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The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified 
during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and 
tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor 
to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be 
smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.
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By cross-correlating the temperature and the polarization 
anisotropies of the Cosmic Microwave Background, the WMAP 
experiment [1,2] discovered that the initial conditions of the 
Einstein–Boltzmann hierarchy are predominantly adiabatic and 
Gaussian. While this conclusion is compatible with an inflation-
ary origin of the large-scale curvature inhomogeneities, the tensor 
fluctuations should also produce a B-mode polarization which has 
not been observed by the Planck experiment [3]. The contribution 
of the tensor modes to the large-scale inhomogeneities is custom-
arily parametrized in terms of the tensor to scalar ratio defined 
as rT = AT /AR where AR = PR(kp) and AT = PT (kp) denote 
the amplitudes of the scalar and tensor power spectra at the con-
ventional pivot wavenumber kp = 0.002 Mpc−1. According to the 
current data rT < 0.11 [3]. Moreover, in the case of conventional 
inflationary models, the tensor spectral index nT and the slow roll 
parameter1 ε = −Ḣ/H2 are both related by the so-called consis-
tency relations stipulating that rT = 16ε = −8nT .

The gist of the present argument can be summarized as fol-
lows. Magnetogenesis scenarios2 based on the evolution of a single 
scalar field coupled to the kinetic term of the gauge fields [4–7]
affect the tensor and the scalar modes of the geometry [8] and 
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1 In the present discussion H is the Hubble rate and the overdot denotes the 

cosmic time derivative.
2 One of the motivations of the magnetogenesis scenarios is to generate mag-

netic fields at the level of a few hundredths of a nG and over typical length scales 
between few Mpc and 100 Mpc. More details on these issues can be found in 
Refs. [4–7]. Models described by the action (1) may also appear, with further ad-
ditions, in some baryogenesis scenarios and in the analysis of non-Gaussian effects 
during inflation.
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hence modify the value of rT which can be reliably computed in 
rather general terms by considering the following scalar–vector–
tensor action:

S =
∫

d4x
√−g

[
− M2

P R

2
+ 1

2
gαβ∂αϕ∂βϕ

− V (ϕ) − λ(ϕ)

16π
Y αβ Yαβ

]
, (1)

where ϕ is the scalar field driving the background geometry, V (ϕ)

is the associated potential and λ(ϕ) parametrizes the coupling of 
the gauge kinetic term to ϕ . In the case of conventional inflation-
ary scenarios ϕ coincides with the inflaton, however the evolution 
equations of the scalar and tensor modes can be derived without 
any reference to the inflationary dynamics. Note that in Eq. (1)
8πG = 1/M2

P while R and g are, respectively, the Ricci scalar and 
the determinant of the four-dimensional metric gμν . We shall be 
working in a conformally flat background metric of Friedmann–
Robertson–Walker type denoted by gμν = a2(τ )ημν where ημν is 
the Minkowski metric with signature (+, −, −, −). In this case, 
the components of the Abelian field strength are Y i0 = ei/a2 and 
Y ij = −ε i jkbk/a2 while the comoving electric and magnetic fields 
will be denoted, respectively, by �E = √

λa2 �e and �B = √
λa2 �b; their 

evolution is given by:

�E ′ +F �E = �∇ × �B, �B ′ −F �B = −�∇ × �E, (2)

where the prime indicates a derivation with respect to the con-
formal time coordinate and F = (

√
λ

′
/
√

λ) controls the rate of 
variation of the electric and magnetic fields. Equations (2) are in-
variant under the duality transformations [9] �E → −�B , �B → �E and 
F → −F . This observation will be relevant especially in connec-
tion with the evolution of the Poynting vector.
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The tensor fluctuation of the geometry is δt gi j = −a2hij where 
hij is transverse and traceless (i.e. ∂ihi j = hi

i = 0). In the presence 
of large-scale gauge fields the evolution of hij is affected by the 
anisotropic stress of the gauge fields:

h′′
i j + 2Hh′

i j − ∇2hij = − 2a2

M2
P

(



(t, E)
i j + 


(t, B)
i j

)
, (3)

where, as usual, H = a′/a = aH while the 
(t, E)
i j and 
(t, B)

i j de-

note, respectively, the transverse and traceless parts of3



(E)
i j = 1

4πa4

[
Ei E j − E2

3
δi j

]
, 


(B)
i j = 1

4πa4

[
Bi B j − B2

3
δi j

]
.

