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1 Introduction

Neutrino Physics is a very active field of research in Particle Physics, with a well established

longterm program for future experiments. Although neutrino oscillations have provided

solid evidence for leptonic mixing and for at least two non-vanishing neutrino masses,

there are still some fundamental open questions. These include the establishment of the

nature of neutrinos (Dirac or Majorana), determination of the pattern of neutrino masses

(hierarchical or quasi-degenerate), settling of the ordering of neutrino masses (normal or

inverted) and discovering leptonic CP violation.

We have reached a precision era for the measurement of leptonic mixing parameters

and for the measurement of the squared mass differences of the three light neutrinos. Still,

it is not yet clear whether it will be possible, in the near future, to determine the mass of

the lightest neutrino and thus the scale of neutrino masses is not yet determined. However,

it is by now established, both in laboratory experiments and via astrophysical bounds,

that light neutrinos can at most have masses of the order of one eV. Several of these open

questions have profound implications for Astrophysics and Cosmology.

Recently, the Daya Bay Reactor Neutrino Experiment [1] measured with certainty, for

the first time, a nonzero value for the smallest leptonic mixing angle, θ13. At that time

it was already known that the two other leptonic mixing angles were large. The fact that

none of the three leptonic mixing angles vanishes opens up the possibility of observing

leptonic CP violation of Dirac type in neutrino oscillation experiments. At present, there

is a some likelihood indication for a Dirac phase of -π/2. Until recently all experimental

results were in agreement with θ23 corresponding to maximal mixing. However, there is a

new measurement by NOvA [2] reporting that this value is excluded at 2.6 σ CL.
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On the theoretical side there have been many attempts at understanding the pattern

of leptonic masses and mixing, through the introduction of family symmetries at the La-

grangian level or as symmetries of the leptonic mass matrices. In a bottom up approach,

one may try to guess the family symmetries chosen by nature, from the input from ex-

periment. One of the difficulties in pursuing this approach stems from the fact that the

leptonic mass matrices change under weak-basis (WB) transformations. So even if there is

a flavour symmetry chosen by nature, in what WB would the symmetry be evident?

In this paper we point out that leptonic WB invariants can be a very useful tool in the

study of the pattern of leptonic masses and mixing, including leptonic CP violation. The

paper is organised as follows. In the next section, we review leptonic CP-even and CP-odd

WB invariants. In the CP-odd invariants, we include those which are sensitive to Dirac

and Majorana-type CP violation. In the third section, we show how WB invariants provide

a simple way of determining whether a given model favours normal or inverted neutrino

mass ordering and also what it predicts for the θ23 octant. In section 4, we illustrate the

usefulness of the WB invariants, by applying them to specific Ansätze proposed in the

literature. The summary and conclusions are presented in the last section.

2 Invariants and the pattern of leptonic mixing and CP violation

2.1 Introductory remarks

In the SM, the flavour structure of Yukawa couplings, in both the lepton and quark sectors,

is not constrained by gauge symmetry. As a result, fermion masses and mixing are arbitrary.

One may adopt a bottom up approach and attempt at extracting from experiment some

hint of a flavour symmetry. One of the difficulties one encounters in this approach stems

from the fact that one has the freedom to make weak basis (WB) transformations under

which the flavour structure of Yukawa couplings change, but their physical content remains

invariant. Let us consider the SM and assume that lepton number is violated by some

physics beyond the SM, leading at low energies to an effective Majorana neutrino mass

matrix. The leptonic mass terms are:

Lmass = −1

2
ν0L

T
C−1mνν

0
L − `0Lm``

0
R + h.c. , (2.1)

and the charged currents are:

LW = − g√
2
W+
µ `

0
Lγ

µν0L + h.c. (2.2)

The WB transformations involving the leptonic fields are of the form:

ν0L → V ν0L, `0L → V `0L, `0R →W`0R (2.3)

with V and W unitary 3 × 3 matrices. Under these transformations the leptonic mass

terms transform as:

mν → V TmνV, m` → V †m`W (2.4)
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Parameter Best fit 1σ range

