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I. INTRODUCTION

The triviality problem and the hierarchy problem are two long-standing and somewhat

related issues in field theories containing scalars. The former says that introducing an

interacting scalar such as the Higgs into the theory results in Landau poles, indicating

ultra-violet (UV) incompleteness. The latter says that the theory is likely to respond to

a UV completion by developing unwelcome relevant operators, in particular mass-terms,

that are determined by the highest scales in the physics. Traditionally these two problems

are addressed independently, but it is interesting to ask if there is a way to solve them

simultaneously.

To see how this might be achieved one can draw some lessons from quark masses, which

do not suffer from either problem. There are two reasons why. The first is chiral symmetry

which ensures that the quark masses are only multiplicatively renormalised. However by

itself this would not be sufficient: QCD is in addition asymptotically free so that there is no

triviality problem either, and no UV completion is required. One may be added if desired

for the rest of theory but it is entirely reasonable to assume that it does not contribute to

chiral symmetry breaking, which enjoys a quite independent status 1.

It is evident from this example that the presence of a fixed point in the UV, even a

Gaussian one, is a potential solution to both of these problems. When it comes to the

hierarchy problem one would say that the symmetry protecting the scalar masses, and

playing the same role as chiral symmetry for quark masses, would be quantum conformal

symmetry2, while there would be no triviality problem by construction. However finding

calculable and predictive examples of such theories has in the past proven difficult.

This is because (to use exact RG parlance) the theory flows along an exactly renormal-

isable trajectory that traces back precisely to the fixed point. If it is Gaussian and there

are several couplings, then typically the theory can emerge from the fixed point in multi-

ple directions: virtually any trajectory could be an exactly renormalisable one. It is then

difficult to determine how the flow out of the UV fixed point constrains the infra-red (IR)

physics. What is required for maximum predictivity is for there to be only a single exactly

renormalisable trajectory emanating from the fixed point. In the presence of multiple cou-

plings this almost certainly requires that the fixed point be interacting, which in turn makes

it hard to find calculable examples. The purpose of this paper is to examine in this context

the perturbative example of such a theory presented in ref.[1], and developed in refs.[2–5].

Our central point will be that, not only does the interacting UV fixed point of this theory

1 One can contrast this with the supersymmetric Standard Model; there scalar masses are protected by

supersymmetry and are also multiplicatively renormalised. The equivalent of chiral symmetry breaking is

embodied in the Higgs PQ symmetry breaking µ-term. However successful phenomenology requires a UV

completion that has to contribute additional Higgs mass terms. As the Higgs masses are only partially

governed by the breaking of PQ symmetry, they cannot be very easily isolated from the rest of the theory

like quark masses can. (Practically this manifests itself as an accompanying naturalness problem, namely

the so-called µ-problem.)
2 We will for this discussion assume that scale invariance implies conformality.
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provide a UV completion and solve the triviality problem, but it also allows radiative symme-

try breaking driven by arbitrary mass-squared operators. The couplings (i.e. the ensemble

of masses-squared) are technically natural within the theory in the sense that they run (as

an ensemble) multiplicatively from the UV fixed point. In this sense their RG behaviour is

similar to, and as controllable as, that of the soft-terms in supersymmetry (SUSY). More-

over we find that, as in the Minimal Supersymmetric Standard Model (MSSM), a positive

mass-squared operator in the UV induces negative mass-squared operators in the IR due to

large couplings.

The end result is a calculable radiatively induced symmetry breaking, exactly analogous

to that in the MSSM [6], that is proportional to the explicit degree of flavour breaking in

the mass-squared terms. It is a very different and more complete paradigm for radiative

breaking than the one normally invoked in the context of scale invariance, namely the

Coleman-Weinberg (CW) mechanism [7–47]. The latter sets the masses to zero at the origin

of field space, with some hopeful words that this could well be a prediction of scale invariance.

Here we emphasise that UV scale invariance does not prefer any value for mass-terms, since

they are relevant operators, and the fixed point is completely blind to them. Therefore one

may perfectly consistently choose a mass-squared parameter to be “small” (relative to the

dimensional transmutation scale, say) in which case the CW version of radiative symmetry

breaking can in principle still operate (although not as it turns out perturbatively in the

case we discuss), or one may choose it to be large. Either possibility is consistent with exact

quantum UV scale invariance since the “starting values” of the dimensionful (i.e. relevant)

parameters at some RG scale are free parameters, again much like the quark masses in QCD.

Furthermore both cases should be thought of as radiative symmetry breaking, just driven

by different operators. This picture is of course entirely different from flows governed by IR

fixed points, in which relevant operators do determine the fixed point.

We should explain why an interacting fixed point increases the calculability and predic-

tivity. Suppose for example that one wished to compute perturbative corrections to the

dimensionless couplings of the effective theory. Such corrections would have a UV “diver-

gence” going as 1/γ where γ is the anomalous dimension of the operator at the fixed point.

If the fixed point is Gaussian then the anomalous dimensions at the fixed point are zero and

this corresponds to a real divergence which tells us that generically the couplings are simply

given by their settings at renormalisation time −t = log(µ0/µ) = 0.

By contrast, if the fixed point is interacting then anomalous dimensions at the fixed point

are non-zero, and radiative corrections will simply be finite terms going as 1/γ. In particular

they are insensitive to µ0 which we may as well take to be infinite. (These points were

discussed in some detail in ref.[48].) If the fixed point is interacting and strongly coupled, a

perturbative treatment is impossible, but nevertheless non-zero anomalous dimensions make

the corresponding couplings insensitive to the precise details of the approach to the UV fixed

point, thereby restoring predictivity. Of course the anomalous dimensions may not be large

enough to regulate classically relevant operators: as mentioned above, such operators simply

experience multiplicative RG running in the usual way from values chosen at some initial

scale µ0 (much like quark masses), but cannot disrupt the UV fixed point, so the asympotic

safety of the set-up is immune to them.
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The asymptotically safe theories of ref.[1] that we will be using here lie somewhere between

these two extremes. By choosing a theory with a weakly interacting UV fixed point we recover

the benefits of predictivity and control over the effective potential, but at the same time

keep the theory under good perturbative control. This optimisation is reminiscent of the

Banks-Zaks IR fixed point [49], which can be made arbitrarily weakly interacting and hence

perturbatively tractable, in a particular (Veneziano) large-colour/large-flavour limit.

