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Abstract

We give a new expression for the supercurrent and its conservation in curved N = 1, D = 4

superspace using the superconformal approach. The first component of the superfield, whose lowest

component is the vector auxiliary field gives the (super)Einstein equations. Its trace and couplings

to conformal and non-conformal matter is presented. In a suitable dilatational gauge, the conformal

gauge, we obtain an update of the Callan-Coleman-Jackiw improved currents for conformal matter,

containing R-symmetry corrections for a new traceless covariantly conserved energy–momentum

tensor. We observe that in the Poincaré gauge, where standard Poincaré supergravity is usually

formulated, the currents are not improved and then the higher conformal symmetry of the matter

sector is obscured. The curvature multiplets are used to find supersymmetric curved backgrounds

and some examples are exhibited in agreement with existing results.
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1 Introduction

In the superconformal formalism of supergravity, which is a very practical and economic
way for an off-shell formulation, the Planck mass mp = κ−1 = 2.4× 1018 GeV emerges as a
consequence of the superconformal gauge fixing of a chiral multiplet compensator X0. Alter-
natively, we can say that a non vanishing compensator spontaneously breaks superconformal
to Poincaré local supersymmetry. A particular interesting application is the case when su-
perconformal matter is present. In this case Callan, Coleman and Jackiw (CCJ) [1] showed
that a traceless energy-momentum tensor can be defined, which is different for spin 0 and 1
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from the canonical one in that non-minimal couplings of gravity to matter are present. In
particular in Poincaré supergravity the stress tensor is not traceless and the spinor supercur-
rent is not γ-traceless. This is only possible if we define a supersymmetric generalization of
the improved stress tensor of CCJ. The supercurrent obeying this property satisfies a very
simple superfield conservation law [2]1

D̄α̇Jαα̇ ≈ DαY , D̄α̇Y = 0 , (1.1)

where Y ≈ 0 for conformal matter. The vanishing of Y sets to zero the trace of the energy-
momentum tensor, as well as the γ-trace of the supercurrent and the divergence of the axial
current.

At the linearized level it was shown that the supergravity equations in presence of matter
correspond to the superfield equation [3]

κ−2Eαα̇ + Jαα̇ ≈ 0 , (1.2)

where Eαα̇ is the linearized Einstein tensor. Since the latter satisfies a similar conservation
equation [3], which includes the chiral scalar curvature R,

D̄α̇Eαα̇ = DαR , (1.3)

it then follows that
R+ κ2Y ≈ 0 . (1.4)

and then R ≈ 0 for conformal matter. It is the goal of the present investigation to provide
fully non-linear expressions for the former quantities using the superconformal techniques
[4–7], which are explained in [8]. In particular, nonlinearities come from two sources. One is
the X0 compensator dependence, and the other is the coupling to matter. As a by-product
we will be able to compute the components of the Einstein multiplet, which will be promoted
to a conformal primary superfield together with the scalar curvature.

We will construct the full non-linear Einstein tensor from field equations of pure super-
gravity. The latter is constructed as the D-action of the compensating multiplet X0 (see
notations in Appendix A). The field equation for the R-symmetry gauge field Aµ gives the
first component of the Einstein tensor multiplet

e−1 δ

δAµ
[−3X0X̄ 0̄]D = −3

4
Eµ , (1.5)

1We use ≈ for identities valid due to field equations.
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where Eαα̇ and Eµ are related as in (A.6). This is a real superconformal primary field of Weyl
weight 3. The entire supergravity geometry is encoded in the Einstein tensor Ea, the chiral
scalar curvature R and the Weyl superfield Wαβγ. These objects enter in the superspace
formulation of Poincaré supergravity developed in [9–12].

The scalar curvature multiplet R, with chiral and Weyl weights (1, 1), is defined in terms
of the compensating multiplet as [13]

R ≡ 1

X0
T (X̄ 0̄) , (1.6)

where the operation T produces a chiral multiplet, and is the local superconformal version
of the rigid supersymmetry operation D̄2. We will find that the non-linear version of (1.3)
is that the tensor Eαα̇ and R satisfy

Dα̇Eαα̇ = (X0)3Dα
(
R
X0

)
, (1.7)

where Dα is the superconformal version of the superspace covariant derivative Dα This is
the nonlinear generalization of (1.3). The latter is a generalization of the identity in general
relativity on the Einstein tensor

∇µGµν = 0 , Gµ
µ = −R . (1.8)

In the absence of matter the Einstein equations for pure supergravity (only the graviton and
the gravitino), become

Eαα̇ ≈ 0 , R ≈ 0 , (1.9)

In the sequel we will argue that a conformal gauge fixing where2

X0
∣∣
�

= κ−1 , (1.10)

allows us to split gravity and matter in the way of CCJ. Using this gauge fixing, the lowest
components of (1.9) just reduce to the values of the old-minimal set of auxiliary fields [14–16]

Aa ≈ u ≈ 0 , (1.11)

where
R|� = u ≡ κF̄ 0̄ . (1.12)

The equations in (1.9) are the superfield generalizations of the pure Einstein equations
Gµν ≈ 0, R ≈ 0.

When matter is included, the currents are defined similar to (1.5), using the field equation
of the full action for the R-symmetry gauge field Aµ. Prior to the gauge fixing the nonlinear
expression on the left-hand side of (1.2) is

e−1 δ

δAµ
S = Cµ = −3

4
(Eµ + Jµ) , (1.13)

2We indicate equations after gauge fixing to Poincaré supergravity by the indication �.

4



where S is the action and Cµ and Jµ are as Eµ real superconformal primary fields of Weyl
weight 3.

We will define the concept of the ‘conformal case’ where the action contains a sum of
pure supergravity and matter couplings that preserve local conformal invariance. In that
case we will find

Dα̇Eαα̇ ≈ 0, (Eαα̇ /≈ 0) , R ≈ 0 . (1.14)

The paper is organized as follows. In section 2 we present the superconformal setting and
derive the nonlinear form of (1.4) both for conformal and non-conformal matter. In section
3 the Einstein tensor multiplet is derived and proven to satisfy (1.7). In section 4 we give
the supercurrent multiplet for general case, whether the matter is conformal or not. Then
we specify two superconformal gauges. One of these corresponds to Einstein frame, and
the other to the conformal frame in the sense of [1]. It is only in the latter that conformal
invariance of the matter system relies in the tracelessness of the energy-momentum tensor and
γ-tracelessness of the supercurrent. In section 5 we define Wαβγ using the full superconformal
curvature Rµν(Q). For on-shell pure supergravity this is the only tensor that specifies the
spacetime geometry. In section 6 we give the components of the superfields that appear in
(1.7) and (1.13). Among these components is the Einstein equation in presence of matter and
a cosmological constant. In particular, the curvature multiplets give an alternative way to
study supersymmetric curved backgrounds not looking to the gravitino variation but rather
to the transformation properties of these multiplets. In this way we show how the AdS4 and
S3 × L solutions are obtained, in agreement with [17, 18]. The consequences of a negative
and positive cosmological constant, which follow from (1.7), are also discussed. The bosonic
part of our results provide a modification of the improved currents of CCJ, and we provide
the full formulae in Sec. 7. Finally, section 8 gives some concluding remarks.

In Appendix A we give our conventions for superspace quantities and in Appendix B we
recall some aspects of the superconformal Weyl multiplet. Appendix C separately discusses
the bosonic part of our results, which lead to new improved currents. In Appendix D we
give a method that we used in Sec. 6 to obtain components of superfields in terms of field
equations, using invariance of an unspecified action. We obtain there also convenient forms
of the Ward identities for all superconformal symmetries. In Appendix E we present the
Poincaré form (in conformal gauge) of the Einstein tensor multiplet.

2 Actions for chiral multiplets and the ‘conformal case’

The actions of chiral multiplets in the superconformal setup are symbolically obtained from

S =
[
N(X, X̄)

]
D

+ [W(X)]F . (2.1)

Here the XI are superconformal chiral multiplets with Weyl weight 1, and the index I is
taken to run over 0, 1, . . . , n where n is the number of physical multiplets. The 0-index is
included to indicate that one of these multiplets is ‘compensating’ for the superconformal
symmetry, such that the physical action will be super-Poincaré invariant. The function N
is real of Weyl and conformal weights (2,0), and W is holomorphic of Weyl and conformal
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weights (3,3). The notation for the actions is explained in Appendix A: (A.9) and (A.10).
The fields of the Weyl multiplet {eaµ, ψµ, bµ, Aµ} appear hidden in this notation. We repeat
the main ingredients of this multiplet in Appendix B.

Pure (Minkowski) supergravity is (with a suitable normalization) obtained for

pure supergravity: N = −3X0X̄ 0̄ , Φ = −3 . (2.2)

For separating pure supergravity from the matter part, it is useful to reorganize the
variables XI in

S0 = X0 , Si =
X i

X0
, i = 1, . . . , n , (2.3)

such that only S0 has a nonzero Weyl and conformal weights (1,1). This is the multiplet
whose first (complex) component represents the two real auxiliary scalar fields of the old
minimal set of auxiliary fields once the superconformal symmetries are gauge-fixed to obtain
the super-Poincaré theory.

The ingredients of the action formula (2.1) are then written as

N(X, X̄) = S0S̄ 0̄Φ(S, S̄) , W(X) = (S0)3W (S) (2.4)

where by functions of S, we understand functions of Si, and we could take out a factor S0S̄ 0̄

from N and (S0)3 fromW , since N is a real function of Weyl weight 2, andW is holomorphic
of Weyl weight 3. In view of (2.2) we define the matter coupling function ΦM by

Φ(S, S̄) = −3 + 3ΦM(S, S̄) , (2.5)

We define the concept of ‘conformal case’ for couplings in which in the X-basis the
compensator X0 appear in the remainder of N and W i.e.

N = −3X0X̄ 0̄ +Nmatter(X
i, X̄ ı̄) , W = W (X i) . (2.6)

This can be expressed as N0 = −3X̄ 0̄ and W0 = 0. Subindexes of N and W refer to
derivatives w.r.t. the XI , while those of Φ and W refer to derivatives w.r.t. Si (with S0

fixed). E.g.

N0 =
∂

∂X0
N =

(
∂

∂S0
− Si

S0

∂

∂Si

)
S0S̄ 0̄Φ(S, S̄) = S̄ 0̄

(
Φ− SiΦi

)
. (2.7)

We can therefore express the difference from the conformal case by quantities

∆K ≡ − 1

3S̄ 0̄

(
N0 + 3S̄ 0̄

)
=

1

3

(
SiΦi − Φ− 3

)
= SiΦM i − ΦM ,

∆W ≡ 1

3(S0)2
W0 = W − 1

3
SiWi . (2.8)

The conformal case is therefore

conformal case: ∆K = ∆W = 0 . (2.9)

6



The ‘conformal case’ thus demands that ΦM should be homogeneous of rank 1 in both Si

and S̄i, and W homogeneous of rank 3:

SiΦM i = S̄ ı̄ΦM ı̄ = ΦM , SiWi = 3W . (2.10)

Differentiating the first set with respect to S and S̄ one gets

SiΦMij = 0 , SiΦMī = ΦM̄ , SkΦMk̄i = 0 , S̄ k̄ΦMk̄jı̄ = 0 , (2.11)

which imply that ΦMī is homogeneous of degree zero.
The simplest case is the CPn model,

Φ = −3 + 3SiS̄ ı̄ = −3 + 3(X0X̄ 0̄)−1X iX̄ ı̄ , (2.12)

and a cubic superpotential. It corresponds to the conformally coupled scalar of [1].
In general, if there is a variable S1 6= 0, we can write

ΦM = (X0X̄ 0̄)−1X1X̄ 1̄f

(
X i

X1
,
X̄ ı̄

X̄ 1̄

)
= S1S̄ 1̄f

(
Si

S1
,
S̄ ı̄

S̄ 1̄

)
. (2.13)

Since this action depends on the multiplets {XI} and the Weyl multiplet, the field
equations can be divided in those with respect to the matter multiplets and those with
respect to the Weyl multiplet. The former will be considered here, and the one for the
compensating multiplet will lead to the value of the scalar curvature multiplet R. The field
equations for the Weyl multiplet will define Eµ, which will be considered in the next section.