∆m2
21 [10−5eV 2] 7.60 7.42–7.79

|∆m2
31| [10−3eV 2](NH) 2.48 2.41–2.53

|∆m2
31| [10−3eV 2](IH) 2.38 2.32–2.43

sin2 θ12 0.323 0.307–0.339

sin2 θ23(NH) 0.567 0.439a–0.599

sin2 θ23(IH) 0.573 0.530–0.598

sin2 θ13 (NH) 0.0234 0.0214–0.0254

sin2 θ13 (IH) 0.0240 0.0221–0.0259

δ (NH) 1.34 π 0.96–1.98 π

δ (IH) 1.48 π 1.16–1.82 π

Table 1. Neutrino oscillation parameter summary, taken from ref. [4]. For ∆m2
31, sin2 θ23, sin2 θ13,

and δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy. aThere is

a local minimum in the first octant, sin2 θ23 = 0.467 with ∆χ2 = 0.28 with respect to the global

minimum.

Leptonic mixing and CP violation in the leptonic sector are parametrised by the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix, UPMNS, which contains three mixing angles and

three CP violating phases, two of the phases reflecting the Majorana character of neutrinos.

Following the standard parametrisation [3] the matrix UPMNS can be denoted as:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 · P (2.5)

with P given by

P = diag
(
1, eiα21 , eiα31

)
(2.6)

where cij = cos θij , sij = sin θij the angles θij = [0, π/2], δ = [0, 2π] is a Dirac-type

CP violating phase and α21, α31 denote phases associated to the Majorana character of

neutrinos. Neutrino oscillation experiments are sensitive to the mixing parameters with

the exception of the CP violating phase α21, α31. There is no loss of generality in adopting

the convention that θij are all in the first quadrant.

In table 1 we summarise the present knowledge concerning neutrino masses and leptonic

mixing. In the literature, there are three global phenomenological fits on θ12, θ23, θ13, and

δ [4–6]. The specific bounds vary slightly from reference to reference. For definiteness we

present those of ref. [4]. Neutrino oscillations give information about differences of squared

masses:

∆m2
21 ≡ ∆2

21 ≡ m2
2 −m2

1, ∆m2
31 ≡ ∆2

31 ≡ m3
2 −m2

1 (2.7)

The sign of ∆m2
31 is not yet known. The best fit values of some of the parameters listed

in table 1 depend on the sign of ∆m2
31. For a positive sign the ordering is called normal
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(NH), for a negative sign the ordering is called inverted (IH). The association of the terms

normal and inverted to each one of the signs reflects a prejudice, since from a theoretical

point of view, no ordering can a priori be considered more natural, as discussed in ref. [7].

At this stage, it is worth recalling the main differences between rephasing invariant

quantities in the cases of Majorana and Dirac neutrinos. Let us start by considering unitar-

ity triangles, assuming that the UPMNS is a 3x3 unitary matrix. It is well known that there

are many frameworks, including for example the seesaw type one [8–12] where this is not

exactly true, since there are small deviations from 3x3 unitarity. With a unitary UPMNS,

one has six leptonic unitarity triangles, three corresponding to orthogonality of rows and

another three for orthogonality of columns. The triangles corresponding to orthogonality

of rows are often called Dirac triangles and are very similar to the unitarity triangles in

the quark sector. Under rephasing of the charged lepton fields, the leptonic Dirac triangles

rotate and thus the direction of their sides have no physical meaning. Analytically, they

correspond to quantities like arg(Ue1U
∗
µ1) which are not rephasing invariant. The phases

which are physically meaningful in these Dirac triangles are the internal angles of the tri-

angles which analytically correspond to the arguments of invariant leptonic quartets like

(Ue2Uµ3U
∗
e3U

∗
µ2). In the Majorana triangles, one encounters a very different situation [13].

In these triangles the directions of the sides are physically meaningful and do not change

under the rephasing of the charged lepton fields. Recall that one cannot rephase Majo-

rana neutrinos. Analytically these directions correspond to rephasing-invariant biliniars

like (Ue1U
∗
e2). Therefore, the most rigorous definition of Majorana phases is that they

correspond to arguments of the rephasing invariant bilinears (U`jU
∗
`k). It can be seen that,

independently of unitarity, there are only six independent Majorana phases in a 3 × 3

UPMNS. Assuming unitarity, it has been shown that from the knowledge of six indepen-

dent Majorana phases one can construct the full PMNS matrix, including moduli and

phases [14].

