
J
H
E
P
0
3
(
2
0
1
7
)
0
2
2

Published for SISSA by Springer

Received: December 22, 2016

Revised: February 1, 2017

Accepted: February 14, 2017

Published: March 6, 2017

Dichroic subjettiness ratios to distinguish colour flows

in boosted boson tagging

Gavin P. Salam,a,1 Lais Schunkb and Gregory Soyezb

aCERN, Theoretical Physics Department,

CH-1211, Geneva 23, Switzerland
bIPhT, CEA Saclay, CNRS UMR 3681,

F-91191 Gif-sur-Yvette cedex, France

E-mail: gavin.salam@cern.ch, lais.sarem-schunk@cea.fr,

gregory.soyez@cea.fr

Abstract: N -subjettiness ratios are in wide use for tagging heavy boosted objects, in par-

ticular the ratio of 2-subjettiness to 1-subjettiness for tagging boosted electroweak bosons.

In this article we introduce a new, dichroic ratio, which uses different regions of a jet

to determine the two subjettiness measures, emphasising the hard substructure for the

1-subjettiness and the full colour radiation pattern for the 2-subjettiness. Relative to exist-

ing N -subjettiness ratios, the dichroic extension, combined with SoftDrop (pre-)grooming,

makes it possible to increase the ultimate signal significance by about 25% (for 2 TeV jets),

or to reduce non-perturbative effects by a factor of 2−3 at 50% signal efficiency while main-

taining comparable background rejection. We motivate the dichroic approach through the

study of Lund diagrams, supplemented with resummed analytical calculations.

Keywords: Jets, QCD Phenomenology

ArXiv ePrint: 1612.03917

1On leave from CNRS, UMR 7589, LPTHE, F-75005, Paris, France.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2017)022

mailto:gavin.salam@cern.ch
mailto:lais.sarem-schunk@cea.fr
mailto:gregory.soyez@cea.fr
https://arxiv.org/abs/1612.03917
http://dx.doi.org/10.1007/JHEP03(2017)022


J
H
E
P
0
3
(
2
0
1
7
)
0
2
2

Contents

1 Introduction 1

2 Setup and useful tools for discussion 2

2.1 A tagger, a groomer and a jet shape 3

2.2 A useful graphical representation 4

2.3 Radiation constraints (N -subjettiness) 7

3 Dichroic subjettiness ratios 8

3.1 Combining mMDT/SD with N -subjettiness 8

3.2 Dichroic subjettiness with SoftDrop (pre-)grooming 12

4 Performance in Monte-Carlo simulations 14

4.1 N -subjettiness and mass distributions with various τ21 ratios (βτ = 2) 14

4.2 Signal v. background discrimination and other performance measures 16

4.3 Brief comparison with other tools 20

5 Brief analytic calculations 22

6 Conclusion 28

A Dichroic subjettiness ratios for βτ = 1 29

B Explicit expressions for the analytic results 31

C Example code for dichroic subjettiness ratios 31

1 Introduction

With the increasingly high-energy scales probed by the Large Hadron Collider (LHC), mas-

sive electroweak bosons (H/Z/W ) and top quarks are often produced with a transverse

momentum much larger than their mass. In this boosted regime, when they decay hadron-

ically, they are reconstructed as single jets that have to be separated from the much more

common quark- and gluon-initiated jets. Over the past few years, several techniques rely-

ing on jet substructure, i.e. on the internal dynamical properties of jets, have been devised

in order to achieve this task. These techniques are now routinely used in LHC analyses

and new-physics searches.

There are three common families of methods used to separate boosted heavy objects

from standard QCD jets: (i) taggers, which impose that a jet contain two hard cores (or

three for a top-quark), a situation more common in signal jets than in QCD jets which are

dominated by soft-gluon radiation; an increasingly widespread technique for tagging is the

modified MassDrop tagger (mMDT) [1, 2] and its generalisation, SoftDrop [3], which will
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be our chosen tools here; (ii) radiation constraints, which constrain soft-gluon radiation

inside jets, expected to be larger in QCD jets than in colourless weak-boson decays; a

widespread way of applying radiation constraints is to cut on jet shapes, for example the

ratio of τ2/τ1, where τN is the N -subjettiness [4–6]. (iii) groomers, which clean the fat jets

of soft-and-large-angle radiation, often dominated by the Underlying Event and pileup,

hence ensuring a better mass resolution.

To reach a large discriminating power, it is helpful to combine several of these tech-

niques. Since taggers and groomers share many similarities, one often starts by applying

a tagger/groomer and then imposes a cut on the value of a jet shape computed on that

tagged/groomed jet. Finally, one selects jets with a (tagged or groomed) mass close-enough

to the weak boson mass.

In this paper, we introduce the concept of “dichroic” subjettiness ratios for apply-

ing radiation constraints. Starting from an object in which two hard prongs have been

identified (“tagged”), the dichroic variant of subjettiness differs from standard subjettiness

ratios because it uses different (sub)jets for the numerator and denominator of the τ2/τ1

ratio. These two (sub)jets will generally overlap and correspond to different degrees of

tagging/grooming. The reason for calling this “dichroic” is that the radiation patterns in

the two different (sub)jets are driven by distinct colour flows.1 In particular we will use a

large jet for calculating τ2 and a smaller, tagged subjet for τ1. Calculating τ2 on the large

jet provides substantial sensitivity to the different colour structures of signal (colour singlet

when viewed at large angles) and background (colour triplet for a quark-jet or octet for a

gluon-jet). Calculating τ1 on the tagged subjet ensures that it is not substantially affected

by the overall colour flow of the large jet, but rather is governed essentially by the invariant

mass of the two-prong structure found by the tagger. The resulting dichroic τ2/τ1 ratio

gives enhanced performance compared to existing uses of N -subjettiness, which adopt the

same (sub)jet for numerator and denominator (see e.g. [7–11] for recent examples).