Of course this work follows on from a large body of literature that has discussed asymp-

totic safety and more generally the consequences of UV scale invariance both with and

without gravity: [48, 50–59]). (For a review see [60]). The object of this paper is to place

radiative symmetry breaking in such frameworks on the same footing as it is in the MSSM.

II. THE THEORY, UV FIXED POINT AND CRITICAL CURVE

We begin by describing the behaviour of the weakly interacting gauge-Yukawa theories

that we will be using, and in particular their phase diagrams and RG flow. Consider a

theory with SU(NC) gauge fields Aaµ and field strength F a
µν (a = 1, · · · , NC), NF flavours of

fermions Qi (i = 1, · · · , NF ) in the fundamental representation, and an NF × NF complex

matrix scalar field H uncharged under the gauge group. At the fundamental level the

Lagrangian is L = LYM + LF + LY + LH + LU + LV , with

LYM =−1

2
TrF µνFµν + Tr

(
Q i /DQ

)
+ yTr

(
QH Q

)
+ Tr (∂µH

† ∂µH)

−uTr [(H†H)2]− v (Tr [H†H])2 , (1)

where Tr indicates the trace over both color and flavor indices. The model has four cou-

pling constants given by the gauge coupling, the Yukawa coupling y, and the quartic scalar

couplings u and the double-trace scalar coupling v:

αg =
g2NC

(4π)2
, αy =

y2NC

(4π)2
, αh =

uNF

(4π)2
, αv =

v N2
F

(4π)2
. (2)

We have already re-scaled the coupling constants by the appropriate powers of NC and

NF to work in the Veneziano limit. When necessary we will use a shorthand notation αi
with i = (g, y, h, v). As mentioned in the Introduction we will be considering the large

colour and large flavour Veneziano limit, in order to have an interacting fixed point which

is nevertheless arbitrarily weakly coupled. Therefore it is convenient to introduce a control

parameter which in the Veneziano limit is a continuous and arbitrarily small constant

ε =
NF

NC

− 11

2
. (3)

Asymptotic freedom is lost for positive values of ε.

Ref.[1] discovered a number of fixed points for this model. However there is one fixed

point that is unique in that it has only one relevant direction with the other three being

irrelevant. Since every relevant direction loses predictivity (as it is formally zero at the fixed
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point and must be set by hand) this fixed point is of great interest. To the maximum cur-

rently achievable order in perturbation theory and properly respecting the Weyl consistency

conditions it is obtained for

α∗g = 0.4561 ε+ 0.7808 ε2 +O(ε3)

α∗y = 0.2105 ε+ 0.5082 ε2 +O(ε3)

α∗h = 0.1998 ε+ 0.5042 ε2 +O(ε3) ,

(4)

with the leading coefficients of ε corresponding to α∗g = 26
57
ε + . . ., α∗y = 4

19
ε + . . . and

α∗h =
√

23−1
19

ε+ . . . respectively. Note that the quartic scalar self-coupling is essential for this

fixed point to exist. The remaining double-trace scalar coupling v has two possible fixed

points, one of which is more perturbatively reliable and adds an irrelevant scaling direction

to the theory, found to be at

α∗v1 =
−6
√

23 + 4ε+ 3
√

4ε+ 6
√

23 + 4ε+ 20

4ε+ 26
α∗g +O(α∗g

2) . (5)

Numerically α∗v1 = −0.1373 ε up to quadratic corrections in ε.

In the presence of more than one relevant direction the flow from the UV would be

expected to emanate from a critical surface, however with only one relevant direction the

flow is along the critical curve shown in Fig.1 towards the IR stable Gaussian fixed point

in the infra-red, and is therefore completely determined in terms of a single parameter

which could be taken to be the gauge coupling itself. The arrows in the figure are at equal

separation in renormalisation “time”, so it is clear that the flow to the critical curve happens

much more rapidly than flow along it. In fact as discussed in Ref. [1] the relative rate of flow

is proportional to ε. Of course for the present discussion the flow emanates precisely from

the UV fixed point of Eq.(4) marked in black, along the critical curve towards the Gaussian

IR fixed point.

In scalar field theories we must also determine if the potential is stable. Ignoring the

possible presence of relevant operators for the moment, we see that this is indeed the case

at leading order since α∗h + α∗v1 > 0, and it also the case for loop corrections as well [1, 3].

Therefore there is no Coleman-Weinberg type instability in these models, as will be shown

explicitly later in certain directions in field space. Thus the α∗v1 perturbative fixed point is

classically viable and becomes increasingly flat in the Veneziano limit, and moreover in the

absence of relevant operators the flow never leaves the critical curve.

Having identified all the critical coupling values and the scaling dimensions it is possible

to parameterize the gauge coupling and hence the entire flow along the critical curve for any
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Figure 1: The renormalisation group flow of the marginal couplings from the UV fixed point and

around the critical curve, towards the Gaussian IR fixed point.

values of the renormalisation time t = lnµ/µ0 by [3, 60]

αg(t) = α∗g

(
1 +W

[
exp

(
−4

3
εα∗g(t+ κ)− 1

)])−1

, (6a)

αy(t) =
6

13
αg(t) , (6b)

αh(t) = 3

√
23− 1

26
αg(t) , (6c)

αv(t) =
3
√

20 + 6
√

23− 6
√

23

26
αg(t) , (6d)

where W is the Lambert W -function (a.k.a. the product log defined by W (z)eW (z) = z) and

κ is defined by the initial condition,

αg(0) =
α∗g

1 +W
[
e−

4
3
εα∗
gκ−1

] . (7)

Perturbation theory is valid for all values of t as long as ε is small.