2.2 Leptonic weak-basis invariants

In this subsection, we describe the WB invariants which can fix the lepton mixing and CP

violation in the leptonic sector. We consider WB invariants written in terms of the charged

lepton mass matrix and the effective neutrino mass matrix and not WB invariants written

in terms of the neutrino mass matrices [15–19] appearing in the framework of the seesaw

mechanism.

It can be shown that the following four weak basis (WB) invariants completely define

four independent moduli of UPMNS [20]:

I1 = Tr[H` Hν ], I2 = Tr[H2
` Hν ], (2.8)

I3 = Tr[H` H
2
ν ], I4 = Tr[H2

` H
2
ν ] (2.9)

where Hν = m∗ν m
T
ν and H` = m` m

†
`. These four WB invariants are physical quantities

and can be expressed in terms of charged lepton and neutrino masses and moduli of UPMNS.

From the knowledge of the four invariants and the charged lepton and neutrino masses, one

can derive all the moduli of UPMNS, using 3x3 unitarity. From the knowledge of the moduli

– 4 –
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one can then readily evaluate the common area of all unitarity triangles which in turn

gives the strength of leptonic CP violation of the Dirac type. This is entirely analogous to

the situation in the quark sector [20]. Although the four invariants of eqs. (2.8) and (2.9),

together with 3 × 3 unitarity completely fix the moduli of UPMNS and the strength of

leptonic CP violation of Dirac-type, there is still a two-fold ambiguity, since the sign of CP

violation is not fixed. This ambiguity can be lifted by calculating [21]:

ICP ≡ Tr [m∗ν ·mT
ν , h`]

3 (2.10)

At this stage it should be pointed out that there is an important difference between the

lepton and quark sectors. While in the quark sector one can overdetermine the CKM

matrix from experiment, in the case of the lepton sector with Majorana neutrinos, one

cannot completely determine UPMNS from feasible experiments. This is related to the

appalling fact, emphasised by Glashow et al, [22] that it is not possible to fully reconstruct

the neutrino mass matrix from feasible experiments. It is instructive to write explicitly

the strength of Dirac type CP violation in terms of four independent moduli of UPMNS.

Choosing as independent moduli Ue2, Ue3, Uµ3, Uµ2, one obtains [20]:

Im Q ≡ Im
(
Ue2 Uµ3 U

∗
e3 U

∗
µ2

)
=
√
|Ue2|2 |Uµ3|2 |Ue3|2 |Uµ2|2 −R2, (2.11)

R =
(
1− |Ue2|2 − |Uµ3|2 − |Ue3|2 − |Uµ2|2 + |Ue2|2 |Uµ3|2 + |Ue3|2 |Uµ2|2

)
/2 (2.12)

Experimentally one can extract information on the real and imaginary parts of such quar-

tets from neutrino oscillation experiments. This is to be compared to the quark sector

where one can choose as input moduli |Vus|, |Vub|, |Vcb| and |Vtd|. The first three moduli

can be measured from strange particles, and B-meson decays, while |Vtd| can be measured

from Bd − −Bd mixing. Of course, the measurement of |Vtd| through this meson mixing

can be affected by New Physics contributions to this mixing. In spite of the scarcity of

leptonic measurements, a nice aspect of the leptonic sector is the absence of “hadronic

uncertainties”. For example, it is remarkable that the present experimental measurement

|Ue3| has a smaller percent error than the measurement of |Vub|, in spite of the enormous

effort from both theorists and experimentalists to measure |Vub|.
So far, we have only considered WB invariants which fix the strength of CP violation

of Dirac-type. In the case of Majorana neutrinos one has two extra phases which, as

emphasised before, have to do with the fact that for Majorana neutrinos there is only

freedom to rephase the charged leptons and therefore the phase of the bilinear (U`jU
∗
`k)

has physical meaning.