(4)

Equations (3)–(4) are explicitly invariant under infinitesimal diffeo-
morphisms and under Abelian gauge transformations.

The momentum constraint (following from the (0i) components 
of the perturbed Einstein equations) couples together the scalar 
fluctuations of the metric, the inhomogeneities of ϕ and the Poynt-
ing vector. Consequently to reach a decoupled expression analog to 
Eqs. (3) and (4) it is useful to introduce an auxiliary variable �R
defined as [8]

�R = �R − Ha2

ϕ′ 2
P , P = �∇ · (�E × �B)

4πa4
, (5)

where �R is the Laplacian of the curvature perturbations on co-
moving orthogonal hypersurfaces (i.e. �R = ∇2R) and P is the 
three-divergence of the Poynting vector. The equation obeyed by 
�R is given by4:

�′′
R + 2

z′

z
�′

R − ∇2�R = S, z = aϕ′

H
. (6)

The source term S does not only depend on P but also on the 
fluctuations of the electric and of the magnetic energy density 
denoted, respectively, by δρE = E2/(8πa4) and δρB = B2/(8πa4); 
more specifically S can be written as

S = a2

2M2
P

[
P ′ −

(
2
H′

H
+ 2

a2

ϕ′ V , ϕ

)
P + ∇2(δρB + δρE)

]

+ 2a2HF
ϕ′ 2

∇2(δρB − δρE), (7)

where V , ϕ ≡ ∂V /∂ϕ . Equations (6)–(7) are explicitly invariant 
under infinitesimal diffeomorphisms and under Abelian gauge 
transformations, exactly as Eqs. (3)–(4). The actual values of �R
(or �R) are the same in any coordinate systems but their explicit 
expressions do change from one coordinate system to the other. 

3 The explicit form of 
(t, E)
i j and 
(t, B)

i j can be obtained by projecting the cor-
responding anisotropic stresses on the two tensor polarizations defined, respec-
tively, as e⊕

i j (q̂) = (m̂im̂ j − n̂i n̂ j) and e⊗
i j (q̂) = (m̂in̂ j + n̂im̂ j) where m̂, n̂ and q̂

are a triplet of mutually orthogonal unit vectors. For instance in the magnetic 
case 
(t, B)

i j = (

(B)
⊕ e⊕

i j + 

(B)
⊗ e⊗

i j )/2 where 
(B)
⊕ = [(�B · m̂)2 − (�B · n̂)2]/(4π a4), and 



(B)
⊗ = (�B · m̂)(�B · n̂)/(2π a4).

4 The fate of magnetized scalar modes during diverse dynamical regimes can be 
followed through a gauge-invariant variable (conventionally denoted by ζ ) describ-
ing the density contrast on uniform curvature hypersurfaces. This strategy has been 
adopted in the first four papers of Ref. [8] where the (first-order) evolution of ζ
has been discussed in different contexts. Over large distance scales the evolution of 
the magnetized scalar mode is the same in terms of ζ or in terms of R. However, 
if we want to describe the evolution in terms of a decoupled second-order differ-
ential equation where the gauge contribution is contained in s single source term, 
then the equation in terms of R (or �R) is much simpler than the analog equa-
tion written in terms of ζ . Equation (6) can be obtained from the results of the fifth 
and sixth papers of Ref. [8].
In the uniform curvature gauge [10] �R coincides with the evo-
lution of the scalar field fluctuation. Even if this is probably the 
most convenient gauge for a swift derivation of Eqs. (6) and (7), 
the same result can be obtained in any gauge and, in particular, 
in the longitudinal and synchronous gauges. For a closely related 
derivation see, in particular, the last two papers of Ref. [8].