Since we can access all scales through this set of solutions, the initial gauge coupling

is the only free parameter distinguishing different physical systems that flow from the UV

fixed point, and must be set by hand in accord with the measurement of the coupling at

some scale. However, as mentioned above one can simply use the gauge coupling itself to

parameterise the flow along the critical curve linking the UV interacting fixed point to the IR

non-interacting one (also known as the separatrix): it is a monotonically increasing function

of µ.
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III. SYMMETRY BREAKING

What happens when we add a classically relevant operator to such a system, in particular

of course a mass-squared term for the scalar H? As described in the Introduction, as long

as the operator remains relevant at the quantum level we do not expect it to affect the UV

fixed point, and its status will therefore be equivalent to that of chiral symmetry breaking

mass-terms in QCD, in the sense that it is a parameter which is set at the initial RG scale

by physical measurement. There is no question of uncontrolled UV sensitivity because we

know that the theory is exactly conformal precisely at the UV fixed point (this is of course

the central assumption which unlike the CW mechanism is now motivated by a genuine

symmetry). On the other hand being a relevant operator it will divert the flow away from the

IR fixed point. In the current context this flow is precisely the seed for radiative symmetry

breaking.

A. A simple example

There are a number of different relevant operators that one might consider adding to the

theory that can contribute to symmetry breaking. They are distinguished by whether or

not they explictly break the SU(NF )L × SU(NF )R flavour symmetry of the theory. To be

concrete we will first consider the mass term,

V ⊃
m2
φ

4NF

(
Tr(H +H†)

)2
, (8)

which explicitly breaks the flavour symmetry to the diagonal, U(NF )L × U(NF )R →
SU(NF )diag and picks out just the scalar component of the trace.

Generally, the RG flow will be on a critical surface whose dimensionality is given by the

number of relevant operators (plus one), but if this flavour breaking operator is the dominant

one, the flow and stability may be analysed in terms of the corresponding normalised Higgs

along its direction,

H =
φ√
2NF

1NF×NF , (9)

where φ is real. We will for the moment restrict our attention to only this direction in field

space and assume that a negative m2
φ will ultimately be responsible for symmetry breaking –

in the next subsection we will focus on the main point of the paper, which is that a positive

m2
φ operator radiatively causes instability in other directions.

First let us deal with the quartic part of the classical potential of the theory, which along

the φ direction reads

V
(4)
class =

4π2

N2
F

(αh + αv)φ
4 . (10)

Hence we define the effective quartic coupling,

λ = 32π2 3

N2
F

(αh + αv) . (11)
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It is also useful to define

κ = 32π2 1

N2
F

(3αh + αv) . (12)

In the absence of m2
φ the potential is stable at tree-level, and one can also confirm the

one-loop stability [3]. This essentially rules out the CW form of radiative breaking, be-

cause it is not possible perturbatively to take these theories to a limit in which the crucial

M(φ)4 logM(φ)2 terms are dominant. Indeed using the results of the Appendix, the entire

one-loop potential along the φ direction is

V =
λ

4!
φ4 +

m2
φ

2
φ2 +

1

64π2

(
m2
φ +

λ

2
φ2

)2
(

log
m2
φ + λ

2
φ2

µ2
− 3

2

)

− (4π)2

4NFNC

α2
yφ

4

(
log

(4π)2αyφ
2

√
NFNCµ2

− 3

2

)
+

(N2
F − 1)

64π2

(κ
2
φ2
)2
(

log
κ
2
φ2

µ2
− 3

2

)
+

N2
F

64π2

(
λ

6
φ2

)2
(

log
λ
6
φ2

µ2
− 3

2

)
. (13)

The crucial aspect of this expression is that the last line, which contains the contributions

from all the orthogonal higgs scalars and pseudoscalars that get a mass, are according to

eqs.(11) and (12), suppressed by order αv and αh with respect to the leading term, despite

the factor of N2
F . From one point of view this is of course desirable since it ensures that

the theory remains perturbative, but it also means that these terms are not able to play

off against the tree-level term in order to create a minimum (in contrast with the original

CW mechanism which without the constraint of having to be on a renormalisable trajectory

could freely set λ ∼ α2
e). It would of course be interesting to find theories where one could

(by varying a parameter such as m2
φ) go continuously to CW radiative symmetry breaking.

As promised therefore, symmetry breaking, if it occurs at all, must be driven by the

mass-squared. Its evolution may be treated in the same way as for any other coupling in a

perturbative theory. It is useful for our later treatment of more complicated flavour structure,

to have the relevant expressions to hand of the various contributions to the RG flow. For

this reason (and to be careful about signs and establish conventions) let us summarise the

general framework for a theory of scalars φ with generic φn couplings as

λ(n) =
∂nV

∂φn
, (14)

where of course for the mass-squared we will take n = 2, so at the risk of confusion λ(2) ≡ m2
φ.

The main equation to solve is the Callan-Symanzik equation for the n-point Green’s function,(
− ∂

∂t
+ β̄

∂

∂λ(n)
− nγ̄

)
λ

(n)
eff = 0 , (15)

where t = log(φ/µ0), corresponding to invariance under changes in the cut-off µ0, of the

coupling λ
(n)
eff (φ/µ0) that one calculates directly in the effective field theory.
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The bars indicate division by 1 + γ: as we will work to one-loop for the evolution of

the mass-squareds, they will ultimately be dropped. For n = 2 this gives the anomalous

dimension as

γ̄ = −1

2

∂ logZ

∂t
, (16)

where the renormalised fields scale as φ→
√
Z(t)φ, hence Z = exp(−2

∫
γ̄ dt).

In order to solve (15) we identify β̄ as the t-derivative of a running coupling λ(t) which

must be found by solving

β̄ =
dλ(n)(t)

dt
=
∂λ

(n)
eff

∂t
+ nγ̄λ(n) , (17)

with the functional form of the RHS being determined by perturbation theory and eq.(16).