It is possible to derive WB invariant CP-odd conditions sensitive to the three CP

violating phases present in eq. (2.5). This was done in ref. [23] where it was shown that

the following set of conditions is necessary and sufficient for CP invariance in the case of

three generations, for nonzero and nondegenerate masses:

Im Tr
[
h` ·m∗ν ·mν ·m∗ν · h∗` ·mν

]
= 0 (2.13)

Im Tr
[
h` · (m∗ν ·mν)2 · (m∗ν · h∗` ·mν)

]
= 0 (2.14)

Im Tr
[
h` · (m∗ν ·mν)2 · (m∗ν · h∗` ·mν)(m∗ν ·mν)

]
= 0 (2.15)

Im Tr
[
(mν · h` ·m∗ν) + (h∗` ·mν ·m∗ν)

]
= 0 (2.16)
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Selecting a minimal set of necessary and sufficient conditions for CP invariance is not trivial

and was provided later on, in ref. [24]:

Tr
[
m∗ν ·mT

ν , h`
]3

= 0 (2.17)

Tr
[
mν · h` ·m∗ν , h∗`

]3
= 0 (2.18)

ImTr
(
h` ·m∗ν ·mν ·m∗ν · h∗` ·mν

)
= 0 (2.19)

The first of these three equations is similar to the condition derived for the quark sector.

It is sensitive to the Dirac-type phase and insensitive to the Majorana-type phases. The

second and third equations are sensitive to both Dirac and Majorana type phases. The

second equation was first derived in ref. [25] in the context of three degenerate neutrinos

which, as was shown, still allows for leptonic mixing and Majorana type CP violation. The

third equation coincides with eq. (2.13) which was derived for the first time in ref. [23]

where it was shown that it is the necessary and sufficient condition for CP conservation

in the case of two generations. Recall that for two generations only, Majorana-type CP

violation can occur.

3 Invariants sensitive to neutrino mass ordering and the θ23 octant

In the previous section we summarised important information on weak basis invariants

that was already known and that have proved to be extremely useful. In this section we

discuss a set of new invariants sensitive to the neutrino mass ordering and to the octant in

which the angle θ23 lies. One important feature of the new invariants is the fact that their

building blocks are analogous to the invariants found in ref. [20] for the quark sector.

3.1 The neutrino mass ordering

One of the outstanding questions is the neutrino mass ordering. It is not yet known whether

or not the mass of m3 is higher than the mass of m1 (and of m2). This refers to the neutrino

mass ordering associated to the UPMNS angles as given in table 1. The scale of neutrino

masses is also not yet fixed. The highest hierarchy is obtained when the lightest neutrino

mass is close to zero. However, it may happen that the three neutrino masses are almost

degenerate. Almost degeneracy requires the mass scale to be higher than the square root

of |∆m2
31|.

Depending on the neutrino mass ordering, it is useful to consider different parametrisa-

tions for the neutrino masses. For normal ordering the following parametrisation is useful:

m2
1 = ∆2 x ∆2 = |∆2

31|

m2
2 = ∆2 (x+ ε) ; ε =

∆2
21

|∆2
31|

; 0 ≤ x

m2
3 = ∆2 (x+ 1)

(3.1)

For inverted ordering, we use the following parametrisation for the neutrino masses:

m2
1 = ∆2

(
x′ + 1

)
m2

2 = ∆2
(
x′ + 1 + ε

)
; 0 ≤ x′

m2
3 = ∆2 x′

(3.2)
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In can be easily shown that the sign of the following WB invariant:

Ĩ1 ≡ Tr[H` Hν ]− 1

3
Tr[H`]Tr[Hν ] (3.3)

indicates the ordering of the neutrino masses. Since Ĩ1 is a WB invariant it can be computed

in any particular WB. It is instructive to compute Ĩ1 in the basis where the charged lepton

mass matrix is diagonal. In this basis we have:

H` = diag
(
m2
e, m

2
µ, m

2
τ

)
, Hν = UPMNS d

2
ν U

†
PMNS (3.4)

with d2ν = diag (m2
1, m

2
2, m

2
3). This allows us to express Ĩ1 in terms of physical observables:

Tr[Hν ] = m2
1 +m2

2 +m2
3, T r[H`] = m2

e +m2
µ +m2

τ (3.5)

Tr[H` Hν ] = m2
em

2
k |U1k|2 +m2

µm
2
k |U2k|2 +m2

τm
2
k |U3k|2 (3.6)

where summation in k is implied and the Uij stand for the entries of UPMNS. Then, it is

straightforward to calculate Ĩ1. We find:

Ĩ1 = m2
τ

[
∆2

31

(
|U33|2 −

1

3

)
+ ∆2

21

(
|U32|2 −

1

3

)]
+

+m2
µ

[
∆2

31

(
|U23|2 −

1

3

)
+ ∆2

21

(
|U22|2 −

1

3

)]
+ (3.7)