Performance of radiation-based discrimination involves two criteria: the ability to dis-

tinguish signals from backgrounds and the robustness of that discrimination, notably its

insensitivity to non-perturbative effects. As discussed already in [12], these two criteria

are often in tension, because the region of large-angle soft kinematics on one hand pro-

vides substantial discrimination power, but is also the region where the Underlying Event

and hadronisation have the largest impact. A point central in our discussion will be the

trade-off between these aspects. To reduce the tension between discrimination power and

perturbative robustness we will show how the dichroic subjettiness ratio can be used in

combination not just with tagging but also a separate (pre-)grooming step.

2 Setup and useful tools for discussion

Before introducing the dichroic tools in section 3, let us first discuss the individual building

blocks used in our new combination and introduce a simple framework to facilitate the

discussion of the underlying physics and expected performance.

1By “colour flow” we mean the flow of colour between two partons in leading-colour sense; this may be

the flow of colour from initial to final-state partons, or between two initial or final-state partons.
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2.1 A tagger, a groomer and a jet shape

We will concentrate on the modified MassDrop tagger, used here as a tagger, N -subjettiness

as a radiation-constraining jet shape, and SoftDrop as a groomer.2 These are all common

choices in the literature, but we believe that our generic strategy can be extended to other

combinations if needed. To ease the physics discussion below, let us briefly recall how these

methods are defined.

The modified MassDrop tagger and SoftDrop both start by reclustering the jet with the

Cambridge/Aachen algorithm. They then recursively undo the last step of the clustering,

splitting the current jet j into two subjets j1 and j2. The procedures then stop if the

splitting is symmetric enough, i.e. if

z > zcut

(
θ12

R

)β
, z ≡ min(pt1, pt2)

pt1 + pt2
, (2.1)

with pti the transverse momentum of the subjet ji, θ12 their angular separation in the

rapidity-azimuthal angle plane and R the jet radius. If the symmetry condition eq. (2.1)

is not met, the procedure is recursively applied to the subjet with the largest pt. Eq. (2.1)

with β = 0 corresponds to the mMDT,3 while SD generalises it to the case of β 6= 0. Note

that to some extent mMDT and SD have both tagging and grooming properties. When

we use mMDT and SD together, the zcut parameter of SD will be renamed ζcut in order to

avoid confusion.

N -subjettiness is defined (in the unnormalised version we use here) as follows: for a

given jet, one finds a set of N axes a1, . . . , aN (see below) and introduces

τ
(βτ )
N =

∑
i∈jet

pti min
(
θβτia1 , . . . , θ

βτ
iaN

)
, (2.2)

where the sum runs over all the constituents of the jet, of momentum pti and with an angular

distance θiaj =
√

∆y2
iaj

+ ∆φ2
iaj

to the axis aj ; βτ is a free parameter and in what follows

we will concentrate on the case βτ = 2. This specific choice has shown good performance

in Monte-Carlo numerical simulations and considerably simplifies the physical discussions

below. However, the techniques introduced in this paper straightforwardly apply to other

values of βτ , including the frequent experimental choice βτ = 1, and we will comment on

this in section 4.3 and appendix A.

We still need to specify how to choose the N -subjettiness axes. In practice, there

are several methods that one can use. Common choices include using exclusive kt axes

or using “minimal” axes, i.e. use the set of axes that minimise the τN . We will instead

consider the case of exclusive axes obtained by declustering the result of a generalised-kt

2The distinction between a “tagger” and a “groomer” is often thin. Here tools which are meant to

find a multi-prong structure in boosted jets are referred to as taggers, while tools which clean the jet of

soft-and-large angle (mostly non-perturbative) radiation are called groomers. In other words, a tagger can

fail (for objects with no hard substructure) while a groomer will always return a valid groomed jet (possibly

with a single constituent).
3Throughout this paper, we assume that the µ parameter of the mMDT is set to 1. Choosing a small

value for µ would have an effect similar to that of a (recursive) N -subjettiness cut, as discussed in [12].
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Figure 1. Lund diagram representing the

phasespace available for an emission from the

jet initial parton at an angle θ and carrying a

momentum fraction z. The diagram shows a

given emission (the solid dot) as well as lines

with the same momentum fraction, kt and

mass scales.
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with p = 1/2 [13, 14]. The motivation behind this choice has been explained in [12] (see

also [15, 16]) and is related to the fact that, since it preserves the ordering in mass, it

produces results very close to the much more complex minimal axes.4

Since weak bosons radiate less than QCD jets, the ratio τ21 = τ2/τ1 is expected to

be smaller for weak bosons and one imposes a cut τ21 < τcut as a radiation constraint to

distinguish weak bosons from the QCD background.

2.2 A useful graphical representation

To guide our discussion, it is helpful to consider the available phasespace for radiation inside

a (QCD) jet in the soft-and-collinear limit and see how the various methods under con-

sideration constrain that phasespace. This is conveniently done using Lund diagrams [20].

Consider an emission at an angle θ from the jet axis, carrying a fraction z of the transverse

momentum of the parent parton. Lund diagrams represent the two-dimensional phases-

pace for emissions using the angle, or more precisely log(1/θ), on the horizontal axis, and

the relative transverse momentum, log(kt/pt,jet) = log(zθ), on the vertical axis. As shown

in figure 1, a line of constant momentum fraction z corresponds to a diagonal line with

log(kt) = constant − log(1/θ) and a line of a given mass, m2 ∼ zθ2 in the soft and small-

angle approximation, corresponds to a diagonal line with log(kt) = constant + log(1/θ).

In the soft-and-collinear approximation, sufficient for the following discussion, each

emission comes with a weight

d2ω =
2αs(kt)CR

π
d log(1/θ) d log(kt) , (2.3)

4For a generic βτ , one could use the generalised-kt algorithm with p = 1/βτ , using the winner-takes-all

(WTA) recombination scheme [17–19] for βτ ≤ 1 to avoid inconvenient recoil effects.
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Figure 2. Lund diagram representation for the phasespace regions relevant to the full jet mass

(left) and the mMDT mass (right). The solid black point corresponds to the emission dominating

the jet mass and can be anywhere along the solid red line. It gives the prefactor in the jet mass

distribution. The shaded red area corresponds to the vetoed region yielding the Sudakov exponent.

with CR the colour factor of the parton initiating the jet, i.e. CF = 4/3 or CA = 3

respectively for quark and gluon jets. The strong coupling constant, αs, is evaluated at

a scale equal to the transverse momentum of the emission relative to its emitter. Apart

from running-coupling effects and subleading corrections in the hard-collinear and soft-

large-angle regions, this weight is uniform over the Lund plane.