The solution for λ
(n)
eff is then given in terms of this coupling, by

λ
(n)
eff = λ(n)(t)Zn/2 . (18)

In SUSY for example the t-derivative of λ
(n)
eff is zero to all orders due to the non-

renormalization theorem, and eq.(18) simply says that λ(n)(t) ∝ Z−n/2: the renormalisation

of any coupling including masses is multiplicative (thereby solving the hierarchy problem)

since it comes entirely from absorbing wave-function renormalization. On the other hand in

pure λφ4 theory one has γ = 0 at one-loop and the renormalization of λ is dominated by

the effective potential.

In the present context we require the anomalous dimension of H to one-loop: it will be

denoted by γ and is simply [61]

γ = αy . (19)

In addition to the field renormalisation piece, there is a contribution to the running from

the cross-term in the one-loop potential, of the form

V ⊃
m2
φ

2
φ2

(
1 +

λt

16π2

)
, (20)

where λ ≡ λ(4) is the quartic coupling. (When we come to discuss radiatively induced

breaking later on, this will be the crucial contribution.) As m2
φ is the only coupling with

classical dimension, there can be no other contributions to the mass-squared terms at one-

loop, as is indeed apparent from eq.(13). Thus to one-loop (and dropping the bars)

βm2
φ

= m2
φ

(
λ

16π2
+ 2γ

)
, (21)

and inserting eq.(11) gives

1

m2
φ

βm2
φ

= 2αy +
6

N2
F

(αv + αh) . (22)
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One can conclude that in the Veneziano limit the mass-squared renormalization is dominated

by the anomalous dimension of the fields and the individual cross-terms die away as 1/N2
F .

Moreover the beta function is always positive indicating that the operator grows (in absolute

terms) in the UV but of course always remains relevant3.

Substituting the solutions in eq.(6) we obtain

1

m2
φ

βm2
φ

= fαg , (23)

where

f =
12

13

[
1 +

3

4N2
F

(√
20 + 6

√
23− 1−

√
23

)]
. (24)

In the Veneziano limit we find f ≈ 0.92, with the mass-squared growing in the UV as

m2
φ

UV−→ mφ(0)2

(
µ

µ0

)fα∗
g

. (25)

Of course the reason this does not disrupt the fixed point is that for parametrically small

α∗g ∼ ε the m2
φ coupling grows much more slowly than µ2 itself. On the other hand the

physical mass shrinks in the IR since αg(t)→ 0 there. Indeed integrating eq.(23) gives the

solution

m2
φ(t) = m2

φ(0) exp

[
f

∫ t

0

αgdt

]
= m2

φ(0)ω−
3f
4ε , (26)

where

ω =
α∗g/αg(t)− 1

α∗g/αg(0)− 1
. (27)

We arrive at a purely perturbative description of the evolution of the mass-squared:

m2
φ(t) = m2

∗

(
α∗g
αg
− 1

)− 3f
4ε

IR−→ m2
∗

(
αg
α∗g

) 3f
4ε

, (28)

where the invariant mass-squared parameter is

m2
∗ = m2

φ(0)
(
α∗g/αg(0)− 1

) 3f
4ε . (29)

Note that m2
∗ is independent of the arbitrary energy scale µ0 corresponding to t = 0 at which

the flow started. Therefore each m2
∗ parameter defines a unique trajectory for m2

φ(t), and the

totality of possible flows defines a two-dimensional critical surface in (g, y, u, v,m2
φ)-space.

The importance of eq.(28) is that (in accord with the whole philosophy of the renormalisation

group) one may now dispense with µ0 and describe the flow entirely in terms of the RG

invariants m∗, α
∗
g, and the running coupling αg(t). As was the case for the classically

3 in the technical sense, and hence not relevant in the colloquial sense.
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dimensionless couplings, its RG flow is faster by a factor of 1/ε than that of the gauge

coupling. Moreover this expression makes transparent the multiplicative nature of the mass

renormalisation, with the conclusion that in order to have spontaneous symmetry breaking

along this direction the parameter m2
∗ has to be negative, implying that m2

φ is negative for

all RG scales.

One should of course stop the running around the scale of the Higgs mass which fixes

the relevant values of αg(t) and m∗ for the desired masses and gauge coupling, both of

which would in principle be determined by measurement. Note that λ also keeps running

until the scale of spontaneous symmetry breaking. Therefore the minimum of the tree-level

improved potential gives a VEV determined as λ〈φ(t)〉2 = −6m2
φ(t) evaluated with the t

parameter corresponding to the value of |mφ| itself, which in practice means simply using

the appropriate value of αg measured at the scale of the physical Higgs mass.

As one would expect, the spectrum, including that of the quarks, scales as the invariant

m∗ and is otherwise a function only of αg:

m2
higgs/|m2

∗| = 2

(
α∗g
αg
− 1

)− 3f
4ε

m2
Q/|m2

∗| =
2NF/NC√

20 + 6
√

63− (1 +
√

23)

(
α∗g
αg
− 1

)− 3f
4ε

, (30)

where the first of these is simply the usual m2
higgs = 2|m2

φ| relation one has for the Higgs

mass of the Standard Model. There is no colour breaking here because the Higgs is a singlet

under colour, so the gluons remain massless. However one could imagine also gauging the

flavour in which case the flavour gauge boson masses would also scale as m∗, although of

course one has to be careful to preserve the asymptotic safety of the whole construct. In

summary, m∗ provides a tunable parameter that, much like the quark masses, encompasses

the breaking of both scale invariance and flavour symmetry in the entire flow.

As we hinted above, we are in the above analysis implicitly assuming that a negative m2
∗

leads to instability in the φ direction alone, and not along any of the other directions. The

treatment was also naive in that we have neglected the contribution to the potential of the

orthogonal scalars. Their masses are all initially explicitly zero so they do not contribute at

leading order, but they will start to contribute loop-suppressed terms proportional to 1/N2
F

upon resumming the logs. We will see this in a more complete treatment below.