+m2
e

[
∆2

31

(
|U13|2 −

1

3

)
+ ∆2

21

(
|U12|2 −

1

3

)]
Taking into account the value of charged lepton masses:

m2
e = 2.6× 10−7GeV2, m2

µ = 1.1× 10−2GeV2 m2
τ = 3GeV2, (3.8)

it is clear that we can safely neglect the terms in m2
e and m2

µ in the determination of the

sign of Ĩ1. Furthermore, experimentally we know that |U33|2 > 1/3. Therefore, it follows

that the sign of Ĩ1 gives the sign of ∆2
31. It is interesting to note that for exact tribimaximal

mixing [26] which leads to leptonic mixings close to the experimental values:

UTBM =


2√
6

1√
3

0
1√
6
− 1√

3
1√
2

1√
6
− 1√

3
− 1√

2

 (3.9)

one has the following expression for Ĩ1:

Ĩ1 ≡ Tr[H` Hν ]− 1

3
Tr[H`]Tr[Hν ] ' 1

6
m2
τ ∆2

31 (3.10)

3.2 The octant of θ23

Despite great experimental progress in the determination of the neutrino oscillation pa-

rameters, two of these still remain poorly known — the atmospheric mixing angle θ23 and
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Ĩ2 > 0 Ĩ2 < 0

Ĩ1 > 0 NO, θ23 < π/4 NO, θ23 > π/4

Ĩ1 < 0 IO, θ23 > π/4 IO, θ23 < π/4

Table 2. Combination of the two invariants. NO stands for normal ordering, IO for inverted

ordering.

the CP violating Dirac type phase δ. The forthcoming neutrino oscillation experiments

are expected to significantly improve their measurements. Concerning the angle θ23 there

are two degenerate solutions known as the octant problem [27]. One, the lower octant

solution corresponds to θ23 < π/4, the other, the higher octant solution corresponds to

θ23 > π/4. The recent measurement of the angle θ13 [1] and the fact that it is not too

small gives grounds for optimism concerning the possibility of resolving the octant issue in

forthcoming neutrino experiments [28, 29].

It is remarkable that there is a WB invariant which is sensitive to the θ23 octant,

namely:

Ĩ2 ≡ Tr[H`] Tr[H
2
` Hν ]− Tr[H2

` ]Tr[H` Hν ] (3.11)

We find

Ĩ2 = ∆2
31

[
m2
τm

2
µ

(
m2
τ −m2

µ

) (
|U33|2 − |U23|2

)
+m2

τm
2
e

(
m2
τ −m2

e

) (
|U33|2 − |U13|2

)
+

+m2
µm

2
e

(
m2
µ −m2

e

) (
|U23|2 − |U13|2

) ]
+

+∆2
21

[
m2
τm

2
µ

(
m2
τ −m2

µ

) (
|U32|2 − |U22|2

)
+m2

τm
2
e

(
m2
τ −m2

e

) (
|U32|2 − |U12|2

)
+m2

µm
2
e

(
m2
µ −m2

e

) (
|U22|2 − |U12|2

) ]
(3.12)

It is clear that the sign of Ĩ2 gives the sign of
(
|U33|2 − |U23|2

)
, once the sign of ∆2

31

is known from Ĩ1. In table 2, we illustrate how the knowledge of the sign of Ĩ1 and Ĩ2
determines the neutrino mass ordering as well as the θ23 octant.

4 Application to specific Ansätze for Leptonic masses

Recently, various analysis of the prediction of neutrino mass textures have been presented

in the literature. Typically a random scan [30, 31] is performed, with the input of the

parameters of the Ansätze, leading to the determination of the various predictions of the

Ansätze for a selected number of physical parameters. The invariants Ĩ1 and Ĩ2 are a

complementary tool for these analysis, providing a simple determination of the favoured

neutrino mass ordering and the octant of θ23.

For illustrative purposes, we use the two invariants Ĩi in the case of two specific Ansätze,

studied in ref. [22], which predict a definite neutrino mass ordering.
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In ref. [22] the authors considered neutrino mass matrices with the maximal allowed

number of zero textures in the WB where the charged lepton mass matrix is already

diagonal. They concluded that no more than two independent zero textures were viable.

