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1 Introduction

In the superconformal formalism of supergravity, which is a very practical and economic
way for an off-shell formulation, the Planck mass m, = k™' = 2.4 x 10'® GeV emerges as a
consequence of the superconformal gauge fixing of a chiral multiplet compensator X°. Alter-
natively, we can say that a non vanishing compensator spontaneously breaks superconformal
to Poincaré local supersymmetry. A particular interesting application is the case when su-
perconformal matter is present. In this case Callan, Coleman and Jackiw (CCJ) |1] showed
that a traceless energy-momentum tensor can be defined, which is different for spin 0 and %
from the canonical one in that non-minimal couplings of gravity to matter are present. In
particular in Poincaré supergravity the stress tensor is not traceless and the spinor supercur-
rent is not ~-traceless. This is only possible if we define a supersymmetric generalization of
the improved stress tensor of CCJ. The supercurrent obeying this property satisfies a very
simple superfield conservation law [2[]

D%Jos =~ DY | D.Y =0, (1.1)

where Y = 0 for conformal matter. The vanishing of Y sets to zero the trace of the energy-
momentum tensor, as well as the «y-trace of the supercurrent and the divergence of the axial
current.

At the linearized level it was shown that the supergravity equations in presence of matter
correspond to the superfield equation [3|

K2 Eag + Jaa 20, (1.2)

where E, is the linearized Einstein tensor. Since the latter satisfies a similar conservation
equation [3], which includes the chiral scalar curvature R,

D*E,, = D,R, (1.3)

it then follows that
R+ kY ~0. (1.4)

and then R = 0 for conformal matter. It is the goal of the present investigation to provide
fully non-linear expressions for the former quantities using the superconformal techniques
[4-7], which are explained in [§]. In particular, nonlinearities come from two sources. One is
the X° compensator dependence, and the other is the coupling to matter. As a by-product
we will be able to compute the components of the Einstein multiplet, which will be promoted
to a conformal primary superfield together with the scalar curvature.

We will construct the full non-linear Einstein tensor from field equations of pure super-
gravity. The latter is constructed as the D-action of the compensating multiplet X° (see
notations in Appendix . The field equation for the R-symmetry gauge field A, gives the
first component of the Einstein tensor multiplet

1 0

e m[—BXOXﬁ]D = -3¢, (1.5)

'We use = for identities valid due to field equations.




where £,4 and £, are related as in . This is a real superconformal primary field of Weyl
weight 3. The entire supergravity geometry is encoded in the Einstein tensor &,, the chiral
scalar curvature R and the Weyl superfield W,3,. These objects enter in the superspace
formulation of Poincaré supergravity developed in [9-12].

The scalar curvature multiplet R, with chiral and Weyl weights (1, 1), is defined in terms
of the compensating multiplet as [13]

R = —7(X9) (1.6)
= %o , :

where the operation T produces a chiral multiplet, and is the local superconformal version
of the rigid supersymmetry operation D?. We will find that the non-linear version of
is that the tensor &£,4 and R satisfy

. R
033
Dagad - (X ) Da (ﬁ) 5 (17)
where D, is the superconformal version of the superspace covariant derivative D, This is
the nonlinear generalization of ([1.3). The latter is a generalization of the identity in general
relativity on the Einstein tensor

V'G,, =0, G',=-R. (1.8)

In the absence of matter the Einstein equations for pure supergravity (only the graviton and
the gravitino), become
Eaa =0, R=~0, (1.9)

In the sequel we will argue that a conformal gauge fixing Whereﬂ
X =r"", (1.10)

allows us to split gravity and matter in the way of CCJ. Using this gauge fixing, the lowest
components of (1.9)) just reduce to the values of the old-minimal set of auxiliary fields [14-16]

o« U0, (1.11)

where B
Rlg=u=rF". (1.12)

The equations in are the superfield generalizations of the pure Einstein equations
G ~0, R=0.

When matter is included, the currents are defined similar to , using the field equation
of the full action for the R-symmetry gauge field A,. Prior to the gauge fixing the nonlinear
expression on the left-hand side of is

)

e_lmS:CM: —3 (&, + ), (1.13)

2We indicate equations after gauge fixing to Poincaré supergravity by the indication [CI.
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where S is the action and C, and J, are as &, real superconformal primary fields of Weyl
weight 3.

We will define the concept of the ‘conformal case” where the action contains a sum of
pure supergravity and matter couplings that preserve local conformal invariance. In that
case we will find .

DEpa~0, (Exa?t0), R=O0. (1.14)

The paper is organized as follows. In section [2] we present the superconformal setting and
derive the nonlinear form of both for conformal and non-conformal matter. In section
the Einstein tensor multiplet is derived and proven to satisfy (1.7). In section [4] we give
the supercurrent multiplet for general case, whether the matter is conformal or not. Then
we specify two superconformal gauges. One of these corresponds to Einstein frame, and
the other to the conformal frame in the sense of [1]. It is only in the latter that conformal
invariance of the matter system relies in the tracelessness of the energy-momentum tensor and
y-tracelessness of the supercurrent. In section |5|we define W, 3, using the full superconformal
curvature R, (Q). For on-shell pure supergravity this is the only tensor that specifies the
spacetime geometry. In section [0 we give the components of the superfields that appear in
and . Among these components is the Einstein equation in presence of matter and
a cosmological constant. In particular, the curvature multiplets give an alternative way to
study supersymmetric curved backgrounds not looking to the gravitino variation but rather
to the transformation properties of these multiplets. In this way we show how the AdS, and
S3 x L solutions are obtained, in agreement with [17,/18]. The consequences of a negative
and positive cosmological constant, which follow from , are also discussed. The bosonic
part of our results provide a modification of the improved currents of CCJ, and we provide
the full formulae in Sec. [7] Finally, section [§ gives some concluding remarks.

In Appendix [A] we give our conventions for superspace quantities and in Appendix [B] we
recall some aspects of the superconformal Weyl multiplet. Appendix [C] separately discusses
the bosonic part of our results, which lead to new improved currents. In Appendix [D] we
give a method that we used in Sec. [6] to obtain components of superfields in terms of field
equations, using invariance of an unspecified action. We obtain there also convenient forms
of the Ward identities for all superconformal symmetries. In Appendix [E| we present the
Poincaré form (in conformal gauge) of the Einstein tensor multiplet.

2 Actions for chiral multiplets and the ‘conformal case’

The actions of chiral multiplets in the superconformal setup are symbolically obtained from
S=[NX,X)|,+ WX . (2.1)

Here the X7 are superconformal chiral multiplets with Weyl weight 1, and the index I is
taken to run over 0,1,...,n where n is the number of physical multiplets. The 0-index is
included to indicate that one of these multiplets is ‘compensating’ for the superconformal
symmetry, such that the physical action will be super-Poincaré invariant. The function N
is real of Weyl and conformal weights (2,0), and W is holomorphic of Weyl and conformal
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weights (3,3). The notation for the actions is explained in Appendix [A} and (A.10)).
The fields of the Weyl multiplet {ef, ., b,, A,} appear hidden in this notation. We repeat
the main ingredients of this multiplet in Appendix [B]

Pure (Minkowski) supergravity is (with a suitable normalization) obtained for

pure supergravity: N = —3X°X0 o =-3. (2.2)

For separating pure supergravity from the matter part, it is useful to reorganize the
variables X/ in i
SY= X", Sizﬁ, i=1,...,n, (2.3)
such that only S° has a nonzero Weyl and conformal weights (1,1). This is the multiplet
whose first (complex) component represents the two real auxiliary scalar fields of the old
minimal set of auxiliary fields once the superconformal symmetries are gauge-fixed to obtain
the super-Poincaré theory.

The ingredients of the action formula (2.1) are then written as
N(X,X)=258°5%%(5,5),  W(X) = (S")PW(S) (2.4)

where by functions of S, we understand functions of S, and we could take out a factor S°S°
from N and (S°)? from W, since N is a real function of Weyl weight 2, and W is holomorphic
of Weyl weight 3. In view of (2.2)) we define the matter coupling function ®y; by

(S, 8) = —3+3%(S9,9), (2.5)

We define the concept of ‘conformal case’ for couplings in which in the X-basis the
compensator X° appear in the remainder of N and W i.e.

N = =3X°X% 4+ Npower (X5, X7) . W =W(XY). (2.6)

This can be expressed as Ny = —3X° and W, = 0. Subindexes of N and W refer to
derivatives w.r.t. the X! while those of ® and W refer to derivatives w.r.t. S* (with SY
fixed). E.g.

No

= 5x0 —_ _ =

) o S0
N= (aso S09Si

) $9590(5, 8) = 50 (o — S'a,) . 2.7)

We can therefore express the difference from the conformal case by quantities

. 1 a0 1 i i
1 .
AW = —~ e —w— Lo 2.
WE s =W gt .

