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The B0, B0
s , B+ and Λ0

b hadron production asymmetries are measured using a data sample corresponding 
to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment in proton–proton collisions at 
centre-of-mass energies of 7 and 8 TeV. The measurements are performed as a function of transverse 
momentum and rapidity of the b hadrons within the LHCb detector acceptance. The overall production 
asymmetries, integrated over transverse momentum and rapidity, are also determined.
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1. Introduction

The production rates of b and b hadrons are not expected to be 
identical in proton–proton collisions, as b and b quarks, produced 
in a hard scattering at the partonic level, might have different 
probabilities for coalescing with u or d valence quarks from the 
beam remnant. As a consequence, the production rates of B+ and 
B0 mesons may exceed those of B− and B0, and b baryons can be 
produced more abundantly than b̄ baryons. In the case of B0

s and 
B0

s the production rates depend on the values of the other produc-
tion asymmetries as no valence strange quark is present within the 
colliding protons and b and b quarks are predominantly produced 
in pairs.

The LHCb detector, thanks to its unique geometry as a forward 
spectrometer, is particularly suited to measure such asymmetries, 
as they are expected to be enhanced at forward rapidities and 
small transverse momenta. Other subtle effects of quantum chro-
modynamics, beyond the coalescence of b quarks and light valence 
quarks, may also contribute [1–3].

The measurements of hadron production asymmetries are of 
primary importance, not only for the understanding of the pro-
duction mechanisms, but also for enabling precise measurements 
of CP violation in c and b hadrons at the LHC. Indeed, observed 
asymmetries must be corrected for production effects to obtain the 
CP asymmetries in the decays. Simulations that model the non-
perturbative fragmentation of b quarks in proton–proton collisions 
at LHC energies predict asymmetries generally up to a few per-
cent [4,5]. Production asymmetries of B0 and B0

s mesons have been 
measured by LHCb at a centre-of-mass energy of 7 TeV, excluding 
values larger than a few percent [6]. The LHCb collaboration has 
also searched for possible production asymmetries for D+ and D+

s
mesons, finding the integrated D+ production asymmetry differ-

ent from zero at approximately three standard deviations [7,8]. In 
the b-baryon sector, the LHCb collaboration measured the sum of 
the Λ0

b –Λ0
b production asymmetry and the CP asymmetry in the 

Λ0
b → J/ψ pK − decay [9], finding evidence for a dependence on 

Λ0
b rapidity.

This paper reports measurements of the production asymme-
tries, AP

(
B+)

, AP
(

B0
)

and AP
(

B0
s

)
, measured using B+ → J/ψ K + , 

B0 → J/ψ K ∗0 and B0
s → D−

s π+ decays. In addition, a measure-
ment of AP

(
Λ0

b

)
, determined indirectly from the other asymme-

tries, is presented. Hereafter, K ∗0 is used to refer to the K ∗(892)0

and the inclusion of charge-conjugate decay modes is implied 
throughout, except when referring to the production asymmetries, 
which are defined as

AP(x) ≡ σ
(
x
) − σ (x)

σ
(
x
) + σ (x)

, with x ∈ {B+, B0, B0
s ,Λ

0
b},

where σ denotes the inclusive production cross-section in a given 
region of phase space. The data sample, collected by LHCb in 
proton–proton collisions, corresponds to an integrated luminosity 
of 1.0 fb−1 at a centre-of-mass energy of 7 TeV, and 2.0 fb−1 at 
8 TeV. The measurements are performed as a function of both the 
component of the momentum transverse to the beam (pT) and 
the rapidity (y) of the hadrons within the LHCb detector accep-
tance, and are then integrated over the ranges 0 < pT < 30 GeV/c
and/or 2.1 < y < 4.5 for B+ and B0 decays, and 2 < pT < 30 GeV/c
and/or 2.1 < y < 4.5 for B0

s and Λ0
b decays. The ranges in pT are 

not identical due to different trigger requirements between decays 
with and without muons in the final states. This analysis improves 
the previous one performed on B0 and B0

s production asymme-
tries [6], using a larger data sample and a finer binning scheme 
for investigating the dependence on pT and y. In addition, new 
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measurements of B+ and Λ0
b production asymmetries have been 

included. Unlike in the previous analysis, the B0 → D−π+ decay 
is not considered, as it has been found not to improve the preci-
sion on the B0 measurement.

2. Detector, trigger and simulation

The LHCb detector [10] is a single-arm forward spectrometer 
covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip vertex 
detector surrounding the proton–proton interaction region, a large-
area silicon-strip detector located upstream of a dipole magnet 
with a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream of the 
magnet.

The tracking system provides a measurement of momentum, p, 
of charged particles with a relative uncertainty that varies from 
0.5% at low momentum to 1.0% at 200 GeV/c. The minimum dis-
tance of a track to a primary vertex (PV), the impact parameter 
(IP), is measured with a resolution of (15 + 29/pT) μm, where 
pT is measured in GeV/c. Different types of charged hadrons are 
distinguished using information from two ring-imaging Cherenkov 
detectors. Photons, electrons and hadrons are identified by a 
calorimeter system consisting of scintillating-pad and preshower 
detectors, an electromagnetic calorimeter and a hadronic calorime-
ter. Muons are identified by a system composed of alternating 
layers of iron and multiwire proportional chambers. The trig-
ger [11] consists of a hardware stage, based on information from 
the calorimeter and muon systems, followed by a software stage, 
which applies a full event reconstruction.

For B+ → J/ψ K + and B0 → J/ψ K ∗0 decays, the data are col-
lected by using the hardware muon trigger, which requires a single 
muon with large transverse momentum (from pT > 1.4 GeV/c to 
pT > 1.8 GeV/c) or a pair of muons with a large product of their 
transverse momenta (from √pT,1 pT,2 > 1.3 GeV/c to √pT,1 pT,2 >

1.6 GeV/c), depending on the data-taking conditions. For B0
s →

D−
s π+ decays, data are collected using the hadronic hardware trig-

ger, which requires at least one cluster in the hadronic calorimeter 
with a transverse energy greater than 3.5 GeV or 3.7 GeV, depend-
ing on the data-taking period. The output is then processed by the 
software trigger. In the case of B+ → J/ψ K + and B0 → J/ψ K ∗0

decays, J/ψ mesons consistent with coming from the decay of a 
b-hadron are selected by requiring that their decay products form 
a displaced vertex and have large IPs at the PV with respect to 
which the B candidate has the smallest χ2

IP. The quantity χ2
IP is 

defined as the difference in the vertex-fit χ2 of a given PV recon-
structed with and without the particle under consideration. The 
B0

s → D−
s π+ decays are selected by requiring a two- or three-

track secondary vertex with a significant displacement from all 
PVs. At least one charged particle must have a transverse momen-
tum pT > 1.7 GeV/c and be inconsistent with originating from a 
PV. A multivariate algorithm [12] is used for the identification of 
secondary vertices consistent with the decay of a b hadron.

Simulated events are used to determine the signal selection ef-
ficiency as a function of pT and y, and to study the modelling of 
the decay-time resolution, the reconstruction efficiency as function 
of the decay time and the shape of the invariant mass distribution 
of partially reconstructed background. In the simulation, proton–
proton collisions are generated using Pythia [13,4] with a specific 
LHCb configuration [14]. Decays of hadronic particles are described 
by EvtGen [15], in which final-state radiation is generated us-
ing Photos [16]. The interaction of the generated particles with 
the detector, and its response, are implemented using the Geant4

toolkit [17,18] as described in Ref. [19].

3. Methodology

The asymmetries AP
(

B0
)

and AP
(

B0
s

)
are measured by means 

of a time-dependent analysis of B0 → J/ψ K ∗0 decays, with J/ψ →
μ−μ+ and K ∗0 → K −π+ , and B0

s → D−
s π+ decays, with D−

s →
K +K −π− . The decay rate to a flavour-specific final state f of a 
B0

(s) meson with average decay width �d(s) can be written as

S (t, ψ, ξ) ∝ (1 − ψ ACP ) (1 − ψ AD) (1)

e−�d(s)t
[



ξ
+ cosh

(
��d(s)t

2

)
+ ψ


ξ
− cos

(
�md(s)t

)]
,

where �md(s) ≡ md(s), H − md(s), L and ��d(s) ≡ �d(s), L − �d(s), H

are the mass and width differences of the B0
(s)–B0

(s) system mass 
eigenstates. The subscripts H and L denote the heavy and light 
eigenstates, respectively. The symbol ψ is the tag of the final state, 
which assumes the values ψ = 1 if the final state is f and ψ = −1
if the final state is the CP conjugate f̄ , while ξ indicates the tag of 
the initial flavour of the B0

(s) meson, which takes the values ξ = 1

for B0
(s) and ξ = −1 for B0

(s) . The terms 
ξ
+ and 
ξ

− are defined as



ξ
± ≡ δ+1ξ (1 − AP)

∣∣∣∣ q

p

∣∣∣∣
1−ψ

± δ−1ξ (1 + AP)

∣∣∣∣ q

p

∣∣∣∣
−1−ψ

,

where p and q are complex parameters entering the definition of 
the two mass eigenstates of the effective Hamiltonian of the B0

(s)

system, |BH〉 = p|B0
(s)〉 − q|B0

(s)〉 and |BL〉 = p|B0
(s)〉 + q|B0

(s)〉, and 
δi j is the Kronecker delta. The symbol AD represents the detec-
tion asymmetry of the final state, defined in terms of the f and f̄
detection efficiencies, ε, as

AD ≡ ε f̄ − ε f

ε f̄ + ε f
.

The direct CP asymmetry ACP is defined as

ACP ≡
B

(
B0

(s) → f̄
)

− B
(

B0
(s) → f

)
B

(
B0

(s) → f̄
)

+ B
(

B0
(s) → f

)
where the symbol B stands for the branching fraction of the decay 
considered.