B. Radiative symmetry breaking

We now begin to extend the discussion to general flavour breaking and first demonstrate

that the gauge-Yukawa model in eq.(1) has an in-built mechanism for radiatively induced

spontaneous symmetry breaking, analogous to the familiar mechanism of the MSSM. That is,

even if a positive parameter such asm2
φ is introduced into the theory at a high renormalization

scale, the couplings generically lead to radiative instability in orthogonal directions in field

space, and hence to spontaneous breaking of flavour [6]. Moreover we shall see various quite

striking similarities with radiative symmetry breaking in the MSSM.
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Consider adding to the previous theory a second dimensionful operator that breaks the

flavour further as SU(NF )diag → SU(NF/2)diag×SU(NF/2)diag. We shall discuss the stabil-

ity for the VEVs of the corresponding (in terms of symmetry breaking) directions in fields

space, namely

H =
φ√
2NF

1NF×NF +
h√
2NF

σ1 ⊗ 1NF /2×NF /2 , (31)

where σ1 is the usual Pauli matrix. Again the fields φ and h are the real components of

complex fields normalised as for example 1√
2
(φ+ iη). For the one-loop potential one has to

of course include the mass-squareds of both the scalar and pseudo-scalar fields.

We then add the two mass-squareds for the scalar components into the theory as

V
(2)
class =

m2
φ

2
φ2 +

m2
h

2
h2 , (32)

with superscript (2) indicating quadratic terms. As in the previous example, the pseu-

doscalars (and indeed any of the other fields) cannot – initially at least – contribute to

the running of these terms, as they do not themselves have an explicit mass-squared and

therefore do not have the requisite cross-term in the one-loop potential. On the other hand,

as we are about to see for h, the converse is not true: even if a mass-squared such as m2
h is

zero, it gets renormalised by a non-zero m2
φ.

Substituting the explicit form of the fields in eq.(31) into eq.(1), the quartic terms for φ

and h are

V
(4)
class =

λ

4!
(φ4 + h4) +

κ

4
φ2h2 , (33)

where λ and κ are as defined in eqs.(11,12) and the Appendix. One can alternatively use

the expressions in the Appendix to derive the above, noting that, if we call the particular

h generator we have chosen here T 1, then d11b = 0 (where dabc is the totally symmetric

SU(NF ) tensor).

To proceed it is useful to define a set of parameters scaled in terms of αg that will

encompass the various contributions to the running:

fγ
def
= 2γ

1

αg
= 12/13 ,

fλ
def
=

λ

16π2

1

αg
=

9

13N2
F

[√
20 + 6

√
23− 1−

√
23

]
,

fκ
def
=

κ

16π2

1

αg
=

3

13N2
F

[√
20 + 6

√
23− 3 +

√
23

]
, (34)

where f = fγ+fλ. These ratios (which are all positive) hold along the entire flow (regardless

of the presence or otherwise of m2
φ and m2

h). Note that γ is dominant in the large NF limit.

While the running here is not entirely driven by field renormalization it is as we mentioned

earlier certainly dominated by it in the Veneziano limit.
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Following the procedure outlined above and applying eq.(17) for this case we derive two

beta functions;

βmh2 = αg
(
fm2

h + fκm
2
φ

)
βmφ2 = αg

(
fm2

φ + fκm
2
h

)
. (35)

These can be diagonalised and solved (using also αg = d
dt

logw−3/4ε) to give

m2
h(t) =

w−
3f
4ε

2

[
m2
h(0)(w

3fκ
4ε + w−

3fκ
4ε )−m2

φ(0)(w
3fκ
4ε − w−

3fκ
4ε )
]

m2
φ(t) =

w−
3f
4ε

2

[
m2
φ(0)(w

3fκ
4ε + w−

3fκ
4ε )−m2

h(0)(w
3fκ
4ε − w−

3fκ
4ε )
]
. (36)

Note that the previous result is obtained for fκ = 0 as expected (although we should

emphasise that for any given set of operators the κ cross-terms and hence fκ is completely

determined as above). More importantly however, a large positive value of m2
φ can generate

a negative m2
h at low scales (where w > 1) even if all mass-squareds are positive in the UV.

Conversely a large positive m2
h causes instability in the φ direction.

This phenomenon is purely an effect of the one-loop potential and is precisely what

happens in the MSSM, where thanks to supersymmetry, the large (s)top Yukawa generates

an effective κ driving the soft mass-squared term for the associated Higgs negative [6].

The effect can be made more explicit by noting that in the large NF limit, ε ∼ 1/NF

whereas fκ ∼ 1/N2
F . Therefore we can expand as follows;

m2
h(t) = w−

3f
4ε

[
m2
h(0)−m2

φ(0)
3fκ
4ε

logw + . . .

]
m2
φ(t) = w−

3f
4ε

[
m2
φ(0)−m2

h(0)
3fκ
4ε

logw + . . .

]
. (37)

Since the prefactor scales as 3fκ
4ε
∼ 1/NF one must in this simple example ensure that

mh(0)2 . m2
φ(0)/NF in order for the symmetry breaking to be driven radiatively by m2

φ.

This is really a function of the dominance of the field renormalisation in the running. Of

course a vanishingly small mh(0)2 could always be invoked by flavour symmetry arguments,

however in the following section we shall present an example that does not require such an

assumption.

We should emphasize at this point that the solutions above should be considered to be

accurate to one loop and leading log. In principle, and as is about to become clear in the

following subsection, all of the m2
h pick up a mass-squared in a similar fashion and these then

feed back into m2
φ when the logs are resummed during the running. In other words the beta

functions for the mass-squareds in all of the orthogonal directions also get contributions from

m2
φ. It is reasonable to consider only the leading contributions above in particular restricted

directions in field space, first because these secondary contributions would be suppressed by

more factors of 1/N2
F , but also because the mass-squareds do not themselves contribute to

the fixed point behaviour, but simply accumulate contributions perturbatively during the

running. Nevertheless we now proceed to improve on the situation with a proper treatment

of the flavour structure.
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C. General solutions and the role of flavour

We conclude from eq.(36) that adding a large positive mass-squared operator in the UV

will generically lead to a further spontaneous radiative breaking of flavour symmetry in a

multitude of orthogonal directions. But as mentioned above, there was nothing particularly

special about the direction h in the above analysis, compared to any of the other flavour

breaking directions that we could have chosen. Therefore in order to identify the correct

vacuum one should in principle consider the entire complement of Higgses in the theory.