The field equation with respect to the multiplet XI is the multiplet starting with

e−1 δS
δXI

=
1

2
T

(
∂N

∂XI

)
+
∂W
∂XI

≈ 0 . (2.14)

The operation T is the superconformal version of the superspace operation D̄2, see Ap-
pendix A. For the compensating multiplet, I = 0, this can be written as

0 ≈ 1
2
T (N0) +W0 = −3

2

[
T (S̄ 0̄) + T (S̄ 0̄∆K)− 2(S0)2∆W

]
. (2.15)

The scalar curvature multiplet is defined in (1.6) as the chiral multiplet with Weyl weight 1:

R ≡ 1

S0
T
(
S̄ 0̄
)
. (2.16)

Therefore, the field equation (2.15) can be written as

R+
Y

(S0)2
≈ 0 with Y ≡ −2(S0)3∆W + S0T (S̄ 0̄∆K) . (2.17)

In the conformal gauge S0 = κ−1, we have R + κ2Y ≈ 0. This says that R ≈ 0 for the
conformal case. The equation (2.17) is related to the global formulae in [19–24], and is the
nonlinear version of (1.4). Our results are valid for the superspace curved geometry described
by a chiral compensator X0. Other geometries may correspond to different set of auxiliary
fields [21–25,17,18].
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3 Einstein tensor multiplet

We continue with the superconformal formulation, without any gauge fixing so far, and
study the Einstein multiplet in this setting and its Bianchi identity (1.7). We start from the
field equation of the field Aµ, which is the gauge field of the R-symmetry in the conformal
approach, and is the auxiliary field in the super-Poincaré action:3

e−1 δ

δAµ
[N(X, X̄)]D = iNĪDµX̄ Ī − iNIDµXI + 1

2
iNIJ̄Ω

I
γµΩJ̄ , (3.1)

where

DµXI = (∂µ − bµ − iAµ)XI − 1√
2
ψ̄µΩI . (3.2)

We observe that this expression is invariant under S-supersymmetry using

δSDµXI = − 1√
2
η̄γµΩI , δSΩI =

√
2ZPLη . (3.3)

Therefore, this expression is a superconformal primary, and can be used as first component
of a superconformal multiplet.

We will identify the Einstein tensor multiplet as the multiplet starting from (a multiple
of) this expression in the case of pure supergravity (1.5)

Its explicit expression is thus the real vector4 [25, (5.5.47)]

Eµ = 4iX0DµX̄ 0̄ − 4iX̄ 0̄DµX0 + 2iΩ0PLγµΩ0̄ . (3.4)

which can be written in the components {X0, Ω0, F 0} as

Eµ = −8AµX̄
0̄X0 − 4iX̄ 0̄

↔
∂µX

0 + 2iΩ̄0PLγµΩ0̄ + 2i
√

2ψ̄µ

(
X̄ 0̄Ω0 −X0Ω0̄

)
,

X̄ 0̄
↔
∂µX

0 ≡ X̄ 0̄(∂µX
0)− (∂µX̄

0̄)X0 . (3.5)

When we go to flat indices, Ea = eµaEµ, this object has Weyl weight 3 and chiral weight 0.
This will be important for the generalization of (1.3).

But before considering the local generalization, let us check that the flat limit of Eµ
satisfies (1.3). We identify the superfield with its first component, and write as such a
superfield formula (using the notation in Appendix A)

Eαα̇ = 1
4
i(γµ)αα̇ Eµ|flat

= −4iS̄ 0̄
↔
∂αα̇S

0 − 2(DαS
0)(D̄α̇S̄

0̄) .
(3.6)

3We use the notations as in [8, Ch.17], where the chiral multiplets have components {XI , ΩI , F I}, with
left-handed chiral spinor ΩI . We use only chiral multiplets, such that these formulas are a truncation of
(17.19-21) in that book.

4Although it is implicit due to the fact that ΩI is left-handed, we wrote an explicit PL = 1
2 (1 + γ∗) for

clarity.
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One can then check that

D̄α̇Eαα̇ = (S0)3Dα((S0)−2D̄2S̄ 0̄) = (S0)3Dα((S0)−1R) , (3.7)

where for the last expression we use the rigid supersymmetry version of (2.16): R =
(S0)−1D̄2S̄ 0̄.

The result is consistent for a generalization as a superconformal formula as mentioned in
(1.7). Indeed, to define D̄α̇Eαα̇ from a vector real superfield, Eαα̇ should have Weyl weight 3
following the rules in [13], summarized in [26, (B.1)]. We mentioned already that this is
fulfilled with the expression (3.5). Second, to define the superconformal analogue of Dα on
a scalar multiplet, the latter should have w + c = 0, where w and c are the Weyl and chiral
weights. Chiral multiplets satisfy w = c, and thus the argument of Dα could not be R,
which has Weyl weight zero, but can be (S0)−1R. Finally, to match the Weyl weights of
the left and right-hand side, the multiplication with a multiplet of w = c = 3 is imposed.
Hence we find that (3.7) is possible. To prove that it is indeed fulfilled, we calculate the
supersymmetry transformation of Eµ:

δQEa = −
√

2iε̄PR

(
γaΩ

0F̄ 0̄ + /DX0γaΩ
0̄ + 2Ω0̄DaX0 − 2X̄ 0̄DaΩ0

)
+ h.c. . (3.8)

We denote this as

δEa =ε̄PLδLEa + ε̄PRδREa ,

δREa = −
√

2i
(
γaΩ

0F̄ 0̄ + /DX0γaΩ
0̄ + 2Ω0̄DaX0 − 2X̄ 0̄DaΩ0

)
, (3.9)

and by definition the components of δREa are the superconformal covariant Dα̇Ea. Then

Dα̇Eαα̇ = 1
4
i(γa)αα̇D

α̇Ea = −1
4
i (γaδREa)α . (3.10)

This leads to

Dα̇Eαα̇ =
√

2PL

(
−Ω0F̄ 0̄ + 1

2
X0 /DΩ0̄

)
α

= (X0)3δL

(
(X0)−2F̄ 0̄

)
α
. (3.11)

Since (X0)−1F̄ is the first component of (1.6), this confirms (1.7) for the superconformal
case.

Finally, let us consider the super-Poincaré expressions. For the pure supergravity case,
we can use the gauge fixing of the extra symmetries in the superconformal algebra as

X0
∣∣
�

= κ−1 , Ω0
∣∣
�

= 0 , bµ|� = 0 . (3.12)

This implies
Ea|� = −8κ−2Aa . (3.13)

Thus in this section, we found the Einstein tensor multiplet as the supercurrent multiplet
for the compensator X0 as in (3.4), which corresponds to [2, (32)].
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4 The supercurrent multiplet

The advantage of the superconformal tensor calculus is that it puts on equal footing the
compensator X0 and the physical matter chiral multiplets in the collection {XI}, all with
conformal and chiral weight (1, 1). Therefore, the Aµ field equation should read as

e−1 δ

δAµ
[N(X, X̄)]D = −3

4
(Eµ + Jµ) , (4.1)

Since the superpotential contribution [W ]F does not involve Aµ, we have by definition

Eµ + Jµ ≈ 0 . (4.2)

The expression Ea + Ja is still a conformal primary of Weyl weight 3. Hence the operations
of the previous section are well defined in the conformal setting. We obtained (1.7) and
therefore

Dα̇Jαα̇ ≈ (X0)3Dα
(

Y

(X0)3

)
. (4.3)

From (3.1) we thus find

− 3
4
(Eµ + Jµ) = iNĪDµX̄ Ī − iNIDµXI + 1

2
iNIJ̄Ω

I
γµΩJ̄ . (4.4)

Since this expression is linear in N , after the split (2.5), and before elimination of auxiliary
fields and conformal gauge fixing, we then have

Jµ = −4e−1 δ

δAµ
[X0X̄ 0̄ΦM(S, S̄)]D . (4.5)

From (4.2) we obviously also have

Dα̇ (Eαα̇ + Jαα̇) ≈ 0 . (4.6)

Using the identity (1.7), this also implies, see (2.17),

Dα̇Jαα̇ ≈ −(S0)3Dα((S0)−1R)

≈ −(S0)3Dα
(

2∆W − (S0)−2T
(
S̄ 0̄∆K

))
.

(4.7)

In the conformal case,

Dα̇Jαα̇ ≈ 0 . (4.8)

The expression for Jαα̇ from (4.4) can be written in terms of the quantities that we defined
in Sec. 2. We will thus use the variables Si, and translate e.g.

N0 =
∂

∂X0
N =

(
∂

∂S0
− Si

S0

∂

∂Si

)
N = S̄ 0̄

(
Φ− SiΦi

)
. (4.9)
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Using further ΦM and ∆K, defined in (2.5) and (2.8) and the real quantity

∆̄∆K = ΦM − SiΦM i − S̄ ı̄ΦM ı̄ + SiS̄ ̄ΦM ī =

(
S̄ ı̄

∂

∂S̄ ı̄
− 1

)
∆K , (4.10)

we have

N0 = −3S̄ 0̄(1 + ∆K) , Ni = 3S̄ 0̄ΦM i ,

N00̄ = −3 + 3∆̄∆K , N0ı̄ = −3
∂

∂S̄ ı̄
∆K , Nī = 3ΦM,ī .

(4.11)

We then use χi = PLχ
i for the fermionic partner of Si. This gives

DµX i = SiDµX0 +X0DµSi , DµSi = ∂µS
i − 1√

2
ψ̄µχ

i ,

Ω0 = χ0 , Ωi = X0χi + Siχ0 .

(4.12)

We therefore find

Jµ = −ΦMEµ
+2iX̄ 0̄ΦM ı̄χ̄

0̄γµχ
ı̄ + 2iX0ΦM iχ̄

iγµχ
0

+2iX0X̄ 0̄
[
2(ΦM iDµSi − ΦM ı̄DµS̄ ı̄)− ΦM īχ̄

iγµχ
̄
]
. (4.13)

We will compare two different gauge fixings of dilatational and S-supersymmetry. The
Einstein gauge is obtained by

Einstein gauge : − 3κ−2 = N |� = 3X0X̄ 0̄ (−1 + ΦM)
∣∣∣
�
,

0 = NIΩ
I
∣∣
�

= 3X̄ 0̄
[
(−1 + ΦM)χ0 + ΦM iχ

i
]∣∣∣

�
. (4.14)

This leads to

X0X̄ 0̄
∣∣∣
�

= κ−2
(
1− ΦM(S, S̄)

)−1
, χ0 = ΦM iχ

i
(
1− ΦM(S, S̄)

)−1
. (4.15)

Therefore the supergravity and matter fields in Eµ in (3.4) get mixed.
Instead, we can consider the following gauge choice

Conformal gauge : X0
∣∣
�

= κ−1 , Ω0
∣∣
�

= 0 . (4.16)

In this gauge choice the compensating S-transformations to stay in the gauge only involve the
multiplet {X0,Ω0, F 0} and the Weyl multiplet background. But the multiplets {Si, χi, F i}
do not enter in the transformations of Ω0 and thus not in the decomposition rule. Hence,
the transformations do not mix the gravity with matter. In this gauge Eµ does not depend
on matter fields, and we have

Eµ|� = −8κ−2Aµ ,
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Jµ|� = 8κ−2ΦMAµ + 2iκ−2
[
2(ΦM iDµSi − ΦM ı̄DµS̄ ı̄)− ΦM īχ̄

iγµχ
̄
]
. (4.17)

We thus find here the generalization of the equations obtained in [1] for conformal matter.
The matter action contains a term RΦ, such that the coupling is conformal. The bosonic
part of these equations lead to improved currents and a modified Einstein equation with
a matter energy-momentum tensor that contains the gravity part GµνΦM and a U(1) part,
such that it is conserved and traceless due to the equations of motions. This is different from
the Einstein gauge, (4.15), where Φ decouples from Rµν , but the energy-momentum tensor
is not traceless. These bosonic results are discussed in Appendix C.