The asymmetry AP
(

B+)
is measured by means of a time-

integrated analysis of B+ → J/ψ K + decays, with J/ψ → μ+μ− , 
starting from the raw asymmetry defined as

Araw ≡ N(B− → J/ψ K −) − N(B+ → J/ψ K +)

N(B− → J/ψ K −) + N(B+ → J/ψ K +)
,

where N denotes the observed yields. The raw asymmetry can be 
written, up to O(10−6) corrections, as

Araw = AP(B+) + AD(K +) + ACP (B+ → J/ψ K +), (2)

where AD(K +) is the K + detection asymmetry, measured by 
means of charm control samples as in Ref. [20], and ACP (B+ →
J/ψ K +) is the CP asymmetry in the decay, measured by BaBar, 
Belle and D0 [21–23]. An improved measurement of the CP asym-
metry was also made recently by LHCb [24], using an independent 
data sample selected with different trigger requirements. The AP
values obtained from Eq. (1) and Eq. (2) are detector-independent 
quantities only if measured in kinematic regions where the recon-
struction efficiencies are constant. To account for the dependence 
of the production asymmetries on the kinematics of the B+ , B0

and B0
s mesons, each data sample is divided into bins of (pT, y), 

and the measurement is performed for each bin. Fig. 1 shows 
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Fig. 1. Distributions of pT and y for background-subtracted (left) B+ , (middle) B0 and (right) B0
s decays for data collected in proton–proton collisions at the centre-of-mass 

energies of (top) 7 and (bottom) 8 TeV. The binning schemes are superimposed.
the distribution of (pT, y) for B+ → J/ψ K + , B0 → J/ψ K ∗0 and 
B0

s → D−
s π+ decays, where the background components are sub-

tracted using the sPlot technique [25] and the definition of the 
various kinematic bins is overlaid. For the B+ and B0 decays a 
common set of bins is used, defined in Table 6 of the Appendix, 
and in the case of the B0

s decay, the binning scheme is reported in 
Table 8.

In proton–proton collisions at the LHC, b and b quarks are 
predominantly pair-produced via strong interaction processes. This 
leads to a relation between the Λ0

b production asymmetry and the 
other b-hadron production asymmetries, namely

AP(Λ
0
b) = −

[
fu

fΛ0
b

AP(B+) + fd

fΛ0
b

AP(B0)

+ f s

fΛ0
b

AP(B0
s ) + fc

fΛ0
b

AP(B+
c ) + fother

fΛ0
b

AP(other)

]
,

where fu , fd , f s , fc , fΛ0
b

and fother are the fragmentation frac-

tions of a b quark hadronizing into weakly-decaying B+ , B0, B0
s , 

B+
c mesons, Λ0

b baryons and all the other b-baryon species. The 
ratios of the fragmentation fractions, fu/ fΛ0

b
, fd/ fΛ0

b
and f s/ fΛ0

b

are taken from LHCb measurements reported in Refs. [26,27]. 
Their dependence on pT and y is taken into account. The terms 
( fc/ fΛ0

b
) · A P (B+

c ) and ( fother/ fΛ0
b
) · A P (other) are of the order of 

3 · 10−5 and 2 · 10−3, respectively. This is estimated assuming that 
the value of A P (B+

c ) and A P (other) are of the same order as the 
B-meson production asymmetries (	 10−2) and taking the values 
of fc/ fΛ0

b
and fother/ fΛ0

b
from simulation. Neglecting these terms, 

the Λ0
b production asymmetry can be measured using the approx-

imate relation

AP(�
0
b) 	 −

[
fu

fΛ0
b

AP(B+) + fd

fΛ0
b

AP(B0) + f s

fΛ0
b

AP(B0
s )

]
. (3)

Possible small deviations from this approximation, due in particu-
lar to contributions from other b baryons, are taken into account 
in the evaluation of systematic uncertainties.

3.1. Integrated production asymmetries

In addition to the measurements in bins, integrated production 
asymmetries, where efficiency corrections have been applied, are 
also provided. The integration of the AP values is performed in the 
ranges 0 < pT < 30 GeV/c and 2.1 < y < 4.5 for the B+ and B0

decays and in the ranges 2 < pT < 30 GeV/c and 2.1 < y < 4.5 for 
the B0

s and Λ0
b decays. The integrated value of AP is given by

AP =
∑

i

Ni

εi
AP,i/

∑
i

Ni

εi
(4)

where the index i runs over the bins, Ni is the number of observed 
signal events in the i-th bin and εi is the efficiency defined as 
the number of selected events divided by the number of produced 
events in the i-th bin. The signal yield in each bin can be expressed 
as

Ni = L σbb̄ 2 fq B Fi εi (5)

where L is the integrated luminosity, σbb̄ is the bb̄ cross sec-
tion, fq is the fragmentation fraction for quark flavour q, with 
q ∈ {u, d, s}, Fi stands for the fraction of the b hadrons produced in 
the i-th bin and B is the branching fraction of the b-hadron decay 
being considered. By substituting Ni/εi from Eq. (5) into Eq. (4), 
the integrated value of AP becomes

AP =
∑

i

ωi AP,i,

where ωi = Fi/ 
∑

i F i . The ωi values are determined using sim-
ulated events, generated with proton–proton collisions at the 
centre-of-mass energies of 7 and 8 TeV.
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4. Data set and event selections

The selections of B+ → J/ψ K + and B0 → J/ψ K ∗0 decays are 
based on the reconstruction of J/ψ → μ−μ+ decays combined 
with either a track identified as a kaon or with a K ∗0 decay-
ing to K +π− . The J/ψ candidates are formed from two oppo-
sitely charged tracks originating from a common vertex, iden-
tified as muons with pT > 500 MeV/c. The K ∗0 candidates are 
formed from two oppositely charged tracks, one identified as a 
kaon and the other as a pion, originating from the same vertex. 
They are required to have pT > 1 GeV/c and the K +π− invari-
ant mass in the range 826–966 MeV/c2. The invariant mass of B0

and B+ candidates, calculated constraining the two muon candi-
dates to have the known J/ψ mass, is required to be in the range 
5150–5450 MeV/c2. The proper decay time of the B-meson can-
didate is calculated from a fit that constrains the candidate to 
originate from the PV with the smallest χ2

IP with respect to the 
B candidate. Only B-meson candidates with a decay time greater 
than 0.2 ps are retained. This lower bound on the decay time re-
jects a large fraction of the combinatorial background.

In the case of B0
s → D−

s π+ decays, the D−
s candidates are 

reconstructed using the K +K −π− decay channel. Requirements 
are applied to the D−

s decay products before combining them to 
form a common vertex, namely the scalar pT sum of the tracks 
must exceed 1.8 GeV/c and the largest distance of closest approach 
between all possible pairs of tracks must be less than 0.5 mm. 
The D−

s candidates are then required to be significantly detached 
from the PV and to have the invariant mass within the range 
1949–1989 MeV/c2. Each D−

s candidate is subsequently combined 
with a second charged pion, referred to as the accompanying pion 
in the following, to form the B-meson decay vertex. The sum of 
the pT values of the D−

s and accompanying π+ must be larger 
than 5 GeV/c and the decay time of B-meson candidates must be 
greater than 0.2 ps. Furthermore, the cosine of the angle between 
the B-meson candidate momentum vector and the vector connect-
ing the PV and B-meson candidate vertex is required to be larger 
than 0.999.

Stringent particle identification criteria are required to be satis-
fied for the kaons and pions forming the K ∗0 and D−

s candidates, 
the kaon from the B+ decay and the accompanying pion, in order 
to reduce to a negligible level the background from other B-meson 
decays with a misidentified kaon or pion, and from Λ0

b decays with 
a misidentified proton.

A final selection is applied using a multivariate analysis method 
based on a Boosted Decision Tree [28,29], where the variables used 
in the selection are: the pT and the IP of the B decay products, the 
flight distance and the IP of the B candidate, and, in the case of 
B0

s , the flight distance of the D−
s meson. The multivariate selection 

is trained using simulated events as a proxy for the signal, and 
B-meson candidates from data selected in the upper mass side-
bands to represent the background.

5. Fit model

For each signal and background component, the invariant mass 
distribution of all B candidates, and, in the case of B0

(s) , the de-
cay time, is modelled by defining appropriate probability density 
functions (PDFs). Two categories of background are considered: the 
combinatorial background, due to the random association of tracks, 
and the partially reconstructed background, due to decays with a 
topology similar to that of the signal, but with one or more parti-
cles not reconstructed. The latter is only relevant for B0

s → D−
s π+

decays.

5.1. Invariant mass parameterization

The signal component for B mesons is modelled by convolving 
a sum of two Gaussian functions with a function parameterizing 
the final-state QED radiation (FSR). The PDF of the invariant mass, 
m, is given by the convolution

g(m) ∝
+∞∫
0

(m′)sG
(
m + m′;μ)

dm′ (6)

where G is the sum of two Gaussian functions with different 
widths and common mean μ that represents the B-meson mass. 
The parameter s governs the amount of FSR, and using simu-
lation is found to be s = −0.9966 ± 0.0005 for the B+ decay, 
s = −0.9945 ± 0.0003 for the B0 decay and s = −0.9832 ± 0.0004
for the B0

s decay. The invariant mass shape of the combinatorial 
background is well described by an exponential PDF.

Regarding the J/ψ K + invariant mass spectrum, common pa-
rameters are used for both B+ and B− mesons. In the case of 
the D−

s π+ spectrum, a background component due to partially re-
constructed B0

s decays is also present in the low invariant mass 
region. The contributions with the highest branching fractions are 
from the B0

s → D∗−
s π+ decay, with D∗−

s → D−
s γ or D∗−

s → D−
s π0, 

where the γ or π0 is not reconstructed, and from the B0
s → D−

s ρ+
decay, with ρ+ → π+π0, where the π0 is not reconstructed. The 
partially reconstructed components are parameterized by means of 
a kernel estimation technique [30] based on invariant mass distri-
butions obtained from simulated events, where the same selection 
applied to data is used and differences in invariant mass resolution 
between data and simulation are taken into account. The yields are 
obtained from the fits.