Equation (5) stipulates that whenever the Poynting vector is ei-
ther absent or negligible the expression of �R coincides with the 
Laplacian of the curvature perturbations on comoving orthogonal 
hypersurfaces either exactly or approximately. This observation can 
be used to simplify the form of the source term S appearing in 
Eq. (7). Indeed, the conservation of the total energy–momentum 
tensor of the gauge fields implies that the three-divergence of the 
Poynting vector evolves according to

P ′ + 4HP = ∇2[
B + 
E − (δpB + δpE)], (8)

where δpB = δρB/3 and δpE = δρE/3; furthermore the following 
standard notations

∇2
B(�x, τ ) = ∂i∂ j

i j
(B)(�x, τ ), ∇2
E(�x, τ ) = ∂i∂ j


i j
(E)(�x, τ )

(9)

have been introduced. As already suggested, the duality symmetry 
of Eq. (2) implies that the three-divergence of the Poynting vector 
can only be suppressed in an expanding Universe: when the mag-
netic components are amplified the electric fields are suppressed 
at the same rate; vice versa when the electric fields are amplified 
the magnetic contribution is suppressed at the same rate. This is 
why, according to Eq. (8), P (which is the three-divergence of the 
vector product of �E and �B) can only decrease as a consequence of 
the expansion of the Universe.

Therefore, over sufficiently large-scales (where the Laplacians at 
the right-hand side of Eq. (8) can be neglected), the evolution of 
P obeys P ′ + 4HP = 0 implying a sharp exponential suppression 
of P all along the conventional inflationary evolution. Thanks to 
this occurrence, up to corrections O(P ), the evolution equations 
obeyed by δρE and δρB can be effectively decoupled:

δρ ′
B + 4HδρB = 2FδρB +O(P ),

δρ ′
E + 4HδρE = −2FδρE +O(P ). (10)

Note that the terms of order P (i.e. O(P )) in Eq. (10) contain �B , �E
and a spatial gradient; they are of the form �B · �∇ × �E/(4πa4) and 
�E · �∇ × �B/(4πa4). Over large distance scales these terms are small 
in Eq. (10) so that one can tailor an iterative procedure where, to 
lowest order, the evolution of the perturbed energy densities are 
determined up to correction O(P ).

Inserting now Eqs. (9) and (10) into Eq. (7), a simpler expres-
sion of the source function S can be obtained:

S = a2

3M2
P

[
∇2(δρB + δρE) + ∇2(
B + 
E) + 2

(
z

a

)′(a

z

)
P

]

+ 2a2HF
ϕ′ 2

∇2(δρB − δρE). (11)

While the results of Eq. (11) only assume that the background is 
expanding, the expression of S can be further simplified by taking 
into account of the slow-roll dynamics.

Equations (3) and (6) can be solved in the long wavelength 
limit. The large-scale tensor and scalar power spectra will then be 
determined and from their quotient we shall deduce the wanted 
expression of the tensor to scalar ratio rT . The solution of Eq. (3)
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for typical length scales larger than the Hubble radius at the cor-
responding epoch is given by the sum of the adiabatic5 and of the 
gauge contributions, i.e.

hij(�x, τ ) = h(ad)
i j + h(B)

i j + h(E)
i j , (12)

where h(ad)
i j denotes the conventional large-scale solution of the 

corresponding homogeneous equation while the terms induced by 
the magnetic and electric components have the same form and can 
be written, in a unified notation, as6:

h(X)
i j (�x, τ ) = − 2

M2
P

τ∫
τex

dτ ′′

a2(τ ′′)

τ ′′∫
τex

a4(τ ′)

(t, X)
i j (�x, τ ′)dτ ′. (13)

In Eq. (13) the superscript is given by X = E, B and corresponds 
either to the magnetic or to the electric anisotropic stress. Further-
more τex denotes the exit time of a given length-scale from the 
Hubble radius: even if τex has a precise meaning only in Fourier 
space, it can also be employed in real space with the aim of sep-
arating the large-scale from the small-scale solutions. Because of 
the duality symmetry of Eq. (2) and thanks to the suppression of 
the Poynting vector (see Eq. (10)) only one of the two gauge con-
tributions appearing in Eq. (12) will be dominant for a given set 
of initial conditions: if the magnetic contribution increases then 
the electric contribution will decrease and vice versa. Assuming, 
for the sake of concreteness, that the magnetic contribution in-
creases, the electric contribution is suppressed at the same rate of 
the magnetic one and the dominant gauge contribution entering 
Eq. (12) is

h(B)
i j (�x,a) = − 2

gB(gB + 3)