The references [27,28] derived the gravitational multiplets directly with the Poincaré cal-
culus. This corresponds to our conformal gauge and it explains why the transformations are
matter independent. Their formulae agree with ours provided the Poincaré chiral curvature
R is identified with our (zero Weyl and chiral weight) R/X0 expression in (6.18).

5 The superconformal tensor

The Weyl superconformal tensor is a 3-spinor index chiral quantity Wαβγ [3, 11, 12]. It
is compensator-independent and the multiplet defined by this field contains in its bosonic
components the Weyl tensor and the field strength of the R-symmetry vector. This multiplet
has been given in the superconformal context in [27, 28], but for completeness we repeat it
here using our present conventions.5 We start from the full curvature Rµν(Q), which is (see
Appendix B)

Rµν(Q) = R′µν − 2γ[µφν] , (5.1)

and satisfies
γµRµν(Q) = γµR̃µν(Q) = 0 . (5.2)

We define
Wαβγ = (γµν)αβRµν(Q)γ , (5.3)

where the spinor indices indicate a PL projection. By the properties of gamma matrices in 4
dimensions, this is symmetric in (αβ), as we now prove. We perform a Fierz transformation

Wαβγ = 1
2
Cγβ(γµνRµν(Q))α − 1

8
(γρσ)γβ(γµνγρσRµν(Q))α . (5.4)

After using (5.2) and γ-algebra, this gives

Wαβγ = (γρσ)γβRρσ(Q)α . (5.5)

Hence this is indeed symmetric in the three spinor indices. Since Rµν(Q) is invariant under
S-supersymmetry, this is also a superprimary. The Q-supersymmetry transformation is

δQPLRab(Q) =
(

1
4
Rcov
ab (M cd)γcd − iR−ab(T )

)
PLε , (5.6)

5In the framework of new-minimal Poincaré calculus, this multiplet was constructed in [29,30].

12



where Rcov is defined in (B.2). Therefore Wαβγ is a superconformal chiral multiplet with
(Weyl, chiral) weight (3

2
, 3

2
). Its next component is defined from

δWαβγ =
1√
2
εδCαβγδ , (5.7)

where all the spinor indices are left-chiral. This leads to

Cαβγδ = −
√

2(γab)αβ
(

1
4
Rcov
ab (M cd)(PLγcd)− iR−ab(T )(PL)

)
γδ
. (5.8)

Using the constraint in (B.1) one proves that this tensor is also traceless.

6 Components of current multiplets

In this section we will obtain information on the components of the conformal current mul-
tiplets Ea and Ja. They are defined from field equations of the R-symmetry gauge field in
(1.13) and (1.5). These multiplets are real conformal multiplets with a vector index of Weyl
weight 3. The components can be determined from the Q-supersymmetry transformations
of their lowest components.

6.1 The real vector multiplet

The dilatation transformation D, the U(1) transformation T , Q and S supersymmetry and
special conformal transformations K for a real vector multiplet with Weyl weight w are
(see [13] and in Poincaré tensor calculus [27, 28])

δCa = wλDCa + 1
2
iε̄γ∗Za ,

δPLZa =
[
(w + 1

2
)λD − 3

2
iλT
]
PLZa

+ 1
2
PL
(
iHa − γbBba − i /DCa

)
ε+ iPL

(
−wCa + γabCb

)
η ,

δHa = [(w + 1)λD − 3iλT ]Ha

− iε̄PR
(
/DZa + Λa

)
+ iη̄PL

(
(w − 2)Za + γabZb

)
,

δBba = [(w + 1)λD]Bba + 2εabcdCcλdK
− 1

2
ε̄ (DbZa + γbΛa) + 1

2
iR̄ac(Q)γ∗γbε Cc + 1

2
η̄ ((1 + w)γbZa + γacγbZc)

δPRΛa =
[
(w + 3

2
)λD − 3

2
iλT
]
PRΛa + wPR/λKZa − γab/λKZb

+ 1
2

[
γbc (DbBca + iDbDcCa)− iDa

]
PRε− 1

2
PRγ

dεR̄ab(Q)PRγdZb

+ 1
2
PR
(
iHb − γcBcb + i /DCb

) (
wδba − γab

)
η ,

δDa = [(w + 2)λD]Da + 2wλbKDbCa + 4λK[aDb]Cb − 2εabcdBcdλbK
+ 1

2
iε̄γ∗ /DΛa + ε̄

(
Rab(T ) + γ∗R̃ab(T )

)
Zb − 1

2
ε̄
(
iγ∗γdBdc − /DCc

)
Rac(Q)

+ iwη̄γ∗
(
Λa + 1

2
/DZa

)
+ iη̄γ∗γab

(
Λb + 1

2
/DZb

)
. (6.1)
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Since Cµ is defined as a field equation, see (1.13), it transforms to field equations, and thus
the next components of the multiplet are also combinations of field equations. In Appendix
D we explain how we can use general equations for transformations of equations of motion
to identify these further components (based on [31]). This leads to expressions that do not
depend on the particular action, as long as one considers an action that is invariant under
all the symmetries of the superconformal group. The result then depends on ‘covariantized
field equations’

Θ(A)a = e−1eµa
δS
δAµ

, Θ(e)ba = e−1eνb
δS
δeνa

+ . . . , Θ(ψ)a = e−1eµa

→
δS
δψ̄µ

+ . . . ,

Θ(F )I = e−1 δS
δF I

, Θ(Ω)I = e−1

→
δS
δΩ̄I

+ . . . , Θ(X)I = e−1 δS
δXI

+ . . . , (6.2)

where the . . . make the expression covariant. The expressions for Θ(A)a and Θ(F )I are
covariant without extra terms as can be understood from the general principles in (D.6).
The result for the components of such real multiplet is

Ca = Θ(A)a,

Za = 3Θ(ψ)a − γaγbΘ(ψ)b +
1√
2
γa
(
ΩIΘ(F )I + h.c.

)
,

Ha = 2iX̄ ĪDaΘ(F )Ī − 4iDaX̄ ĪΘ(F )Ī ,

Bba = 3Θ(e)ab − ηabΘ(e)c
c + 1

2
εabcdDcΘ(A)d − ηab

(
1
2
Ω̄IΘ(Ω)I + F IΘ(F )I + h.c.

)
,

Λa = 2γbD[aZb] − 3
√

2
(
Θ(Ω)IDaXI + ΩIDaΘ(F )I + h.c.

)
,

Da =− 2DbD[bΘ(A)a] − 2D[aDb]Θ(A)b

− 3
2
i
(

2DaXIΘ(X)I − Ω̄I
↔
DaΘ(Ω)I − 2F IDaΘ(F )I − h.c.

)
. (6.3)

We can apply these results first for the pure supergravity action [−3X0X̄ 0̄]D, and as
defined in (1.5) this leads to the components of the superfield E . In this case the covariant
field equations of the compensating multiplet are simple:

Θ(X)0 = −32cX̄ 0̄ , Θ(Ω)0 = 3PL /DΩ0̄ , Θ(F )0 = −3F̄ 0̄ . (6.4)

These {Θ(F )0, −Θ(Ω)0, Θ(X)0} form a chiral multiplet of Weyl weight 2, which is −3X0R.
The covariant field equations for the fields of the Weyl multiplet are (see also (3.4)):

Θ(A)a =− 3iX0DaX̄ 0̄ + 3iX̄ 0̄DaX0 − 3
2
iΩ0PLγaΩ

0̄ ,
√

2Θ(ψ)a =− 3PLΩ0(DaX̄ 0̄) + PLγab

(
Ω0DbX̄ 0̄ − 2X̄ 0̄DbΩ0

)
+ h.c.

Θ(e)ab = 3ηab

[
F 0F̄ 0̄ −DcX0DcX̄ 0̄ − 1

2
Ω̄0PL /DΩ0̄ − 1

2
Ω̄0̄PR /DΩ0

]
+ 6D(aX

0Db)X̄0 +
(
ηabDcDc −D(aDb)

)
(X0X̄0)

+ 3
2

[
Ω̄0PL

(
γ(aDb) − 1

2
γab /D

)
Ω0̄ + h.c.

]
. (6.5)

14



When we go to conformal gauge (4.16), the remaining objects combine in covariant
Poincaré covariant quantities. With the Poincaré gauges (3.12) the Poincaré supersymmetry
transformations are (and it is now convenient to use again u = κF̄ 0 as in (1.12))

δ�(ε) =δQ(ε) + δS
(
η = 1

2
(iγ∗ /A− PRu− PLū)ε

)
+ δK

(
λKa = −1

4
ε̄φ̂a

)
,

PLφ̂a = PLφa + 1
2
PL(i /A+ ū)ψµ . (6.6)

The covariant derivatives

D̂µ = ∂µ − δM
(
ωµ

ab(e, ψ)
)
− δ�(ψµ) , (6.7)

are now covariant for super-Poincaré. Relevant Poincaré curvatures6 and derivatives are

PLR̂µν(Q) = 2PL
(
∂[µ − 3

2
iA[µγ∗ + 1

4
ω[µ

ab(e, ψ)γab + 1
2
γ[µ(i /A+ ū)

)
ψν] ,

φ̂a = 1
2
γbR̂ba(Q) + 1

12
γaγ

bcR̂bc(Q) = −1
3
γbR̂ab(Q) + 1

12
γabcR̂

bc(Q) ,

D̂au = ∂au+ ψ̄aPLγ · φ̂ ,
D̂aAb = ∇aAb + 1

2
iψ̄aγ∗φ̂b ,

R̂µν
ab = Rµν

ab − ψ̄[µγ
[aR̂b]

ν](Q) + 1
2
ψ̄[µγν]R̂

ab(Q) ,

R̂ab = R(ab) − 1
2
ψ̄cγ(aR̂b)c(Q) + 1

2
ψ̄(aγ

cR̂b)c(Q) ,

R̂ = R + ψ̄aγbR̂
ab(Q) , Ĝab = R̂ab − 1

2
ηabR̂ . (6.8)

Note that the relation between φ̂a and R̂µν(Q) is the same as between the superconformal
quantities φa and Rµν(Q). The covariantized field equations are then

κΘ(X0) = −3iD̂aAa + 1
2
R̂ + 3AaAa ,√

2κΘ(Ω0) = γabR̂ab(Q) ,

κΘ(F 0) = −3u ,

κ2Θ(A)a = 6Aa ,

κ2Θ(ψ)a = −1
2
γabcR̂

bc(Q) ,

κ2Θ(e)ab = Ĝab + 6AaAb + 3ηab (uū− AcAc) . (6.9)

This gives the following components of the real multiplet

κ2Ca = 6Aa ,

κ2Za =− 6φ̂a ,

κ2Ha =− 6iD̂aū ,
κ2Bab = 3Ĝab − ηabĜc

c + 18AaAb − 3ηabAcA
c + 3ηabuū− 3εabcdD̂cAd ,

6Note that due to the torsion, Rab is not symmetric. However, the covariantized R̂ab is symmetric.
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κ2PRΛa =2PRγ
b
(
D̂[a + 3

2
iA[a

)
Zb] − iPRγ

bγacZbAc ,

κ2Da =− 12D̂[bD̂bAa] − 18εabcdA
bD̂cAd − 18AaAbA

b + 9iu
↔

D̂aū− 36Aau ū

− 1
4
iZ̄aγ∗γ · Z − 1

3
iZbγ∗γ[bZa] + i

¯̂
Rab(Q)γ∗Zb . (6.10)

The result (6.10) gives all components of the multiplet

Ea = −4
3
Ca . (6.11)

Its linearized part is the result in [3, (2.13)]. The result is given also in [27,28] with different
definitions of the components, as usual when comparing conformal and Poincaré transfor-
mations [32, 33]. We explain the relations in detail in Appendix E. The result in (6.10) is
more elegant due to the conformal symmetry. See in particular the conformal form (6.3),
which is independent of the choice of auxiliary fields for supergravity.