In the leading logarithmic approximation, the radiation in a jet is a superposition of

independent and strongly-ordered (primary) emissions in that plane, as well as secondary

emissions emitted from the primary emissions and which can be represented as extra Lund

triangles (leaves) originating from each of the primary emissions, tertiary emissions emitted

from secondary ones, etc. . . Leaves will be discussed in more detail below.

To illustrate how one can use this pictorial representation to discuss physics processes,

let us consider the case of the (full) jet mass distribution m2/σdσ/dm2. The corresponding

Lund diagram is represented in the left panel of figure 2. One first needs an emission

that provides the dominant contribution to the mass of the jet, i.e. an emission such that

m2 = zθ2p2
t or such that zθ2 = ρ = (m/ptR)2, where we have conveniently normalised

the angles in units of the jet radius R and introduced the dimensionless (squared) mass ρ

instead of m2. For simplicity, we shall assume a jet radius of R = 1 from now on. The

integrated weight for emissions that generate a (normalised) jet mass equal to ρ is5

R′full(ρ) =

∫
d2ω ρδ(zθ2 − ρ)

f.c.
=
αsCR
π

log(1/ρ), (2.4)

5The R use below in weights and Sudakov factors stands for “Radiator” and is not to be confused with

the jet radius.
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where for the last equality we have illustrated the structure of the answer in a fixed coupling

approximation, as indicated by the superscript “f.c.”. Modulo corrections induced by

the running of the strong coupling, the logarithmic behaviour basically comes from the

integration over the solid line of equal mass in the Lund representation.

We also need to impose that no emissions occur at larger mass. This induces a Sudakov

suppression exp[−Rfull(ρ)] where6

Rfull(ρ) =

∫
d2ωΘ(zθ2 > ρ)

f.c.
=
αsCR

2π
log2(1/ρ). (2.5)

The double-logarithmic behaviour corresponds to the shaded area in the Lund diagram.

Note that R′full(ρ) defined in eq. (2.4) is the derivative of Rfull(ρ) with respect to log(1/ρ).

In the end, the leading-logarithmic (LL) result for the cross-section can be written as

ρ

σ

dσ

dρ

∣∣∣∣
full

= R′full(ρ) e−Rfull(ρ). (2.6)

This expression has a simple graphical representation: a prefactor corresponding to the

emission setting the mass, the solid line in the Lund diagram, and a Sudakov suppression

for larger masses, the shaded area in the Lund diagram.

Let us now consider the jet mass distribution after the application of the mMDT.

This is represented in the right panel of figure 2. In this case [2], emissions with z < zcut

are discarded by the mMDT recursive procedure,7 so that both the prefactor R′mMDT for

having an emission setting the jet mass and the Sudakov exponent RmMDT are restricted

to z > zcut and we have (assuming ρ� zcut � 1),8

ρ

σ

dσ

dρ

∣∣∣∣
mMDT

= R′mMDT(ρ) e−RmMDT(ρ), (2.7a)

R′mMDT(ρ) =

∫
d2ω ρδ(zθ2 − ρ)Θ(z > zcut)

f.c.
=
αsCR
π

log(1/zcut), (2.7b)

RmMDT(ρ) =

∫
d2ωΘ(zθ2 > ρ)Θ(z > zcut)

f.c.
=
αsCR
π

[
log(ρ) log(zcut)−

1

2
log2(zcut)

]
.

(2.7c)

Compared to the full mass result, eq. (2.6), the prefactor is smaller but the Sudakov

suppression is also less important. In practice, we will therefore have a suppression of

the QCD background at intermediate masses but an increase at very small masses. More

generally, we see that in order to have a large suppression of the QCD background, we

want a method that keeps the prefactor small but gives a large Sudakov suppression. This

will be a key element of our dichroic approach.

6Technically, the exponential comes from the fact that, in the region zθ2 > ρ, real emissions are vetoed

while virtual contributions are present.
7Strictly speaking, only emissions with z < zcut and at an angle larger than the first emission with

z > zcut will be discarded. This has no impact on the discussion of the jet mass since the difference

only introduces a subleading correction. Subleading corrections to the mMDT/SD mass distribution are

discussed in ref. [21].
8The assumption zcut � 1 could be lifted (see e.g. ref. [2]). We keep it here mostly for simplicity and to

match the double-logarithmic accuracy assumed in our discussion based on Lund diagrams.
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Next, we consider the signal (electroweak boson) jets in the context of Lund diagrams.

For, say, a W boson, the original splitting, W → qq̄ occurs on a line of constant mass

m = mW and, since the corresponding splitting function does not have a 1/z divergence

at small z, this splitting will be concentrated close to the large-z end of that constant-

mass line, with the small-z tail exponentially suppressed (in our logarithmic choice of

axes). As a direct consequence, no emissions are possible at larger mass and there will

not be any Sudakov factor for that region. For simplicity in our discussion below, we will

assume a constant splitting function in z, which would be the case e.g. for a Higgs boson

or an unpolarised W boson. For an mMDT zcut condition, this yields a signal efficiency

of 1 − 2zcut. Subsequent emissions from the original qq̄ pair will happen as if they were

secondary emissions from these two quarks, i.e. essentially in two separate Lund planes

each of them restricted to angles smaller than the separation θqq̄ between the two quarks,

because of angular ordering. One of those Lund planes (that for the softer of the qq̄ pair)

will be represented as a leaf, cf. figure 3.

Now that we have discussed how mass distribution and radiation constraints are rep-

resented in terms of Lund diagrams, we will use Lund diagrams to discuss more complex

substructure methods, leaving corresponding analytic expressions to section 5.

2.3 Radiation constraints (N-subjettiness)

Let us now examine how a cut on N -subjettiness on the full jet affects the pattern of

allowed radiation. Our discussion will be in a context where the full jet has a specified

mass, denoted through ρ. The constraints imposed by a cut on the N -subjettiness ratio τ21

can then again be presented quite straightforwardly in terms of Lund diagrams, at least in

the small τ21 limit, which is what we will consider in our discussion.