The conformal case is therefore

conformal case: AK =AW =0. (2.9)



The ‘conformal case’ thus demands that ®y should be homogeneous of rank 1 in both Si
and S?, and W homogeneous of rank 3:

Sy = S Pz = P, S'W; = 3W . (2.10)
Differentiating the first set with respect to S and S one gets
Sibyiy =0, Sy =Py, SOy =0, SOy, =0, (2.11)

which imply that ®y; is homogeneous of degree zero.
The simplest case is the CPP™ model,

d = —3+35°5 = -3 +3(X°X%)"' X X7, (2.12)

and a cubic superpotential. It corresponds to the conformally coupled scalar of [1].
In general, if there is a variable S! # 0, we can write

Oy = (XOXOH XX (;%) = S'Stf (% %) . (2.13)

Since this action depends on the multiplets {X!} and the Weyl multiplet, the field

equations can be divided in those with respect to the matter multiplets and those with

respect to the Weyl multiplet. The former will be considered here, and the one for the

compensating multiplet will lead to the value of the scalar curvature multiplet R. The field

equations for the Weyl multiplet will define &,, which will be considered in the next section.
The field equation with respect to the multiplet X7 is the multiplet starting with

68 1, [ON\ oW
i — —~0. :
(aXI) + 551 0 (2.14)

OXT 2

The operation T is the superconformal version of the superspace operation D2, see Ap-
pendix [A] For the compensating multiplet, I = 0, this can be written as

0~ LT(Ng) + Wp = —2 [T(SO) +T(SOAK) — 2(S°)2AW | (2.15)
The scalar curvature multiplet is defined in ([1.6]) as the chiral multiplet with Weyl weight 1:
1 _
Therefore, the field equation (2.15)) can be written as
Y _
R+ 502 ~0 with Y =-2(S°)°AW + S'T(S°AK). (2.17)

In the conformal gauge S° = k71, we have R + x?Y =~ 0. This says that R = 0 for the
conformal case. The equation (2.17) is related to the global formulae in [19-24], and is the
nonlinear version of (|1.4). Our results are valid for the superspace curved geometry described

by a chiral compensator X°. Other geometries may correspond to different set of auxiliary
fields [21}425,/17,/18].



3 Einstein tensor multiplet

We continue with the superconformal formulation, without any gauge fixing so far, and
study the Einstein multiplet in this setting and its Bianchi identity ((1.7)). We start from the
field equation of the field A,, which is the gauge field of the R-symmetry in the conformal
approach, and is the auxiliary field in the super-Poincaré actionﬂ
4]
o1

> . >I - . =1 i
s VX)) = iN/D, X" —iN/D, X" + 3N ;04,07 (3.1)

where
1

V2

We observe that this expression is invariant under S-supersymmetry using

D, X"=(9,—b, —iA,) X" — —¢,Q". (3.2)

05D, X! = —ime’, 6 =\2ZPpy. (3.3)
V2
Therefore, this expression is a superconformal primary, and can be used as first component
of a superconformal multiplet.
We will identify the Einstein tensor multiplet as the multiplet starting from (a multiple
of) this expression in the case of pure supergravity
Its explicit expression is thus the real vectorf] [25, (5.5.47)]

£, = 4iX°D, X" — 4iX°D, X° + 2iQ°P.v,0°. (3.4)
which can be written in the components {X°, Q° F°} as
_ = _ = _ — _ o _
€y = —84,X°X° — 4iX09, X" + 20 Py, 0 + 22, (X°0° - X°0°) |
= - -
X%9,X° = X°9,X°) — (0,X°)X°. (3.5)

When we go to flat indices, &, = ek&,, this object has Weyl weight 3 and chiral weight 0.
This will be important for the generalization of .

But before considering the local generalization, let us check that the flat limit of &,
satisfies . We identify the superfield with its first component, and write as such a
superfield formula (using the notation in Appendix |Al)

Eai = 71(1")ad Eplga

e L (3.6)
= —4i50,45" — 2(D,S°)(D4SY) .

3We use the notations as in [8, Ch.17], where the chiral multiplets have components { X!, Qf, FI}, with
left-handed chiral spinor /. We use only chiral multiplets, such that these formulas are a truncation of
(17.19-21) in that book.

*Although it is implicit due to the fact that Q7 is left-handed, we wrote an explicit P, = (1 + 7,) for
clarity.



One can then check that
D ne = (5°)°Do((8°)72D%5%) = (S°)° Do ((SY)"'R), (3.7)

where for the last expression we use the rigid supersymmetry version of : R =
(59)~1D2S°,

The result is consistent for a generalization as a superconformal formula as mentioned in
. Indeed, to define D&, from a vector real superfield, &,4 should have Weyl weight 3
following the rules in [13], summarized in [26, (B.1)]. We mentioned already that this is
fulfilled with the expression . Second, to define the superconformal analogue of D, on
a scalar multiplet, the latter should have w + ¢ = 0, where w and ¢ are the Weyl and chiral
weights. Chiral multiplets satisfy w = ¢, and thus the argument of D, could not be R,
which has Weyl weight zero, but can be (S°)"'R. Finally, to match the Weyl weights of
the left and right-hand side, the multiplication with a multiplet of w = ¢ = 3 is imposed.
Hence we find that is possible. To prove that it is indeed fulfilled, we calculate the
supersymmetry transformation of &,:

508, = —/2iePy <%QOF6 +PX0, Q0 4 200D, X0 — 2X5Da90) the. (38
We denote this as

0, =€P101.E, + €PRORE, ,
SpEa = —V/2i <%QOF6 +PXOY, 00 + 200D, X0 — 2X@Da90) , (3.9)

and by definition the components of §z&, are the superconformal covariant Ds&,. Then
D&, = —3i(v"0rE,), - (3.10)
This leads to

D Eas = V2P, (—QOFG n ;xomﬁ)a — (X, ((X0>—2Fﬁ) . (3.11)

a

Since (X°)7LF is the first component of (1.6)), this confirms ((1.7)) for the superconformal

case.
Finally, let us consider the super-Poincaré expressions. For the pure supergravity case,
we can use the gauge fixing of the extra symmetries in the superconformal algebra as

X =r"", Q| =0, buly =0. (3.12)

This implies
Eulp = —8K %A, . (3.13)

Thus in this section, we found the Einstein tensor multiplet as the supercurrent multiplet
for the compensator X as in (3.4)), which corresponds to [2, (32)].



4 The supercurrent multiplet

The advantage of the superconformal tensor calculus is that it puts on equal footing the
compensator X° and the physical matter chiral multiplets in the collection { X'}, all with
conformal and chiral weight (1,1). Therefore, the A, field equation should read as

-1 0 \ _ 3
NG K)o = =380+ ), (1)

Since the superpotential contribution [W]p does not involve A,,, we have by definition
E+J,=0. (4.2)

The expression &, + J, is still a conformal primary of Weyl weight 3. Hence the operations
of the previous section are well defined in the conformal setting. We obtained ([1.7)) and
therefore

—& Y
D Joe = (XO)Dy | 7oz | - 4.
From (3.1)) we thus find
— 3(&,+ J,) = IN/D,XT —iN,D, X" + LN, ;05,07 (4.4)

Since this expression is linear in N, after the split (2.5)), and before elimination of auxiliary
fields and conformal gauge fixing, we then have

1 0 0 =
J, = —4e 1W[X0X°¢M(S, S)p (4.5)
From (4.2) we obviously also have
,Z_)d (goai + Jad) ~0. (46)

Using the identity (1.7)), this also implies, see (2.17)),
D" Jus ~ —(8°)*Du(($°)'R)

—(8°)°D, <2AW — (8%)2T (5%1{)) . 47

Q

In the conformal case, '
D Jos ~ 0. (4.8)

The expression for J,4 from (4.4]) can be written in terms of the quantities that we defined
in Sec. 2} We will thus use the variables S, and translate e.g.

No

GN:(ﬁ St 0

G 280 S0

_ Qo0 L QiE.
- SOOSi)N_S@ S'd,) | (4.9)
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Using further ®y; and AK, defined in ([2.5) and ({2.8]) and the real quantity

_ . __ _ __ 0

AAK = Oy — S'Pyp; — 5" @iy + S Opi5 = <Sl@ - 1) AK, (4.10)
we have

No=-35°(1+AK),  N;=35%;,
- 9 (4.11)
We then use x* = Ppx® for the fermionic partner of S?. This gives
DX = D, X+ XD, 5 DS = 8,5 — —d,\" .
1 I 7 1 1 \/ﬁwux (4.12)
QO — X07 Qz _ XOXZ + SzXO ]

We therefore find

J, = —dyE,
F2X Prr XX+ 20X Pari X
+2iX°X° [2(PiD, ST — \iiD,S") — Prrig VXY - (4.13)

We will compare two different gauge fixings of dilatational and S-supersymmetry. The
Einstein gauge is obtained by

Einstein gauge : — 3k 2= N|g = 3X°X%(—1+ @M)‘D )
0= N Q| = 3X" [(—1 + &w)x" + Parix'] i} (4.14)
This leads to
XOX‘_)‘D k(1= 0(S.8) . O = Dy (1— (S, 9) (4.15)
Therefore the supergravity and matter fields in £, in get mixed.
Instead, we can consider the following gauge choice
Conformal gauge : X0|E =rt, QO|D =0. (4.16)

In this gauge choice the compensating S-transformations to stay in the gauge only involve the
multiplet {X° QY F°} and the Weyl multiplet background. But the multiplets {S%, x*, F'}
do not enter in the transformations of Q° and thus not in the decomposition rule. Hence,
the transformations do not mix the gravity with matter. In this gauge £, does not depend
on matter fields, and we have

Euly = —8K72A,,
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July = 8572 PA, + 21672 [2(PmiDyS" — PumiiDLS™) — PripX'vuX’] (4.17)

We thus find here the generalization of the equations obtained in [1] for conformal matter.
The matter action contains a term R®, such that the coupling is conformal. The bosonic
part of these equations lead to improved currents and a modified Einstein equation with
a matter energy-momentum tensor that contains the gravity part G, P\ and a U(1) part,
such that it is conserved and traceless due to the equations of motions. This is different from
the Einstein gauge, (4.15]), where ® decouples from R,,, but the energy-momentum tensor
is not traceless. These bosonic results are discussed in Appendix [C]

The references [27,28] derived the gravitational multiplets directly with the Poincaré cal-
culus. This corresponds to our conformal gauge and it explains why the transformations are
matter independent. Their formulae agree with ours provided the Poincaré chiral curvature
R is identified with our (zero Weyl and chiral weight) R/X? expression in (6.18)).