(t, B)
i j (�x,a)

H2
exM2

P

,



(t, B)
i j (�x,a) = 


(t, B)
i j (�x,aex)

(
a

aex

)gB

, (14)

where the conformal time coordinate can be traded for the scale 
factor in the various integrals while gB and f are defined as:

gB = [2 f (1 + ε) − 4 − 3ε],
∫

F
da

Ha
= f

∫
da

a
. (15)

In Eq. (15) ε denotes, as usual, the slow-roll parameter while f
measures, in practice, the average growth rate F in units of H. In 
the limit ε → 0 we have that gB = 2 f − 4 implying that Eq. (14)
is singular whenever f = 2. In this case the growth rate equals ex-
actly the suppression of the energy density due to the expansion 
of the Universe. This divergence, however, only occurs in the case 
of the pure de Sitter dynamics (i.e. ε → 0) where, strictly speak-
ing, the scalar modes are absent. Moreover, if the calculation is 
performed, from very the beginning, for f = 2 and ε = 0 the po-
tential divergence is replaced by a logarithmic enhancement of the 
type ln (a/aex). In spite of this possibility, since the pure de Sitter 
dynamics is unrealistic the slow-roll corrections must be correctly 
taken into account when repeatedly integrating over the conformal 
time coordinate. Thus, when the slow-roll corrections are included, 
in the limit f → 2 the purported divergence disappears but h(B)

i j is 
enhanced by a factor going as 1/gB → 1/ε . Note that, in Eq. (15), 
the growth rate has been given to lowest order in epsilon and 

5 Even if the adiabaticity condition refers not to the tensor modes (but rather to 
the scalar ones), we shall just use this terminology to distinguish the conventional 
large-scale solution from the one induced by the gauge fields.

6 This form of the equation can be derived by direct integration of Eq. (3) when 
the spatial gradients are negligible.
higher order terms have been neglected. We shall be considering, 
strictly speaking, the case of constant slow-roll parameters.

Moving now to the solution of the scalar modes, we can no-
tice that all the terms inside the square bracket of Eq. (11) are 
subleading in comparison with the second term which is instead 
proportional to 1/ε and hence dominant in the slow-roll regime. 
This statement can be easily demonstrated by appreciating that the 
contribution multiplying P is given by:

2

(
z

a

)′(a

z

)
P = 2(aH)[1 − η − ε] P , η = ϕ̈

Hϕ̇
. (16)

Since η and ε are both negligible during the slow-roll regime, the 
contribution of Eq. (16) is simply of order P and hence negligi-
ble in comparison with the others Laplacians appearing inside the 
square bracket of Eq. (11). Rewriting the last term at the right hand 
side of Eq. (11) in terms of ε the following inequality can be easily 
verified:

a2

3M2
P

[
∇2(δρB + δρE) + ∇2(
B + 
E)

]

� a2

ε M2
P

(
F
H

)
∇2(δρB − δρE). (17)

Since the definition of �R given in Eq. (5) contains exponen-
tially suppressed corrections which are O(P ), the Laplacians can 
be dropped on both sides of Eq. (6) so that the evolution equation 
of R takes following simple form:

R′′ + 2
z′

z
R′ − ∇2R = a2

ε M2
P

(
F
H

)
∇2(δρB − δρE). (18)

Equation (18) can then be solved with the same methods leading 
to Eqs. (12), (13) and (14). The result of this step is given by

R(�x,a) = R(ad)(�x) + f δρB(�x,a)

ε gB(gB + 3) H2
exM2

P

,

δρB(�x,a) = δρB(�x,aex)

(
a

aex

)gB

, (19)

where, with the same notation of Eq. (12), R(ad) denotes the gen-
uine adiabatic contribution. In Eq. (19) (as in Eq. (14)) the mag-
netic initial conditions have been assumed are assumed so that the 
electric contribution is eventually negligible. In the case of electric 
initial conditions the magnetic contribution will be instead negli-
gible.