In the case of the B0
s → D−

s π+ decay, an irreducible back-
ground component due to the B0 → D+

s π− decay is also present. 
This component is accounted for in the fits using the same pa-
rameterization adopted for the signal, where the mean values of 
the two signal PDFs are separated by the difference in the known 
masses between B0 and B0

s mesons [31] and the production asym-
metry is fixed to the B0 measured value. The yield of this compo-
nent is fixed according to the known branching fraction [31].

5.2. Decay time parameterization

Starting from Eq. (1) and summing over ξ , the decay rate to a 
flavour-specific final state of a neutral B meson is parameterized 
by the convolution

S (t,ψ) ∝ [1 − ψ (ACP + AD)]

{
e−�d(s)t (7)[

�+ cosh

(
��d(s)t

2

)
+ ψ�− cos

(
�md(s)t

)] ⊗ R (t)

}
ε (t) ,

where R(t) is a function describing the decay-time resolution, as 
discussed in Sec. 5.3, and ε(t) is the reconstruction efficiency as 
a function of the decay time determined from simulation and pa-
rameterized for the B0 decay by

ε (t) = 1

2

[
1 − erf

(
p1t p2

)]
(1 + p3t) ,

and for the B0
s decay by

ε (t) = 1

2

[
1 − 1

2
erf

(
n1 − t

t

)
− 1

2
erf

(
n2 − t

t

)]
(1 + n3t) ,

where erf is the error function, and pi and ni are parameters de-
termined from simulation. The terms �+ and �− are defined as
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Table 1
Values of the various physical inputs used in 
the fits, as reported in Ref. [33].

Parameter Value

�md [ps−1] 0.5065 ± 0.0019
�ms [ps−1] 17.757 ± 0.021
�d [ps−1] 0.6579 ± 0.0017
�s [ps−1] 0.6645 ± 0.0018
��s [ps−1] 0.083 ± 0.006
|q/p|B0 1.0007 ± 0.0009
|q/p|B0

s
1.0038 ± 0.0021

�± ≡ (1 − AP)

∣∣∣∣ q

p

∣∣∣∣
1−ψ

± (1 + AP)

∣∣∣∣ q

p

∣∣∣∣
−1−ψ

,

and the term ACP AD is neglected, as AD is O(10−2) [32] and ACP

is very small for the decays under study. For this reason, it is only 
possible for the fit to determine the sum of AD and ACP , but not 
their individual values.

The decay-time PDF of the combinatorial background is stud-
ied using events from a high invariant mass window where the 
signal is not present, namely in the range 5310–5340 MeV/c2 for 
B0→ J/ψ K ∗0 and 5450–5900 MeV/c2 for B0

s → D−
s π+ decays. The 

partially reconstructed component for the B0
s → D−

s π+ decay is 
determined from simulated events.

5.3. Decay time resolution

The decay-time resolutions of B0 and B0
s mesons are estimated 

by studying the decay time of fake B candidates, formed from a 
D− decaying to K +π−π− and a pion track, both coming from the 
same PV. These B candidates are called fake, as the probability 
to form a real decay with this technique is negligible. In order 
to avoid the introduction of biases in the decay-time measure-
ments, the accompanying pion is selected with requirements on 
momentum and pT, rather than on IP. The decay-time distribution 
of these fake B candidates yields an estimate of the decay-time 
resolution of a real decay. This method is verified by means of 
simulated events, both for signal and fake B decays. The resolution 
model, R(t), consisting of a sum of three Gaussian functions with 
zero mean and three different widths, characterized by an average 
width of 49 fs, is used. The resolution is found to be overestimated 
by about 4 fs and to be dependent on the decay time. Taking these 
effects into account, an uncertainty of 8 fs on the average width is 
considered as a systematic uncertainty. It is estimated from sim-
ulation that the measurement of the decay time is biased by no 
more than 2 fs, and this effect is also accounted for as a system-
atic uncertainty.

6. Determination of the production asymmetries

The production asymmetries are determined by means of un-
binned (B0

(s)) and binned (B+) maximum likelihood fits, for each 
kinematic bin, to the invariant mass (B+) and invariant mass and 
decay time (B0

(s)) distributions, using the models described in the 
previous section. The models are validated with a series of fits to 
the mass and lifetime distributions of events obtained from pseu-
doexperiments. No evidence of biases on central values nor on the 
uncertainty is found. Furthermore, a global fit to the total sam-
ple of selected candidates is performed for each of the three decay 
modes to validate the fitting model on data. In the case of the 
time-dependent analysis, the mass differences �md and �ms , the 
mixing parameters |q/p|B0 and |q/p|B0

s
, the average decay widths 

�d and �s , and the width difference ��s are fixed to the central 

values of the measurements reported in Table 1. The width differ-
ence ��d is fixed to zero.

As already mentioned, for small values of ACP and AD, the de-
cay rate is to first order only sensitive to the sum of these two 
quantities. For this reason, ACP is fixed to zero and AD is left as 
a free parameter in the fits and hence measured from data, op-
positely to the B+ case, where an external input is necessary for 
AD. It is verified that the choice of different ACP values, up to 
the few percent level, leads to negligible variations of AP. Figs. 2
and 3 show the J/ψ K + , J/ψ K +π− and D−

s π+ invariant mass 
distributions and, in the case of the neutral B meson, the time 
distributions with the results of the global fits overlaid, for data 
recorded at centre-of-mass energies of 7 and 8 TeV.

Fig. 4 shows the raw asymmetries for neutral B-meson decays, 
defined as the ratio between the difference and the sum of the 
overall decay-time distributions, as a function of the decay time 
for candidates in the signal invariant mass regions, defined as the 
ranges 5250–5310 MeV/c2 for B0 decay and 5290–5450 MeV/c2

for B0
s decay. The results of the global fits are overlaid.

The signal yields, AP values and detection asymmetries ob-
tained from the global fits are reported in Table 2, for the neutral 
B-meson decays, while the signal yield and Araw for the B+ decay 
are reported in Table 3. The AP values obtained from the time-
dependent global fits, reported here for illustrative purposes, are 
detector-independent quantities only if efficiency corrections as a 
function of pT and y are applied. An accurate knowledge of the 
decay-time resolution is important for the B0

s → D−
s π+ decay, 

due to the fast oscillation of the B0
s meson. For this reason the 

decay-time resolution is determined using the method previously 
described, applied to candidates in each (pT, y) bin.

According to Eq. (2), the measurement of AP(B+) requires 
knowledge of the CP asymmetry ACP (B+ → J/ψ K +) and AD(K +). 
The value recently measured by LHCb [24] with an independent 
data set is used for the former and corresponds to ACP (B+ →
J/ψ K +) = (0.09 ± 0.27 (stat) ± 0.07 (syst)) × 10−2. The measure-
ment of the kaon detection asymmetry is obtained from D-meson 
decays produced directly in proton–proton collisions, using the 
same technique reported in Ref. [20]. It consists of measuring 
raw asymmetries from the two decay modes, D+ → K −π+π+
and D+ → K 0

S π+ with K 0
S → π+π− , to obtain the K +π− de-

tection asymmetry, AD(K +π−), in each (pT, y) bin of the B+
mesons. Additionally, AD(K +) is obtained by subtracting from 
AD(K +π−) the pion detection asymmetry, AD(π−), measured by 
means of a sample of partially and fully reconstructed D∗+ →
D0(K −π+π−π+)π+ decays, as described in Ref. [8]. It is esti-
mated that the pion detection asymmetries across the various B+
meson bins of (pT, y) are in the range 0–0.2 %. Finally, the detec-
tion asymmetry of the K 0 → π+π− final state, AD(K 0), measured 
by LHCb to be AD(K 0) = (0.054 ± 0.014)% [20], is also subtracted.

7. Systematic uncertainties

Several sources of systematic uncertainty are considered. They 
are evaluated for each kinematic bin and for each decay mode. 
For the invariant mass model, the effects of the uncertainty on 
the shapes of all components (signals, combinatorial and partially 
reconstructed backgrounds) are investigated. For the decay-time 
model, systematic effects related to the decay-time resolution and 
reconstruction efficiency are studied. The effects of the uncertain-
ties on the external inputs used in the fits, reported in Table 1, are 
evaluated by repeating the fits with each parameter varied by ±1
standard deviation (σ ). Alternative decay-time parameterizations 
of the background components are also considered. To estimate 
the contribution of each single source, the fit is repeated for each 
(pT, y) bin after having modified the baseline fit model. The shifts 
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Fig. 2. Distributions of (left) invariant mass and (right) decay time for (top) B0 → J/ψ K ∗0, (middle) B0
s → D−

s π+ and (bottom) of invariant mass for B+ → J/ψ K + decays, 
with the results of the fit overlaid. The data were collected in proton–proton collisions at the centre-of-mass energy of 7 TeV. The contributions of the various background 
sources are also shown. Below each plot are the normalized residual distributions.
from the relevant baseline values are taken as the systematic un-
certainties. A detailed description follows. To estimate a systematic 
uncertainty related to the parameterization of final-state radiation 
effects on the signal mass distributions, the parameter s of Eq. (6)
is varied by ±1σ of the corresponding value obtained from fits 
to simulated decays. A systematic uncertainty related to the in-
variant mass resolution model is estimated by repeating the fit 
using a simplified model with a single Gaussian function. The sys-
tematic uncertainty related to the parameterization of the mass 

distribution for the combinatorial background is investigated by re-
placing the exponential function with a linear function. Concerning 
the partially reconstructed background, a systematic uncertainty 
is assessed by repeating the fits while excluding the low invari-
ant mass region, applying the requirement m > 5330 MeV/c2 to 
B0

s → D−
s π+ candidates. To estimate the uncertainty related to 

the parameterization of signal decay-time reconstruction efficiency, 
different functions are considered. Effects of inaccuracies in the 
knowledge of the decay-time resolution are estimated by rescaling 



LHCb Collaboration / Physics Letters B 774 (2017) 139–158 145
Fig. 3. Distributions of (left) invariant mass and (right) decay time for (top) B0 → J/ψ K ∗0, (middle) B0
s → D−

s π+ and (bottom) of invariant mass for B+ → J/ψ K + decays, 
with the results of the fit overlaid. The data were collected in proton–proton collisions at the centre-of-mass energy of 8 TeV. The contributions of the various background 
sources are also shown. Below each plot are the normalized residual distributions.
the widths of the baseline model to obtain an average resolution 
width differing by ±8 fs. The impact of the small bias in the re-
constructed decay time is assessed by introducing a corresponding 
bias of ±2 fs in the decay-time resolution model. The determi-
nation of the systematic uncertainties related to the |q/p| input 
values requires special treatment, as AP is correlated with |q/p|. 
For this reason, any variation of |q/p| produces the same shift of 
AP in each of the kinematic bins. Such a correlation is taken into 
account when integrating over pT and y. The values of the system-

atic uncertainties related to the knowledge of |q/p| are 0.0009 in 
the case of AP(B0) and 0.0021 in the case of AP(B0

s ). For the B+
decay, the uncertainties on ACP (B+ → J/ψ K +) and AD(K +) are 
considered as systematic uncertainties. They introduce correlations 
among the bins that are considered when the integrated results 
are calculated.