Say that we have a first emission with an angle θ1 and momentum fraction z1 that

dominates the jet mass, ρ = z1θ
2
1. It can be shown [12] that, in our leading-logarithmic ap-

proximation, τN (with βτ = 2) will be dominated by the N th largest zθ2. We therefore have

τ1 ≡ ρ and imposing a cut τ21 < τcut is equivalent to vetoing emissions down to a “mass-

like scale” zθ2 = ρτcut, for both primary and secondary emissions. This is represented in

figure 3 for QCD and signal jets, where the extra constraint on N -subjettiness corresponds

to an extra Sudakov factor represented by the blue shaded region. In the background

case, the leaf that emerges from the plane corresponds to a region of secondary emissions,

while in the signal it corresponds to the region of emissions from the softer of the qq̄ pair.

Assuming a background mainly consisting of quark jets, the main parts of the plane in the

two figures are both associated with a CF colour factor, while the leaf in the background

case is associated with a CA colour factor, in contrast with the CF factor for the signal,

and correspondingly represented with a darker shade of blue.

We see that we now have a Sudakov suppression for both the signal and the QCD back-

ground. Since the vetoed area is larger for the background than for the signal, the former

is more suppressed than the latter, implying a gain in discriminating power. Furthermore,

since, for a given τcut, the vetoed area increases when ρ gets smaller, the discriminating

power will also be larger for more boosted jets.
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Figure 3. Lund diagram for QCD background jets (left) and signal jets (right) corresponding

to the requirement of a given full jet mass with a cut on the N -subjettiness ratio τ21. The red

shaded region (present only in the background case) corresponds to the Sudakov vetoed region for

the mass, as in figure 2, together with the prefactor for having an emission on the solid red line.

The blue shaded region corresponds to the additional veto coming from the cut on N -subjettiness.

The dashed/dotted red line for the signal case represents the fact that, for signal jets, small-z

configurations are exponentially suppressed. The region that emerges from the plane is referred to

as a “leaf” and in the left-hand diagram represents secondary emissions from emission 1, while in

the right-hand diagram it represents emissions from the softer of the two prongs of the decay.

3 Dichroic subjettiness ratios

3.1 Combining mMDT/SD with N-subjettiness

We can now present the main proposal of this paper concerning the dichroic combination of

a tagger with a radiation constraint. The discussion below assumes that we use SoftDrop

or the modified MassDrop tagger as our tagger and a cut on τ21 as a radiation constraint,

but we believe that the core argument can also be applied to other shapes, for example to

energy correlation functions [22–24].

Let us consider a high-pt large-radius (R ' 1) jet on which we have applied an mMDT

(or SD) tagger. The original large-radius jet will be called the full jet. The part of the

jet that remains after the mMDT/SD tagging procedure will be called the tagged jet, and

has an angular size comparable to the angle between the two hard prongs identified by the

tagger. The N -subjettiness variables τ1 and τ2 can be evaluated either on the full or the

tagged jet and there are three combinations of interest:

τ tagged
21 ≡ τ tagged

2

τ tagged
1

, (3.1a)

τ full
21 ≡ τ full

2

τ full
1

, (3.1b)

τdichroic
21 ≡ τ full

2

τ tagged
1

. (3.1c)

– 8 –



J
H
E
P
0
3
(
2
0
1
7
)
0
2
2

The first two options are currently widely used in the literature (see e.g. [7–11] for recent

examples). The third, “dichroic”, option is a new combination, and is the subject of

this paper.9

To understand how these different variants work, we will take two approaches. First we

will consider what values of τ21 arise for different kinematic configurations involving three

particles in the jet, i.e. two emissions in the case of QCD jets, and the original two prongs

plus one additional emission in the case of signal jets. Then we will use this information

to understand how a cut on τ21 constrains the radiation inside the jet.

During this discussion it will be useful to keep in mind the core difference between

signal and background jets. In the case of the background jets, the whole Lund plane

and the leaf can contain emissions, as shown in figure 3(left). In the case of signal jets,

emissions are mostly limited to the region shown in blue in figure 3(right), i.e. at angles

smaller than the decay opening angle and transverse momenta smaller than the mass. The

leaves in the two cases have different colour factors, however we will neglect this aspect in

our discussion.10 Rather we will concentrate on the differences that arise at large angle, i.e.

from the different coherent radiation patterns of coloured versus net colour-neutral objects.

We consider the situation where, after the tagger has been applied, the tagged jet mass

is dominated by emission “a”, i.e. ρ ≈ zaθ2
a (in the case of the signal jet this is the softer of

the two prongs). The Lund-plane phasespace can then be separated into 3 regions depicted

in figure 4. Region A (in red) is the region that is constrained to be free of radiation by

the fact that the tagger has triggered on emission a. This corresponds to the region where

both zθ2 > zaθ
2
a and eq. (2.1) are satisfied. It is responsible for the Sudakov exponent

associated with the tagger, cf. eq. (2.7).

Of the remaining phasespace, region B (blue) corresponds to emissions that are con-

tained inside the tagged jet. It is populated in both signal and background cases. It contains

not only emissions that satisfy the mMDT/SD condition (z > zcut in the case of mMDT),

but also emissions with zθ2 < zaθ
2
a and θ < θa, due to the Cambridge/Aachen declustering

used by mMDT/SD. Region C (green) corresponds to emissions that are in the original

full jet, but not in the tagged jet. It is uniformly populated in the background case, while

in the signal case it is mostly empty of radiation, except at the left-hand edge (initial-state

radiation) and the right-hand edge (leakage of radiation from the colour-singlet qq̄ decay).

The emission with the largest zθ2 in each of regions B and C will respectively be labelled

b and c and we will assume strong ordering between emissions, as in section 2.