Let us therefore define the general direction in terms of the generators of flavour (replacing

the previous φ and η with h0 and p0 for convenience),

H =
(h0 + ip0)√

2NF

1NF×NF + (ha + ipa)Ta , (38)

where Ta with a = 1 . . . N2
F − 1 labels the adjoint generators of SU(NF )diag and by con-

vention Tr(TaTa) = 1
2
. The scalar components in the potential are effectively the hermitian

component of H whereas the pseudoscalars are the antihermitian component.

What is the influence of a positive m2
h0h0

operator in the other ha directions? The crucial

cross-terms in the potential, V ⊃ κah
2
0h

2
a, arise from the Tr(H†HH†H) operator in eq.(1) and

as is clear from eq.(A9) they are all similar in magnitude, and in fact any generators T a that

also have daab = 0 receive degenerate mass-squareds. Therefore if for example m2
haha

(0) = 0

for all the high scale starting values, then all of these directions receive mass-squareds

m2
haha ≈ −

m2
0(0)

2
(w

3(fκ−f)
4ε − w−

3(fκ+f)
4ε ) ∀ a , (39)

where fκ is as before, and where the approximation is that we are neglecting cross-terms

between the h2
a’s which give contributions that are suppressed by powers of w. Nevertheless

we can conclude that every flavour breaking scalar orthogonal to h0 receives a negative mass-

squared.

It is interesting to turn the question around and ask when is there guaranteed to be

no instability. From eq.(36), degenerate values of mass-squareds remain degenerate at all

scales. This suggests that for all the possible directions to remain stable requires complete

degeneracy, m2
h0h0
≡ m2

0 = m2
haha
∀a, which is satisfied if one adds the only mass-squared

operator that breaks no flavour symmetry at all, namely Tr(H†H) .

Therefore in order to find a genuine solution to the RG equations that one can legitimately

resum, one should begin with the RG equations for the most general set of flavour-breaking

operators, and seek a deviation from flavour universality that is isomorphic under renor-

malisation: it turns out that a simple suitable structure is generator diagonal and universal

except for a flavour deviation in only the trace components; namely

V
(2)
class = m2

0Tr(H†H) + 2∆2
∑
a

Tr(TaH
†)Tr(TaH) , (40)

which gives

m2
hahb

= m2
papb

= (m2
0 + ∆2) δab , (41)
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for all the scalar and pseudoscalar SU(NF ) directions, and degenerate trace pseudo-scalar

and scalar mass-squareds, m2
h0h0

= m2
p0p0

= m2
0.

The renormalisation of the mass-squared couplings can be determined as before (at the

cost of considerably more tedium). The detailed expressions required to build the one-loop

potential for the most general case are given in eq.(A8). Inserting the structure chosen in

(40), we find

βm2
0

= αg
(
fm0m

2
0 + f∆

κ ∆2
)
,

β∆2 = αgf∆∆2 , (42)

where using the results from eq.(A21) and inserting the solutions from eq.(6) we have

fm0 =
6

13

[√
20 + 6

√
23

(
1 +

1

N2
F

)
− 2
√

23

N2
F

]
,

f∆
κ =

6

13

(
1− 1

N2
F

)[√
20 + 6

√
23− 2

]
,

f∆ =
6

13

[
2 +

√
20 + 6

√
23− 2

√
23

N2
F

]
. (43)

Note that f∆ is dominated by the field renormalisation, and that fm0 − f∆ ≈ f∆
κ up to

corrections of order 1/N2
F . The crucial aspect of these beta functions is that no degrees

of freedom were neglected in their derivation, and this flavour structure remains intact

throughout the running. In addition note that β2
∆ is zero in the limit of vanishing ∆; as

anticipated, totally flavour symmetric mass-squareds do not lead to radiative symmetry

breaking as there can be no preferred direction in field space. Finally, in contrast with the

simplistic example above, the cross-term in the beta function coefficients does not vanish in

the Veneziano limit.

Eq.(42) can be solved for ∆2 and the combination

m̃2 = m2
0 + ν∆2 , (44)

where we define

ν =
f∆
κ

fm0 − f∆

= 1− 1

N2
F

. (45)

Since f∆
κ > 0 then fm0 > f∆. They have the following solutions;

m̃2 = m̃2(0)w−
3fm0

4ε ,

∆2 = ∆2(0)w−
3f∆
4ε . (46)

As for the simple case, it is now possible to describe the entire flow in terms of RG invariants;

that is defining

m̃2
∗ = m̃2(0)

(
α∗g/αg(0)− 1

) 3fm0
4ε

∆2
∗ = ∆2(0)

(
α∗g/αg(0)− 1

) 3f∆
4ε , (47)
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one can write

m̃2 = m̃2
∗

(
α∗g
αg
− 1

)− 3fm0
4ε

∆2 = ∆2
∗

(
α∗g
αg
− 1

)− 3f∆
4ε

. (48)

With this solution to hand, it is now possible to see how the flavour structure drives ra-

diative symmetry breaking. Consider the case of a slightly positive ∆2
∗, that is, the SU(NF )

flavour breaking directions are given a slightly larger mass-squared than the trace h0 direc-

tion. According to eq.(46) m̃2 shrinks very rapidly in the IR as w−
3fm0

4ε → w−2.4/ε (recalling

that w grows in the IR). On the other hand the deviation ∆2 also shrinks, but much more

slowly, as w−
3f∆
4ε → w−0.7/ε. Because fm0 is greater than f∆, the dominance of ∆2 in the IR

is inevitable. Indeed the mass-squareds for the different components are

m2
0 = m̃2

∗

(
α∗g
αg
− 1

)− 3fm0
4ε

− ∆2
∗ ν

(
α∗g
αg
− 1

)− 3f∆
4ε

,

m2
a=1...N2

F−1 = m̃2
∗

(
α∗g
αg
− 1

)− 3fm0
4ε

+ ∆2
∗ (1− ν)

(
α∗g
αg
− 1

)− 3f∆
4ε

, (49)

with the ∆2 piece eventually coming to dominate in the IR. Note that since 1− ν = 1/N2
F ,

in the large N2
F limit light ha directions are collectively driving a much larger negative

mass-squared for the single h0 direction. (The sum of the mass-squareds is approximately

zero). We conclude that a positive m2
0 is driven entirely negative in the IR if we begin with

a preponderance of orthogonal slightly heavier directions in the UV. An example flow is

shown in figure 2. As is evident from the figure a minimum appears where the deviation ∆2

overcomes the running average mass-squared.