5 The superconformal tensor

The Weyl superconformal tensor is a 3-spinor index chiral quantity W,s, [3,/11,/12]. It
is compensator-independent and the multiplet defined by this field contains in its bosonic
components the Weyl tensor and the field strength of the R-symmetry vector. This multiplet
has been given in the superconformal context in [27],28], but for completeness we repeat it
here using our present conventionsﬂ We start from the full curvature R, (Q), which is (see

Appendix

RulQ) = Rl — 27,60, (5.1)
and satisfies
VR (Q) = 7" Ry (Q) = 0. (5.2)
We define
Wagy = (7" )as R (@) (5.3)

where the spinor indices indicate a Pj, projection. By the properties of gamma matrices in 4
dimensions, this is symmetric in («/3), as we now prove. We perform a Fierz transformation

Wapy = 5C8(7" R (Q))a — §(7")16(7" Vo B (@) ) - (5.4)
After using (5.2)) and ~-algebra, this gives
Wagy = (777 )5R00(Q)a - (5.5)

Hence this is indeed symmetric in the three spinor indices. Since R, (@) is invariant under
S-supersymmetry, this is also a superprimary. The @-supersymmetry transformation is

S PLRw(Q) = (FRe (M) yeq — iR, (T)) Pre, (5.6)

°In the framework of new-minimal Poincaré calculus, this multiplet was constructed in [29,30].
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where RV is defined in ( - Therefore W,g, is a superconformal chiral multiplet with
(Weyl, chiral) weight (2, 2). Its next component is defined from

1
OWopy = Ee‘*(}aw, (5.7)

where all the spinor indices are left-chiral. This leads to
Caprs = =V2(1®)as (1 Rey (M) (Pryea) — iRy (T)(Pr)). 5 - (5.8)

Using the constraint in (B.1)) one proves that this tensor is also traceless.

6 Components of current multiplets

In this section we will obtain information on the components of the conformal current mul-
tiplets &, and J,. They are defined from field equations of the R-symmetry gauge field in
and . These multiplets are real conformal multiplets with a vector index of Weyl
weight 3. The components can be determined from the Q-supersymmetry transformations
of their lowest components.

6.1 The real vector multiplet

The dilatation transformation D, the U(1) transformation 7', @ and S supersymmetry and
special conformal transformations K for a real vector multiplet with Weyl weight w are
(see [13] and in Poincaré tensor calculus [27}28])

0C, = wApC, + %it?y*Za ,
OPLZ, = [(w+ D)Ap — 3idg] PLZ,
+ 5 Pp (iHa — "By — iPC,) € +1Pp (—wCa + 7aC”) 1
§Ho =[(w + 1Ap — 3idr] Ha
—iePg (P2, + Ao) + P (0 — 2) 2, + Y Z°) |
6Bya = [(w 4 1)Ap) Boa + 2€4pcaCNE
— 26 (D20 + o) + 31Rac(Q) 1 meCE + 377 (1 + W) 120 + Yac B Z°)
0PrA, = [(w+ 3)Ap — 2idr] PrA, +wPR)(KZ %b)(KZ
+ 1 [V (DyBea + iDyD.C,) — 1D, | Pre — 2 Pry?eRap(Q) PrryaZ°
+ 1Pg (iHy — v°Be, +1iDC,) (UJ52 — ") 7,
6Dy = [(w + 2)Ap] Dy + 2wADyCo + ANk o Dy C’ — 2 4pealBNy
+ 367 PAq + € (Rap(T) + 7. Rap(T) ) 2" = ¢ (17:74B% = PC) R Q)
+ 1wy, (Aa + %@Za) + 1Y% Yab (Ab + %@Zb) ) (6.1)
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Since C, is defined as a field equation, see , it transforms to field equations, and thus
the next components of the multiplet are also combinations of field equations. In Appendix
we explain how we can use general equations for transformations of equations of motion
to identify these further components (based on |31]). This leads to expressions that do not
depend on the particular action, as long as one considers an action that is invariant under
all the symmetries of the superconformal group. The result then depends on ‘covariantized
field equations’

—
0S IS oS
_ =1 _u -1 v _ =1 _pu
O(A), =e oS an O(e)p, =€ ¢ Sova +..., O), =e¢ e“_&Zu +..
58 08 68
_ 1 _ 1 _ 1
@(F)[—G W7 @(Q)]—@ W—i—, @(X)[—e F—i_’ (62)
where the ... make the expression covariant. The expressions for O(A), and O(F); are

covariant without extra terms as can be understood from the general principles in .
The result for the components of such real multiplet is

Co = O(A),,

2, = 30(), =100 + =30 (A/O(F)r +hc)

H, = 2iX'D,0(F); — 4D, X0 (F);,
Bba = 3@(6)ab — nab@(e)cc + %a’fabcdpc@(A)d — TNab (%QI@(Q)[ =+ FI@(F)[ + hC) s
Ay = 29"D 2y — 3V2 (0(Q)!' D X1 + Q'D,O(F); + hee) ,
D, =—2D"DyO(A), — 2D DyO(A)’
&
— 3 <2DaXI@(X)] —QID,0(Q); — 2F'D,O(F); — h.c.> . (6.3)
We can apply these results first for the pure supergravity action [-3X°X 6] p, and as

defined in ([1.5]) this leads to the components of the superfield £. In this case the covariant
field equations of the compensating multiplet are simple:

O(X)o=—-30°X°,  O(0)e=3P,PQ°,  O(F), = —3F°. (6.4)

These {O(F), —O(Q)o, O(X)o} form a chiral multiplet of Weyl weight 2, which is —3X°R.
The covariant field equations for the fields of the Weyl multiplet are (see also (3.4])):

O(A), = — 3iX"D, X + 3iX°D, X° — 3iQ° P, Q°,
V20(4), = — 3PLQ%(DuX0) + Prrm (QOD”XO - 2)‘(%‘@0) +he.
O(€)as = 3wy | FOF° = DXD X" — 10" P PO0 — 107 PrpQ’|
+ 6D X Dy X° + (nuvDDe. — D Dyy) (X°X?)
+ 2Py (v Dy — 2y P) 9+ hc] (6.5)

14



When we go to conformal gauge (4.16)), the remaining objects combine in covariant
Poincaré covariant quantities. With the Poincaré gauges (3.12)) the Poincaré supersymmetry
transformations are (and it is now convenient to use again u = kF as in (1.12)))

55(6) :(5Q(€) + (55 (77 = %(1’}/*A — PRU — PLI_L)€) —+ (5}( <)\Ka = —%a{%) s
PL¢Ea = PL(ba + %PL(LA + ﬂ)wu : (66)
The covariant derivatives
ﬁu = au — O (Wuab(e> ¢)) - 55(%) ) (6'7)

are now covariant for super-Poincaré. Relevant Poincaré Curvaturesﬁ and derivatives are

PLRw(Q) = 2Py (O — $iAp7. + 1w (6, 0)Yap + 37 (A + 1)) ),
G0 = 37" Ria(Q) + 5707 Foe(Q) = =31 Rop(Q) + 70 B(Q)
Dou = dau + PPy - ¢,
DyAp = Vo Ay + Lithe ey 4
éuvab = Rwab - @E[u'y[aébbl(@) + %&[u%lﬁab(Q) J
Rap = Riap) — %1/_167(@1/%17)(:(@) + %"@(a’ycﬁbb)c(@ ,
R=R+4%mRQ),  Gu=Ra— LnuR. (6.8)

Note that the relation between ¢, and EW(Q) is the same as between the superconformal
quantities ¢, and R, (Q). The covariantized field equations are then

KO(XO) = —3iD,A* + LR + 34°A,,
V2r0(0°) = 1" Ru(Q) ,
KO(F°) = —3u,
K*O(A), = 6A4,,
"52@(1/’)& = _%%bcﬁbc(Q) )
120(€)ap = Gap + 640 Ay + 3nay (wit — A°A,) . (6.9)

This gives the following components of the real multiplet

k2C, = 64, ,
K Za =~ 60,
K*H, = — 6iﬁa7j,
K2Bap = 3Gap — G’ + 184, Ay — 30y AcA° + 3napult — 3apea DA,

6Note that due to the torsion, R, is not symmetric. However, the covariantized ﬁab is symmetric.
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K?Pr\, =2Pg" (ﬁ[a + %iA[a> Zy — 1PrY Y0 25 A°,

A4
k2D, = — 12Dy D" Ay — 186,30a A"D AT — 184, Ay A® + 9iuD,u — 36 A,u i
.5 b .5
— }112@7*7 - Z— %12 Y VpZa) + iR (Q)7,. 2" (6.10)
The result (6.10)) gives all components of the multiplet

Ea=—3Ca. (6.11)
Its linearized part is the result in 3, (2.13)]. The result is given also in [27,28] with different
definitions of the components, as usual when comparing conformal and Poincaré transfor-
mations [32,[33]. We explain the relations in detail in Appendix [E} The result in is
more elegant due to the conformal symmetry. See in particular the conformal form ,
which is independent of the choice of auxiliary fields for supergravity.