There are three kinematic cases to consider for the relative zθ2 ordering of emissions

a, b and c, cf. figure 4. In each case, figure 4 gives the result for each of the τ21 variants, for

both background and signal. The signal case simply assumes that there are no emissions

9One can be tempted to also consider a fourth option where τ1 is computed on the full jet and τ2 on the

tagged jet. It is straightforward to show, following the same arguments as below, that this is not the best

combination, as one might expect intuitively.
10At low pt a significant part of τ21’s discriminating power is arguably associated with the leaf and, for

gluon-initiated background jets, with the part of the main Lund plane that is at small angles compared

to the decay opening. This is mostly equivalent to quark-gluon discrimination, which is known to be only

moderately effective [22, 25–27] and not to improve significantly at high-pt. These effects are included in

the analytic calculations of section 5.
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ρ

C

A

B

log( z θ)

)θlog(1/

ρ
A

BC

b

a

c

log( z θ)

)θlog(1/

bkg sig bkg sig bkg sig

τ tagged
21 b/a b/a b/a b/a b/a b/a

τ full
21 b/a b/a c/a b/a a/c b/a

τdichroic
21 b/a b/a c/a b/a a/a b/a

Figure 4. Schematic representation of three possible kinematic configurations for the combination

of τ21 with mMDT/SD (shown specifically for mMDT or SD with β = 0). In each Lund diagram,

emission “a” corresponds to the emission that dominates the mMDT/SD jet mass. This defines

three regions: region A (red) is vetoed by mMDT, region B (blue) contains the constituents of

the mMDT/SD jet and region C (blue) is the difference between the mMDT/SD jet and the full

jet. Emissions “b” and “c” are respectively in regions B and C, and the three plots correspond

to three different orderings of zcθ
2
c compared to zaθ

2
a and zbθ

2
b . The table below the plots shows

the corresponding value of τ21 for both the QCD background (where all three regions have to be

included) and the signal (where only regions A and B are present). For simplicity, “b/a” stands for

(zbθ
2
b )/(zaθ

2
a), and so forth.

in region C, which is appropriate in a double-logarithmic approximation. The results are

expressed as a shorthand, i/j ≡ ziθ2
i /zjθ

2
j .

The case of the signal is particularly simple: since zbθ
2
b < zaθ

2
a and there is nothing

in region C, all variants give τ21 = zbθ
2
b/zaθ

2
a. Given that the signal result is always the

same, the performance of the signal/background discrimination will be best for the method

that gives the largest background τ21 result (recall that one enhances signal relative to

background by requiring τ21 < τcut).

Let us examine the background separately for each of the three kinematic cases shown

in figure 4:

1. For zaθ
2
a � zbθ

2
b � zcθ

2
c , all three τ21 variants give the same result as for the signal,

zbθ
2
b/zaθ

2
a.

11

2. For z2
aθ

2
a � z2

c θ
2
c � z2

b θ
2
b , τ

tagged
21 is still still given by zbθ

2
b/zaθ

2
a, but τ full

21 and τdichroic
21

11Even if the signal and background have the same value, the different colour factor of the leaf, discussed

earlier, still ensures discriminating power, because zbθ
2
b/zaθ

2
a tends to be smaller for CF colour factors

(signal) than for CA colour factors (background).
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ρ
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log( z θ)
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cut

(c) τdichroic21 and τ full21

Figure 5. Regions where real emissions are vetoed when combining a mMDT/SD tagger with a

cut on τ21. See text for details.

now both take the larger value of zcθ
2
c/zaθ

2
a. They should therefore perform better

in this case.

3. Finally, for z2
c θ

2
c � z2

aθ
2
a � z2

b θ
2
b , τ

tagged
21 is again given by zbθ

2
b/zaθ

2
a; τ

full
21 is given by

zaθ
2
a/zcθ

2
c , since τ1 is dominated by emission c, while τ2 is dominated by emission a.

Depending on the exact configuration, τ full
21 may be larger or smaller than zbθ

2
b/zaθ

2
a

and so may or may not be advantageous. τdichroic
21 has a value of zaθ

2
a/zaθ

2
a = 1, which

is always larger than the signal and larger than the other two variants.

Overall therefore, τdichroic
21 is expected to be the best of the three variants.

Alternatively, we can also see the benefit of the dichroic combination by examining

directly how emissions are constrained when one applies a given cut on the τ21 ratio,

similarly to the discussion in section 2.3. We have represented the Lund diagrams relevant

for our discussion in figure 5, where we have used the same regions A, B and C as in the

above discussion.

We start by considering a jet for which we already have applied the mMDT/SD proce-

dure, resulting in a (mMDT/SD) mass ρ dominated by emission “a”. This automatically

comes with a mMDT/SD prefactor and Sudakov suppression represented by the solid red

line and shaded light red area (region A) in figure 5, guaranteeing that there are no emis-

sions at larger mass kept by the mMDT/SD.

For τ tagged
21 , emissions in region B are vetoed down to a mass scale ρτcut while emissions

in region C, i.e. outside the mMDT/SD tagged jet, are left unconstrained. This results in

the (additional) Sudakov suppression given by the blue area (region B) in figure 5(a).

The situation for τ full
21 is a bit more involved and we have three cases to consider. The

first case is when there is (at least) one emission in region C with zθ2 > zaθ
2
a/τcut ≡ ρ/τcut

and is represented in figure 5(b). Let us then call emission “c” the emission in region C

with the largest zθ2, which thus comes with a Sudakov suppression imposing that there

are no other emissions in region C with zθ2 > zcθ
2
c . Emission “c” will dominate τ1 so

– 11 –
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that the cut on τ21 will come with an extra suppression factor in region C extending from

zcθ
2
c down to zθ2 = zcθ

2
cτcut. Consequently, all emissions down to zcθ

2
cτcut are vetoed as

depicted in figure 5(b). The second case is when the emission in region C with the largest

zθ2 satisfies zaθ
2
a ≡ ρ < zcθ

2
c < ρ/τcut. This region, represented by the hatched area in

figure 5(b), is entirely forbidden because it would give a value of τ21 ≥ zaθ
2
a/zcθ

2
c which is

always larger than τcut. The third case is when there are no emissions in region C with

zθ2 > ρ. This directly comes with a Sudakov suppression in region C vetoing emission

down to zθ2 = ρ. In this case, τ1 is dominated by emission “a” and the constraint on τ21

further vetoes emissions with ρτcut < zθ2 < ρ in both regions B and C. These two vetoes

combine to vetoing all emission down to ρτcut as represented in figure 5(c).