When one investigates preservation of supersymmetry (four supercharges) in this con-
formal gauge, one should consider the transformations of the fermions in (6.1), using the
combination of the symmetries as in (6.6). Especially the vanishing of δPLZa gives the
condition for preservation of supersymmetry when we just take the bosonic part. This is

1
2
PL
(
iHa − γbBba − i /DCa

)
ε+ 1

2
iPL

(
−3Ca + γabCb

)
(i /A− ū)ε = 0 . (6.12)

This equation can be decomposed to the conditions (2.11) in [17]. E.g. the only terms
proportional to γabε lead to uAa = 0, which is the first of (2.11) in [17]. When these are
already zero, the only term without a gamma matrix is Ha = 0, which is ∂au = 0, which is
the third of (2.11) in [17]. Therefore we now concentrate on terms proportional to PLγ

bε.
These are

0 = −1
2
κ2 Bba|bos − i∂bAa + 12AaAb − 3ηabAcA

c . (6.13)

The imaginary part leads to ∇bAa = 0, which is the second in [17]. This leaves then only
the symmetric part of Bba, and the equation

0 = Bab ≡κ2 B(ab)

∣∣
bos
− 24AaAb + 6ηabAcA

c

=3Rab − 1
2
ηabR− 6AaAb + 3ηabAcA

c + 3ηabuū . (6.14)

The expression Bab agrees with the component obtained in [27, 28]. The difference be-
tween the conformal part κ2B(ab) and this Poincaré expression Bab originates from the S-
supersymmetry and depends on the conformal gauge fixing. This difference is traceless. The
trace of B(ab) or Bab is proportional to the real part of the last component of R/X0, which
will be discussed in the next subsection.7 To obtain the last of (2.11) in [17], one considers

0 = 1
3
Bab + 1

6
ηabη

cdBcd = Rab − 2AaAb + 2ηabA
cAc + 3ηabuū . (6.15)

7Since this is a conformal chiral multiplet with w = 0, the fermion has no S-supersymmetry transforma-
tions, and the auxiliary fields of the conformal and Poincaré multiplets coincide.
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To obtain the further condition of vanishing Weyl tensor in [17], one simply looks at the
variation of the fermionic component Wαβγ (see (5.3), (5.6)) of the superconformal Weyl
multiplet. This gives the vanishing of equation (5.8), which implies the vanishing of the
Weyl tensor and of the Aµ field strength.

The components of the current Jµ are obtained from (6.3) by using the (covariantized)
field equations of the other part of the action: [3X0X̄ 0̄ΦM(S, S̄)]D. For the conformal case,
this can be written as [ΦM(X, X̄)], where the X-dependence does not include X0. In that
case, the gauge conditions are not relevant in that part, and we can directly use (6.3).

6.2 The supersymmetric Ward identity

Now that we have the full expressions of the components of Ea, we can explicitly check (1.7),
which we write here again as

Dα̇Eαα̇ = (X0)3Dα
(
R
X0

)
. (6.16)

Since
T (X̄ 0̄) = {F̄ 0̄, /DPRΩ0̄, 2CX̄ 0̄} , (6.17)

the components of the multiplet R/X0 are:

R
X0

=
T (X̄ 0̄)

(X0)2
=

{
F̄ 0̄

(X0)2
,

1

(X0)2
PL /DΩ0 − 2

F̄ 0̄

(X0)3
PLΩ0,

1

(X0)2
2cX̄ 0̄ − 2

F̄ 0̄

(X0)3
F 0 +

2

(X0)3
Ω̄0PL /DΩ0 − 3

F̄ 0̄

(X0)4
Ω̄0PLΩ0

}
. (6.18)

This is a multiplet with Weyl weight 0, which therefore can be a constant without breaking
supersymmetry, a possibility that we shall consider in Sec. 6.4. The superconformal covariant
derivatives are defined in (16.34) and (16.37) of [8]. For convenience we repeat here the
bosonic part:

2
CX0

∣∣
bos

= (∇a − 2ba − iAa)DaX
0 − 1

6
RX0 , DaX

0 ≡ eµa (∂µ − bµ − iAµ)X0 . (6.19)

Therefore, the bosonic part of the last component of R/X0 has the following real and
imaginary parts

− 1
6
κB a

a = −1
6
κ3B a

a , iκ∇aAa . (6.20)

In order to evaluate the right-hand side of (6.16) we write with (A.6), (6.11) and (6.1):

Dα̇Eαα̇ = 1
4
i(γa)αα̇D

α̇Ea = −1
3
i(γa)αα̇D

α̇Ca = 1
3
i(γa)α

α̇Dα̇Ca = 1
6

(γaPRZa)α . (6.21)

Using (6.3) we find

γaPRZa = −PLγaΘ(ψ)a + 2
√

2ΩIΘ(F )I =
√

2
[
XIΘ(Ω)I + 2ΩIΘ(F )I

]
, (6.22)
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where we used W (S) = 0 from (D.19). Using now the specific case of pure supergravity with
(6.4), we thus have

1
6
γaPRZa =

1√
2
PLX

0 /DΩ0 −
√

2F̄ 0̄PLΩ0 , (6.23)

For the right-hand side of (6.16) we use the fermionic component of (6.18), and the local ver-
sion of (A.2), and find indeed the same expression. We thus find that the derived component
of the Einstein tensor multiplet correctly obeys the Einstein Ward Identity.

6.3 The conformal case

We now restrict ourselves to the ‘conformal case’, ∆K = ∆W = 0. This case can also be
characterized by the fact that in the basis of the chiral fields {XI} = {X0, X i}, the action
is completely separated in8

S =
[
−3X0X̄ 0̄

]
D

+
[
3ΦM(X i, X̄ ı̄)

]
D

+
[
W (X i)

]
F
, (6.24)

where ΦM is homogeneous of first order in as well X i as X̄ ı̄ and W of third order in X i,
see (2.10). We consider the conformal gauge fixing (4.16) where the transition to the super-
Poincaré theory does not mix the two terms. Also we do not eliminate the auxiliary field
Aµ of the Weyl multiplet, which is hidden in the notation in (6.24), such that the splitting
is preserved.

Therefore, F 0 appears only in the pure supergravity part (first term in (6.24)), and
its field equation is F 0 ≈ 0. This is, up to invertible redefinitions, the vanishing of the
first component of the chiral scalar curvature R. It implies then the vanishing of all the
components, i.e. the vanishing of (6.17). When we go to the conformal gauge, these equations
reduce, using [8, (16.42)], to

κ T (X̄ 0̄)
∣∣∣
�

=

{
u,

√
2

6
γ · φ̂, −iD̂aAa − 1

6
R̂− AaAa

}
. (6.25)

The bosonic part of these equations is discussed in detail in Sec. 7. Note that the fermionic
part contains the γ-trace of the Rarita–Schwinger equation.

6.4 Superconformal formulation of AdS4 Supergravity

It is interesting to observe that AdS4 [34, 35] supergravity has a very simple description in
our formalism. This theory corresponds to the case when the superpotential is simply

W = X3
0 . (6.26)

8To connect to much of the usual literature we often use the variables Si rather than Xi, but since the
transformation (2.3) is invertible, this does not change the conclusions of this section.
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and no matter multiplets are present. This corresponds to scalar curvature (superconformal)
multiplet R/X0 to have only a non-vanishing first component (see (2.17)), which gives now
R ≈ −2X0). In particular, the vanishing of the last component, see (6.18), needed for
supersymmetry being unbroken, gives in the conformal gauge (setting the fermions and Aµ
to vanish)

κ−1 R
X0

∣∣∣∣
last

= −1
6
R− 2u ū , (6.27)

which vanishes for R = −12u ū. If one looks at the Einstein multiplet, the only possible non
vanishing term is in the Bab component

κ2Bab = 3Gab − ηabGc
c + 3ηabu ū . (6.28)

However, since only the trace is possibly non vanishing we get

κ2ηabBab = −Gc
c + 12u ū , (6.29)

but Gc
c = −R, so we obtain R+ 12u ū as the last component of R/X0 (6.27). This must in

fact be the case if the identity Dα̇Eαα̇ = (X0)3Dα
( R
X0

)
is satisfied.

The outcome therefore is that in the Minkowski and AdS4 backgrounds the Einstein
tensor Eαα̇ ≈ 0, but in AdS4 is R

X0 = (κu, 0, 0) with constant u. However, notice that the
AdS4 background can not be recovered in the linearized approximation [3], because of the
nonlinear nature of equations (6.27), (6.28), (6.29).

6.5 Superconformal formulation of dS4 Supergravity

The superconformal approach is also suitable to discuss de Sitter supergravity with a Volkov-
Akulov chiral nilpotent superfield X (X2 = 0). In this case we can take the Φ function still
conformal invariant

− N

3
= X0X̄ 0̄ −XX̄ , (6.30)

and the superpotential [36–38]

W(X) = µX(X0)2 + λ(X0)3 . (6.31)

For µ = 0 we get back to AdS4 supergravity. We note that since X2 = 0 the Poincaré and
conformal gauges are the same, but the latter is simpler since the potential is given by (7.22)

κ−4V (S, S̄)
∣∣
S,S̄=0

= 1
3
κ−4

(
µ2 − 9λ2

)
. (6.32)

for S = 0. Since µ 6= 0 and F 0 is as before, the last component of R/X0 multiplet is not
vanishing, while the first component would vanish if λ = 0. In an analogous way the Bab
component of the Einstein tensor would be non vanishing. However, due to the additive
nature of the terms

F 0 ≈ κ−2λ , F 1 ≈ −1
3
κ−2µ ,
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κR|last = −1
6
Rκ− 2κ3|F0|2 ≈ −2

9
κ−1µ2 , κR|first ≈ λ , (6.33)

(using R ≈ 4κ−2V ) as well the trace part of Bab will be

κ2Bab ≈ −3
2
ηabR|last = 1

3
κ−2ηabµ

2 , (6.34)

and these formulae show that de Sitter supergravity breaks supersymmetry.

6.6 Superconformal formulation of S3 × L supergravity

Another solution preserving full supersymmetry, considered in [17], is the product of the
3-sphere and a line, obtained by taking

Aa = (A0, 0, 0, 0) , u = 0 , Bab = 0 , (6.35)

where A0 is a constant. Then it is easy to see from (6.15) that the Ricci tensor is

R00 = R0i = 0, Rij = 2A2
0δij , (i = 1, 2, 3) . (6.36)

The space is conformally flat, so the Weyl tensor vanishes. In this background the two
chiral multiplets (Weyl and scalar curvature) vanish Wαβγ = R/X0 = 0, while the Einstein
tensor has one non-vanishing first component using the basis of Poincaré components of a
real vector multiplet described in Appendix E:

EP
a = (−8Aa, 0, ..., 0) . (6.37)

This space as well as AdS satisfies Dα̇Eαα̇ = (X0)3Dα
( R
X0

)
= 0.

7 CCJ in supergravity

In this section we consider the bosonic part of the action, which clarifies how our results
modify (covariantize) the equations of CCJ [1].

7.1 Bosonic part of pure supergravity and currents

We first consider the bosonic part of the superconformal version of pure supergravity:

Sbos,SG =
[
−3X0X̄0

]
D

= 3

∫
d4x e

[
−F 0F̄ 0 − ReX0

2
CX̄0

]
= 3

∫
d4xe

[
−F 0F̄ 0 +DaX

0DaX̄0 + 1
6
RX0X̄0

]
, (7.1)

where DaX
0 is given in (6.19). This leads to the covariant field equations, as defined in

(6.2),

Θ(e)ab = 3ηab
[
F 0F̄ 0 −DcX

0DcX̄0
]
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+6D(aX
0Db)X̄

0 +
(
ηabDcDc −D(aDb)

)
(X0X̄0) ,

Θ(A)a = −3iX0DaX̄
0 + 3iX̄0DaX

0 ,

Θ(X)0 = −3DaDaX̄
0 = −3DaDaX̄

0 + 1
2
RX̄0 ,

Θ(F )0 = −3F̄ 0 , (7.2)

where Da is covariant for the linearized symmetries, but Da is the fully conformal covariant
derivative, which makes a difference for

D(aDb)(X
0X̄0) =

(
∇a∂b + 4f(ab)

)
(X0X̄0) =

(
∇(a∂b) −Rab + 1

6
ηabR

)
(X0X̄0) , (7.3)

using (B.2). The latter terms produce in Θ(e)ab the term GabX
0X̄0.