When one investigates preservation of supersymmetry (four supercharges) in this con-
formal gauge, one should consider the transformations of the fermions in , using the
combination of the symmetries as in . Especially the vanishing of dPpZ, gives the
condition for preservation of supersymmetry when we just take the bosonic part. This is

1Py (iHa — 7"Bra — iPC,) € + 3iPr (—3C, + YapC’) (A — w)e = 0. (6.12)

This equation can be decomposed to the conditions (2.11) in [17]. E.g. the only terms
proportional to v.,¢€ lead to uA, = 0, which is the first of (2.11) in [17]. When these are
already zero, the only term without a gamma matrix is H, = 0, which is d,u = 0, which is
the third of (2.11) in [17]. Therefore we now concentrate on terms proportional to PryPe.
These are

0= =37 Bralyos — 10540 + 124, A, — 3napAcA° (6.13)

The imaginary part leads to VA, = 0, which is the second in [17]. This leaves then only
the symmetric part of By,, and the equation

0= Bab EHQ B(ab) }bos - 24AaAb + GT]QbACAC
=3Ry — %nabR — 6A,A, + 377abACAC + 3NapUl . (614)

The expression By, agrees with the component obtained in [27,28]. The difference be-
tween the conformal part /1215’((15,) and this Poincaré expression B, originates from the S-
supersymmetry and depends on the conformal gauge fixing. This difference is traceless. The
trace of B(ap) or By, is proportional to the real part of the last component of R/X°, which
will be discussed in the next subsection['] To obtain the last of (2.11) in [17], one considers

0= %Bab + %,r/ab’r/CdBcd = Rab - 2AaAb + 27]abACAC + 3nabua : (615)

"Since this is a conformal chiral multiplet with w = 0, the fermion has no S-supersymmetry transforma-
tions, and the auxiliary fields of the conformal and Poincaré multiplets coincide.
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To obtain the further condition of vanishing Weyl tensor in [17], one simply looks at the
variation of the fermionic component W,g, (see (5.3), (5.6])) of the superconformal Weyl
multiplet. This gives the vanishing of equation (5.8), which implies the vanishing of the
Weyl tensor and of the A, field strength.

The components of the current .J, are obtained from by using the (covariantized)
field equations of the other part of the action: [3X°X%®;(S,S)]p. For the conformal case,
this can be written as [®y (X, X)]|, where the X-dependence does not include X°. In that
case, the gauge conditions are not relevant in that part, and we can directly use (6.3]).

6.2 The supersymmetric Ward identity

Now that we have the full expressions of the components of &,, we can explicitly check (|1.7)),
which we write here again as

—a R
D . = (X°)*D, <ﬁ> : (6.16)
Since i ) ) i
T(X% = {F° DPrQ°, 0°X°}, (6.17)

the components of the multiplet R/ X" are:

R T(XY) [ F 1 R
X0~ oy ‘{<X0>2’ oy P = 2y
_1 cy0 FO 0 2 =0 0 FO ~0 0
X 2 P PP 3 R (619

This is a multiplet with Weyl weight 0, which therefore can be a constant without breaking
supersymmetry, a possibility that we shall consider in Sec. [6.4] The superconformal covariant
derivatives are defined in (16.34) and (16.37) of [§]. For convenience we repeat here the
bosonic part:

0°X°%|, = (V"= 20" —iA")D, X" = iRX?,  D,X°=el (9, — b, —i4,) X°. (6.19)
Therefore, the bosonic part of the last component of R/X" has the following real and
imaginary parts

—ikB = -L1s*B2, ikVeA, . (6.20)

In order to evaluate the right-hand side of (6.16)) we write with (A.6[), (6.11) and (6.1)):

D Eos = 1H(1")aaD & = —31(1")aaD Co = 2(1")a DaCu = £ (" PrZ.),, - (6.21)
Using ((6.3]) we find

V' PrZ, = —Pry"O(1), + 2200 (F); = V2 [X10(Q); + 20'0(F),] , (6.22)
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where we used W(S) = 0 from (D.19)). Using now the specific case of pure supergravity with
(6.4)), we thus have

1 -
1N PRZ, = —=P X'PQ° — V2F°PQ° (6.23)
V2
For the right-hand side of (6.16]) we use the fermionic component of ([6.18)), and the local ver-
sion of (|A.2)), and find indeed the same expression. We thus find that the derived component
of the Einstein tensor multiplet correctly obeys the Einstein Ward Identity.

6.3 The conformal case

We now restrict ourselves to the ‘conformal case’, AK = AW = 0. This case can also be
characterized by the fact that in the basis of the chiral fields { X’} = {X°, X*}, the action
is completely separated inﬂ

+ [W(X)], (6.24)

s = |-3x°X°] B X7,

where ®y; is homogeneous of first order in as well X? as X* and W of third order in X?,
see . We consider the conformal gauge fixing where the transition to the super-
Poincaré theory does not mix the two terms. Also we do not eliminate the auxiliary field
A, of the Weyl multiplet, which is hidden in the notation in , such that the splitting
is preserved.

Therefore, F° appears only in the pure supergravity part (first term in (6.24)), and
its field equation is F° ~ 0. This is, up to invertible redefinitions, the vanishing of the
first component of the chiral scalar curvature R. It implies then the vanishing of all the
components, i.e. the vanishing of . When we go to the conformal gauge, these equations
reduce, using [8, (16.42)], to

_ 2 . . .
K T(XO)‘D - {u %7 - §, —iDA, — LR~ AaA“} . (6.25)

The bosonic part of these equations is discussed in detail in Sec. [} Note that the fermionic
part contains the v-trace of the Rarita—Schwinger equation.

6.4 Superconformal formulation of AdS,; Supergravity

It is interesting to observe that AdS, [34}35] supergravity has a very simple description in
our formalism. This theory corresponds to the case when the superpotential is simply

wW=X;. (6.26)

8To connect to much of the usual literature we often use the variables S rather than X?, but since the
transformation (2.3) is invertible, this does not change the conclusions of this section.
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and no matter multiplets are present. This corresponds to scalar curvature (superconformal)
multiplet R/X° to have only a non-vanishing first component (see (2.17))), which gives now
R ~ —2X"). In particular, the vanishing of the last component, see (6.18), needed for
supersymmetry being unbroken, gives in the conformal gauge (setting the fermions and A,
to vanish)

4 R _
K 1ﬁ1 t:—%R—Quu, (6.27)
which vanishes for R = —12u u. If one looks at the Einstein multiplet, the only possible non

vanishing term is in the B, component
K2 Bapy = 3Gap — NapGe’ + 3napu i . (6.28)
However, since only the trace is possibly non vanishing we get
KN By = —G.C 4+ 12u (6.29)

but G.© = —R, so we obtain R+ 12u as the last component of R/X° (6.27). This must in
fact be the case if the identity D*Eng = (X°)*D, (L) is satisfied.

The outcome therefore is that in the Minkowski and AdS, backgrounds the Einstein
tensor E,4 ~ 0, but in AdS, is % = (ku,0,0) with constant u. However, notice that the
AdS, background can not be recovered in the linearized approximation [3], because of the

nonlinear nature of equations (6.27)), (6.28)), (6.29).

6.5 Superconformal formulation of dS; Supergravity

The superconformal approach is also suitable to discuss de Sitter supergravity with a Volkov-
Akulov chiral nilpotent superfield X (X? = 0). In this case we can take the ® function still
conformal invariant

N _ - _
-5 = XOXY - XX, (6.30)

and the superpotential [36-3§]
W(X) = puX(X")? + N(X°)%. (6.31)

For 1 = 0 we get back to AdS, supergravity. We note that since X? = 0 the Poincaré and
conformal gauges are the same, but the latter is simpler since the potential is given by ((7.22))

KV (S, S

(= 9N%) (6.32)

1
3

) ‘S,S’:O

for S = 0. Since p # 0 and F° is as before, the last component of R/X® multiplet is not
vanishing, while the first component would vanish if A = 0. In an analogous way the By,
component of the Einstein tensor would be non vanishing. However, due to the additive
nature of the terms

FO = k72N, Fla~ 172,



ER|last = —§ Rk — 26°| Fp|* = — 2571 14?, KR g A, (6.33)
(using R ~ 4k~ 2V) as well the trace part of By, will be
KQBab ~ _%nathast - %"1_27]@“2 ) (634)

and these formulae show that de Sitter supergravity breaks supersymmetry.

6.6 Superconformal formulation of S® x L supergravity

Another solution preserving full supersymmetry, considered in [17], is the product of the
3-sphere and a line, obtained by taking

A, = (A, 0, 0, 0), u=20, By, =0, (6.35)
where Ay is a constant. Then it is easy to see from (6.15)) that the Ricci tensor is
Roo - ROi == O, Rij == 2A352J 5 (Z = 1, 2, 3) . (636)

The space is conformally flat, so the Weyl tensor vanishes. In this background the two
chiral multiplets (Weyl and scalar curvature) vanish W5, = R/X° = 0, while the Einstein
tensor has one non-vanishing first component using the basis of Poincaré components of a
real vector multiplet described in Appendix [E}

EY = (—84,,0,...,0). (6.37)

This space as well as AdS satisfies D' Eng = (X°)*D, (&) =0.

7 CCJ in supergravity

In this section we consider the bosonic part of the action, which clarifies how our results
modify (covariantize) the equations of CCJ [1].