If instead we use our new τdichroic
21 variable, we are always in the situation of figure 5(c),

where we veto all emissions down to a mass scale ρτcut in both regions B and C. This

new version therefore comes with the strongest Sudakov suppression, i.e. of the three τ21

variables it is the one that, for background jets, is least likely to have a small τ21 value.

Given that the three τ21 variants behave similarly to each other for signal, the signal-to-

background discrimination should be improved for the dichroic variant.

With our dichroic method, we actually recover the same overall Sudakov suppression

as the one we had when measuring the full jet mass and cutting on the full N -subjettiness

(see section 2.3 and figure 3(left)). The gain of our new method (3.1c) compared to this

full N -subjettiness case comes from the fact that the prefactor associated with the jet mass

is now subject to the constraint imposed by the tagger. If we take for example the case of

the mMDT, this prefactor would be largely suppressed for the background — going from

∼ αs log(1/ρ) for full N -subjettiness to ∼ αs log(1/zcut) for the dichroic method — while

the signal would only be suppressed by a much smaller factor ∼ 1 − 2zcut. Additionally,

measuring the tagged jet mass instead of the full jet mass significantly reduces ISR and

non-perturbative effects which would otherwise affect the resolution of the signal mass peak

(see also [28, 29]).

Finally, we note that the gain in performance is expected to increase for larger boosts

due to region C getting bigger (double-logarithmically in ρ).

3.2 Dichroic subjettiness with SoftDrop (pre-)grooming

Since τdichroic
21 uses τ2 computed on the full jet, including all the soft radiation at large angles,

we can expect this observable to be quite sensitive to poorly-controlled non-perturbative

effects — hadronisation and the Underlying Event — and to pileup.

The standard strategy to mitigate these effects is to kill two birds with one stone and

to use mMDT (or SD) both as a two-prong tagger and as a groomer, and impose the τ21

constraint on the result. This is equivalent to the τ tagged
21 variant discussed (figure 5(a)),

with the drawback and loss of performance described in the previous section.

We show here how we can achieve a background rejection that is larger than for τ tagged
21

and more robust with respect to non-perturbative effects than τdichroic
21 . Conceptually, the

idea is that the tagger and groomer achieve two different tasks: the tagger selects a two-

prong structure in the jet, imposing a rather hard constraint on the soft radiation in order to

do so, leading to a small R′ prefactor for the jet mass. This is not quite what we want from

– 12 –
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Figure 6. Phasespace constraints on QCD jets ob-

tained from our new combination including grooming:

we first groom the jet, e.g. with SoftDrop (SD). We

then compute both the jet mass and τ1 on the tagged

jet (here using the mMDT), yielding the solid red line

prefactor and the shaded red region (A) for the Su-

dakov exponent. We then impose a cut on the τ21
ratio with τ2 computed on the SD jet, leading to the

extra shaded blue and green regions (B and C) for the

Sudakov exponent.

a groomer, which should get rid of the soft-and-large-angle radiation while retaining enough

of the jet substructure to have some discriminating power when using radiation constraints.

This suggests the following picture: we first apply a “gentle” grooming procedure to

the jet, like a SoftDrop procedure with a positive value of β. This is meant to clean the jet

of the unwanted soft junk12 while retaining as much as possible the information about the

perturbative radiation in the jet. We can then carry on with the dichroic method presented

in the previous section, i.e. use a more aggressive tagger, like mMDT,13 to compute the jet

mass and τ1 and compute τ2 on the SD (pre-)groomed jet:

τdichroic
21,groomed =

τ2(SD jet)

τ1(mMDT jet)
. (3.2)

This is depicted in figure 6, where regions A and B are the same as in the previous section,

but now region C indicates the region where emissions are kept by the groomer but rejected

by the tagger. Similarly, we can introduce

τ full
21,groomed =

τ2(SD jet)

τ1(SD jet)
. (3.3)

Note that we will always choose our mMDT-tagging and SD-grooming parameters such

that the tagged jet is the same whether tagging is performed before or after grooming. For

mMDT-tagging with parameter zcut and SD-grooming with parameters ζcut and β, this

implies ζcut ≤ zcut and β ≥ 0.

Using the same arguments as in section 3.1, we can show straightforwardly that this

method will have a larger rejection than with the other two variants where one would be

computing the jet mass on the mMDT-tagged jet and the τ21 ratio either on the mMDT-

tagged jet, τ tagged
21,groomed ≡ τ tagged

21 , or on the SD-groomed jet, τ full
21,groomed, owing to a larger

Sudakov suppression of the background, for a similar signal efficiency.

12In the presence of pileup, one should still apply a pileup subtraction procedure [30], like area-median

subtraction [31, 32], charged-track-based techniques [33–35], the constituent subtractor [36], SoftKiller [37]

or PUPPI [38]. This can be done straightforwardly with SoftDrop and mMDT.
13Or SD with a smaller value of β than used in the grooming.
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Compared to the other possible situation where both the jet mass and the τ21 ratio are

computed on the SD-groomed jet, the dichroic variant would have a smaller R′ prefactor,

associated with mMDT instead of SD. This again leads to a larger background rejection.

Because of the initial grooming step, the groomed dichroic subjettiness ration is ex-

pected to be less discriminating than the ungroomed version introduced in section 3.1.

Indeed, the associated Sudakov exponent is smaller since we have amputated part of the

soft-large-angle region. One should however expect that this groomed variant will be less

sensitive to non-perturbative effects. Overall, there is therefore a trade-off between ef-

fectiveness, in terms of achieving the largest suppression of the QCD background for a

given signal efficiency, and perturbative robustness, in terms of limiting the sensitivity to

poorly-controlled non-perturbative effects.