The Λ0
b production asymmetry is calculated, in each kinematic 

bin, assuming that the number of produced hadrons of any species 
in the i-th bin containing a b quark, Ni, b , is equal to the number of 
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Table 2
Values of signal yields, AP and AD obtained from global fits for the two neutral B-meson decays under study.

Parameter
√

s = 7 TeV
√

s = 8 TeV

B0 → J/ψ K ∗0 B0
s → D−

s π+ B0 → J/ψ K ∗0 B0
s → D−

s π+
Nsig 95122 ± 369 16932 ± 174 221973 ± 569 36726 ± 250
AP −0.0113 ± 0.0063 −0.0001 ± 0.0166 −0.0109 ± 0.0042 0.0081 ± 0.0111
AD −0.0098 ± 0.0046 −0.0143 ± 0.0086 −0.0056 ± 0.0030 −0.0103 ± 0.0058
Fig. 4. Time-dependent raw asymmetries for candidates in the (top) B0 → J/ψ K ∗0

and (bottom) B0
s → D−

s π+ signal mass regions with the results of the global fits 
overlaid. Left and right plots correspond to data recorded in proton–proton colli-
sions at centre-of-mass energies of 7 and 8 TeV, respectively. For the B0

s decay, the 
asymmetries are obtained by folding the decay-time distributions into one oscilla-
tion period, and the offset t0 = 0.2 ps corresponds to the selection requirement on 
the decay time.

Table 3
Values of signal yields and raw asymmetries obtained from global fits in the case of 
the B+ → J/ψ K + decay.

Parameter
√

s = 7 TeV
√

s = 8 TeV

Nsig 265574 ± 576 619800 ± 908
Araw −0.017 ± 0.002 −0.014 ± 0.001

produced hadrons containing a b quark, Ni, b , i.e. relying on Eq. (3). 
This assumption is strictly valid in the full phase space, but not 
necessarily in a specific bin. In the event that Ni, b = Ni, b , AP(Λ

0
b)

is biased by the quantity

δzi = Ni, b − Ni, b

Ni, b + Ni, b

· 1

fΛ0
b

.

Values for δzi are studied using simulated events. Systematic un-
certainties on AP(Λ

0
b), in each kinematic bin, are assigned as half 

of the maximum variation from zero of the quantities δzi ±σ(δzi), 
where σ(δzi) is the related uncertainty.

The term ( fc/ fΛ0
b
) · AP(B+

c ), estimated to be 3 · 10−5, can be 
safely neglected, while a systematic uncertainty related to neglect-
ing the term ( fother/ fΛ0

b
) · AP(other) has to be assessed. Amongst 

all other b baryons, the production rate of �b baryons is estimated 
from the simulation (which well reproduces the B+ , B0, B0

s and Λ0
b

fragmentation fractions) to be dominant, corresponding to about 

1% of all b-hadron species produced in the primary collisions. On 
this basis, the neglected term can be evaluated as

fother

fΛ0
b

AP(other) 	 f�b

fΛ0
b

AP(�b).

The value of AP(�b) is found to be double that of AP(Λ
0
b) in the 

simulation. A systematic uncertainty on AP(Λ
0
b) is obtained by as-

suming AP(�b) = 2 AP(Λ
0
b).

The dominant systematic uncertainties for the B+ and B0 cases 
are related to the measured value of ACP (B+ → J/ψ K +) and to 
|q/p|B0 , respectively. The systematic uncertainty associated with 
the signal mass shape is the main source for the B0

s case, while 
it is the one related to neglecting the term fother/ fΛ0

b
· AP(other)

in Eq. (3) in the case of the Λ0
b decay. All the systematic uncertain-

ties are summed in quadrature for each kinematic bin. Their values 
are reported, together with the final measurements, in Tables 6–9
in the Appendix.

When the integrated results are calculated, all the systematic 
uncertainties estimated for each bin are propagated according to 
Eq. (4) and correlations among the bins are taken into account. An 
additional systematic uncertainty is considered by studying how 
the integrated values vary in the case that the values of ωi are 
measured using a data driven approach. In this case ωdata

i is mea-
sured as

ωdata
i = Ni

εtotal
i

/
∑

i

Ni

εtotal
i

where εtotal
i is the total reconstruction efficiency, obtained as a 

combination of the selection efficiency, determined from simula-
tion, and PID and trigger efficiencies, measured from data. Dif-
ferences in the central values between AP calculated using either 
ωi or ωdata

i are found to be small for all the decay modes. Ta-
ble 4 summarizes systematic uncertainties associated with the in-
tegrated measurements.

8. Results and conclusions

Using a data sample corresponding to an integrated luminosity 
of 3.0 fb−1, the B+ , B0 and B0

s hadron production asymmetries 
have been determined independently for each (pT, y) bin and then 
combined using Eq. (3) to derive the Λ0

b production asymmetry. 
Tables 6–9, in the Appendix, report the final results.

The B+ , B0, B0
s and Λ0

b hadron production asymmetries 
are also determined integrating over pT or y, in the range 
0 < pT < 30 GeV/c and 2.1 < y < 4.5 for B+ and B0 decays, and 
in the range 2 < pT < 30 GeV/c and 2.1 < y < 4.5 for B0

s and Λ0
b

decay. The corresponding numerical values are reported in Tables 
10–17, in the Appendix, and in Figs. 5–8, where the results of the 
fits with a constant and a first-order polynomial function are also 
shown. Table 5 reports the values of the fit parameters. No ev-
idence for any dependence is observed. Finally, integrating over 
both pT and y, the b-hadron production asymmetries are found to 
be
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Table 4
Absolute values of systematic uncertainties for integrated production asymmetries. The total systematic uncertainties are obtained 
by summing the individual contributions in quadrature.

Source Uncertainty [
√

s = 7 TeV]

AP(B+) AP(B0) AP(B0
s ) AP(Λ

0
b)

Signal mass shape 0.0016 0.0005 0.0036 0.0024
Decay-time bias 0.0000 0.0000 0.0008 0.0004
�md , �ms 0.0000 0.0001 0.0014 0.0007
Decay-time resolution 0.0000 0.0000 0.0026 0.0014
Final-state radiation 0.0000 0.0001 0.0000 0.0001
Decay-time reconstruction efficiency 0.0000 0.0001 0.0000 0.0001
Combinatorial background mass shape 0.0003 0.0000 0.0004 0.0003
Partially reconstructed background mass shape 0.0000 0.0000 0.0029 0.0015
��s 0.0000 0.0000 0.0000 0.0000
AD(K +) 0.0018 0.0000 0.0000 0.0013
|q/p|B0 , |q/p|B0

s
0.0000 0.0009 0.0021 0.0013

Uncertainties from fragmentation fractions 0.0000 0.0000 0.0000 0.0058
Difference between ωi or ωdata

i 0.0003 0.0003 0.0003 0.0003
Neglecting term with AP(�b) in Eq. (3) 0.0000 0.0000 0.0000 0.0071
Validity of Nb = Nb in each bin 0.0000 0.0000 0.0000 0.0032
ACP (B+ → J/ψ K +) 0.0028 0.0000 0.0000 0.0028
AD(K 0) 0.0001 0.0000 0.0000 0.0002
Total systematic uncertainty 0.0037 0.0011 0.0059 0.0108

Source Uncertainty [
√

s = 8 TeV]

AP(B+) AP(B0) AP(B0
s ) AP(Λ

0
b)

Signal mass shape 0.0006 0.0004 0.0035 0.0021
Decay-time bias 0.0000 0.0000 0.0008 0.0004
�md , �ms 0.0000 0.0001 0.0015 0.0008
Decay-time resolution 0.0000 0.0000 0.0028 0.0016
Final-state radiation 0.0000 0.0001 0.0001 0.0001
Decay-time reconstruction efficiency 0.0000 0.0001 0.0001 0.0001
Combinatorial background mass shape 0.0002 0.0000 0.0004 0.0003
Partially reconstructed background mass shape 0.0000 0.0000 0.0027 0.0015
��s 0.0000 0.0000 0.0001 0.0001
AD(K +) 0.0014 0.0000 0.0000 0.0011
|q/p|B0 , |q/p|B0

s
0.0000 0.0009 0.0021 0.0014

Uncertainties from fragmentation fractions 0.0000 0.0000 0.0000 0.0025
Difference between ωi or ωdata

i 0.0002 0.0003 0.0003 0.0003
Neglecting term with AP(�b) in Eq. (3) 0.0000 0.0000 0.0000 0.0046
Validity of Nb = Nb in each bin 0.0000 0.0000 0.0000 0.0033
ACP (B+ → J/ψ K +) 0.0028 0.0000 0.0000 0.0027
AD(K 0) 0.0001 0.0000 0.0000 0.0002
Total systematic uncertainty 0.0032 0.0010 0.0059 0.0076
AP(B+)√s=7 TeV = −0.0023 ± 0.0024 ± 0.0037,