We now consider these equations in the conformal Poincaré gauge (4.16). Defining u =
κF̄ 0, the bosonic part of the pure supergravity action is

Sbos,SG|� =

∫
d4x eκ−2

[
1
2
R− 3uū+ 3AµA

µ
]
. (7.4)

The field equations in (7.2) are

κ2Θ(e)ab =Gab − Lab , Lab = −3ηabuū− 6AaAb + 3ηabAcA
c

κ2Θa(A) =6Aa , κΘ(X)0 = 3AaA
a + 1

2
R− 3i∇aAa , Θ(F )0 = −3F̄ 0 . (7.5)

Since DaX0 = −iAaκ
−1, the remaining terms of the Ward identity in (D.19) are

κ2 W (P )a|� = ∇bΘ(e)ab + 6Ab (∂aAb − ∂bAa)− 6Aa∇bAb − 3∂a(uū) = 0 . (7.6)

Due to the Bianchi identity (1.8), DbGab = 0, we get for Lab:

∇bLab = 6Ab (∂aAb − ∂bAa)− 6Aa∇bAb − 3∂a(uū) . (7.7)

Adding the matter Lagrangian (without eliminating auxiliary fields), and defining

Θc
ab = e−1eνb

δSmatter

δeνa
= 2e−1eµae

ν
b

δSmatter

δgµν
, (7.8)

the gravitational field equation is

Gab − Lab + Θc
ab ≈ 0 , (7.9)

and the conservation equation due to the same Bianchi identity is

∇bΘc
ab ≈ ∇bLab . (7.10)

The right-hand side is given by (7.7). In case of conformal coupling, u ≈ 0 and ∇aAa ≈ 0
(see (C.1)) and

∇bΘc
ab ≈ 6Ab (∂aAb − ∂bAa) . (7.11)
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This shows the modification of the conservation equation for the conformal case. In that
case, we could also consider the trace condition. Since

La
a = 6AaA

a − 12uū , (7.12)

the tracelessness of the improved energy-momentum tensor for the conformal case (u ≈ 0)
follows from

Θc
a
a ≈ R + 6AaA

a ≈ 0 . (7.13)

The above equations are in agreement with Sec. 6.3, where we found that in the con-
formal case we obtain R ≈ 0, i.e. T (X0), which in conformal gauge lead to the component
expressions (6.25). The bosonic part is of the latter is

u0 ≡ κF̄ 0 ≈ 0 , ∇µAµ ≈ 0 , R + 6A2
µ ≈ 0 . (7.14)

7.2 Bosonic action and improved currents

We can write down the action of the matter-sugra coupled action from [8, (17.19)] with

N = 3X0X̄ 0̄
(
−1 + ΦM(S, S̄)

)
, W = (X0)3W (S) . (7.15)

In the conformal case, to which we will first restrict ourselves, the homogeneity of ΦM and
W allow us also to write

1
3
N = −X0X̄ 0̄ + ΦM(X, X̄) , W = W (X) , (7.16)

where the dependence on X and X̄ is restricted to dependence on the X i and their complex
conjugates. Therefore, only the first term will lead to a breaking of superconformal symmetry
to super-Poincaré.

The bosonic part of the action is then

S =

∫
d4x
√
−g
[

1
2
RX0X̄ 0̄ + 3DµX

0DµX̄ 0̄ − 3F 0F̄ 0̄

− 1
2
RΦM(X, X̄) + 3ΦM ī(X, X̄)

(
−DµX

iDµX̄ ̄ + F iF̄ ̄
)

+F iWi(X) + F̄ ı̄Wı̄(X̄)
]
,

DµX
I ≡ (∂µ − iAµ)XI . (7.17)

The first line is the pure supergravity action. The second and third line do not depend on
X0. They are separately conformal invariant and this will not be broken in the conformal
gauge. The first equation in (7.14) is obvious from this form of the action.

After fixing the gauge X0 = X̄ 0̄ = κ−1 and taking into account that X i = X0Si = κ−1Si,
the action becomes

S =

∫
d4x 1

2

√
−g
[
κ−2

(
R + 6A2

µ − 6ΦMīg
µνDµS

iDνS̄
̄ −RΦM(S, S̄)

)
− 2κ−4V (S, S̄)

]
,

(7.18)
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where here and below ΦM is considered as function of Si and S̄i. The term −RΦM completes
the conformal coupling and gauge invariant coupling and the covariant derivatives are

DµS
i = (∂µ − iAµ)Si , DµS̄

ı̄ = (∂µ + iAµ)S̄ ı̄ . (7.19)

The F i have been integrated out, and produced a potential

V (S, S̄) = 1
3
(ΦM ī)

−1Wi(S)W̄(S̄) , (7.20)

which is homogeneous of second degree in S and in S̄.
We will below also consider a potential that is not conformal in order to allow mass terms.

In that case W is not homogeneous of third order in Si, but there is still the conformal
W(X) = (X0)3W (X i/X0) as in (2.4).9 The third line of (7.17) is then

F IWI + h.c. =(X0)2
[
F 0(3∆W ) + F iWi(S)

]
+ h.c. , 3∆W = 3W (S)− SiWi(S) .

(7.21)

The elimination of the auxiliary F -terms then leads to a potential (in conformal gauge) that
is a generalization of (7.20):

V (S, S̄) = 1
3

(
(ΦM ī)

−1Wi(S)W̄(S̄)− |3∆W |2
)
. (7.22)

In the Einstein gauge, (4.14), we get

V P =
1

(1− ΦM)2
V. (7.23)

This is in agreement with the direct calculation of the potential of Poincaré supergravity
using Kähler geometry.

The simplest kinetic terms appear for ΦM = SiS̄ ı̄, and corresponds thus to ΦMī = δī.
This is the CPn model.

Now we proceed as CCJ, namely we write the trace of the Einstein equations and the
scalar field equations (working with Aµ off-shell). The Einstein equations coming from the
Lagrangian (7.18) plus the CCJ improvement term has the following form

Rµν − 1
2
Rgµν + 6AµAν − 3gµνA

2
ρ − (Rµν − 1

2
Rgµν)ΦM + (∇µ∂ν − gµν∇2)ΦM

− 3ΦM ī(DµS
iDνS̄

̄ +DµS̄
̄DνS

i − gµνDλS
iDλS̄ ̄) + gµνκ

−2V (Si, S̄ ı̄)) ≈ 0 . (7.24)

Taking the trace, gµν δS
δgµν

= 0, using the homogeneity of ΦM, one gets

− (R + 6A2
µ) +RΦM − 3

(
ΦM ̄D

2S̄ ̄ + ΦM iD
2Si
)

+ 4κ−2V (Si, S̄ ı̄) ≈ 0 . (7.25)

9In view of the normalisation of the kinetic terms of the scalar fields, the physical fields in the conformal
gauge are Xi rather than Si, then setting Si = κXi in our formulae we see that the superpotential W =
κ−3W (κX), of dimension 3 gets dimensionful coefficients respectively of dimension 3, 2, 1 for the constant,
linear and quadratic terms in X, while the cubic term remains dimensionless.
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Now we can use the Si and S̄ ı̄ field equations in the last term, which are

3DµD
µSi ≈ 1

2
RSi + κ−2(ΦM ī)

−1V̄ , (7.26)

3DµD
µS̄ ̄ ≈ 1

2
RS̄ ̄ + κ−2(ΦM ī)

−1Vi , (7.27)

where the covariant derivatives are U(1) and general covariant:

DµD
µSi =

1√
−g

(∂µ − iAµ)
√
−g(∂µ − iAµ)Si . (7.28)

Multiplying (7.26) by ΦM i and (7.27) ΦM ̄, we find

3ΦM iDµD
µSi ≈ 1

2
RΦM + κ−2S̄ ı̄Vı̄ ,

3ΦM ı̄DµD
µS̄ ı̄ ≈ 1

2
RΦM + κ−2SiVi . (7.29)

Inserting these in (7.25) we find

− (R + 6A2
µ) ≈ κ−2∆V , ∆V ≡ 4V (Si, S̄ ı̄)− S̄ ı̄Vı̄ − SiVi . (7.30)

This means that we find the last of (7.14)

R + 6A2
µ ≈ 0 , (7.31)

if ∆V vanishes, that is if V (Si, S̄ ı̄) is homogeneous of degree 4 in Si and S̄ ı̄, i.e. if the
holomorphic superpotential is homogeneous of degree of 3.

We can find the modified Θc
µν from (7.24)

Rµν − 1
2
gµνR + 6AµAν − 3gµνA

2
ρ ≈ −Θc

µν (7.32)

which can be written as

Θc
µν =− 3ΦM ī

(
DµS

iDνS̄
̄ +DµS̄

̄DνS
i − gµνDλSiDλS̄

̄
)

+
(
∇µ∂ν − gµν∇2

)
ΦM

−GµνΦM + gµνκ
−2V (Si, S̄ ı̄) , (7.33)

with the property that

Θc λ
λ ≈ RΦM − 3ΦM ı̄D

2S̄ ı̄ − 3ΦM iD
2Si + 4κ−2V (Si, S̄ ı̄) ≈ 0 , (7.34)

consistent with (7.32) and (7.31). The divergence of Θc
µν gives (7.11), so that bringing the

A terms on the right-hand side we have

Gµν ≈ −Θc
µν − 6AµAν + 3gµνA

2
ρ . (7.35)

Taking the divergence we have

∇µΘc
µν + 6Aµ(∂µAν − ∂νAµ) ≈ 0 , (7.36)
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since∇µGµν = 0. To understand how the last equation follows, we obtain that the divergence
of the matter part of the energy momentum tensor in (7.33) cancels the A terms and the
1
2
R∂νΦM of the −Gµν∂

µΦM term, while the improvement term cancels the −Rµν∂
µΦM part

of the −Gµν∂
µΦM term.

The expression (7.33) is thus the improved energy-momentum tensor of CCJ that is
improved by two types of covariantization. First, the derivatives are covariant for the U(1)
R-symmetry. Furthermore there is the term GµνΦM, which could be included in a conformal
covariant derivatives:10

D(µDν)ΦM = (∇µ∂ν + 4f(µν))ΦM = (∇µ∂ν −Rµν + 1
6
gµν)R , (7.37)

which thus covariantizes the CCJ term(
D(µDν) − gµνD2

)
ΦM =

(
∇µ∂ν − gµν∇2

)
ΦM −GµνΦM . (7.38)

The second of (7.14) fixes the equation of motion of Aµ. Let us take as in (4.13)

Jµ = 4iκ−2(ΦM iDµS
i − ΦM ı̄DµS̄

ı̄) . (7.39)

In the difference between the equations (7.29) in the conformal case the homogeneity prop-
erties of the potential imply the cancelation of the terms depending on V and

∇µJµ = 4iκ−2(ΦM iD
2Si − ΦM ı̄D

2S̄ ı̄) ≈ 0 . (7.40)

The equation of motion for Aµ is
8Aµ ≈ κ2Jµ , (7.41)

in agreement with (1.2) using (3.13) and gives

Aµ ≈
i

2(1− ΦM)
ΦM ī(S̄

̄∂µS
i − Si∂µS̄ ̄) (7.42)

and implying
2∇µAµ ≈ ∇µJ5

µ ≈ 0 . (7.43)

This is the second of (7.14).

7.3 Deformation of a conformal potential and no-scale models

We first discuss a particular deviation from conformal symmetry with just one complex scalar
S, and we take the choices

ΦM = SS̄ , W = 1
2
(λ+ S)3 . (7.44)

In this case we find that conformal invariance is broken by

λWS = 3W − SWS = 3∆W , (7.45)

104fµν = −Rµν + 1
6gµνR is given in [8, (15.25)]
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and the potential (7.22) becomes

V (S, S̄) = 1
3
WSWS̄

(
−|λ|2 + 1

)
. (7.46)

This potential interpolates from V positive to V negative, where λ = 0 corresponds to the
conformal case. On the other hand for |λ| = 1 the potential identically vanishes and this
gives the single field example of no-scale supergravity [39] .