7.1 Bosonic part of pure supergravity and currents

We first consider the bosonic part of the superconformal version of pure supergravity:
Spossc = [—3X"X"] =3 / d'ze [-F'F° — Re X°0°X"]
=3 / d*ze [-F°F° 4+ D, X° D*X" + tRX°X°] (7.1)

where D, X" is given in (6.19). This leads to the covariant field equations, as defined in
(6-2),

O(e)ay = 30y [F'F° — D.X"DX"]
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+6D(, X° Dy X° + (nayD°D.. — Do D)) (X°XP),

0(A), = —-3iX'°D,X°+3iX°D,X°,
O(X)y = —-3D°D,X"=-3D*D, X"+ IRX",
O(F)y, = —3F°, (7.2)

where D, is covariant for the linearized symmetries, but D, is the fully conformal covariant
derivative, which makes a difference for

Do Dpy(X°X%) = (Va0 + 4f(ar)) (X°X°) = (Va0 — Rap + i1 R) (X°X?), (7.3)

using (B.2)). The latter terms produce in ©(e)q, the term G, X°X°.
We now consider these equations in the conformal Poincaré gauge (4.16)). Defining u =
kF°, the bosonic part of the pure supergravity action is

Shos,sGlg = /d4x erx 2 [%R — 3uu + 3AMA“] ) (7.4)

The field equations in ([7.2)) are

"€2@(e)ab :Gab - Lab ) Lab - _3nabua - 6AaAb + 37]abAcAC
K?*0,(A) =64, , KO(X)o = 34, A% + 3R — 3iV*A,, O(F)y = —3F". (7.5)

Since D, X° = —iA,x1, the remaining terms of the Ward identity in (D.19) are
K2 W(P)alg = VPO(€)ap + 6A° (0, A4y — DpAs) — 64,V Ay — 30,(utt) = 0. (7.6)
Due to the Bianchi identity , DG, = 0, we get for Ly
VPLa = 6A° (0,A, — OpA,) — 6AV° Ay — 30, (ui) . (7.7)

Adding the matter Lagrangian (without eliminating auxiliary fields), and defining

= el ey 78)
the gravitational field equation is
Gap — Loy + O, = 0, (7.9)
and the conservation equation due to the same Bianchi identity is
VPOS, ~ VL. (7.10)

The right-hand side is given by ([7.7)). In case of conformal coupling, u ~ 0 and V?A4, ~ 0
(see (C.1))) and
VPO, ~ 6AY (0,A, — 0,A,) . (7.11)
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This shows the modification of the conservation equation for the conformal case. In that
case, we could also consider the trace condition. Since

L,* = 6A,A* — 12ui, (7.12)

the tracelessness of the improved energy-momentum tensor for the conformal case (u = 0)
follows from

0% ~ R+ 64,4 ~ 0. (7.13)

The above equations are in agreement with Sec. [6.3] where we found that in the con-
formal case we obtain R ~ 0, i.e. T(X?), which in conformal gauge lead to the component
expressions (6.25). The bosonic part is of the latter is

wW=rkF'~0), VFA, =0, R+6A2%~0. (7.14)

7.2 Bosonic action and improved currents

We can write down the action of the matter-sugra coupled action from [8, (17.19)] with
N =3X°X°(-1+2x(S,8)), W= (X"PW(S). (7.15)

In the conformal case, to which we will first restrict ourselves, the homogeneity of ®); and
W allow us also to write

IN= XX+ ou(X,X), W=W(X), (7.16)

where the dependence on X and X is restricted to dependence on the X and their complex
conjugates. Therefore, only the first term will lead to a breaking of superconformal symmetry
to super-Poincaré.

The bosonic part of the action is then

S= / d'zv/—g [%RXOXG +3D,X°D"X? — 3F°F°
— 1R\ (X, X) + 3Py 5(X, X) (—D,X'D'X7 + F'F)
+PW(X) + FWR(X)]
D, X"=(9,—iA4,)X". (7.17)
The first line is the pure supergravity action. The second and third line do not depend on
X9 They are separately conformal invariant and this will not be broken in the conformal
gauge. The first equation in ((7.14)) is obvious from this form of the action.

After fixing the gauge X° = X" = x~! and taking into account that X = X°S? = k=157,
the action becomes

S = / d*z /=g [ (R+ 642 — 6Dy59"" D,S'D,S” — RO(S, S)) — 2671V (S, 5)] |
(7.18)
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where here and below ®; is considered as function of S* and S*. The term —R®)y; completes
the conformal coupling and gauge invariant coupling and the covariant derivatives are

D,S"=(9,—-1A,)S",  D,S"= (9, +i4,)S". (7.19)
The F* have been integrated out, and produced a potential
V(S,8) = 3(Quy) " Wi(S)W(S) (7.20)

which is homogeneous of second degree in S and in S.
We will below also consider a potential that is not conformal in order to allow mass terms.
In that case W is not homogeneous of third order in S?, but there is still the conformal

W(X) = (X)W (X'/X") as in (2.4) E| The third line of (7.17) is then

F'Wy 4+ hee. =(X°)? [FPBAW) + F'W;(S)] + hec.,  3AW =3W(S) — S'Wy(S).
(7.21)

The elimination of the auxiliary F-terms then leads to a potential (in conformal gauge) that

is a generalization of ([7.20)):
V(S.8) = 1 (@) WiS)WH(S) — BATE) | (722)
In the Einstein gauge, (4.14)), we get

1
P

This is in agreement with the direct calculation of the potential of Poincaré supergravity
using Kahler geometry.

The simplest kinetic terms appear for ®y; = S°S?, and corresponds thus to Pz = 047
This is the CP"™ model.

Now we proceed as CCJ, namely we write the trace of the Einstein equations and the
scalar field equations (working with A,, off-shell). The Einstein equations coming from the
Lagrangian plus the CCJ improvement term has the following form

R/.Ll/ - %Rg,uu + GAHAV - Sg,uuA,QJ - (R/u/ - %Rg;w)q)M + (vuau - guVVQ)(I)M
— 3®n45(D,S'D,S” + D,S'D,S" — ,,D\S'D*S7) + g,k 2V (S, 57)) ~ 0. (7.24)

Taking the trace, g"” 53‘3,, = 0, using the homogeneity of ®y;, one gets
— (R+6A2) + ROy — 3 (Pr;D*S7 + Oy D?S') +4672V(S, 57) =~ 0. (7.25)

9In view of the normalisation of the kinetic terms of the scalar fields, the physical fields in the conformal
gauge are X° rather than S?, then setting S? = kX' in our formulae we see that the superpotential VW =
Kk 3W (kX), of dimension 3 gets dimensionful coefficients respectively of dimension 3,2, 1 for the constant,
linear and quadratic terms in X, while the cubic term remains dimensionless.
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Now we can use the S and S° field equations in the last term, which are

3D, D"S' =~ LR S+ k7 (Pmsp) V5, (7.26)
3D, D"S = L RS + k™% (Pri) "V, (7.27)

where the covariant derivatives are U(1) and general covariant:

) 1 .
D,D!'S" = ——(0, —iA,)v/—g(0" —iA")S". 7.28
1 \/_—g< H #) ( ) ( )

Multiplying (7.26)) by ®um, and (7.27) @5, we find

30D, D"S' ~ LR Oy + k2S5,
30D, DHS' ~ 1R Oy + k25 (7.29)

Inserting these in we find
—(R+6A2) = k2AV, AV =4V(5',5") = 5V, = S'V;. (7.30)
This means that we find the last of
R+6A2 ~0, (7.31)

if AV vanishes, that is if V(5% S) is homogeneous of degree 4 in S* and S?, i.e. if the
holomorphic superpotential is homogeneous of degree of 3.
We can find the modified ©f,, from ([7.24)

R — 39wR +64A,A, — 39, A2 ~ -6, (7.32)
which can be written as

O¢, = — 3Py (DuS'D,S” + DD, S' — g, DXS'DAS?) + (V0 — V) Pu
- G;,Ll/(pM _I' g,uu"{_zv(sia S@) ) (733)

with the property that
Q5 ~ ROy — 3Py D2S" — 30; DS + 472V (S, 5") =~ 0, (7.34)

consistent with (7.32)) and (7.31). The divergence of ©f, gives (7.11)), so that bringing the
A terms on the right-hand side we have

G~ =65, — 64, A, + 39, A% . (7.35)
Taking the divergence we have
vte;, +64%(9,A, — 0,A,) =0, (7.36)
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since V#G,, = 0. To understand how the last equation follows, we obtain that the divergence
of the matter part of the energy momentum tensor in cancels the A terms and the
%R@VCI) wm of the —G,,0"® ), term, while the improvement term cancels the —R,,, 0" ®,; part
of the —G,,0"®y; term.

The expression is thus the improved energy-momentum tensor of CCJ that is
improved by two types of covariantization. First, the derivatives are covariant for the U(1)
R-symmetry. Furthermore there is the term G, ®y, which could be included in a conformal
covariant derivatives{™]

DDy Py = (V.00 + 4f () Pm = (V00 — Ruw + £9u) R, (7.37)
which thus covariantizes the CCJ term
(D.Dyy — 9,wD?) Pt = (V0 — 6w V?) Prt — Gt - (7.38)
The second of ([7.14]) fixes the equation of motion of A,. Let us take as in (4.13)
J, = 4ik 3 ( Py D,S" — O\ D,LS") (7.39)

In the difference between the equations ((7.29) in the conformal case the homogeneity prop-
erties of the potential imply the cancelation of the terms depending on V' and

VAT, = 4ik 3 (Py; D*S" — Oy D?S") = 0. (7.40)
The equation of motion for A, is
8A, ~ K*J,, (7.41)
in agreement with (1.2 using (3.13)) and gives
1 __ ) R
Ay~ ———P\5(570,5" — 50,57 7.42
W 2(1 — @M) M J( w [z ) ( )
and implying
2VIA, =~ VI~ 0. (7.43)

This is the second of ([7.14]).

7.3 Deformation of a conformal potential and no-scale models

We first discuss a particular deviation from conformal symmetry with just one complex scalar
S, and we take the choices

Py =SS, W=1iAx+9)". (7.44)
In this case we find that conformal invariance is broken by

AW = 3W — SWs = 3AW, (7.45)

04f,, = —Ru + $9uR is given in [8, (15.25)]
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and the potential ((7.22)) becomes
V(S,5) = tWsWs (—|AP +1) . (7.46)

This potential interpolates from V' positive to V negative, where A = 0 corresponds to the
conformal case. On the other hand for |[A| = 1 the potential identically vanishes and this
gives the single field example of no-scale supergravity [39] .

7.4 CCJ and the equivalence principle

In this subsection we discuss the equivalence principle following CCJ for conformally coupled
gravity with a potential that breaks conformal invariance by a mass term. By inserting
equation ((7.30)) in ([7.26]), we obtain the matter field equation in the Einstein gauge.