AP(B+)√s=8 TeV = −0.0074 ± 0.0015 ± 0.0032,

AP(B0)√s=7 TeV = 0.0044 ± 0.0088 ± 0.0011,

AP(B0)√s=8 TeV = −0.0140 ± 0.0055 ± 0.0010,

AP(B0
s )

√
s=7 TeV = −0.0065 ± 0.0288 ± 0.0059,

AP(B0
s )

√
s=8 TeV = 0.0198 ± 0.0190 ± 0.0059,

AP(Λ
0
b)

√
s=7 TeV = −0.0011 ± 0.0253 ± 0.0108,

AP(Λ
0
b)

√
s=8 TeV = 0.0344 ± 0.0161 ± 0.0076,

where the first error is statistical and the second is systematic. All 
the results are consistent with zero within 2.5 standard deviations. 
The results of this analysis supersede the previous LHCb results of 
Ref. [6]. These measurements, once integrated using appropriate 
weights for any reconstructed B+ , B0, B0, Λ0

b decay in LHCb, can 
be used to determine effective production asymmetries, as inputs 
for CP violation measurements with the LHCb data.
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Table 5
Values for m and q and their correlation coefficient (ρ) obtained from fits to the values reported in Tables 10–17 with a first order 
polynomial function (FOPF), AP(b hadron) = a x + b with x = pT, y. The label SL indicates the fit to the values with a straight line.

√
s = 7 TeV

pT B+ B0 B0
s Λ0

b

a[c/GeV · 10−4] −3 ± 6 7 ± 14 −33 ± 26 10 ± 60
b[10−3] −1 ± 5 −3 ± 12 44 ± 37 7 ± 50
ρ(m,q) −0.59 −0.78 −0.89 −0.85

fit χ2/ndf (SL) 1.05 1.67 1.67 2.03
fit χ2/ndf (FOPF) 0.95 1.50 1.68 1.34

√
s = 8 TeV

pT B+ B0 B0
s Λ0

b

a[c/GeV · 10−4] −5 ± 4 12 ± 9 2 ± 18 30 ± 30
b[10−3] −5 ± 4 −18 ± 8 8 ± 25 12 ± 32
ρ(m,q) −0.49 −0.78 −0.89 −0.84

fit χ2/ndf (SL) 0.99 0.54 1.80 0.07
fit χ2/ndf (FOPF) 1.12 0.67 1.19 0.28

√
s = 7 TeV

y B+ B0 B0
s Λ0

b

a[10−4] 22 ± 45 −71 ± 141 −542 ± 469 810 ± 420
b[10−3] −12 ± 14 −12 ± 46 165 ± 153 −240 ± 130
ρ(m,q) −0.96 −0.99 −0.99 −0.98

fit χ2/ndf (SL) 1.36 2.79 0.48 0.86
fit χ2/ndf (FOPF) 1.17 2.36 0.91 2.29

√
s = 8 TeV

y B+ B0 B0
s Λ0

b

a[10−4] −86 ± 29 −44 ± 100 −217 ± 321 470 ± 280
b[10−3] 19 ± 9 −4 ± 32 85 ± 105 −111 ± 90
ρ(m,q) −0.93 −0.99 −0.98 −0.98

fit χ2/ndf (SL) 1.10 0.86 0.42 1.35
fit χ2/ndf (FOPF) 2.43 0.75 0.44 2.23
Fig. 5. Dependence of AP(B+), for data collected in proton–proton collisions with 
centre-of-mass of energies of (top) 7 and (bottom) 8 TeV, on (left) pT and (right) y. 
The results of fits using a straight line with zero (solid line) or floating slope pa-
rameter (dashed line) are also shown. The fits take into account the correlations 
amongst the bins.

Fig. 6. Dependence of AP(B0), for data collected in proton–proton collisions with 
centre-of-mass of energies of (top) 7 and (bottom) 8 TeV, on (left) pT and (right) y. 
The results of fits using a straight line with zero (solid line) or floating slope pa-
rameter (dashed line) are also shown. The fits take into account the correlations 
amongst the bins.
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Fig. 7. Dependence of AP(B0
s ), for data collected in proton–proton collisions with 

centre-of-mass of energies of (top) 7 and (bottom) 8 TeV, on (left) pT and (right) y. 
The results of fits with a straight line with zero (solid line) or floating slope parame-
ter (dashed line) are also shown. The fits take into account the correlations amongst 
the bins.

Fig. 8. Dependence of AP(Λ
0
b), for data collected in proton–proton collisions with 

centre-of-mass of energies of (top) 7 and (bottom) 8 TeV, on (left) pT and (right) y. 
The results of fits with a straight line with zero (solid line) or floating slope parame-
ter (dashed line) are also shown. The fits take into account the correlations amongst 
the bins.
Appendix

Table 6
Values of AP(B+) and AP(B0) in each kinematic bin for data collected in proton–proton collisions at centre-of-mass energy of 7 TeV. 
The first uncertainties are statistical and the second systematic.

pT [GeV/c] y AP(B+)√s=7 TeV AP(B0)√s=7 TeV

(0.00,2.00) (2.10,2.70) 0.0085 ± 0.0156 ± 0.0036 0.0722 ± 0.0770 ± 0.0010
(0.00,2.00) (2.70,2.85) −0.0014 ± 0.0191 ± 0.0036 −0.1108 ± 0.0815 ± 0.0020
(0.00,2.00) (2.85,3.00) 0.0016 ± 0.0177 ± 0.0036 −0.0300 ± 0.0733 ± 0.0024
(0.00,2.00) (3.00,3.15) −0.0052 ± 0.0171 ± 0.0036 −0.0849 ± 0.0624 ± 0.0038
(0.00,2.00) (3.15,3.30) −0.0006 ± 0.0171 ± 0.0037 −0.0662 ± 0.0638 ± 0.0035
(0.00,2.00) (3.30,3.70) 0.0107 ± 0.0110 ± 0.0040 0.0116 ± 0.0397 ± 0.0011
(0.00,2.00) (3.70,4.50) −0.0104 ± 0.0141 ± 0.0046 0.0702 ± 0.0462 ± 0.0013
(2.00,4.50) (2.10,2.70) 0.0007 ± 0.0088 ± 0.0036 0.0691 ± 0.0392 ± 0.0017
(2.00,4.50) (2.70,2.85) −0.0171 ± 0.0112 ± 0.0036 0.0136 ± 0.0409 ± 0.0013
(2.00,4.50) (2.85,3.00) −0.0120 ± 0.0105 ± 0.0036 −0.0284 ± 0.0375 ± 0.0010
(2.00,4.50) (3.00,3.15) −0.0269 ± 0.0101 ± 0.0037 −0.0273 ± 0.0360 ± 0.0009
(2.00,4.50) (3.15,3.30) 0.0043 ± 0.0102 ± 0.0038 0.0137 ± 0.0351 ± 0.0015
(2.00,4.50) (3.30,3.70) −0.0167 ± 0.0071 ± 0.0041 −0.0273 ± 0.0230 ± 0.0028
(2.00,4.50) (3.70,4.50) 0.0053 ± 0.0098 ± 0.0045 −0.0269 ± 0.0279 ± 0.0013
(4.50,7.00) (2.10,2.70) 0.0023 ± 0.0087 ± 0.0035 0.0597 ± 0.0329 ± 0.0039
(4.50,7.00) (2.70,2.85) −0.0002 ± 0.0120 ± 0.0037 −0.0177 ± 0.0404 ± 0.0010
(4.50,7.00) (2.85,3.00) 0.0034 ± 0.0116 ± 0.0038 −0.0103 ± 0.0362 ± 0.0019
(4.50,7.00) (3.00,3.15) 0.0092 ± 0.0115 ± 0.0039 −0.0696 ± 0.0372 ± 0.0016
(4.50,7.00) (3.15,3.30) −0.0092 ± 0.0120 ± 0.0042 −0.0444 ± 0.0359 ± 0.0015
(4.50,7.00) (3.30,3.70) −0.0168 ± 0.0088 ± 0.0044 −0.0214 ± 0.0234 ± 0.0010
(4.50,7.00) (3.70,4.50) 0.0010 ± 0.0129 ± 0.0044 0.0192 ± 0.0316 ± 0.0013
(7.00,8.25) (2.10,2.70) 0.0031 ± 0.0140 ± 0.0036 −0.0239 ± 0.0441 ± 0.0025
(7.00,8.25) (2.70,2.85) −0.0591 ± 0.0208 ± 0.0039 −0.2197 ± 0.0602 ± 0.0017
(7.00,8.25) (2.85,3.00) −0.0089 ± 0.0203 ± 0.0040 −0.0619 ± 0.0595 ± 0.0031
(7.00,8.25) (3.00,3.15) 0.0016 ± 0.0213 ± 0.0043 −0.0151 ± 0.0590 ± 0.0047
(7.00,8.25) (3.15,3.30) −0.0205 ± 0.0222 ± 0.0044 −0.0037 ± 0.0566 ± 0.0039
(7.00,8.25) (3.30,3.70) 0.0303 ± 0.0172 ± 0.0046 −0.0305 ± 0.0406 ± 0.0018

