain Monte-Carlo program.17 Indeed, if some soft radiation occurs

17We are grateful to A. Banfi for a discussion about this aspect.
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after the flavour-changing collinear emission has taken place, then it becomes quite cumbersome
to determine the correct colour factor for the former. This is because coherence guarantees that
a soft gluon feels the effective colour charge of the radiation at smaller angles, which now may in-
volve combinations of different flavours. A correct solution to this problem requires to reformulate
the evolution by ordering the radiation in angle. This ensures that the hard-collinear emissions
contributing to the DGLAP evolution happen at last (see also the discussion in Appendix E.2 of
ref. [41]), and the colour structure of the soft radiation is easily determined. It is possible to show
that the backward-evolution algorithm reproduces the resulting evolution formula in that case as
well, and it is therefore NLL accurate.

B Analytic formulae for the N3LL radiator

In this Appendix we report the expressions for some of the quantities used in the article. The RGE
equation for the QCD coupling reads

dαs(µ)

d lnµ2
= β(αs) ≡ −αs

(
β0αs + β1α

2
s + β2α

3
s + β3α

4
s + . . .

)
. (B.1)

The coefficients of the β function (with nf active flavours) are
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, (B.2)
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where
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N4
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48
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N2
c (N2
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24
,

and CA = Nc, CF =
N2
c−1

2Nc
, and Nc = 3.

The lowest-order regularised Altarelli-Parisi splitting functions in four dimensions are

P̂ (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

– 48 –



P̂ (0)
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1

2

[
z2 + (1− z)2

]
,

P̂ (0)
gq (z) = CF

1 + (1− z)2

z
,

P̂ (0)
gg (z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ 2πβ0δ(1− z), (B.5)

where the plus prescription is defined as∫ 1
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. (B.6)

The corresponding unregularised Altarelli-Parisi splitting functions in four dimensions are
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where in the last step we exploited the symmetry of the P (0)
gg (z) splitting function in z → 1− z.

Next we report the functions that enter the definition of the Sudakov radiator (Eq. (4.5)) up
to NNLL. To simplify the notation we set λ = αs(µR)β0L. They read
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g3(αsL) =

(
A(1) ln

1

x2
Q

+B(1)

)(
− λ

1− 2λ
ln

µ2
R

x2
QM

2
+

β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ

)

− 1

2πβ0

λ

1− 2λ

(
A(2) ln

1

x2
Q

+B(2)

)
− A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2)

(
β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2
− 1

πβ0

λ2

(1− 2λ)2
ln

µ2
R

x2
QM

2

)
+A(1)

(
λ
(
β0β2(1− 3λ) + β2

1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(
β0β2(1− 2λ) + 2β2

1λ
)

2β4
0(1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2
− λ2

(1− 2λ)2
ln2 µ2

R

x2
QM

2

− β1

2β2
0

(2λ(1− 2λ) + (1− 4λ) ln(1− 2λ))

(1− 2λ)2
ln

µ2
R

x2
QM

2

)
. (B.10)

The new N3LL g4 coefficient reads

g4(αsL) =
A(4)(3− 2λ)λ2
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