4 Performance in Monte-Carlo simulations

Let us now investigate the effectiveness and robustness of dichroic subjettiness ra-

tios in Monte-Carlo simulations, using Pythia 8.186 [39], at a centre-of-mass energy of√
s = 13 TeV. Our signal sample consists of WW events, while for the background we use

dijet events. Jets are reconstructed with the anti-kt [13] algorithm with R = 1 and in

determining signal and background efficiencies we keep all jets above a given pt cut.14 We

use the modified MassDrop tagger with zcut = 0.1 for the 2-prong tagging and vary the

cut on the τ21 ratio. Whenever a SoftDrop (SD) grooming procedure is included, we use

ζcut = 0.05 and β = 2 as illustrative parameter choices (recall that the SoftDrop condition

is imposed as z > ζcut(θ12/R)β instead of eq. (2.1), i.e. we use separate symbols zcut and ζcut

respectively for the parameters of mMDT and SD). Jet reconstruction and manipulation

are performed with FastJet 3.2.0 [14, 40] and fjcontrib 1.024 [41].

4.1 N-subjettiness and mass distributions with various τ21 ratios (βτ = 2)

We start by examining the τ21 distribution. This is plotted in figure 7 for both QCD

jets (solid lines) in dijet events and W jets (dashed lines) in WW events. We select

jets above 2 TeV and always apply SoftDrop grooming. In practice, we use parton-level

events, and impose a cut on the reconstructed jet mass (SD-groomed or mMDT-tagged)

60 < m < 100 GeV. We consider four cases: the τ full
21,groomed distribution when we cut on

the SD-groomed mass and the τ tagged
21 , τ full

21,groomed and τdichroic
21,groomed distributions when we

cut on the mMDT-tagged mass. As expected, the distributions for signal (W ) jets are

peaked at smaller values of τ21 than the corresponding distribution for background (QCD)

jets. Figure 7 shows that all the signal distributions, and in particular the three options

where one measures the mMDT-tagged jet mass, are very similar. This is in agreement

with our discussion in the previous section. Comparatively the background distributions

look rather different. The case where everything is computed from the mMDT-tagged jet

(the solid blue curve) peaks at smaller values of τ21 as expected from its smaller Sudakov

14All jets in the signal sample above that cut are considered to be signal-like, even if they came from

initial-state radiation; however such initial-state jets will have been relatively rare in our sample and so

should not affect our final conclusions.
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Figure 7. τ21 distributions for jets in di-

jet (solid lines) and WW (dashed lines) events

again imposing pt > 2 TeV and including Soft-

Drop grooming. Different colours correspond to

different combinations of jets used for the com-

putation of the jet mass, τ1 and τ2 as indicated

in the legend, our new dichroic combination be-

ing plotted in black. We have selected jets with

a mass is between 60 and 100 GeV. The cross-

section used for normalisation, σ, is defined af-

ter the jet pt and mass cut, so that all curves

integrate to one.
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Figure 8. Mass distribution for QCD jets with

pt > 2 TeV (anti-kt, R = 1) at parton level, in-

cluding SoftDrop grooming. The dashed lines,

in red for the SD-groomed jet and in blue for

the mMDT-tagged jet, are the mass distribu-

tions with no constraint on N -subjettiness. The

solid lines have an additional cut τ21 < 0.3 with

different combinations of jets used for the com-

putation of the jet mass, τ1 and τ2 as indicated

in the legend, our dichroic combination being

plotted using a solid black line. The cross sec-

tion used for normalisation, σ is that for jets

above the pt cut.

suppression, related to the fact that this combination puts no constraints on large-angle

emissions (region C in the previous section). Furthermore, the dichroic combination, the

solid black curve in figure 7, is expected to have the largest suppression and is indeed

peaked at larger τ21 values, translating into a larger discrimination against signal jets.

Note that the τ21 distribution for the dichroic combination also shows a peak for

τ12 > 1 that we have not discussed in our earlier argumentation. This comes from events

with multiple emissions in region C and will be discussed briefly in our analytic calculations

in section 5.

Results for the mass distribution obtained for background (QCD dijets) jets at par-

ton level (without UE) are presented in figure 8. As in figure 7, SoftDrop grooming has

always been applied prior to any additional tagging or N -subjettiness cut. Again, we

can identify most of the features discussed in section 3. First of all, if we compare the

mMDT-tagged mass (dashed blue curve) to the SD-groomed jet mass (dashed red curve)
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we see that the latter is smaller than the former at small masses, owing to the larger

Sudakov factor RSD > RmMDT, but larger at intermediate masses, due to the larger pref-

actor R′SD > R′mMDT.

Then, we can consider the effect of the additional constraint on the τ21 ratio, taken

here as τ21 < 0.3 for illustrative purpose. If we compute τ21 on the same jet as for the mass

(τ full
21,groomed in solid red and τ tagged

21 in solid blue for the SD-groomed and mMDT-tagged

jets respectively), we see that the cut reduces the background, that the reduction increases

for smaller masses and that the reduction is larger for the SD-groomed jet than for the

mMDT-tagged jet. This last point is a reflection of the fact, that the Sudakov suppression

associated with the N -subjettiness cut is larger when both the mass and τ21 are computed

on the SD-groomed jet (figure 3(left)) than when both the mass and τ21 are computed on

the mMDT-tagged jet (figure 5(left)). Then, when measuring the mMDT-tagged jet mass,

one sees that computing τ21 on the SD-groomed jet (τ full
21,groomed, the solid green curve in

figure 8) shows a larger suppression than computing τ21 on the mMDT-tagged jet, although

the difference is reduced at very small masses. Finally, if we consider our new, dichroic

case, eq. (3.2) (τdichroic
21,groomed, the solid black curve), we see a larger suppression than in all

other cases, as expected from our earlier arguments.

4.2 Signal v. background discrimination and other performance measures

To further test the performance of our new method, we have also studied ROC (receiver op-

erating characteristic) curves, shown in figure 9 for parton-level simulations and in figure 10

for hadron-level events including hadronisation and the Underlying Event. In all cases, we

impose the constraint that the (full, tagged or groomed) mass is between 60 and 100 GeV.

Efficiencies are given relative to the inclusive cross-section for having jets above our pt cut.

Let us first discuss the result of parton-level simulations, figure 9, where the dichroic

ratio is again represented by the black curves. Without grooming (the left-hand plot in the

figure), our method shows a substantial improvement compared to all other combinations

considered, outperforming them by almost 30% in background rejection at a signal efficiency

of 50% and by more than a factor of 2 at a signal efficiency of 40%. After SoftDrop grooming

(right-hand plot), the dichroic method, i.e. computing the jet mass and τ1 on the mMDT-

tagged jet and τ2 on the SD-groomed jet, still shows an improvement, albeit less impressive

than what is observed using the full jet to compute τ2.