(continued on next page)
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Table 6 (continued)

pT [GeV/c] y AP(B+)√s=7 TeV AP(B0)√s=7 TeV

(7.00,8.25) (3.70,4.50) 0.0603 ± 0.0259 ± 0.0047 −0.0348 ± 0.0516 ± 0.0018
(8.25,9.50) (2.10,2.70) −0.0134 ± 0.0157 ± 0.0037 −0.0442 ± 0.0477 ± 0.0087
(8.25,9.50) (2.70,2.85) −0.0099 ± 0.0246 ± 0.0039 −0.0506 ± 0.0652 ± 0.0028
(8.25,9.50) (2.85,3.00) −0.0112 ± 0.0246 ± 0.0042 −0.0611 ± 0.0674 ± 0.0043
(8.25,9.50) (3.00,3.15) −0.0613 ± 0.0251 ± 0.0044 −0.0015 ± 0.0695 ± 0.0024
(8.25,9.50) (3.15,3.30) 0.0552 ± 0.0279 ± 0.0045 0.0219 ± 0.0731 ± 0.0014
(8.25,9.50) (3.30,3.70) −0.0038 ± 0.0216 ± 0.0046 −0.0621 ± 0.0478 ± 0.0032
(8.25,9.50) (3.70,4.50) 0.0047 ± 0.0342 ± 0.0047 −0.0856 ± 0.0637 ± 0.0025
(9.50,10.75) (2.10,2.70) −0.0249 ± 0.0182 ± 0.0037 0.0408 ± 0.0525 ± 0.0089
(9.50,10.75) (2.70,2.85) −0.0113 ± 0.0292 ± 0.0041 0.0228 ± 0.0759 ± 0.0036
(9.50,10.75) (2.85,3.00) −0.0241 ± 0.0290 ± 0.0045 0.0102 ± 0.0904 ± 0.0017
(9.50,10.75) (3.00,3.15) 0.0267 ± 0.0318 ± 0.0045 −0.0586 ± 0.0847 ± 0.0023
(9.50,10.75) (3.15,3.30) 0.0118 ± 0.0352 ± 0.0048 −0.0577 ± 0.0775 ± 0.0012
(9.50,10.75) (3.30,3.70) −0.0164 ± 0.0281 ± 0.0048 0.0624 ± 0.0577 ± 0.0016
(9.50,10.75) (3.70,4.50) −0.0605 ± 0.0411 ± 0.0049 −0.0328 ± 0.0946 ± 0.0021
(10.75,12.00) (2.10,2.70) −0.0200 ± 0.0206 ± 0.0038 0.0154 ± 0.0636 ± 0.0023
(10.75,12.00) (2.70,2.85) −0.0068 ± 0.0344 ± 0.0044 −0.0104 ± 0.1017 ± 0.0044
(10.75,12.00) (2.85,3.00) −0.0017 ± 0.0362 ± 0.0045 0.0179 ± 0.0849 ± 0.0040
(10.75,12.00) (3.15,3.30) −0.0239 ± 0.0441 ± 0.0047 0.0478 ± 0.0835 ± 0.0025
(10.75,12.00) (3.00,3.15) −0.0181 ± 0.0411 ± 0.0047 0.1481 ± 0.0890 ± 0.0024
(10.75,12.00) (3.30,3.70) 0.0058 ± 0.0362 ± 0.0048 0.0377 ± 0.0731 ± 0.0037
(10.75,12.00) (3.70,4.50) 0.0485 ± 0.0547 ± 0.0051 0.1058 ± 0.1181 ± 0.0018
(12.00,15.00) (2.10,2.70) 0.0059 ± 0.0174 ± 0.0039 −0.0071 ± 0.0446 ± 0.0039
(12.00,15.00) (2.70,2.85) 0.0210 ± 0.0321 ± 0.0046 0.0264 ± 0.0924 ± 0.0042
(12.00,15.00) (2.85,3.00) 0.0092 ± 0.0334 ± 0.0062 0.0230 ± 0.0775 ± 0.0046
(12.00,15.00) (3.00,3.15) −0.0267 ± 0.0386 ± 0.0050 −0.1190 ± 0.0791 ± 0.0040
(12.00,15.00) (3.15,3.30) −0.0516 ± 0.0420 ± 0.0046 0.1330 ± 0.0909 ± 0.0029
(12.00,15.00) (3.30,3.70) 0.0071 ± 0.0349 ± 0.0052 0.0469 ± 0.0588 ± 0.0021
(12.00,15.00) (3.70,4.50) 0.0748 ± 0.0542 ± 0.0049 −0.1026 ± 0.0854 ± 0.0031
(15.00,30.00) (2.10,2.70) 0.0116 ± 0.0188 ± 0.0040 0.0703 ± 0.0456 ± 0.0014
(15.00,30.00) (2.70,2.85) −0.0763 ± 0.0401 ± 0.0046 −0.0009 ± 0.0748 ± 0.0034
(15.00,30.00) (2.85,3.00) −0.0541 ± 0.0458 ± 0.0047 −0.0550 ± 0.0755 ± 0.0049
(15.00,30.00) (3.00,3.15) −0.0449 ± 0.0512 ± 0.0046 −0.1637 ± 0.0925 ± 0.0026
(15.00,30.00) (3.15,3.30) 0.0011 ± 0.0599 ± 0.0073 0.0456 ± 0.1119 ± 0.0018
(15.00,30.00) (3.30,3.70) 0.0089 ± 0.0502 ± 0.0048 −0.0193 ± 0.0777 ± 0.0027
(15.00,30.00) (3.70,4.50) −0.0662 ± 0.0827 ± 0.0186 0.1690 ± 0.1332 ± 0.0030

Table 7
Values of AP(B+) and AP(B0) in each kinematic bin for data collected in proton–proton collisions at centre-of-mass energy of 8 TeV. 
The first uncertainties are statistical and the second systematic.

pT [GeV/c] y AP(B+)√s=8 TeV AP(B0)√s=8 TeV

(0.00,2.00) (2.10,2.70) −0.0178 ± 0.0097 ± 0.0031 0.0068 ± 0.0537 ± 0.0009
(0.00,2.00) (2.70,2.85) −0.0027 ± 0.0126 ± 0.0031 −0.0735 ± 0.0719 ± 0.0017
(0.00,2.00) (2.85,3.00) 0.0093 ± 0.0120 ± 0.0031 0.0503 ± 0.0628 ± 0.0011
(0.00,2.00) (3.00,3.15) 0.0005 ± 0.0119 ± 0.0031 0.0086 ± 0.0549 ± 0.0034
(0.00,2.00) (3.15,3.30) −0.0230 ± 0.0119 ± 0.0033 0.0817 ± 0.0617 ± 0.0016
(0.00,2.00) (3.30,3.70) −0.0120 ± 0.0080 ± 0.0033 0.0668 ± 0.0367 ± 0.0009
(0.00,2.00) (3.70,4.50) −0.0077 ± 0.0103 ± 0.0037 −0.0419 ± 0.0453 ± 0.0010
(2.00,4.50) (2.10,2.70) 0.0050 ± 0.0054 ± 0.0031 −0.0192 ± 0.0234 ± 0.0013
(2.00,4.50) (2.70,2.85) −0.0076 ± 0.0073 ± 0.0031 −0.0070 ± 0.0291 ± 0.0009
(2.00,4.50) (2.85,3.00) 0.0009 ± 0.0070 ± 0.0031 −0.0088 ± 0.0278 ± 0.0009
(2.00,4.50) (3.00,3.15) −0.0046 ± 0.0069 ± 0.0032 −0.0213 ± 0.0271 ± 0.0009
(2.00,4.50) (3.15,3.30) −0.0018 ± 0.0070 ± 0.0032 −0.0635 ± 0.0260 ± 0.0012
(2.00,4.50) (3.30,3.70) −0.0081 ± 0.0049 ± 0.0034 −0.0169 ± 0.0174 ± 0.0009
(2.00,4.50) (3.70,4.50) −0.0133 ± 0.0067 ± 0.0036 −0.0131 ± 0.0203 ± 0.0009
(4.50,7.00) (2.10,2.70) −0.0045 ± 0.0054 ± 0.0031 −0.0074 ± 0.0192 ± 0.0028
(4.50,7.00) (2.70,2.85) −0.0002 ± 0.0077 ± 0.0031 −0.0440 ± 0.0264 ± 0.0027
(4.50,7.00) (2.85,3.00) −0.0019 ± 0.0075 ± 0.0032 0.0315 ± 0.0235 ± 0.0028
(4.50,7.00) (3.00,3.15) −0.0107 ± 0.0076 ± 0.0033 −0.0203 ± 0.0233 ± 0.0020
(4.50,7.00) (3.15,3.30) −0.0175 ± 0.0078 ± 0.0034 −0.0248 ± 0.0234 ± 0.0010
(4.50,7.00) (3.30,3.70) −0.0241 ± 0.0059 ± 0.0035 −0.0254 ± 0.0159 ± 0.0010
(4.50,7.00) (3.70,4.50) −0.0101 ± 0.0087 ± 0.0036 −0.0015 ± 0.0213 ± 0.0010
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Table 7 (continued)