(D, D" + A AM)S' m 572 (AV S+ 2(yg5) V) (7.47)

1
6
These equations are equivalent, up to field redefinition, to the standard supergravity formu-
lation of [40]. We consider minimal kinetic couplings and the mass m being generated from
an holomorphic superpotential of the form

Dy = 675°5",  W(S) =285+ InuS S5k, (7.48)

Since AV is at least quadratic in S, it means that the mass is not affected by gravitational
interactions, while the interaction strengths are. Looking at the form of the supergravity

potential ([7.22]), we have at the quadratic order

V = 1m?S5’S" + higher order terms, (7.49)
so that the mass is not affected by the gravitational modification related to AV, while higher
interaction terms are. As anticipated by CCJ, conformally coupled supergravity is then in
agreement with the equivalence principle.

8 Summary and conclusions

The Einstein equations for matter-coupled supergravity in terms of the conformal tensor
calculus have been obtained. We paid special attention to what we called ’the conformal
case’. This is the supergravity coupling of N' = 1 rigid supersymmetric models of chiral
multiplets with conformal symmetry. In this case the Kahler couplings imply that there is
a U(1) isometry group (the R-symmetry)[T]

It has been relevant to consider the difference between two gauge choices for dilata-
tions, which correspond to Einstein gauge and ‘conformal gauge’. Going to the Einstein
gauge the scalar fields parametrize a Kihler o-model with Kihler potential K(S,S) =

HTn the simplest case of the o-model (2.12)) there is an additional SU(XN) symmetry, which is not present
in the other models satisfying the conformal restriction (2.10)).
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—3log(—®(S,S5)/3). The conformal case is characterized by a homogeneity of ®(S,S) + 3
of order 1 both in S and S, and of the superpotential 1 (S), which should be homogenous
order 3. However, in this gauge the conformal properties of the currents are not evident.

A conformal gauge preserves the separation between the pure supergravity part, where
the superconformal symmetry is broken in order to get super-Poincaré gravity, and the matter
part with preserved conformal symmetry. This separation is maintained by not eliminating
the auxiliary gauge field A, of the U(1) R-symmetry. The matter part has then still Ké&hler
couplings, where now the Kihler potential is ®(S, S). The results provide a supersymmetric
generalization of the properties of scalar fields coupled to gravity with improvement terms in
CCJ [1]. Two sort of bosonic improvement terms emerge, one that couples the scalar fields
to the scalar curvature R, the other that couples the scalar fields to an R-current. Both are
part of the superconformal covariant derivatives that covariantize the (rigid conformal) CCJ
improvement terms. Therefore, the improved energy-momentum tensor that is traceless for
superconformal matter contains also U(1) corrections. This also implies an improvement
term in the U(1) current. These are part of the supercurrent, which becomes v-traceless in
the superconformal case [2] for which the compensator equation becomes the chiral superfield
equation R =~ 0 in . We clarified the bosonic aspects separately in Sec. , which
provides the improved currents for conformal Kéahler couplings.

We have given explicit formulae, in the superconformal approach, for the three basic
multiplets that specify the superspace geometry of N' = 1 supersymmetry. These multiplets
play a key role in the construction of higher curvature invariants and they have found appli-
cations to classify counterterms [41},/42]. More recently they were also relevant in cosmology
to provide a generalization of the Starobinsky model as well as for nonlinear realizations for
local supersymmetry in the framework of N’ = 1 supergravity [36,/43-46]. The latter is a
particular way for implementing the super-Brout-Englert-Higgs effect and to find de Sitter
vacua in cosmological scenarios. It is likely that our results will find new applications along
this area of research.

Our results can also be relevant in exploring the interplay between different supergravity
backgrounds, in the study of rigid supersymmetry in curved space. The simplest examples,
preserving four supersymmetries were discussed in subsection and and correspond
to the conformally flat spaces AdS,; and S® x L. Similar arguments in section show
that the dS background is not supersymmetric. Another related topic is the application of
localization techniques in supersymmetric quantum field theories [17},/18,47,/48].
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A From components to superspace

We translate components in superspace notation as in [8, Appendix 14.A]. Thus e.g. the
supersymmetry transformations of any quantity X is

0 Xlg_g = € Pr(DaX)g=o + € Pr(DaX)o= - (A1)

The full 4-component spinor index is thus split in (ad) where the « part refers to the
left-projected spinor, and & to the right-projected spinor.
These notations for the chiral multiplet S = {Z, Ppx, F'} imply (omitting the § = 0
projection each time)
1 _ 1

\/§(PLX)m DS = ﬁ(PRX)a, D’S=F. (A.2)

We introduce here the notation D?, which corresponds to

D,S =

D?*=—-DP,D, D? = —DPgD, (A.3)

where the bar in the right-hand sides is the Majorana bar. In 2-component notations these

correspond to ) o -
D?*=—-D"D, = D,D*, D?* = —D%D, = DsD* (A.4)

It acts e.g. as -
D*0P0],_, = 4. (A.5)

We use also the operation T on a multiplet which leads to a chiral multiplet. On the
antichiral multiplet 7'(S) is defined if S has Weyl weight 1, and its first component is then
F. Tts definition on other multiplets is defined in [26] following the pioneering work in [13].
In flat space T = D2

We also use bispinor notation V.4 for vectors V,, using the rule

Voo = 7h: Vi, Vi, = 2iVoa (7). (A.6)

(6707
In particular, this implies

Oy =—31(DaDs + DsDa) . DaDs+ DsDy = 21005 = — 37

(o7

.. (AT)

_ 1l p
aad = 1 &

A Fierzing leads e.g. to
e XPrYuX = —(DaS)(DsS) - (A.8)
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For D and F-type actions we use the notation (for a real multiplet C' whose last compo-
nent is D and a chiral multiplet

[C]D:%/d4xe[D+...], [X]F:/d4xe2ReF+..., (A.9)

where the extra terms are determined by conformal invariance, and contain the fields of the

Weyl multiplet {ef, ¥, by, A,}. In rigid supersymmetry in flat space, they correspond to

the superspace expressions (identifying superfields by their first components)

[Clp = /d‘*m d*0C = /d%: D?*D*C, (X]r = /d%: d’0 X +hec. = /d49: D?*X +h.c..
(A.10)

B Weyl multiplet and constraints

A priori the superconformal algebra is gauged by adding a gauge field for every generator in
the algebra. Constraints on some curvatures are imposed

0= R, (P,
O = ’}/MRMV(Q) )
0=efRV(M™) —iR,*(T). (B.1)

where ROV (M ) is the covariantized curvature of Lorentz transformations. These deter-
mine the gauge fields of local Lorentz rotations (w,*), S-supersymmetry (¢,) and special
conformal symmetry (f,*)

w0, = 2678808 — leeM7e 9, 0,¢ 1 2e, 12D, + %@Eﬂ[%b] + Lyt
Ou == 37" R, (Q) + 577" Ry (Q)
R,,(Q) = 2Dyt =2 (O + 3bp — 3147 + 5001 Yab) Y]
£ == BRI + e, () + LR, (T)
(R/COV);Wab _ 2D[Mwy]“b _ &[M’Vab(bu] + IZ[H,y[aRV]b}(Q) + %?/_J[“’YV}RM(Q) ’
(R/cov> — QZ(RICOV)HQ 7 (R/cov)#a — (RICOV);LVabez 7 (B.Q)

in terms of the independent fields {e*®, ¢, b,, A, }, which are the gauge fields of translations,
Q-supersymmetry, dilatations and T-symmetry, the U(1) R-symmetry in the superconformal
algebra. In D, is the covariantization w.r.t. Lorentz transformations, dilatations, and
T-symmetry, while we use D, for the fully covariant derivative w.r.t. all superconformal
symmetries.

The field b, can often be omitted since it is the only independent field that transforms
under special conformal transformations, which thus implies that it does not appear in the
actions.
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The Bianchi identity for the curvature R, (P%) is

et Ry (D) = REN(My"), Ry (D) = RS

v
povp - Hpr alp

(M) (B.3)
Notice that by this relation the third constraint (B.1]) gives the equality
R, (D) = —iR,(T). (B.4)

The constraints (B.1]) are not SUSY invariant and therefore modify the algebra. The SUSY
transformations of the dependent gauge fields are changed with respect to the transformation
that follows from the gauge algebra. The modified variations are

Snaleen® = 5N RQ).
Spa(6 = 317" (3R (1) + Rl €
Sm()fg = —enD'R(Q). (B5)

C Bosonic improved currents

In this section we review the main aspects of CCJ [1], and clarify the modifications due to
the presence of the U(1) symmetry. These modifications are automatically generated from
the superfield equations. One main ingredient is the chiral scalar curvature superfield R,
which vanish on shell for the conformal case. The bosonic part of this equation are the two
complex equations

F° =0, TR+ A A" +iVFA, = 0. (C.1)

C.1 Review of bosonic conformal currents

In general for a given Lagrangian £ one has the energy momentum tensor 7),, by coupling
to gravity and varying with respect to g"”. In this way, 7}, is symmetric and conserved. For
example, a neutral scalar field with quartic self-interaction

Ly = —30,00"0 — Ap*, (C.2)
has a canonical energy-momentum tensor
Ty = 0,900 + gLl , (C.3)

which is symmetric and conserved, but not traceless. If the action has dilatational and
special conformal symmetry, an improved energy—-momentum tensor that is also traceless

can be defined [1][P This is the case for (C.2), where

1
@fw = T/w - a(auau - g;wD)SD2 ) (C4)

12A summary can be found on the webpage of [8], see
http://itf.fys . kuleuven.be/supergravity /index.php?id=15&type=ExtraCh15.html.
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has the property that ©¢,* ~ 0 on the equations of motions D¢ ~ 4 \¢® and has the same
charge as T,
A conventional gravitation theory is described by an action

5= / day/ =g [Le 2R+ Lag] | (C5)

k™' = my, where £ is the matter Lagrangian, everything except gravity. If we vary with

respect to g"”, we will find

1
R, — §Rg,“, =G~ /<;2TW. (C.6)

If we want the source of the gravity to be a traceless ©
Weyl invariance, we have to replace k=2 — k2

uv, and thus to have a conformal and
— £¢? and consider

/d4x\/ g [3(2 =L )R — 39" 0,00, — N . (C.7)

The explicit k-dependent term obviously is not conformal, but the other terms define a local
conformal invariant action. This leads to a field equation for the graviton:

K2Gw =05, 0 =T, — (V0 — guV’0,)0" + §0°Guv - (C.8)
These formulations can be obtained from a conformal action, containing apart from the

physical field ¢ also a compensating scalar ¢y. both have then Weyl weight 1, and one
considers the conformal-invariant action with negative kinetic term for the compensator:

S —/d4\/§ [—2000%00 + 200% + Ap']
= / d'V/g [30,000"po — 59,00"p + 15(05 — @) R + Ap"] . (C.9)

The Einstein gauge means that we take a gauge choice for dilatation that fixes the constant
in front of R to be (2k?)71, i.e.