7.4 CCJ and the equivalence principle

In this subsection we discuss the equivalence principle following CCJ for conformally coupled
gravity with a potential that breaks conformal invariance by a mass term. By inserting
equation (7.30) in (7.26), we obtain the matter field equation in the Einstein gauge.

(DµD
µ + AµA

µ)Si ≈ 1
6
κ−2

(
∆V Si + 2(ΦMī)

−1V̄
)
. (7.47)

These equations are equivalent, up to field redefinition, to the standard supergravity formu-
lation of [40]. We consider minimal kinetic couplings and the mass m being generated from
an holomorphic superpotential of the form

ΦM = δīıS
iS̄ ı̄ , W (S) = m

2
SiSi + 1

3
λijkS

iSjSk . (7.48)

Since ∆V is at least quadratic in S, it means that the mass is not affected by gravitational
interactions, while the interaction strengths are. Looking at the form of the supergravity
potential (7.22), we have at the quadratic order

V = 1
3
m2SiS̄ ı̄ + higher order terms , (7.49)

so that the mass is not affected by the gravitational modification related to ∆V , while higher
interaction terms are. As anticipated by CCJ, conformally coupled supergravity is then in
agreement with the equivalence principle.

8 Summary and conclusions

The Einstein equations for matter-coupled supergravity in terms of the conformal tensor
calculus have been obtained. We paid special attention to what we called ’the conformal
case’. This is the supergravity coupling of N = 1 rigid supersymmetric models of chiral
multiplets with conformal symmetry. In this case the Kähler couplings imply that there is
a U(1) isometry group (the R-symmetry).11

It has been relevant to consider the difference between two gauge choices for dilata-
tions, which correspond to Einstein gauge and ‘conformal gauge’. Going to the Einstein
gauge the scalar fields parametrize a Kähler σ-model with Kähler potential K(S, S̄) =

11In the simplest case of the σ-model (2.12) there is an additional SU(N) symmetry, which is not present
in the other models satisfying the conformal restriction (2.10).
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−3 log(−Φ(S, S̄)/3). The conformal case is characterized by a homogeneity of Φ(S, S̄) + 3
of order 1 both in S and S̄, and of the superpotential W (S), which should be homogenous
order 3. However, in this gauge the conformal properties of the currents are not evident.

A conformal gauge preserves the separation between the pure supergravity part, where
the superconformal symmetry is broken in order to get super-Poincaré gravity, and the matter
part with preserved conformal symmetry. This separation is maintained by not eliminating
the auxiliary gauge field Aµ of the U(1) R-symmetry. The matter part has then still Kähler
couplings, where now the Kähler potential is Φ(S, S̄). The results provide a supersymmetric
generalization of the properties of scalar fields coupled to gravity with improvement terms in
CCJ [1]. Two sort of bosonic improvement terms emerge, one that couples the scalar fields
to the scalar curvature R, the other that couples the scalar fields to an R-current. Both are
part of the superconformal covariant derivatives that covariantize the (rigid conformal) CCJ
improvement terms. Therefore, the improved energy-momentum tensor that is traceless for
superconformal matter contains also U(1) corrections. This also implies an improvement
term in the U(1) current. These are part of the supercurrent, which becomes γ-traceless in
the superconformal case [2] for which the compensator equation becomes the chiral superfield
equation R ≈ 0 in (2.17). We clarified the bosonic aspects separately in Sec. 7, which
provides the improved currents for conformal Kähler couplings.

We have given explicit formulae, in the superconformal approach, for the three basic
multiplets that specify the superspace geometry of N = 1 supersymmetry. These multiplets
play a key role in the construction of higher curvature invariants and they have found appli-
cations to classify counterterms [41,42]. More recently they were also relevant in cosmology
to provide a generalization of the Starobinsky model as well as for nonlinear realizations for
local supersymmetry in the framework of N = 1 supergravity [36, 43–46]. The latter is a
particular way for implementing the super-Brout-Englert-Higgs effect and to find de Sitter
vacua in cosmological scenarios. It is likely that our results will find new applications along
this area of research.

Our results can also be relevant in exploring the interplay between different supergravity
backgrounds, in the study of rigid supersymmetry in curved space. The simplest examples,
preserving four supersymmetries were discussed in subsection 6.4 and 6.6 and correspond
to the conformally flat spaces AdS4 and S3 × L. Similar arguments in section 6.5 show
that the dS background is not supersymmetric. Another related topic is the application of
localization techniques in supersymmetric quantum field theories [17,18,47,48].
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A From components to superspace

We translate components in superspace notation as in [8, Appendix 14.A]. Thus e.g. the
supersymmetry transformations of any quantity X is

δ X|θ=0 = ε̄αPL(DαX)θ=0 + ε̄α̇PR(D̄α̇X)θ=0 . (A.1)

The full 4-component spinor index is thus split in (αα̇) where the α part refers to the
left-projected spinor, and α̇ to the right-projected spinor.

These notations for the chiral multiplet S = {Z, PLχ, F} imply (omitting the θ = 0
projection each time)

DαS =
1√
2

(PLχ)α , D̄α̇S̄ =
1√
2

(PRχ)α̇ , D2S = F . (A.2)

We introduce here the notation D2, which corresponds to

D2 = −D̄PLD , D̄2 = −D̄PRD , (A.3)

where the bar in the right-hand sides is the Majorana bar. In 2-component notations these
correspond to

D2 = −DαDα = DαD
α , D̄2 = −D̄α̇D̄α̇ = D̄α̇D̄

α̇ (A.4)

It acts e.g. as
D2θ̄PLθ

∣∣
θ=0

= 4 . (A.5)

We use also the operation T on a multiplet which leads to a chiral multiplet. On the
antichiral multiplet T (S̄) is defined if S has Weyl weight 1, and its first component is then
F̄ . Its definition on other multiplets is defined in [26] following the pioneering work in [13].
In flat space T = D̄2.

We also use bispinor notation Vαα̇ for vectors Vµ using the rule

Vαα̇ = 1
4
iγµαα̇Vµ , Vµ = 2iVαα̇(γµ)αα̇ . (A.6)

In particular, this implies

∂αα̇ = 1
4
iγµαα̇∂µ = −1

2
i
(
DαD̄α̇ + D̄α̇Dα

)
, DαD̄α̇ + D̄α̇Dα = 2i∂αα̇ = −1

2
γµαα̇∂µ . (A.7)

A Fierzing leads e.g. to

1
4
γµαα̇χ̄PRγµχ = −(DαS)(D̄α̇S̄) . (A.8)
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For D and F -type actions we use the notation (for a real multiplet C whose last compo-
nent is D and a chiral multiplet

[C]D =
1

2

∫
d4x e [D + . . .] , [X]F =

∫
d4x e 2 ReF + . . . , (A.9)

where the extra terms are determined by conformal invariance, and contain the fields of the
Weyl multiplet {eaµ, ψµ, bµ, Aµ}. In rigid supersymmetry in flat space, they correspond to
the superspace expressions (identifying superfields by their first components)

[C]D =

∫
d4x d4θC =

∫
d4xD2D̄2C , [X]F =

∫
d4x d2θ X + h.c. =

∫
d4xD2X + h.c. .

(A.10)

B Weyl multiplet and constraints

A priori the superconformal algebra is gauged by adding a gauge field for every generator in
the algebra. Constraints on some curvatures are imposed

0 = Rµν(P
a) ,

0 = γµRµν(Q) ,

0 = eρbR
cov
µρ (Mab)− iR̃µ

a(T ) . (B.1)

where Rcov
µρ (Mab) is the covariantized curvature of Lorentz transformations. These deter-

mine the gauge fields of local Lorentz rotations (ωµ
ab), S-supersymmetry (φµ) and special

conformal symmetry (fµ
a)

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc∂νeσ
c + 2eµ

[aeb]νbν + 1
2
ψ̄µγ

[aψb] + 1
4
ψ̄aγµψ

b ,

φµ =− 1
2
γνR′µν(Q) + 1

12
γµγ

abR′ab(Q) ,

R′µν(Q) = 2D[µψν] = 2
(
∂[µ + 1

2
b[µ − 3

2
iA[µγ∗ + 1

4
ω[µ

abγab
)
ψν] ,

fµ
a =− 1

4
(R′cov)µ

a + 1
24
eµ
a(R′cov) + 1

4
iR̃µ

a(T ) ,

(R′cov)µν
ab = 2D[µων]

ab − ψ̄[µγ
abφν] + ψ̄[µγ

[aRν]
b](Q) + 1

2
ψ̄[µγν]R

ab(Q) ,

(R′cov) = eµa(R′cov)µ
a , (R′cov)µ

a = (R′cov)µν
abeνb , (B.2)

in terms of the independent fields {eµa, ψµ, bµ, Aµ}, which are the gauge fields of translations,
Q-supersymmetry, dilatations and T -symmetry, the U(1) R-symmetry in the superconformal
algebra. In (B.2) Dµ is the covariantization w.r.t. Lorentz transformations, dilatations, and
T -symmetry, while we use Dµ for the fully covariant derivative w.r.t. all superconformal
symmetries.

The field bµ can often be omitted since it is the only independent field that transforms
under special conformal transformations, which thus implies that it does not appear in the
actions.

29



The Bianchi identity for the curvature Rµν(P
a) is

ea[µRνρ](D) = Rcov
[µν(Mρ]

a) , Rµν(D) = Rcov
a[µ(Mν]

a) . (B.3)

Notice that by this relation the third constraint (B.1) gives the equality

Rµν(D) = −iR̃µν(T ) . (B.4)

The constraints (B.1) are not SUSY invariant and therefore modify the algebra. The SUSY
transformations of the dependent gauge fields are changed with respect to the transformation
that follows from the gauge algebra. The modified variations are

δM(ε)ωµ
ab = −1

2
ε̄γµR

ab(Q) ,

δM(ε)φµ = −1
2
iγν
(
γ∗Rνµ(T ) + R̃νµ(T )

)
ε ,

δM(ε)faµ = −1
8
ε̄γµDbRb

a(Q) . (B.5)

C Bosonic improved currents

In this section we review the main aspects of CCJ [1], and clarify the modifications due to
the presence of the U(1) symmetry. These modifications are automatically generated from
the superfield equations. One main ingredient is the chiral scalar curvature superfield R,
which vanish on shell for the conformal case. The bosonic part of this equation are the two
complex equations

F 0 ≈ 0, 1
6
R + AµA

µ + i∇µAµ ≈ 0 . (C.1)

C.1 Review of bosonic conformal currents

In general for a given Lagrangian L one has the energy momentum tensor Tµν by coupling
to gravity and varying with respect to gµν . In this way, Tµν is symmetric and conserved. For
example, a neutral scalar field with quartic self-interaction

LM = −1
2
∂µϕ∂

µϕ− λϕ4 , (C.2)

has a canonical energy-momentum tensor

Tµν = ∂µϕ∂νϕ+ gµνLM , (C.3)

which is symmetric and conserved, but not traceless. If the action has dilatational and
special conformal symmetry, an improved energy–momentum tensor that is also traceless
can be defined [1].12 This is the case for (C.2), where

Θc
µν = Tµν −

1

6
(∂µ∂ν − gµν2)ϕ2 , (C.4)

12A summary can be found on the webpage of [8], see
http://itf.fys.kuleuven.be/supergravity/index.php?id=15&type=ExtraCh15.html.
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has the property that Θc
µ
µ ≈ 0 on the equations of motions 2ϕ ≈ 4λϕ3 and has the same

charge as Tµν .
A conventional gravitation theory is described by an action

S =

∫
d4x
√
−g
[

1
2
κ−2R + LM

]
, (C.5)

κ−1 = mp, where LM is the matter Lagrangian, everything except gravity. If we vary with
respect to gµν , we will find

Rµν −
1

2
Rgµν = Gµν ≈ κ2Tµν . (C.6)

If we want the source of the gravity to be a traceless Θµν , and thus to have a conformal and
Weyl invariance, we have to replace κ−2 → κ−2 − 1

6
ϕ2 and consider

S =

∫
d4x
√
−g
[

1
2
(κ−2 − 1

6
ϕ2)R− 1

2
gµν∂µϕ∂νϕ− λϕ4

]
. (C.7)

The explicit κ-dependent term obviously is not conformal, but the other terms define a local
conformal invariant action. This leads to a field equation for the graviton:

κ−2Gµν ≈ Θc
µν , Θc

µν = Tµν − 1
6
(∇µ∂ν − gµν∇ρ∂ρ)ϕ

2 + 1
6
ϕ2Gµν . (C.8)

These formulations can be obtained from a conformal action, containing apart from the
physical field ϕ also a compensating scalar ϕ0. both have then Weyl weight 1, and one
considers the conformal-invariant action with negative kinetic term for the compensator:

S =

∫
d4√g

[
−1

2
ϕ02

Cϕ0 + 1
2
ϕ2Cϕ+ λϕ4

]
=

∫
d4√g

[
1
2
∂µϕ0∂

µϕ0 − 1
2
∂µϕ∂

µϕ+ 1
12

(ϕ2
0 − ϕ2)R + λϕ4

]
. (C.9)

The Einstein gauge means that we take a gauge choice for dilatation that fixes the constant
in front of R to be (2κ2)−1, i.e.