pT [GeV/c] y AP(B+)√s=8 TeV AP(B0)√s=8 TeV

(7.00,8.25) (2.10,2.70) −0.0052 ± 0.0086 ± 0.0031 0.0080 ± 0.0276 ± 0.0028
(7.00,8.25) (2.70,2.85) −0.0177 ± 0.0131 ± 0.0033 −0.0383 ± 0.0390 ± 0.0014
(7.00,8.25) (2.85,3.00) −0.0083 ± 0.0132 ± 0.0033 −0.0543 ± 0.0382 ± 0.0025
(7.00,8.25) (3.00,3.15) 0.0065 ± 0.0134 ± 0.0035 −0.0575 ± 0.0377 ± 0.0012
(7.00,8.25) (3.15,3.30) −0.0055 ± 0.0144 ± 0.0040 −0.0120 ± 0.0379 ± 0.0013
(7.00,8.25) (3.30,3.70) −0.0003 ± 0.0111 ± 0.0036 −0.0089 ± 0.0268 ± 0.0044
(7.00,8.25) (3.70,4.50) −0.0300 ± 0.0168 ± 0.0036 −0.0486 ± 0.0364 ± 0.0022
(8.25,9.50) (2.10,2.70) −0.0038 ± 0.0097 ± 0.0031 −0.0215 ± 0.0286 ± 0.0017
(8.25,9.50) (2.70,2.85) −0.0070 ± 0.0153 ± 0.0033 0.0710 ± 0.0415 ± 0.0013
(8.25,9.50) (2.85,3.00) −0.0228 ± 0.0157 ± 0.0034 0.0123 ± 0.0395 ± 0.0010
(8.25,9.50) (3.00,3.15) −0.0236 ± 0.0164 ± 0.0037 0.0747 ± 0.0411 ± 0.0023
(8.25,9.50) (3.15,3.30) −0.0252 ± 0.0182 ± 0.0042 −0.0533 ± 0.0459 ± 0.0025
(8.25,9.50) (3.30,3.70) −0.0036 ± 0.0141 ± 0.0037 0.0152 ± 0.0299 ± 0.0009
(8.25,9.50) (3.70,4.50) −0.0293 ± 0.0220 ± 0.0037 −0.0063 ± 0.0448 ± 0.0034
(9.50,10.75) (2.10,2.70) 0.0060 ± 0.0109 ± 0.0032 0.0022 ± 0.0324 ± 0.0022
(9.50,10.75) (2.70,2.85) −0.0011 ± 0.0183 ± 0.0036 0.0429 ± 0.0491 ± 0.0050
(9.50,10.75) (2.85,3.00) 0.0122 ± 0.0182 ± 0.0036 0.0513 ± 0.0509 ± 0.0021
(9.50,10.75) (3.00,3.15) 0.0067 ± 0.0204 ± 0.0037 −0.0898 ± 0.0499 ± 0.0059
(9.50,10.75) (3.15,3.30) −0.0462 ± 0.0233 ± 0.0037 −0.0220 ± 0.0494 ± 0.0034
(9.50,10.75) (3.30,3.70) −0.0290 ± 0.0181 ± 0.0037 −0.0204 ± 0.0353 ± 0.0013
(9.50,10.75) (3.70,4.50) −0.0243 ± 0.0273 ± 0.0037 −0.0849 ± 0.0509 ± 0.0026
(10.75,12.00) (2.10,2.70) 0.0191 ± 0.0128 ± 0.0032 0.0034 ± 0.0355 ± 0.0056
(10.75,12.00) (2.70,2.85) −0.0562 ± 0.0220 ± 0.0034 −0.0193 ± 0.0593 ± 0.0026
(10.75,12.00) (2.85,3.00) 0.0172 ± 0.0233 ± 0.0037 0.0198 ± 0.0628 ± 0.0066
(10.75,12.00) (3.00,3.15) −0.0080 ± 0.0262 ± 0.0044 −0.0056 ± 0.0565 ± 0.0012
(10.75,12.00) (3.15,3.30) 0.0162 ± 0.0282 ± 0.0038 −0.0638 ± 0.0582 ± 0.0040
(10.75,12.00) (3.30,3.70) −0.0393 ± 0.0233 ± 0.0037 0.0205 ± 0.0454 ± 0.0083
(10.75,12.00) (3.70,4.50) 0.0317 ± 0.0353 ± 0.0038 0.0139 ± 0.0709 ± 0.0009
(12.00,15.00) (2.10,2.70) 0.0067 ± 0.0106 ± 0.0032 −0.0364 ± 0.0278 ± 0.0010
(12.00,15.00) (2.70,2.85) −0.0232 ± 0.0195 ± 0.0035 −0.0007 ± 0.0525 ± 0.0026
(12.00,15.00) (2.85,3.00) 0.0171 ± 0.0211 ± 0.0047 0.0255 ± 0.0467 ± 0.0010
(12.00,15.00) (3.00,3.15) 0.0065 ± 0.0241 ± 0.0046 0.0080 ± 0.0521 ± 0.0017
(12.00,15.00) (3.15,3.30) −0.0101 ± 0.0273 ± 0.0038 −0.0019 ± 0.0491 ± 0.0021
(12.00,15.00) (3.30,3.70) −0.0214 ± 0.0219 ± 0.0039 −0.0526 ± 0.0373 ± 0.0045
(12.00,15.00) (3.70,4.50) −0.0511 ± 0.0340 ± 0.0038 −0.0494 ± 0.0605 ± 0.0027
(15.00,30.00) (2.10,2.70) −0.0203 ± 0.0115 ± 0.0033 0.0217 ± 0.0267 ± 0.0012
(15.00,30.00) (2.70,2.85) −0.0340 ± 0.0252 ± 0.0036 −0.0204 ± 0.0491 ± 0.0038
(15.00,30.00) (2.85,3.00) −0.0231 ± 0.0277 ± 0.0055 0.0878 ± 0.0520 ± 0.0020
(15.00,30.00) (3.00,3.15) 0.0347 ± 0.0317 ± 0.0037 0.0120 ± 0.0534 ± 0.0016
(15.00,30.00) (3.15,3.30) −0.0064 ± 0.0379 ± 0.0068 0.0153 ± 0.0626 ± 0.0025
(15.00,30.00) (3.30,3.70) −0.0221 ± 0.0311 ± 0.0042 −0.0647 ± 0.0434 ± 0.0013
(15.00,30.00) (3.70,4.50) −0.0987 ± 0.0496 ± 0.0063 0.0394 ± 0.0777 ± 0.0042

Table 8
Values of AP(B0

s ) and AP(Λ
0
b) in each kinematic bin for data collected in proton–proton collisions at centre-of-mass energy of 7 TeV. 

The first uncertainties are statistical and the second systematic.

pT [GeV/c] y AP(B0
s )

√
s=7 TeV AP(Λ

0
b)√s=7 TeV

(2.00,7.00) (2.10,3.00) 0.0166 ± 0.0632 ± 0.0125 −0.0892 ± 0.0508 ± 0.0214
(2.00,7.00) (3.00,3.30) 0.0311 ± 0.0773 ± 0.0151 0.0507 ± 0.0539 ± 0.0208
(2.00,7.00) (3.30,4.50) −0.0833 ± 0.0558 ± 0.0132 0.0849 ± 0.0401 ± 0.0188
(7.00,9.50) (2.10,3.00) 0.0364 ± 0.0479 ± 0.0068 0.1374 ± 0.0697 ± 0.0313
(7.00,9.50) (3.00,3.30) 0.0206 ± 0.0682 ± 0.0127 0.0138 ± 0.0913 ± 0.0298
(7.00,9.50) (3.30,4.50) 0.0058 ± 0.0584 ± 0.0089 0.0466 ± 0.0770 ± 0.0347
(9.50,12.00) (2.10,3.00) −0.0039 ± 0.0456 ± 0.0121 −0.0128 ± 0.0985 ± 0.0367
(9.50,12.00) (3.00,3.30) 0.1095 ± 0.0723 ± 0.0179 −0.0848 ± 0.1379 ± 0.0452
(9.50,12.00) (3.30,4.50) 0.1539 ± 0.0722 ± 0.0212 −0.1523 ± 0.1414 ± 0.0488
(12.00,30.00) (2.10,3.00) −0.0271 ± 0.0336 ± 0.0061 −0.0720 ± 0.1248 ± 0.0465
(12.00,30.00) (3.00,3.30) −0.0542 ± 0.0612 ± 0.0106 0.3291 ± 0.2299 ± 0.0918
(12.00,30.00) (3.30,4.50) −0.0586 ± 0.0648 ± 0.0150 −0.0571 ± 0.2162 ± 0.0800
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Table 9
Values of AP(B0

s ) and AP(Λ
0
b) in each kinematic bin for data collected in proton–proton collisions at centre-of-mass energy of 8 TeV. 

The first uncertainties are statistical and the second systematic.

pT [GeV/c] y AP(B0
s )

√
s=8 TeV AP(Λ

0
b)√s=8 TeV

(2.00,7.00) (2.10,3.00) 0.0412 ± 0.0416 ± 0.0150 0.0032 ± 0.0318 ± 0.0139
(2.00,7.00) (3.00,3.30) −0.0241 ± 0.0574 ± 0.0079 0.0929 ± 0.0392 ± 0.0171
(2.00,7.00) (3.30,4.50) 0.0166 ± 0.0391 ± 0.0092 0.0437 ± 0.0284 ± 0.0173
(7.00,9.50) (2.10,3.00) 0.0482 ± 0.0320 ± 0.0067 0.0069 ± 0.0434 ± 0.0169
(7.00,9.50) (3.00,3.30) 0.0983 ± 0.0470 ± 0.0155 0.0076 ± 0.0589 ± 0.0259
(7.00,9.50) (3.30,4.50) −0.0430 ± 0.0386 ± 0.0079 0.1053 ± 0.0524 ± 0.0252
(9.50,12.00) (2.10,3.00) 0.0067 ± 0.0303 ± 0.0063 −0.0512 ± 0.0594 ± 0.0215
(9.50,12.00) (3.00,3.30) −0.1283 ± 0.0503 ± 0.0171 0.2355 ± 0.0877 ± 0.0399
(9.50,12.00) (3.30,4.50) −0.0500 ± 0.0460 ± 0.0104 0.1531 ± 0.0838 ± 0.0320
(12.00,30.00) (2.10,3.00) −0.0012 ± 0.0222 ± 0.0050 0.0453 ± 0.0762 ± 0.0300
(12.00,30.00) (3.00,3.30) 0.0421 ± 0.0416 ± 0.0162 −0.0934 ± 0.1377 ± 0.0493
(12.00,30.00) (3.30,4.50) 0.0537 ± 0.0447 ± 0.0124 0.3173 ± 0.1411 ± 0.0655

Table 10
Values of the production asymmetries in bins of pT , integrated over y, for B+ and B0 mesons for data collected in 
proton–proton collisions at the centre-of-mass energy of 7 TeV. The first uncertainties are statistical and the sec-
ond systematic. The uncertainties among the bins are correlated due to the external inputs: ACP (B+ → J/ψ K +)

and AD(K 0) for AP(B+), and |q/p| for AP(B0).