Polg = >+ 6572, (C.10)
We obtain the action™]
1 _ 1 0oty
= 4 kPR M T 4 A1
S /d\/g{Qli o 21+%/<52g02 (C.11)

13 A parametrization that is similar to the main part of the paper is using the variable s with ¢ = ¢gs. In
this parametrization the Lagrangian is

1 ., 1, _5 OusOts st
5 R 26,% e K
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The Einstein equation is of the form , but 7}, is not traceless, and the action
does not seem to have a conformal part. The generalization to many real fields is the coset
SO(1,n)/SO(n), Which is a subcoset of SU(1,n)/SU(n), appearing in the related Kéhler
couplings to be discussed below.

Conformal gauge means that we put

cpg‘m =6K2. (C.12)

Then the action is of the conformal form (C.7]) with traceless energy-momentum tensor as

in (C3).
For general scalar couplings, the action has special conformal symmetry if the transfor-
mation under dilatations is of the form of a closed homothetic Killing vector [49]

5’ = ki (), Vkiy = wé, (C.13)

where w is called the Weyl weight, and the covariant derivative uses the connection related to
the metric defined by the kinetic terms of the scalars. The Lagrangian should have weight 4
counting spacetime derivatives as weight 1. Therefore for a sigma model, the weight of the
scalars should be 1. Usually we consider scalars that transform as d&* = ¢*, and the condition
for special conformal symmetry reduces to

It =0. (C.14)

C.2 Conformal Kahler couplings: Conformal gauge

The condition (C.14) is satisfied for Kahler models with scalars S* and S if the Kahler
metric g;; satisfies
9i5xS" =0, (C.15)

which is the requirement that the Kahler potential is homogeneous of degree 1 in S (and the
same in S), up to a Kéhler transformation.
Such conformal Kéhler models have automatically also a U(1) Killing Vectoﬂ

65" =1iS"\p, 65" = —iS"\p. (C.16)
We consider from [40]

L=r?/—g|-§PR+34,A" - ®;D,5'D"S?] ,  D,S'=(9,—iA,)S", (C.I7)

where A, is the gauge field of the symmetry (C.16]), and we take a Kihler potential ®(S, S)
that satisfies the above requirements:

3AK =5'®,—®—-3=0. (C.18)

“\athematically defined by the complex structure as ki = J% k7.
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The field equation for the metric is

—10G,, + 1 (V.0 — gwD) ©+3A4,A, — 39, A,A° — ;5 (D(,5' D,y S — %DpSiDpSi%C% o).
19
Splitting ® in ® = —3 + 3Py, where ®; is homogeneous of degree 1 in S and S, we can
write this as
G + 6A,A, — 39, APA, = OF, =Pu;5 (2D(,S' D,y S — g,, DS’ D)S)
This improved stress tensor satisfies
05) ~ 0. (C.21)

Note that the trace of the left-hand side is proportional R + 6A,A*. It is vanishing corre-
sponds thus to the real part of the second equation in (C.1). The A, field equation

—20A, +i(P;0"S" — ©,0"S") =~ 0, (C.22)

can be written as

8A, ~ J,, J,, =4i (P, D*S" — Oi; DHS?)
=4i (P, 0"S" — Py:0"S") + 8A, Dy . (C.23)
This leads to
VFA, =~ V*], ~0, (C.24)

which corresponds to the imaginary part of (C.1J).
Thus we see that the improved energy-momentum tensor and improved U(1) currents
get a modification w.r.t. the quantities in CCJ, related to the R-symmetry. The form of the

improved quantities ((C.20]) and ((C.23) is very similar to (C.8)), where the matter current has

each time a part proportional to the gravity current.

C.3 Conformal Kahler couplings: Einstein gauge

The bosonic part of the matter-sugra coupled action (without superpotential and F? = 0)
was given in (7.17). Using the S-variables with the split X = X°S¢ this is

S = / d*z3v/—g [%RXOXG(I — Dy) — X° XDy, ;DS D, S
+(1— y) D" XD, X0 — <XO<I>MiDMSiD“XG + h.c.)] . (C.25)

The elimination of A, gives (already assumed that X° will be real)

i

A = 2(1 = Qwm) (

;05" — Pri0,S7) (C.26)
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Thus the action after this step becomes
S = / d'z3v/—¢ [%RXOXG(l — ) — XOXO®y; 50, 510" 57

+(1 — @), X 0" X0 — (X P\;0,5'0" X + h.c.)
1 - | .,
— XX (®);0,5" — ®r0,5")" | . 2
+4(1 . (Pwmi0,S Mi0,S") (C.27)
In Einstein gauge, we put (and X° = X©)

K,_l

XOXO0(1 — @) = w72 o X0 — "
( M) =K - " 2(1 — oy )32 (

;05" + P\ 0,5") ,  (C.28)
and this brings the action in the form

S = /d4x 3V —g |:%R/€2 —

I€_2
1— Py

Dyy150,5' "7

K2 i 7\ 2
_m (Q)MﬁMS + @MEGMS)

K—2

; 7 2
——— (Py;0,5" — Py;0,,5" 2

+4(1 — D)2 (Pr1i0, S Mi0,S") } (C.29)
This gives the well-known Kéahler couplings since

Dyiis Oy Doy R
= 4 — g2 |1p_ Y v J i QJ
S /dx gk [QR 3(1 —|—(1 )2)0u56 S}

= / d'z/=gr™? [R — 9,0; (—3log(1 — Pw1)) 0,5 0"57] . (C.30)
which gives
S = /d4l’ vV —gli_2 [%R — ICij(‘?MSia”S’j} s K=-3 log(l — (I)M)> s ’Cij = 018le (031)

The matter part is clearly not conformal.

If we include the potential contributions in and eliminate auxiliary fields F* we
get (see Wi(X) = (XO2Wi(S))

K2 1 -
WWZ(S)@W) Wi(S)| . (C.32)
and we will create also quartic terms in the Lagrangian. This is the conformal invariant Wess-
Zumino model coupled to supergravity [50], which in the rigid limit is the supersymmetric
¢* theory. Note that in the conformal gauge we did not eliminate A, and got to a Kéhler
model, while in the Einstein gauge we have to eliminate A, to obtain Kahler kinetic terms.

Since K = —31og(1 — ®y;) then &y = 1 — e7*/3 and the first condition on @y in (2.10))
becomes

S = /d4x —gr? [%R — K;0"5'0,,87 —

KiS' = K;S" = 3(3 —1). (C.33)

This gives the condition on the function K to be conformal invariant.
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D Components of superfields from field equations

We first derive a general result on transformations of field equations in a symbolic form
(DeWitt notation). The invariance of the action is the statement

5
-5

where ¢ are all the independent fields. For the case that we treat in the bulk of the paper,
these ard™]

58 = (66)S; =0, & (D.1)

{¢l} = {eﬂCL? w#’ b#? Aw XI? QI? FI; Xi? Qf’ Fj} : (D2)
This implies for the transformation of the field equation

5 5 5

e IS = JiS) — NS —

0S; = 0¢’Sji = 5 ((5(;5 SJ) 5 ((5¢ )Sj T

This gives an easier way of deriving the transformation of a field equation in terms of other

field equations determined only from the transformation rules without the need of the explicit

action.

A second ingredient is covariance. Field equations in general are not yet covariant, but

can be ‘covariantized’. That means that there is for every field ¢' a covariant expression
©(¢); [31] such that the following two sets of equations are equivalent

(6¢7) S;. (D.3)

As a first step in the construction, one has should consider a coordinate scalar. We
indicate this as T;. E.g. for a vector A* one defines

0S8

T(A)y = efS(A),  S(A), = 52

(D.5)
This is in general not yet covariant, but it is proven in [31] that there exists a covariant
expression of the formE]

©; =T, — B{Ha"T; + O(B,B,), (D.6)

where the sum over A concerns all standard gauge transformations, B;? are the associated

gauge fields. The contribution H comes from fields that transform into spacetime derivatives
of other fields

EAH i — aé(e)gbj

15We have chosen the inverse frame field as basic field such that it is field equation gives directly the
Einstein tensor.
16The proof assumes that transformation laws of fields 6¢° contain at most first order spacetime derivatives.
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For this paper, only Q)-supersymmetry transformations of fields in depend on deriva-
tives of fields, and thus the A refers only to the spinor index a of supersymmetry with
B;‘ — i} (see the remark on the use of the spinor index at the end of this section).