Even if the flavour breaking is tiny (for example the 5% shown in the figure), this hap-

pens very quickly, and the potential itself develops a minimum at the transmutation scale

corresponding to the minimum value of m2
0; defining

R∗ =
∆2
∗

m̃2
∗
, (50)

the mass-squared (and hence the potential) forms a minimum at

α∗g
αg,min

− 1 ≈
(
f∆

fm0

νR∗

)− 4ε
3(fm0−f∆)

,

m2
0,min ≈ − m̃2

∗
fm0 − f∆

f∆

(
R∗ν

f∆

fm0

) fm0
fm0−f∆

. (51)

For the example in figure 2, where R∗ = 0.05 and ε = 0.1, the above approximations give

αg,min = 0.44α∗g and m2
0,min ≈ −6.5× 10−3m2

∗. Note that for small ε in the Veneziano limit
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Figure 2: A mass-squared that is smaller than the average by 5% being driven negative radiatively,

(where the initial value at t = 0 is 0.99). We take ε = 0.1 in the Veneziano limit (NF →∞).

one has

αg,min
ε→0−→ 1

2
α∗g . (52)

In other words the minimum forms at precisely the scale where the theory is passing from the

UV fixed point, and assuming more standard Gaussian IR fixed point behaviour. Finally note

that if we had chosen negative ∆2 the reversed pattern of breaking would have occurred, with

the trace h0 direction being the only stable and very heavy direction, with a mass-squared

balancing order N2
F very small negative mass-squareds for all the orthogonal directions.

IV. CONCLUSIONS

We have studied the stability properties of the class of perturbative UV fixed point

theories introduced in ref.[1], in the presence of additional scalar mass-squared terms. It

is important to realise that such terms, being relevant operators, may take any value in a

scenario of asymptotic safety without disrupting the fixed point. As such their status is

similar to that of the quark masses in QCD: they are simply set by hand at some scale and

are fully controlled and multiplicatively renormalised along the entire RG trajectory. Indeed

the value of all the relevant operators everywhere along the flow is completely determined

by a set of corresponding RG invariants.

This general picture, in which the trajectories of relevant operators (for example m2
∗ in

our case) are determined by a set of tunable RG invariants that defines a particular model,

while the marginal operators are all (except for one) determined by a UV fixed point, is a

familiar one in the context of the exact renormalisation group. However it is certainly novel

to be able to treat it perturbatively.

Such a treatment reveals that these theories exhibit an interesting form of calculable

radiatively induced symmetry breaking, that is exactly analogous to that in the MSSM

[6]. It was found that a generic set of positive but flavour violating mass-squared terms

automatically induce a minimum radiatively, whose depth is determined by the absolute
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value of the flavour violation. Moreover the minimum inevitably appears at the precise

scale where the UV fixed point first loses control over the running, and the theory comes

under the more familiar influence of the Gaussian IR fixed point. This is a novel radiative

symmetry breaking phenomenon that we believe deserves further study.

Appendix A: results for potential

We collect the results required for the computation of the beta functions. The fields con-

tributing to the one-loop potential are decomposed into real and pseudo-scalar flavour break-

ing directions as

H =
h0 + ip0√

2NF

+ (ha + ipa)T
a. (A1)

For convenience we use hA ≡ {h0, h1...N2−1} with

T 0 =
1√
2NF

, (A2)

and with small letters running as a = 1 . . . N2
F − 1 and capitals as A = 1 . . . N2

F − 1. In

principle to determine the correct vacuum one should consider the beta functions of the

most general mass-squared terms, are,

V
(2)
class =

1

2
m2
hAhB

hAhB +
1

2
m2
pApB

pApB +m2
pAhB

pAhB . (A3)

Therefore we examine the potential in the background of all the scalars hA and pseudoscalars

pA. Using the identity TaTb = 1
2

(
δab
NF

+ (dabk + ifabk)T
k
)

, the relevant pieces are extracted

from the tree-level potential which is

Vclass =
1

2
m2
hAhB

hAhB +
1

2
m2
pApB

pApB +m2
pAhB

pAhB +
(v + u/NF )

4
(h2

A + p2
A)2 + (A4)

u

8

(
(hahb+papb)dabk + 2pahbfabk + 4(h0hk+p0pk)√

2NF

)(
(hchd+pcpd)dcdk + 2pchdfcdk + 4(h0hk+p0pk)√

2NF

)
,

where dabc and fabc are the usual totally symmetric tensor and antisymmetric structure

constants respectively of SU(NF ). Note that repeated indices are summed.

The u-terms can be significantly simplified by defining

d̂ABC =

dABC A,B,C 6= 0√
2
NF
δBC A = 0 .

(A5)

f̂ABC =

{
fABC A,B,C 6= 0

0 A orB orC = 0 .
(A6)

The full tree-level potential then becomes

Vclass =
1

2
m2
hAhB

hAhB +
1

2
m2
pApB

pApB +m2
pAhB

pAhB +
v

4
(h2

A + p2
A)2 + (A7)

u

8

(
(hAhB+pApB)d̂ABK + 2pAhB f̂ABK

)(
(hChD+pCpD)d̂CDK + 2pChDf̂CDK

)
,
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The field dependent mass-squareds derived from eq.(A7) are

M2
hAhB

= m2
hAhB

+ v
(
δAB (h2

C + p2
C) + 2hAhB

)
+
u

2
d̂ABK

(
(hChD + pCpD) d̂CDK + 2 pChDf̂CDK

)
+ u

(
hC d̂ACK − pC f̂ACK

)(
hD d̂BDK − pDf̂BDK

)
,

M2
pApB

= m2
pApB

+ v
(
δAB (h2

C + p2
C) + 2 pApB

)
+
u

2
d̂ABK

(
(hChD + pCpD) d̂CDK + 2 pChDf̂CDK

)
+ u

(
pC d̂ACK + hC f̂ACK

)(
pDd̂BDK + hDf̂BDK

)
,

M2
pAhB

= m2
pAhB

+ 2v pAhB

+
u

2
f̂ABK

(
(hChD + pCpD) d̂CDK + 2 pChDf̂CDK

)
+ u

(
pC d̂ACK + hC f̂ACK

)(
hD d̂BDK − pDf̂BDK

)
. (A8)

Note that when it comes to the renormalization of the mass-squareds, only those terms with

a direct mass-squared can contribute, although of course all terms contribute to the quartic

coupling renormalization in the usual way regardless of the flavour breaking.