ϕ2
0

∣∣
�

= ϕ2 + 6κ−2 . (C.10)

We obtain the action13

S =

∫
d4√g

[
1

2
κ−2R− 1

2

∂µϕ∂
µϕ

1 + 1
6
κ2ϕ2

+ λϕ4

]
(C.11)

13A parametrization that is similar to the main part of the paper is using the variable s with ϕ = ϕ0s. In
this parametrization the Lagrangian is

1

2
κ−2R− 1

2
6κ−2 ∂µs∂

µs

(1− s2)2
+ λ(6κ−2)2

s4

(1− s2)2
.
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The Einstein equation is of the form (C.6), but Tµν is not traceless, and the action (C.11)
does not seem to have a conformal part. The generalization to many real fields is the coset
SO(1, n)/ SO(n), Which is a subcoset of SU(1, n)/ SU(n), appearing in the related Kähler
couplings to be discussed below.

Conformal gauge means that we put

ϕ2
0

∣∣
�

= 6κ−2 . (C.12)

Then the action is of the conformal form (C.7) with traceless energy-momentum tensor as
in (C.8).

For general scalar couplings, the action has special conformal symmetry if the transfor-
mation under dilatations is of the form of a closed homothetic Killing vector [49]

δεi = kiD(ϕ) , ∇jk
i
D = w δij , (C.13)

where w is called the Weyl weight, and the covariant derivative uses the connection related to
the metric defined by the kinetic terms of the scalars. The Lagrangian should have weight 4
counting spacetime derivatives as weight 1. Therefore for a sigma model, the weight of the
scalars should be 1. Usually we consider scalars that transform as δεi = ϕi, and the condition
for special conformal symmetry reduces to

Γijkϕ
k = 0 . (C.14)

C.2 Conformal Kähler couplings: Conformal gauge

The condition (C.14) is satisfied for Kähler models with scalars Si and S ı̄ if the Kähler
metric gī satisfies

gī,kS
k = 0 , (C.15)

which is the requirement that the Kähler potential is homogeneous of degree 1 in S (and the
same in S̄), up to a Kähler transformation.

Such conformal Kähler models have automatically also a U(1) Killing vector14

δSi = iSiλT , δS̄ ı̄ = −iS̄ ı̄λT . (C.16)

We consider from [40]

L = κ−2
√
−g
[
−1

6
ΦR + 3AµA

µ − ΦīDµS
iDµS̄ ̄

]
, DµS

i = (∂µ − iAµ)Si , (C.17)

where Aµ is the gauge field of the symmetry (C.16), and we take a Kähler potential Φ(S, S̄)
that satisfies the above requirements:

3∆K ≡ SiΦi − Φ− 3 = 0 . (C.18)

14Mathematically defined by the complex structure as kiT = J ijk
j
D.
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The field equation for the metric is

− 1
6
ΦGµν + 1

6

(
∇(µ∂ν − gµν2

)
Φ+3AµAν− 3

2
gµνAρA

ρ−Φī

(
D(µS

iDν)S̄
̄ − 1

2
DρS

iDρS̄i
)
≈ 0 .

(C.19)
Splitting Φ in Φ = −3 + 3ΦM, where ΦM is homogeneous of degree 1 in S and S̄, we can
write this as

Gµν + 6AµAν − 3gµνA
ρAρ ≈ Θc

µν =ΦMī

(
2D(µS

iDν)S̄
̄ − gµνDλSiDλS̄

̄
)

− (∇µ∂ν − gµν2) ΦM +GµνΦM (C.20)

This improved stress tensor satisfies
Θc λ
λ ≈ 0 . (C.21)

Note that the trace of the left-hand side is proportional R + 6AµA
µ. It is vanishing corre-

sponds thus to the real part of the second equation in (C.1). The Aµ field equation

− 2ΦAµ + i
(
Φı̄∂

µS̄ ı̄ − Φi∂
µSi
)
≈ 0 , (C.22)

can be written as

8Aµ ≈ Jµ , Jµ =4i
(
ΦM iD

µSi − ΦM ı̄D
µS̄ ı̄
)

=4i
(
ΦM i∂

µSi − ΦM ı̄∂
µS̄ ı̄
)

+ 8AµΦM . (C.23)

This leads to
∇µAµ ≈ ∇µJµ ≈ 0 , (C.24)

which corresponds to the imaginary part of (C.1).
Thus we see that the improved energy-momentum tensor and improved U(1) currents

get a modification w.r.t. the quantities in CCJ, related to the R-symmetry. The form of the
improved quantities (C.20) and (C.23) is very similar to (C.8), where the matter current has
each time a part proportional to the gravity current.

C.3 Conformal Kähler couplings: Einstein gauge

The bosonic part of the matter-sugra coupled action (without superpotential and F I = 0)
was given in (7.17). Using the S-variables with the split X i = X0Si, this is

S =

∫
d4x 3

√
−g
[

1
6
RX0X̄ 0̄(1− ΦM)−X0X̄ 0̄ΦM īD

µSiDµS̄
̄

+(1− ΦM)DµX0DµX̄
0̄ −

(
X0ΦMiDµS

iDµX̄ 0̄ + h.c.
)]
. (C.25)

The elimination of Aµ gives (already assumed that X0 will be real)

Aµ =
i

2(1− ΦM)

(
ΦMi∂µS

i − ΦMı̄∂µS
ı̄
)
. (C.26)
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Thus the action after this step becomes

S =

∫
d4x 3

√
−g
[

1
6
RX0X̄ 0̄(1− ΦM)−X0X̄ 0̄ΦM ī∂µS

i∂µS̄ ̄

+(1− ΦM)∂µX
0∂µX̄0 −

(
X0ΦMi∂µS

i∂µX̄0 + h.c.
)

+
1

4(1− ΦM)
X0X̄ 0̄

(
ΦMi∂µS

i − ΦMı̄∂µS̄
ı̄
)2
]
. (C.27)

In Einstein gauge, we put (and X0 = X̄0)

X0X̄ 0̄(1− ΦM) = κ−2 → ∂µX
0 =

κ−1

2(1− ΦM)3/2

(
ΦMi∂µS

i + ΦMı̄∂µS̄
ı̄
)
, (C.28)

and this brings the action in the form

S =

∫
d4x 3

√
−g
[

1
6
Rκ−2 − κ−2

1− ΦM

ΦM ī∂µS
i∂µS̄ ̄

− κ−2

4(1− ΦM)2

(
ΦMi∂µS

i + ΦMı̄∂µS
ı̄
)2

+
κ−2

4(1− ΦM)2

(
ΦMi∂µS

i − ΦMı̄∂µS
ı̄
)2
]

(C.29)

This gives the well-known Kähler couplings since

S =

∫
d4x
√
−gκ−2

[
1
2
R− 3

(
ΦM ī

1− ΦM

+
ΦMiΦM̄

(1− ΦM)2

)
∂µS

i∂µS̄ ̄
]

=

∫
d4x
√
−gκ−2

[
1
2
R− ∂i∂̄ (−3 log(1− ΦM)) ∂µS

i∂µS̄ ̄
]
. (C.30)

which gives

S =

∫
d4x
√
−gκ−2

[
1
2
R−Kī∂µSi∂µS̄ ̄

]
, K = −3 log(1− ΦM)) , Kī = ∂i∂̄K. (C.31)

The matter part is clearly not conformal.
If we include the potential contributions in (7.17) and eliminate auxiliary fields F i we

get (see Wi(X) = (X0)2Wi(S))

S =

∫
d4x
√
−gκ−2

[
1
2
R−Kī∂µSi∂µS̄ ̄ −

κ−2

3(1− ΦM)2
Wi(S)(ΦMī)

−1W̄(S̄)

]
, (C.32)

and we will create also quartic terms in the Lagrangian. This is the conformal invariant Wess-
Zumino model coupled to supergravity [50], which in the rigid limit is the supersymmetric
ϕ4 theory. Note that in the conformal gauge we did not eliminate Aµ and got to a Kähler
model, while in the Einstein gauge we have to eliminate Aµ to obtain Kähler kinetic terms.

Since K = −3 log(1− ΦM) then ΦM = 1− e−K/3 and the first condition on ΦM in (2.10)
becomes

KiSi = Kı̄S ı̄ = 3(eK/3 − 1) . (C.33)

This gives the condition on the function K to be conformal invariant.
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D Components of superfields from field equations

We first derive a general result on transformations of field equations in a symbolic form
(DeWitt notation). The invariance of the action is the statement

δS = (δφi)Si = 0 , Si =

→
δS
δφi

, (D.1)

where φi are all the independent fields. For the case that we treat in the bulk of the paper,
these are15 {

φi
}

=
{
eµa, ψµ, bµ, Aµ, X

I , ΩI , F I , X̄ Ī , ΩĪ , F̄ Ī
}
. (D.2)

This implies for the transformation of the field equation

δSi = δφjSji =

→
δ

δφi
(
δφjSj

)
−

→
δ

δφi
(
δφj
)
Sj = −

→
δ

δφi
(
δφj
)
Sj . (D.3)

This gives an easier way of deriving the transformation of a field equation in terms of other
field equations determined only from the transformation rules without the need of the explicit
action.

A second ingredient is covariance. Field equations in general are not yet covariant, but
can be ‘covariantized’. That means that there is for every field φi a covariant expression
Θ(φ)i [31] such that the following two sets of equations are equivalent

Si ≈ 0 and Θ(φ)i ≈ 0 . (D.4)

As a first step in the construction, one has should consider a coordinate scalar. We
indicate this as Ti. E.g. for a vector Aµ one defines

T (A)a = e−1eµaS(A)µ , S(A)µ =
δS
δAµ

. (D.5)

This is in general not yet covariant, but it is proven in [31] that there exists a covariant
expression of the form16

Θi = Ti −BA
µHAi

µjTj +O(BµBν) , (D.6)

where the sum over A concerns all standard gauge transformations, BA
µ are the associated

gauge fields. The contribution H comes from fields that transform into spacetime derivatives
of other fields

εAHAi
µj =

→
∂δ(ε)φj

∂(∂µφi)
. (D.7)

15We have chosen the inverse frame field as basic field such that it is field equation gives directly the
Einstein tensor.

16The proof assumes that transformation laws of fields δφi contain at most first order spacetime derivatives.
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For this paper, only Q-supersymmetry transformations of fields in (D.2) depend on deriva-
tives of fields, and thus the A refers only to the spinor index α of supersymmetry with
BA
µ → ψαµ (see the remark on the use of the spinor index at the end of this section).

