

INSTR 17 - Novosibirsk Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid Argon Calorimeters

Bernard DINKESPILER

(Aix Marseille Univ, CNRS/IN2P3,CPPM,Marseille France) on behalf of the ATLAS Liquid Argon Calorimeter group

The ATLAS detector

2

- Multi purpose detector
- Trigger based
- 88 M readout channels
 - * Pixels: 80.4 M
 - ✤ SCT: 6.3 M
 - ✤ Lar : 0.2 M
 - ✤ Muon : 1 M
- Dimensions
 - 44 m x 25 m
 7000 tons

LHC schedule

3

Δ

The Liquid Argon Calorimeters

- ~ 200 k detector cells
- Energy reconstructed by pulse shaping and sampling
- Absorber : Lead/copper/tungsten

Active: Liquid Ar

- 4 layers, different spatial resolution
- Connected to the Level-1 Trigger system
- 40 MHz sampling rate

The current electronics

PHASE – II upgrade

Regular Readout

- Amplification
- Shaping
- Analog pipeline
- Digitization upon L1 trigger (<100kHz)
- Data transmission (optical link)
- Trigger readout
- Summing signals on Layer Sum Boards
- Tower Builder boards sum analog
 Layer Sum Board signals in Trigger
 Tower to L1 calo

1600 Front End boards - 200 Readout Driver boards 5

Phase – I upgrade

 $\Delta \eta \mathbf{x} \Delta \phi = 0.025 \mathbf{x} 0.1$

- Phase 1 upgrade : concerns only the trigger path
- Current concept \rightarrow Trigger Tower: Transverse Energy (Et) summed over an area $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- New concept
 Super Cell.
 Finer layer segmentation down to
 Keep layer information
- Typically one Trigger Tower ~ 60 standards cells ~ 10 Super Cell
- Super Cell signals are digitized on the new LTDB boards → Lar Trigger Digitizer Boards

□ HIGHER GRANULARITY NEEDED TO KEEP THE SAME TRIGGER LEVEL DESPITE LUMINOSITY/PILE-UP INCREASE

70 Gev electron shower seen into only one Trigger Tower

70 Gev electron shower seen into multiple Super Cells

Phase – I electronics upgrade

- Trigger data flow becomes digital at Front-End level
- Front-End upgrade ON-DETECTOR
 - Layer Sum Board (LSB): perform analog sums for super cells **
 - **Backplane update: keeps compatibility with existing setup**
 - Lar Trigger Digitizer Boards (LTDB):
 - ✓ Super Cell signals are digitized @40 MHz ,
 - ✓ generate analog sums for compatibility with current system
 - ✓ send data to LDPB via optical links @ 5.12 Gbps
- **Back-End upgrade OFF-DETECTOR**
 - Lar Digital Processing Blade (LDPB)
 - ✓ Reconstruct the Super Cells transverse Energy
 - ✓ Sends the results to L1 Calo system @ 11.2 Gbps

Front-End upgrade

- An LTDB board processes 320 Super Cells → 124 LTDBs cover the 34 k Super Cells
- Radiation tolerant ASICs

LTDB Block Diagram

Front-End upgrade LTDB - NEVIS ADC

-

- 40 Msps
- ENOB 11 bits

QUAD channel

- Dynamic range Typically 11.8 bits
- < 50 mW/channel</p>
- 112.5 ns latency

Global Foundry 8RF (130 nm CMOS)

Front-End upgrade LTDB - NEVIS ADC – radiation tolerance

Table 1: Measurements of ADC performance before and immediately after irradiation in a 227 MeV proton beam at $f_{in} = 10$ MHz. The change in the ENOB is within the measurement errors of the testing setup.

Chip No.	Dose	SNDR [dBc]	SFDR [dBc]	ENOB
	[MRad]	Pre/Post-Irradiation	Pre/Post-Irradiation	Pre/Post-Irradiation
1	2	62.43 / 61.05	67.27 / 70.06	10.08 / 9.85
2	1	$63.54 \ / \ 62.36$	70.92 / 72.98	$10.26 \ / \ 10.10$

TOTAL DOSE

1 Mrad is 10 times the dose expected in 4000 fb-1

Table 2: Measurements of ADC SEE performance in a 227 MeV proton beam.

Chip No.	Rate	Dose	SEFI	SEU	SEU	SEE	Cross section (w/analog errors)
	$[10^8 \text{proton/cm}^2/\text{s}]$	[kRad]		(analog)	(digital)		$[10^{-12} \text{ cm}^2]$
3	19.0	101	0	8	1	12	$0.6~(5.1\pm1.8)$
3	76.0	283	0	41	2	43	$0.6~(9.8\pm1.5)$
4	18.6	203	1	10	0	11	$0.3~(3.5\pm1.1)$

10

SEE

Front-End upgrade LTDB - LOCx2

- DUAL 8 x 14 bits serializer
- 5.12 Gbps outputs
- Nevis ADC compatible
- Radiation tolerant
- 1 W
- Fixed Latency < 75 ns

6.036 x 3.68 mm 100 pins QFN

Silana Foundry

250 nm Silicon-on-Sapphire

Front-End upgrade LTDB - LOCx2 - tests - radiation tolerance

- Eye Diagram 5.12 Gbps
- 2 Channels chip soldered on PCB
- Total jitter ~ 50 ps (loop filter = 800 kHz)