It is worth highlighting the generator independence of the above relations: in a back-

ground of only real scalars, the terms for M2
haha

and M2
h0h0

can be rewritten

M2
haha = m2

a +
λ

2
h2
a +

κ

2
h2
C 6=a + cross-terms involving dabc ,

M2
h0h0

= m2
h0

+
λ

2
h2

0 +
κ

2
h2
a , (A9)

where as in the text, the coefficients are

λ/2 = 3

(
u

NF

+ v

)
=

3(4π)2

N2
F

(αh + αv) ,

κ/2 =

(
3
u

NF

+ v

)
=

(4π)2

N2
F

(3αh + αv) . (A10)

1. The degenerate example

Now let us specialise to the specific generator-diagonal structure considered in the text,

V
(2)
class = m2

0Tr(HH†) + 2∆2δabTr(HT a)Tr(H†T b) . (A11)

We will derive fm2
0

and f∆2 in the beta function for m2
0 and ∆2, defined as

βm2
0

= αg
(
fm0m

2
0 + f∆

κ ∆2
)
,

β∆2 = αgf∆∆2 . (A12)
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Note that we do not expect to find a term proportional to m2
0 in β∆2 because the completely

flavour-symmetric system should be stable against radiative corrections to ∆, so its beta

function should vanish when ∆ = 0. Note also that fm0αg ≡ γŜ can be identified as the

anomalous dimensions of the operator Ŝ = Tr(HH†). This will give us a useful cross-check

with the results of ref.[61].

Inserting eq.(A11) into eq.(A8), we find the following cross-terms contributing to the

mass-squareds in the one-loop potential;

∂tV
(m2

haha
) =

(m2
0 + ∆2)

16π2

∑
a

(
v

[
2h2

a +
∑
C

(h2
C + p2

C)

]
+

u

NF

[∑
C

(h2
C + p2

C) + 2h2
a + 2h2

0

])

+
(m2

0 + ∆2)

16π2

∑
a

u [hchddackdadk + pcpdfackfadk] ,

(A13)

∂tV
(m2

papa
) =

(m2
0 + ∆2)

16π2

∑
a

(
v

[
2p2

a +
∑
C

(h2
C + p2

C)

]
+

u

NF

[∑
C

(h2
C + p2

C) + 2p2
a + 2p2

0

])

+
(m2

0 + ∆2)

16π2

∑
a

u [pcpddackdadk + hchdfackfadk] ,

(A14)

∂tV
(m2

h0h0
) =

m2
0

16π2

(
v

[
2h2

0 +
∑
C

(h2
C + p2

C)

]
+

u

NF

[∑
C

(3h2
C + p2

C)

])
, (A15)

∂tV
(m2

p0p0
) =

m2
0

16π2

(
v

[
2p2

0 +
∑
C

(h2
C + p2

C)

]
+

u

NF

[∑
C

(h2
C + 3p2

C)

])
, (A16)

where for example ∂tV
(m2

haha
) denotes the terms coming from cross-products with m2

haha
.

Using the standard SU(NF ) identities (repeated indiced summed),

daak = 0 ; dackdadk =
N2
F − 4

NF

δcd ;

fackdadk = 0 ; fackfadk = NF δcd , (A17)

and summing we find,

∂tV
(m2

haha
) + ∂tV

(m2
papa

) =
(m2

0+∆2)
16π2

[
2v
∑

(h2
a + p2

a) + 2
(
v+ 2u

NF

)
(N2

F − 1)
∑

(h2
C + p2

C)
]
,

(A18)

where there are some notable cancellations of the structure constant terms, and

∂tV
(m2

h0h0
) + ∂tV

(m2
p0p0

) =
m2

0

16π2

(
4

(
v +

u

NF

)[∑
C

(h2
C + p2

C)

]
− 2v

∑
a

(h2
a + p2

a)

)
. (A19)

In total then, the contributions can be divided into pieces proportional to
∑

C(h2
C +p2

C) that
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contribute to βm2
0

, and proportional to
∑

a(h
2
a + p2

a) that contribute to the running of ∆2:

∂tV =
m2

0

16π2

[
2v(N2

F + 1) + 4uNF

]∑
C

(h2
C + p2

C) (A20)

+
∆2

16π2

[
2

(
v +

2u

NF

)
(N2

F − 1)

]∑
C

(h2
C + p2

C) +
∆2

16π2
2v
∑
a

(
h2
a + p2

a

)
.

As expected the terms proportional to m2
0

∑
a (h2

a + p2
a) cancel in a non-trivial manner.

The beta function coefficients are found (as in the main body of the text) by reading

off (twice) the coefficient of the corresponding term in ∂tV , and adding 2γ = 2αy to the

diagonal pieces for the anomalous dimension of the fields. We find

fm0αg = 2αy + 4αv

(
1 +

1

N2
F

)
+ 8αh ,

f∆
κ αg = (4αv + 8αh)

(
1− 1

N2
F

)
,

f∆αg = 2αy +
4

N2
F

αv . (A21)

As a check we can confirm that the first of these is the anomalous dimension γŜ of the singlet

composite operator, calculated in [61]. For use in the text note that

ν =
f∆
κ

fm0 − f∆

= 1− 1

N2
F

. (A22)
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