The power spectra of the scalar and tensor modes of the geom-
etry can now be computed from Eqs. (12), (14) and (19). Within 
the present conventions they are defined as7:

〈R(�k, τ )R(�p, τ )〉 = 2π2

k3
PR(k, τ )δ(3)(�k + �p), (20)

〈hij(�k, τ )hmn(�p, τ )〉 = 2π2

k3
PT (k, τ )Si jmn(k̂)δ(3)(�k + �p). (21)

Since in the single-field case the magnetic (or electric) contribu-
tions are not correlated with the adiabatic component the scalar 
and the tensor power spectra will be the sum of two separate 
terms namely:

PT (k) = P(ad)
T (k) +Q
(k, τ ),

PR(k, τ ) = P(ad)
R (k) +QB(k, τ ), (22)

7 Note that Si jmn(k̂) = [pmi(k̂)pnj(k̂) + pmj(k̂)pni(k̂) − pij(k̂)pmn(k̂)]/4 and pij(k̂) =
(δi j − k̂i k̂ j) denotes the standard traceless projector.
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where P(ad)
T (k) and P(ad)

R (k) are given by:

P(ad)
T (k) = 2

3π2

(
V

M4
P

)(
k

kp

)nT

,

P(ad)
R (k) = 1

24π2

(
V

ε M4
P

)(
k

kp

)ns−1

. (23)

Before proceeding further it is appropriate to reaffirm that the 
present analysis holds, strictly speaking, in the context of single-
field magnetogenesis models. If more than one scalar fields are 
present, Eq. (22) will also contain one (or more) entropic contribu-
tion and the corresponding cross-correlation terms. These contri-
butions will have to be independently constrained from large-scale 
observations. To avoid further assumptions and complications we 
shall stick to the single field case even if it is reasonable to think 
that the reported results could also be extended to more general 
situations.

As already mentioned, kp denotes the conventional pivot scale 
at which the tensor to scalar ratio is conventionally evaluated 
while ns and nT are the scalar and tensor spectral indices; in 
Eq. (22) we also have that QB(k, τ ) and Q
(k, τ ) are the power 
spectra of the magnetic energy density and of the magnetic 
anisotropic stress:

〈δρB(�k, τ ) δρB(�p, τ )〉 = 2π2

k3
QB(k, τ ) δ(3)(�k + �p), (24)

〈
(B)
i j (�k, τ )


(B)
mn (�p, τ )〉 = 2π2

q3
Q
(k, τ )Sijmn(k̂) δ(3)(�k + �p).

(25)

The power spectra QB(k, τ ) and Q
(k, τ ) should now be deter-
mined in terms of the magnetic power spectrum and then evalu-
ated in the large-scale limit for wavenumbers comparable with the 
pivot scale kp . This step is algebraically lengthy but standard (see, 
in particular, the fifth paper of Ref. [8]) and the result relevant for 
the present purposes can be expressed as:

QB(k,a) = H8
ex CB( f , ε)

(
a

aex

)2gB (ε, f )( k

kp

)mB−1

, (26)

Q
(k,a) = H8
ex C
( f , ε)

(
a

aex

)2gB (ε, f ) ( k

kp

)m
−1

, (27)

where mB = m
 = 9 − 4 f (1 + ε) and the two amplitudes are in-
stead given by:

C B( f , ε) = 24 f (1+ε)

384π7

[ f (1 + ε) + 1]�4[ f (1 + ε) + 1/2]
[4 f (1 + ε) − 5][4 − 2 f (1 + ε)] , (28)

C
( f , ε) = 24 f (1+ε)

17280π7

[17 − 2 f (1 + ε)]�4[ f (1 + ε) + 1/2]
[4 f (1 + ε) − 5][4 − 2 f (1 + ε)] .