For fermions we use the notation where upper spinor indices α (we make here no difference
between chiral and antichiral) refer to the components of the (Majorana) conjugate spinor
as explained in [8, Sec. 3.2.2]. This implies that for a spinor χ

Θα = e−1

→
δS
∂χα

+ . . . (D.8)

refers to the derivative w.r.t. χ̄ and this is thus a spinor quantity. On the other hand

←
δS
δχα

=

←
δS
δχβ
Cβα = −

→
δS
δχβ
Cβα = CαβΘβ , (D.9)

is Θ, the Majorana conjugate spinor of Θ.
The statement that Θi is covariant means that its transformation contains no spacetime

derivatives of the transformation parameter ε and gauge fields appear only hidden in co-
variant derivatives or covariant curvatures. There are thus in general in (D.6) correction
terms with higher orders of the gauge field (and still proportional to other field equations).
However, our goal is to calculate δΘi, and the transformation of these extra terms will leave
always at least one explicit gauge field. The transformation of the higher order terms leads
always to terms with at least one explicit gauge field, and thus they will not be relevant to
calculate δΘi. The first correction term in (D.6) is relevant if the gauge field BA

µ transforms
in a non-gauge field.17 In our case this is only the case when we calculate the transformation
under S-supersymmetry, since

δ(η)ψµ = −γµη . (D.10)

For Q supersymmetry in the N = 1 superconformal theory, there are no such terms (there
would be for N > 1) and the transformation of Θi can be obtained from (D.3):

δ(ε)Θi = −

→∂δ(ε)φj
∂φi


cov

Θj , (D.11)

where ‘cov’ refers to a covariantization of all spacetime derivatives and omission of terms
with undifferentiated gauge fields.

The correction term in (D.6) is also important when we consider a covariant derivative
on Θi. We then should write

DaΘi =
(
DaTi − 1

2
RA
aµHAi

µjΘj

)
cov

, (D.12)

where the derivative to ∂µφ
i does not act on the RA

µν . A relevant case that we need below
is the calculation of DaΘ(e)ba, i.e. where the field φi above is eνa, see (6.2). The correction

17Non-gauge field refers here to the ‘standard gauge transformations’, which does not include the frame
field eaµ. See [8, Sec. 11.3] for more details.
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terms thus originate from transformations of fields that are proportional to ∂µe
νa. These

appear only inside the spin connection ωµ
ab. In fact, taking into account that we need the

derivative w.r.t. the inverse frame field, we have

∂ωρ
cd(e)

∂∂µeνa
= −δµρ δ[c

a e
d]
ν + eρae

µ[ced]
ν + gνρe

µ[cδd]
a . (D.13)

Covariant derivatives with spin connection appear in the Q-transformations of ψµ and FI .
Thus (D.12) leads to

DaΘ(e)ba = DaT (e)ba − 1
2
R̄a

µ(Q)eνb

(
∂δ̄ψ̄ρ
∂∂µeνa

Θ(ψ)ρ +
∂δ̄F I

∂∂µeνa
Θ(F )I

)
, (D.14)

where δ̄ refers to a supersymmetry transformation dropping ε̄. Using

δ̄ψ̄ρ = −1
4
ωρ

cd γcd + . . . , δ̄F I =
1

4
√

2
ωρ

cd γργcd + . . . , (D.15)

and (D.13) we obtain

DaΘ(e)ba = DaT (e)ba +1
8
R̄aµ(Q)

(
−δµργab + eaργ

µ
b + ebργ

µa
)

Θ(ψ)ρ

− 1

8
√

2
R̄aµ(Q) (−γµγab + γaγµb + γbγ

µa) ΩIΘ(F )I (D.16)

Due to the constraints (B.1) the last line vanishes, and the first line simplifies to

DaΘ(e)ba = DaT (e)ba + 1
4
R̄ba(Q)Θ(ψ)a . (D.17)

With the above methods we easily prove that independent of the choice of invariant
action

{Θ(F )I , −Θ(Ω)I , Θ(X)I} (D.18)

forms a chiral multiplet of Weyl weight 2. On the other hand, the fields of the Weyl multiplet
appear in the transformation laws of the chiral multiplet, such that the multiplet that starts
from Θ(A) involves also the other fields, leading to the result in (6.3). To obtain this result,
one also needs to use the explicit expressions of the Ward identities (D.1) for the local
symmetries, which are the vanishing of 18

Cov. gct: W (P )a ≡ DbΘ(e)ab + Θ(A)bRab(T ) + 3
4
Θ̄(ψ)bRab(Q)

+
[
Θ(X)IDaXI + Θ̄(Ω)IDaΩI + Θ(F )IDaFI + h.c.

]
,

Lorentz: W (M)ba ≡ Θ(e)[ba] + 1
4

[
Ω̄IγbaΘ(Ω)I + h.c.

]
,

Dilatations: W (D) ≡ Θ(e)a
a +

[
XIΘ(X)I + 3

2
ΩIΘ(Ω)I + 2Θ(F )IFI + h.c.

]
,

Spec.conf.: W (K)a ≡ Θ(b)a ,

18W (K)a = 0 is the statement mentioned after (B.2) that bµ does not appear in the action. This is already
assumed in the other equations.

37



T -symmetry: W (T ) ≡−DaΘ(A)a + i
[
XIΘ(X)I − 1

2
Ω
I
Θ(Ω)I − 2F IΘ(F )I − h.c.

]
,

Q-susy: W (Q) ≡ DaΘ(ψ)a

− 1√
2

[
ΩIΘ(X)I +

(
− /DXI + F I

)
Θ(Ω)I + /DΩIΘ(F )I + h.c.

]
,

S-susy: W (S) ≡ γaΘ(ψ)a +
√

2
[
XIΘ(Ω)I + h.c.

]
. (D.19)

These are all straightforwardly obtained from (D.1) by replacing Si with Θi and covari-
antizing (dropping explicit gauge fields) apart from the one for covariant general coordinate
transformations, since this one involves (D.17). 19 Using the transformations under covariant
general coordinate transformations, which are for the different types of fields

δcgcte
µ
a =− eµbDaξ

b ,

δcgctψµ =ξa(Raµ(Q) + γaφµ) , δcgctAµ = ξaRaµ(T ) ,

δcgctX
I =ξaDaXI , δcgctΩ

I = ξaDaΩI , δcgctF
I = ξaDaF I . (D.20)

Therefore

W (P )a =DbT (e)ab + Θ(A)bRab(T ) + Θ̄(ψ)bRab(Q)

+
[
Θ(X)IDaXI + Θ̄(Ω)IDaΩI + Θ(F )IDaFI + h.c.

]
, (D.21)

which due to (D.17) leads to the expression of W (P ) in (D.19).

E The Poincaré multiplet

In (6.10) we presented the Einstein tensor multiplet Ea in conformal gauge with the compo-
nents defined by the conformal transformations (6.1). The components in [27,28] have been
defined differently, using the Poincaré transformations defined from the conformal transfor-
mations by (6.6). A first step to compare the transformations, is to consider the components
of the multiplet with Weyl weight 0:

C0
a ≡ Ca(X0X̄ 0̄)−w/2 . (E.1)

In the case of interest, w = 3. This is a known procedure, known for multiplets without
external indices by [32,33]. The multiplet (X0X̄ 0̄)−3/2 is in the conformal gauge20

C = 1 , ζ = 0 , H = 3ū ,

Ba = −3Aa, λ = 0 , D = 9
2
(uū− AaAa) . (E.2)

This leads to

C0
a = Ca , Z0

a = Za , H0
a = Ha + 3ūCa , B0

ba = Bba − 3AbCa ,
19One could expect the same for the Q-susy Ward identity, but these extra terms vanish by (B.1).
20In this appendix, to compare with [27,28], we put κ = 1.
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PRΛ0
a = PRΛa + 3

2
PR(ū+ i /A)Za ,

D0
a = Da + 9

2
(uū− AbAb)Ca + 3

2
(uHa + ūHa) + 3AbBba + 3

2
iφ̂bγ

bγ∗Za . (E.3)

These still transform according to (6.1), now with w = 0. However, more S-supersymmetry
terms were absorbed in [27, 28] in redefinitions of the components. The first case is in the
transformation of PLZ0

a . According to (6.1) with (6.6) this is for Poincaré supersymmetry

δPLZ0
a =1

2
PL
(
iH0

a − γbB0
ba − i /DC0

a

)
ε+ 1

2
iPLγabCb0

(
i /A− ū

)
ε ,

=1
2
PL
(
iH0

a − γb
(
B0
ba + 6ηabA

cAc − 6AbAa
)
− i /DC0

a

)
ε− 1

2
iPLγabCb0ūε

1
2
PL
(
iH0

a − γb
(
BP
ba

)
− i /DC0

a

)
ε− 1

2
iPLγabCb0ūε (E.4)

where in the second line we used C0
a = 6Aa, and we define then

BP
ba = B0

ba + 6ηabA
cAc − 6AbAa = Bba + 6ηabA

cAc − 24AbAa , (E.5)

of which the bosonic symmetric part is the expression (6.14).
Similarly, Λa is defined in the transformation of H0

a. The conformal covariant derivative
of Za, which appears there in (6.1) contains the S-covariantization

DµPLZ0
a = . . .− iγabCb0φµ . (E.6)

Furthermore, the Aµ-dependent terms in δH0
a = . . . + iη̄PLγabZb0 with iη̄PL = 1

2
ε̄PR /A + . . .

are also absorbed in the definition of the Λ in [27, 28]. Therefore we have from these two
sources

PRΛP
a = PRΛ0

a − PRiγµγabCb0φµ + 1
2
iPR /AγabZb0 . (E.7)

The Da component appears in the transformation of PRΛa with an uncontracted right chiral
susy parameter, see (6.1). In [27, 28] all similar terms are absorbed in the definition of Da.
These come from the S,K-supersymmetry terms and the transformation of the redefinition
terms PR(ΛP

a − Λ0
a). All together they give

DP
a = D0

a + 2εabcd(DbAc)Cd + 2B[b
bAa] +

3

2
CaAbAb + iZ̄bγ∗γ[aφ̂b] −

1

4
iZ̄bγ∗γabcφ̂c . (E.8)

In summary, the redefinitions that bring components of multiplets following the superconfor-
mal transformation laws into the ones following the Poincaré transformation laws of [27,28]
are (using Ca = 6Aa, Za = −6φ̂a and the value of the antisymmetric part of Bab)

∆Ha = 18ūAa ,

∆Bba = −24AaAb + 6ηbaAcA
c ,

∆PRΛa = 3
2
PR(ū+ i /A)Za +

1

2
iPRγcγabZbAc + iPRγ

bγacZbAc ,

∆Da = 3
2
(uHa + ūHa) + 27Aauū+ 18AaA

bAb + 18εabcd(D̂bAc)Ad + BP
b
bAa + 2BP

baA
b

− 1
4
iZ̄bγbγ∗Za + 1

6
iZ̄bγ∗γ[bZa] + 1

24
iZ̄bγ∗γabcZc , (E.9)
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where e.g. ∆Ha = HP
a − Ha, with HP

a = H0
a and the other P-components are defined in

(E.5), (E.7), (E.8). Therefore, the result (6.10) is in terms of the fields in [27,28]:

CP
a = 6Aa ,

ZP
a =− 6φ̂a ,

HP
a =− 6i(D̂a + 3iAa)ū ,

BP
ba = 3Ĝab − ηabĜc

c − 6AaAb + 3ηabAcA
c + 3ηabuū− 3εbacdD̂cAd ,

PRΛP
a = 2PRγ

b
(
D̂[a + 3

2
iA[a

)
Zb] + 3

2
PR(ū+ i /A)Za + 1

2
iPR /AγabZb ,

DP
a =− 12D̂[bD̂bAa] + BP

b
bAa + 2BP

baA
b − 9uūAa

− 1

6
iZ̄bγ∗γ[bZa] +

1

24
iZ̄bγ∗γabcZc + i

¯̂
Rab(Q)γ∗Zb . (E.10)

The components in (E.10) agree with the results of [27,28].
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