- Eye Diagram after 182 krad TID
- Low or high dose rate (3krad/hr or 30 krad/h)

Front-End upgrade LTDB – LOCID – tests – radiation tolerance

- Dual channel VCSEL driver
- Radiation tolerant
- Die size: 2.114 x 1.090 mm
- 40 pins QFN

- No eye diagram change after 200 krad
- 2 channels shifted for display clarity
- Current change after irradiation < 10%

Back-End upgrade

LDPS Block Diagram

Back-End upgrade Lar Digital Processing System

- LTDB : Processing Boards
 - ***** A Carrier board
 - 4 AMC mezzanine boards
 - 192 input fibres @ 5.12 Gbps
 - * 192 output fibres @ 11.2 Gbps
 - Most recent FPGAs

Total of 31 Processing Blades in 3 ATCA crates

Back-End upgrade LDPB Carrier Board

Back-End upgrade LATOME- AMC board

- Main DATA path
 - Receives Super Cells DATA from LTDB @5.12 Gbps on up to 48 optical links
 - ✤ Computes Super Cells transverse energy (ET) using optimal filter
 - Builds trigger tower transverse energy
 - Sends trigger tower data @11.2 Gbps on up to 48 optical links
 - Sends Super Cell data to DAQ on L1A
- Receives Timing Trigger & Control clock (TTC) and data from the Carrier board
- Monitors data and sends report to TDAQ system upon request on 10 GbE network
- System has fixed latency less than 375 ns (15 BC)

Back-End upgrade LDPB LATOME - Hardware

< 80 W

8 Avago uPODS (8 x 12 optical links)

Back-End upgrade LDPB LATOME_test Board

- Dedicated test tool
 - Test the AMC boards

***** « Swiss knife » for various tests

Back-End upgrade LDPB LATOME - Firmware

- Input stage aligns all inputs to the same BCID
- Configurable remapping: reorders input data according to detector's topology
- User Code: computes Et and time using Finite Impulse Response filter (FIR)
- Output summing: builds trigger tower energies

Back-End upgrade LDPB LATOME - Firmware

- Huge effort → 7 INSTITUTES
- Most of the code has been written and simulated
- Partial validation on :

ARRIA 10 dev-kit ALTERA

LATOME Board

• Extensive System tests with Carrier boards and LATOME boards in Q1 2017 @ CERN

Back-End upgrade LDPB LATOME – System Test

- Connect to the real environment @ CERN
 - *** TTC**
 - ATLAS Network
 - Development PCs
- First system test in march 2017
 - Checks simple configuration
- More system tests in Q2 2017
 - Until fully functional
- Production Readines Review
 - Carrier boards and LATOMEs in 2017

The Demonstrator

What are we doing while the upgrade is being produced ?

The Demonstrator - Motivation

- Reads data from Super Cells
- Validates Energy reconstruction and bunch crossing identification
- Measures trigger efficiency and jet background rejection
- Gain experience in installation and operation of such equipment in the ATLAS environment

The Demonstrator - LTDB

✤ 284 SCs in EM Barrel

- Super Cells digitized with 12 bit ADCs @40 MHz
 - Commercial COTS TI ADS5272 not radiation tolerant
- Multiplexing 8 SC on one optical link @ 4.8 Gbps
- Throughput = 200 Gbps/LTDB
- Status
 - 2 LTDBs demonstrators with different Architectures installed in August 2014
 - Taking collision data in LHC run 2

Analog MB

digital mezzanines

Digital MB			
+			
analog mezzanines			

The Demonstrator – LDPB - ABBA

FPGAs

- ATCA board: 3 ALTERA FPGAs (Stratix IV)
- Receives up to 320 Super Cell data from one LTDB
 48 optical links @ 4.8 Gbps
- Stores Super Cells data in a circular buffer
 Latency up to 2.5 us
- Waits for TTC trigger to readout Super Cells
 Readout with filtered Level-1 trigger
- Readout through 10 GbE Ethernet network
 Readout with ATCA fabric interface
- Status
 - ABBA boards installed
 - Online software developped
 - Performs as expected

Optical links

The Demonstrator - results

□ in calibration:

- electronic pulses sent by calibration board
- □ in collisions (proton-proton and heavy ion):
 - collect data triggered in Demonstrator region
 - > special L1Topo trigger item
 - compare Demonstrator readout and ATLAS main readout
 - Total noise on main readout of calorimeters cells of demonstrator (IO6) ~ neighboring crates

plan for early 2018 to have final prototype installed and running in end of Run 2

Conclusion

- The ATLAS Lar calorimeter electronics will be upgraded after Long Shutdown 2 (2019-220)
- The trigger path will be digitized at Front-End level with an improved granularity
- Both Front-End and Back-End electronics will be new
- This huge effort involves the design of :
 - radiation tolerant ASICs (FE)
 - Most recent and powerful FPGA systems (BE)
- A demonstrator system has been installed in 2014 on a front-end crate
 - Works without disturbing the current system
 - All the results validate the concept of this upgrade
- LTDB and LDPS systems are being developped and tested
 - Production will start in 2017 2018
- Phase-I upgrade will be followed by Phase-II (installation in 2024-2026) → Gustaaf BROOIJMANS talk