Furthermore, out of the fifteen different choices only seven could accommodate the known

experimental constraints. Texture zeros in mν lead to predictions. In both examples the

neutrino mass ordering is fixed by the chosen texture and therefore, as we are going to

show the sign of Ĩ1 is fixed.

In the case of texture A1 defined as [22]:

mν =

 0 0 a

0 b c

a c d

 (4.1)

the computation of the invariants Ĩ1 and Ĩ2 leads in leading order to:

Ĩ1 '
1

3
m2
τ

(
|a|2 + |c|2 + 2 |d|2 − |b|2

)
' 1

6
m2
τ∆2

31 (4.2)

Ĩ2 ' m2
τm

2
µ

(
m2
τ −m2

µ

) (
|a|2 + |d|2 − |b|2

)
' ∆2

31m
2
τm

2
µ

(
m2
τ −m2

µ

) (
|U33|2 − |U23|2

)
(4.3)

From eq. (4.3) we get to a good approximation that:

|b|2 = |a|2 + |d|2 −
(
|U33|2 − |U23|2

)
∆2

31 (4.4)

Replacing |b|2 into eq. (4.2) we get:

|c|2 + |d|2 '
[

1

2
+
(
|U33|2 − |U23|2

)]
∆2

31 (4.5)

The lefthand side is positive definite and we know experimentally (see table 1) that the

term in brackets on the righthand side cannot be negative, so we conclude that in this case

∆2
31 must be positive.

Another interesting example is case C, which corresponds to the following texture [22]:

mν =

 a c1 c2
c1 0 c3
c2 c3 0

 (4.6)

Computing the invariants Ĩ1 and Ĩ2 we obtain for the leading order terms:

Ĩ1 '
1

3
m2
τ

(
− |a|2 − 2 |c1|2 + |c2|2 + |c3|2

)
' 1

6
m2
τ∆2

31 (4.7)

Ĩ2 ' m2
τm

2
µ

(
m2
τ −m2

µ

) (
|c2|2 − |c1|2

)
' ∆2

31m
2
τm

2
µ

(
m2
τ −m2

µ

) (
|U33|2 − |U23|2

)
(4.8)

In this case it is not straightforward to apply the previous procedure since Ĩ1 and Ĩ2 cannot

be simply related. However close to tribimaximal mixing it can be shown that:

|a|2 ' |c3|2 |c1|2 ' |c2|2 (4.9)
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so that:

m2
1 ' |c3|

2 + 2 |c1|2 m2
2 ' |c3|

2 + 2 |c1|2 m2
3 ' |c3|

2 (4.10)

and

Ĩ1 '
1

3
m2
τ

(
− |c1|2

)
< 0 (4.11)

which indicates that this texture favours inverted order.

5 Conclusions

We have emphasised that WB invariants can play an important role in the study of lepton

masses and mixing, including CP violation. The great advantage of these invariants stems

from the fact that they can be directly evaluated in any conveniently chosen weak basis,

without involving the diagonalisation of complex mass matrices. The invariants are physical

quantities and can be expressed in terms neutrino masses, charged lepton masses, mixing

angles and CP violating phases. We first review the four WB invariants which, together

with the assumption of 3× 3 unitarity of UPMNS matrix, can completely fix all the moduli

of UPMNS. From these moduli, one can evaluate the common area of all leptonic unitarity

triangles. This area gives the strength of leptonic CP violation of Dirac type, but it does

not fix the sign of CP violation. This sign can be fixed by a CP-odd leptonic WB invariant.

We have also described the WB invariants which can probe CP violation of Majorana type,

emphasising that this CP violation has to do with the orientation of the sides of Majorana-

type unitarity triangles. For Majorana neutrinos, this orientation is physically meaningful

and is associated to the arguments of bilinears of UPMNS matrix elements. Finally, we

have shown that one can construct additional WB invariants which can determine whether

the neutrino mass ordering is normal or inverted and also determine the octant of θ23.

These invariants are then used to study specific texture-zero Ansätze for the neutrino mass

matrices. The invariants proposed in this paper are a powerful tool for model builders,

having the potential for simplifying, or even replacing, the numerical study of the parameter

study of a given model and the analysis of their phenomenological consequences. This is

illustrated for two particular leptonic textures proposed in the literature, but the method

can be applied to any model, since it is based on invariants which do not depend on the

particular weak basis in which the model is formulated.
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