pT [GeV/c] AP(B+)√s=7 TeV AP(B0)√s=7 TeV

(0.00,2.00) 0.0015 ± 0.0067 ± 0.0036 0.0215 ± 0.0297 ± 0.0025
(2.00,4.50) −0.0050 ± 0.0040 ± 0.0037 0.0123 ± 0.0163 ± 0.0078
(4.50,7.00) −0.0010 ± 0.0045 ± 0.0038 0.0124 ± 0.0150 ± 0.0042
(7.00,8.25) 0.0083 ± 0.0080 ± 0.0041 −0.0440 ± 0.0219 ± 0.0012
(8.25,9.50) −0.0078 ± 0.0096 ± 0.0039 −0.0476 ± 0.0248 ± 0.0038
(9.50,10.75) −0.0220 ± 0.0114 ± 0.0044 0.0155 ± 0.0297 ± 0.0056
(10.75,12.00) −0.0045 ± 0.0138 ± 0.0043 0.0404 ± 0.0357 ± 0.0040
(12.00,15.00) 0.0107 ± 0.0124 ± 0.0053 −0.0050 ± 0.0269 ± 0.0035
(15.00,30.00) −0.0146 ± 0.0150 ± 0.0065 0.0333 ± 0.0298 ± 0.0077

Table 11
Values of the production asymmetries in bins of y, integrated over pT, for B+ and B0 mesons for data collected in 
proton–proton collisions at the centre-of-mass energy of 7 TeV. The first uncertainties are statistical and the sec-
ond systematic. The uncertainties among the bins are correlated due to the external inputs: ACP (B+ → J/ψ K +)

and AD(K 0) for AP(B+), and |q/p| for AP(B0).

y AP(B+)√s=7 TeV AP(B0)√s=7 TeV

(2.10,2.70) 0.0007 ± 0.0047 ± 0.0036 0.0488 ± 0.0205 ± 0.0017
(2.70,2.85) −0.0131 ± 0.0064 ± 0.0036 −0.0366 ± 0.0232 ± 0.0027
(2.85,3.00) −0.0063 ± 0.0061 ± 0.0037 −0.0251 ± 0.0213 ± 0.0010
(3.00,3.15) −0.0125 ± 0.0061 ± 0.0039 −0.0478 ± 0.0203 ± 0.0017
(3.15,3.30) −0.0009 ± 0.0063 ± 0.0039 −0.0130 ± 0.0203 ± 0.0018
(3.30,3.70) −0.0060 ± 0.0044 ± 0.0043 −0.0143 ± 0.0133 ± 0.0017
(3.70,4.50) 0.0041 ± 0.0062 ± 0.0046 0.0044 ± 0.0173 ± 0.0045

Table 12
Values of the production asymmetries in bins of pT , integrated over y, for B+ and B0 mesons for data collected in 
proton–proton collisions at the centre-of-mass energy of 8 TeV. The first uncertainties are statistical and the sec-
ond systematic. The uncertainties among the bins are correlated due to the external inputs: ACP (B+ → J/ψ K +)

and AD(K 0) for AP(B+), and |q/p| for AP(B0).

pT [GeV/c] AP(B+)√s=8 TeV AP(B0)√s=8 TeV

(0.00,2.00) −0.0105 ± 0.0045 ± 0.0031 0.0065 ± 0.0230 ± 0.0017
(2.00,4.50) −0.0033 ± 0.0026 ± 0.0031 −0.0188 ± 0.0103 ± 0.0009
(4.50,7.00) −0.0093 ± 0.0029 ± 0.0032 −0.0111 ± 0.0092 ± 0.0011
(7.00,8.25) −0.0094 ± 0.0051 ± 0.0033 −0.0192 ± 0.0141 ± 0.0015
(8.25,9.50) −0.0126 ± 0.0061 ± 0.0033 0.0015 ± 0.0155 ± 0.0009
(9.50,10.75) −0.0073 ± 0.0073 ± 0.0034 −0.0156 ± 0.0177 ± 0.0013
(10.75,12.00) 0.0036 ± 0.0090 ± 0.0034 0.0017 ± 0.0210 ± 0.0027
(12.00,15.00) −0.0082 ± 0.0079 ± 0.0035 −0.0270 ± 0.0171 ± 0.0009
(15.00,30.00) −0.0251 ± 0.0095 ± 0.0040 0.0137 ± 0.0177 ± 0.0009
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Table 13
Values of the production asymmetries in bins of y, integrated over pT, for B+ and B0 mesons for data collected in 
proton–proton collisions at the centre-of-mass energy of 8 TeV. The first uncertainties are statistical and the sec-
ond systematic. The uncertainties among the bins are correlated due to the external inputs: ACP (B+ → J/ψ K +)

and AD(K 0) for AP(B+), and |q/p| for AP(B0).

y AP(B+)√s=8 TeV AP(B0)√s=8 TeV

(2.10,2.70) −0.0023 ± 0.0029 ± 0.0031 −0.0082 ± 0.0128 ± 0.0012
(2.70,2.85) −0.0080 ± 0.0041 ± 0.0031 −0.0237 ± 0.0173 ± 0.0009
(2.85,3.00) 0.0003 ± 0.0040 ± 0.0032 0.0148 ± 0.0159 ± 0.0015
(3.00,3.15) −0.0038 ± 0.0040 ± 0.0032 −0.0140 ± 0.0151 ± 0.0009
(3.15,3.30) −0.0123 ± 0.0042 ± 0.0034 −0.0193 ± 0.0158 ± 0.0021
(3.30,3.70) −0.0138 ± 0.0030 ± 0.0034 −0.0029 ± 0.0103 ± 0.0010
(3.70,4.50) −0.0144 ± 0.0042 ± 0.0037 −0.0201 ± 0.0137 ± 0.0010

Table 14
Values of the production asymmetries in bins of pT , integrated over y, for the B0

s meson and the Λ0
b baryon 

for data collected in proton–proton collisions at the centre-of-mass energy of 7 TeV. The first uncertainties are 
statistical and the second systematic. The uncertainties among the bins are correlated due to the external inputs: 
ACP (B+ → J/ψ K +), AD(K 0), |q/p|B0 and |q/p|B0

s
for AP(Λ

0
b), and |q/p|B0

s
for AP(B0

s ).

pT [GeV/c] AP(B0
s )

√
s=7 TeV AP(Λ

0
b)√s=7 TeV

(2.0,7.0) −0.0166 ± 0.0393 ± 0.0082 −0.0130 ± 0.0311 ± 0.0133
(7.0,9.5) 0.0247 ± 0.0334 ± 0.0050 0.0948 ± 0.0476 ± 0.0211
(9.5,12.0) 0.0566 ± 0.0349 ± 0.0096 −0.0596 ± 0.0722 ± 0.0262
(12.0,30.0) −0.0382 ± 0.0273 ± 0.0054 −0.0146 ± 0.0985 ± 0.0369

Table 15
Values of the production asymmetries in bins of y, integrated over pT, for the B0

s meson and the Λ0
b baryon 

for data collected in proton–proton collisions at the centre-of-mass energy of 7 TeV. The first uncertainties are 
statistical and the second systematic. The uncertainties among the bins are correlated due to the external inputs: 
ACP (B+ → J/ψ K +), AD(K 0), |q/p|B0 and |q/p|B0

s
for AP(Λ

0
b), and |q/p|B0

s
for AP(B0

s ).

y AP(B0
s )

√
s=7 TeV AP(Λ

0
b)√s=7 TeV

(2.1,3.0) 0.0151 ± 0.0445 ± 0.0088 −0.0511 ± 0.0399 ± 0.0168
(3.0,3.3) 0.0296 ± 0.0566 ± 0.0111 0.0514 ± 0.0448 ± 0.0171
(3.3,4.5) −0.0554 ± 0.0432 ± 0.0101 0.0638 ± 0.0348 ± 0.0160

Table 16
Values of the production asymmetries in bins of pT , integrated over y, for the B0

s meson and the Λ0
b baryon 

for data collected in proton–proton collisions at the centre-of-mass energy of 8 TeV. The first uncertainties are 
statistical and the second systematic. The uncertainties among the bins are correlated, due to the external inputs: 
ACP (B+ → J/ψ K +), AD(K 0), |q/p|B0 and |q/p|B0

s
, for AP(Λ

0
b) and |q/p|B0

s
for AP(B0

s ).

pT [GeV/c] AP(B0
s )

√
s=8 TeV AP(Λ

0
b)√s=8 TeV

(2.0,7.0) 0.0235 ± 0.0264 ± 0.0083 0.0292 ± 0.0200 ± 0.0096
(7.0,9.5) 0.0257 ± 0.0223 ± 0.0049 0.0367 ± 0.0302 ± 0.0127
(9.5,12.0) −0.0286 ± 0.0230 ± 0.0053 0.0442 ± 0.0437 ± 0.0164
(12.0,30.0) 0.0187 ± 0.0186 ± 0.0049 0.0902 ± 0.0612 ± 0.0253

Table 17
Values of the production asymmetries in bins of y, integrated over pT, for the B0

s meson and the Λ0
b baryon 

for data collected in proton–proton collisions at the centre-of-mass energy of 8 TeV. The first uncertainties are 
statistical and the second systematic. The uncertainties among the bins are correlated, due to the external inputs: 
ACP (B+ → J/ψ K +), AD(K 0), |q/p|B0 and |q/p|B0

s
, for AP(Λ

0
b) and |q/p|B0

s
for AP(B0

s ).

y AP(B0
s )

√
s=8 TeV AP(Λ

0
b)√s=8 TeV

(2.1,3.0) 0.0364 ± 0.0290 ± 0.0103 0.0028 ± 0.0247 ± 0.0107
(3.0,3.3) −0.0078 ± 0.0413 ± 0.0063 0.0792 ± 0.0317 ± 0.0138
(3.3,4.5) 0.0055 ± 0.0298 ± 0.0070 0.0682 ± 0.0242 ± 0.0142
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