(29)

In the slow-roll approximation we have that V = 3H2
exM2

P . Equa-
tions (26) and (27) have been derived by computing the correlation 
functions of the energy density in the large-scale limit. The explicit 
results can be found in the appendix of the fifth paper of Ref. [8]. 
Therefore Eqs. (22), (26) and (27) imply that the tensor and scalar 
power spectra at the pivot scale are:

PT (kp) = 2

π2

(
Hex

M P

)2

+ 4C


g2
B(gB + 3)2

(
Hex

M P

)4

e2Nt gB ,

PR(kp) = 1

8π2ε

(
Hex

M

)2

+ f 2C B

g2 (g + 3)2

(
Hex

M

)4

e2Nt gB , (30)

P B B P
where the total number of efolds Nt has been introduced. If we 
now choose the pivot scale kp = 0.002 Mpc−1, (Hex/M P ) can be 
written in terms of the normalization of the temperature and po-
larization anisotropies AR:

(
Hex

M P

)2

= 8π2εAR, AR = 2.41 × 10−9. (31)

Taking now the ratio of the total spectra of Eq. (30) and recall-
ing the notation of Eq. (31) the tensor to scalar ratio rT can be 
finally written as:

rT (kp) = 16ε
1 + T
(ε, f )e2Nt gB

1 + T B(ε, f )e2Nt gB
, (32)

where

T
( f , ε) = 64π4εAR
g2

B(gB + 3)2
C
( f , ε),

T B( f , ε) = 64π4AR
g2

B(gB + 3)3
C B( f , ε). (33)

If we now apply the simplest strategy we can consider a potential 
variation of Nt between 50 and 100 while ε varies, for instance, 
between 10−6 and 0.1. It is easy to see numerically that in this 
range, as previously suggested [8], f cannot exceed 2.2; when 
f > 2.2 the magnetic contribution to the scalar power spectrum 
exceeds the adiabatic contribution. If the magnetic fields are to be 
amplified, the physical range for f must be around 2. To make 
the argument analytically more transparent consider specifically 
the case f = 2; T B(2, ε) and T
(2, ε) are then in a simple rela-
tion

T
(2, ε) = ε(15 − 2ε)

45(3 + 2ε)
T B(2, ε), T B(2, ε) � − 3AR

8πε3
e2εNt .

(34)

Equation (34) has been obtained by neglecting the ε dependence 
in the Euler Gamma functions (see Eqs. (28) and (29)), by keep-
ing the exponential dependence on the total number of efolds 
and by expanding the remaining prefactor in powers of ε . The 
result is sufficiently simple and accurate to explain why a lower 
bound on the tensor to scalar ratio is expected: to be compatible 
with dominant adiabatic mode we should require, in Eqs. (32) and 
(34), that T
 < 0.1, T B < 0.1 and rT < 0.1. Since these conditions 
are verified in a rather narrow slice of the parameter space (i.e. 
0.001 < ε < 0.01) we will also have that 0.01 < rT < 0.1 for f = 2. 
If f > 2 the bound on rT is relaxed but the total number of efolds 
is bounded from above. If, for instance, f = 2.1 Eq. (15) implies 
that gB = 0.2 + 1.2ε which explains why Nt cannot be too large. 
Already for f = 2.06 we have that the dominance of the adiabatic 
mode and the bounds on the tensor to scalar ratio imply Nt < 56
and 10−4 < rT < 0.1. The back-reaction problem does not play any 
role in this discussion: for the values of the parameters considered 
here the magnetic contribution does not affect the scalar mode of 
the fluctuations and it does not affect, a fortiori, the background.

All in all the logic developed in this investigation strongly sug-
gests that whenever 2 < f < 2.2 we must demand, in a conserva-
tive perspective, that

10−3 < rT < 0.1, 50 < Nt < 75. (35)

If the measured value of rT will turn out to be smaller than 10−3, 
single field magnetogenesis models will be under pressure. The dy-
namical framework could still be viable when the gauge kinetic 
term is coupled to some other spectator field different form the 
inflaton [11]. In this case the tensor to scalar ratio may be smaller 
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but an entropic mode will be generated and independently con-
strained by the temperature and polarization anisotropies. Conse-
quently, an excessively small tensor to scalar ratio (i.e. below one 
thousands) will preferentially pin down those scenarios character-
ized by spectator fields leading to negligible entropic contributions 
over large scales.
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