For fermions we use the notation where upper spinor indices « (we make here no difference
between chiral and antichiral) refer to the components of the (Majorana) conjugate spinor
as explained in [8, Sec. 3.2.2]. This implies that for a spinor x

%
08
R

O, =¢ (D.8)

refers to the derivative w.r.t. ¥ and this is thus a spinor quantity. On the other hand

— — —
95 _ 98 ppa - 08 pha _ C*’0y, (D.9)
0Xa  OX” ox”

is ©, the Majorana conjugate spinor of ©.

The statement that ©; is covariant means that its transformation contains no spacetime
derivatives of the transformation parameter ¢ and gauge fields appear only hidden in co-
variant derivatives or covariant curvatures. There are thus in general in correction
terms with higher orders of the gauge field (and still proportional to other field equations).
However, our goal is to calculate §0;, and the transformation of these extra terms will leave
always at least one explicit gauge field. The transformation of the higher order terms leads
always to terms with at least one explicit gauge field, and thus they will not be relevant to
calculate 00;. The first correction term in @ is relevant if the gauge field B/’j‘ transforms
in a non-gauge ﬁeld.ﬂ In our case this is only the case when we calculate the transformation
under S-supersymmetry, since

oMy = —yun- (D.10)

For @ supersymmetry in the A/ = 1 superconformal theory, there are no such terms (there
would be for N’ > 1) and the transformation of ©; can be obtained from (D.3):

H
90(e)¢’
Ccov
where ‘cov’ refers to a covariantization of all spacetime derivatives and omission of terms
with undifferentiated gauge fields.
The correction term in is also important when we consider a covariant derivative
on ©. We then should write
DGL@i - (DQT% - %RquAi“j@j) 5 (D12)

cov

where the derivative to 0,¢" does not act on the R;‘V. A relevant case that we need below
is the calculation of D*O(e)y,, i.e. where the field ¢ above is €*?, see (6.2). The correction

"Non-gauge field refers here to the ‘standard gauge transformations’, which does not include the frame
field ef;. See [8, Sec. 11.3] for more details.
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terms thus originate from transformations of fields that are proportional to d,e"*. These
appear only inside the spin connection w#“b. In fact, taking into account that we need the
derivative w.r.t. the inverse frame field, we have

awPCd(e) c,d csd
W 555(1 v -+ epae“[ } +g 6“ (5 ] (D]_S)

Covariant derivatives with spin connection appear in the @-transformations of v, and F7y.
Thus (D.12) leads to

_ 961 O6F!
D*O(e)p, = D*T(€)pq — L R —2_Q(yh)” O(F , D.14
(O = D6~ $0QUE (5 B0 + G50 ) . (DY
where § refers to a supersymmetry transformation dropping €. Using
_ - 1
6wp = __Wp ’ch +. 5FI = _prd pr’YCd + ... s (D15)

42
and we obtain
DO(e)oa = DT(e)pa +5Ran(Q) (=057 + €69y + ep,7"*) O(¢)”
_8_\1/§Rau(Q) (=" + 7" + 3y") Q'O(F);  (D.16)
Due to the constraints the last line vanishes, and the first line simplifies to
DO(e)pa = DT (€)pa + 3 Roa(Q)O(¥)" . (D.17)

With the above methods we easily prove that independent of the choice of invariant
action

{0(F)1, —0(Q)r, ©(X)r} (D.18)

forms a chiral multiplet of Weyl weight 2. On the other hand, the fields of the Weyl multiplet
appear in the transformation laws of the chiral multiplet, such that the multiplet that starts
from ©(A) involves also the other fields, leading to the result in (6.3). To obtain this result,
one also needs to use the explicit expressions of the Ward identities for the local
symmetries, which are the vanishing of ['¥]

Cov. get: W(P)y = D'O(€)w + O(A) Rop(T) + 26 (1) R (Q)
+ [0(X)'D.X; 4+ 6(2)' D,y + O(F)' D, Fr + he]
Lorentz: W (M), = O(€)pg] + [Ql%a@(Q)I +h.c],
Dilatations: W (D) = O(e)," [ O(X); + 3Q2'0(Q); +20(F) F; +hc.] ,
Spec.conf.: W(K), = ©(b),,

BW(K), = 0 is the statement mentioned after (B.2) that b,, does not appear in the action. This is already
assumed in the other equations.
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T-symmetry: W(T)

— DO(A), +1i [XIQ(X)I —19'0(Q), - 2F1O(F); — h.c.] ,
DO(¥)a

Q-susy: W(Q) =
— 75 [O(X); + (DX + F) 0(Q); + PQO(F); +hee] ,
S-susy: W(S) = 7,0()" + V2 [(X'0(Q); + h.c] . (D.19)

These are all straightforwardly obtained from (D.1)) by replacing S; with ©; and covari-
antizing (dropping explicit gauge fields) apart from the one for covariant general coordinate
transformations, since this one involves . E Using the transformations under covariant
general coordinate transformations, which are for the different types of fields

Segeteh = — eZDafb ,
5cgct77b,u :fa(Rau(Q) + 7a¢u) s 5cgctAu = gaRau(T> )
Seger X1 =ED, X1 Seget = €D, O Seget I = €D FT (D.20)

Therefore

W(P)o =D"T(€)as + O(A)" Rap(T) + O(1)" Run(Q)
+ [0(X)'D. X1 + 6(Q)' D + O(F) D, Fr + hec.] (D.21)

which due to (D.17)) leads to the expression of W(P) in (D.19).

E The Poincaré multiplet

In we presented the Einstein tensor multiplet &, in conformal gauge with the compo-
nents defined by the conformal transformations (6.1). The components in [27}28] have been
defined differently, using the Poincaré transformations defined from the conformal transfor-
mations by . A first step to compare the transformations, is to consider the components
of the multiplet with Weyl weight 0:

CO = C,(XOX0)~w/2, (E.1)

In the case of interest, w = 3. This is a known procedure, known for multiplets without
external indices by [32,[33]. The multiplet (X°X°)~%2 is in the conformal gaug

C=1, (=0, H=23a,
B,=-34,  A=0, D=3%(uu— A,A"). (E.2)

This leads to

c=c¢,, 2=z, HE = H, + 3uC,, B = By, — 34,C,,

a a

90ne could expect the same for the Q-susy Ward identity, but these extra terms vanish by 1)
20Tn this appendix, to compare with [27,28], we put x = 1.
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PrAy = PrAo + 3Pp(u+i4)Z,,
DY = Dy + 2(uis — AyA*)Co + 3(uH, + T H,) + 3A Byy + 2" 7. 20 - (E.3)
These still transform according to (6.1]), now with w = 0. However, more S-supersymmetry

terms were absorbed in [27,28] in redefinitions of the components. The first case is in the
transformation of P Z?. According to (6.1)) with this is for Poincaré supersymmetry

SPLZ) =3Py, (iH) — +'By, —iPCY) € + 3iPLyaC? (1A — u) €,
=1P; (iH) — " (By, + 6nupA°A. — 64,A,) —iDCL) € — 3iPryaCPue
1Py (iHY — 1 (By,) —iPCY) € — 3iPryaCPue (E4)

where in the second line we used C? = 6A4,, and we define then
By, = By, 4 61 A°A, — 64y Ay = By + 61y A°A. — 244, A, , (E.5)

of which the bosonic symmetric part is the expression ((6.14]).
Similarly, A, is defined in the transformation of H?. The conformal covariant derivative
of Z,, which appears there in (6.1]) contains the S-covariantization

D, P20 = ... —i7uC 0, . (E.6)

Furthermore, the A,-dependent terms in 0H? = ... + 7Py, 2% with inP, = %EPRA + ...
are also absorbed in the definition of the A in [27,128]. Therefore we have from these two

sources
PR}, = PrAl — Prin*yuC*¢, + 2iPrAya, 2% (E.7)

The D, component appears in the transformation of PgA, with an uncontracted right chiral
susy parameter, see . In [27,28] all similar terms are absorbed in the definition of D,.
These come from the S, K-supersymmetry terms and the transformation of the redefinition
terms Pr(AF — A%). All together they give

3 - A 1. - A
Df = D2 —f- 2€abcd(DbAc>Cd + 2B[bbAa] —|— §CaAbAb —|— iZb’}/*’}/[agZSb] — Zizb’y*’}/abcgbc . (ES)

In summary, the redefinitions that bring components of multiplets following the superconfor-
mal transformation laws into the ones following the Poincaré transformation laws of [27,128]
are (using C, = 6A4,, Z, = —6¢, and the value of the antisymmetric part of By;)

AH, = 18uA,

ABba = —24AaAb + 677baACAC s

1
APgA, = 3 Pr(i +id) 2, + ~iPryeyan 2" A + 1Py Yae 2y A°,
3

2 2
AD, = 3(uH, + aHy) + 27T Aquis + 184, AP Ay + 1824400(DPA°) AY + BEP A, + 2BBE, AP
— %iZ_b'yby*Za + %iZ_bww[bZa] + 2—1412_177*%1,626 , (E.9)
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where e.g. AH, = HY — H,, with H. = H? and the other P-components are defined in

(E.5), (E.7), (E.8). Therefore, the result (6.10]) is in terms of the fields in [27]28]:

Cl =6A4,,

Zy =~ 6,

HE = — 6i(D, + 3iA,)a,

BE, = 3G — NG — 64, Ay + 31 AcA + 310pull — 3paed DA?,
PrAl = 2P)" (Do + $iA10) 2+ §Pr( +iA) 2, + 5iPrdva 2"

DY = — 12Dy D" Ay + By A, + 2B, A" — 9uuiA,

1. - 1. - =
— EiZb’y*’y[bZa] + ﬂizb%%chC +1Ru(Q) 7. 2" (E.10)

The components in (E.10) agree with the results of [27,28].
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