If instead we consider the results at hadron level, including both the perturbative

parton shower as well as non-perturbative effects, figure 10, we see that the dichroic sub-

jettiness ratio still does a better job than the other variants but the gain is smaller. For

example, measuring the mMDT-tagged mass with a cut on the groomed dichroic ratio,

τdichroic
21,groomed, the optimal choice in figure 10, is only slightly better than the next best choice

where one measures the SD-groomed mass and imposes a constraint on τ full
21,groomed. This

is because in going from parton to hadron level, the ρgroomed-τ full
21,groomed curve has moved

down more than the ρtagged-τdichroic
21,groomed curve, i.e. the former is getting a significantly larger

boost in its discriminating power from non-perturbative effects.15 This is potentially prob-

15That there should be larger non-perturbative effects in the ρgroomed-τ full21,groomed can be understood as

follows: because ρgroomed accepts a larger fraction of signal events in a given mass window than ρtagged, to

reach the same final efficiency the τ21 cut must be pushed closer to the non-perturbative region.
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Figure 9. ROC curves for various τ21 combinations, i.e. background versus signal efficiency, at

parton level. The left plot is obtained starting from the full jet, while for the right plot, a SoftDrop

grooming step has been applied. The ROC curves are obtained by varying the cut on the τ21 ratio.

In all cases, we considered anti-kt(R = 1) jets with pt > 2 TeV.
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Figure 10. Same as figure as 9, now for hadron level (including the Underlying Event).

lematic, because one does not necessarily want signal-to-background discrimination power

for a multi-TeV object to be substantially driven by the physics that takes place at a scale

of 1 GeV, physics that cannot, with today’s techniques, be predicted from first principles.

Additionally, phenomena happening on a scale of 1 GeV are difficult to measure reliably.
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Figure 11. Signal significance plotted versus the non-perturbative effects for the QCD background

(defined as the ratio between the background “fake” tagging rate at hadron and parton level).

Different curves correspond to different combinations indicated in the legend. For the solid curves,

a SoftDrop (β = 2 and ζcut = 0.05) grooming is applied, while no grooming is applied for the dashed

curves. In the left-hand plot, we impose a 2 TeV pt cut on the initial jet. The symbols on each

curve then correspond to a signal efficiency (computed at hadron level) ranging from 0.05 upwards

in steps of 0.05, with the large symbol on each line corresponding to εS = 0.5 and the efficiency at

the right-hand extremity explicitly labelled. In the right-hand plot, the signal efficiency (computed

at hadron level) is fixed to be 0.5 and the pt cut on the jet is varied between 500 GeV and 3 TeV

(in steps of 500 GeV, labelled explicitly for the groomed dichroic ratio), with the large symbol on

each line corresponding to a 3 TeV cut.

It would be interesting to investigate non-perturbative effects in greater depth, both

analytically, e.g. following the approach used in [2], or by studying their dependence across

different Monte-Carlo generators and associated tunes. However, for the purpose of this

article, we limit ourselves to using the results from Pythia 8. In evaluating the overall

performance of different τ21 combinations we will consider both the signal significance and

the size of non-perturbative effects. We will use the following alternative to ROC curves.

For a given method and pt cut, we first determine the τ21 cut required to obtain a desired

signal efficiency (at hadron level). For that value of the τ21 cut, we can compute the signal

significance, defined as εS/
√
εB (computed at hadron level) which is a measure of the

discriminating power of the method; we then estimate non-perturbative effects as the ratio

between the background efficiency at hadron level divided by the background efficiency at

parton level, which is a measure of robustness against non-perturbative effects. We will

show results for a range of different signal-efficiency choices and jet pt cuts.

In figure 11, which highlights the key performance features of the dichroic method, we

plot the signal significance versus the non-perturbative effects for different methods. In the

left-hand panel, the curves correspond to a range of τ21 cuts for jets with pt > 2 TeV. The
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points on the curves correspond to different signal efficiencies (starting from 0.05, in steps

of 0.05, and with εS = 0.5 indicated by a bigger point). In the right-hand panel, the points

on the curves correspond to different pt cuts, with the τ21 cut adjusted (as a function of pt)

so as to ensure a constant signal efficiency of 0.5. In both plots, the τ21 cut is determined

so as to achieve the expected signal efficiency at hadron level and the same cut is used

for parton-level results. To avoid the proliferation of curves, the result for the ungroomed

ρfull-τ
full
21 is not shown since it is obvious from the ROC curves in figures 9 and 10(left) that

it is extremely sensitive to non-perturbative effects.

In both plots, we see that the dichroic method comes with larger discriminating power

with a relatively limited sensitivity to non-perturbative effects, provided one first applies

a grooming step. Without the grooming step, one observes a much larger sensitivity to

non-perturbative effects, as one might expect.16 It also appears that the performance gain

increases when the boost, i.e. the jet pt, increases. This was also expected from our argu-

ments in section 3. Finally, compared to the common setups in the literature, namely with

modified MassDrop tagging with a cut on τ21 applied either on the mMDT (ρtag-τ tagged
21 , the

dot-dashed blue curve) or on the full jet (ρtag-τ full
21 , the dashed green curve), our dichroic

method with grooming (solid black) gives up to a factor of two improvement in signal

significance, with comparable non-perturbative effects. Considering other combinations

that have not been widely used experimentally, τ full
21,groomed with either a groomed (ρgroom,

solid red) or a tagged (ρtag), solid green) jet mass both perform well, however τdichroic
21,groomed

still remains the best, with an optimal significance that is about 25% larger, and smaller

non-perturbative corrections for any given signal significance.

As a final check, we have studied the dependence of the signal efficiency on the τ21

cut, as shown in figure 12. Comparing the left and right-hand plots, it appears clearly that

applying SoftDrop grooming helps to reduce non-perturbative effects which otherwise sig-

nificantly lower the signal efficiency. It is also interesting to notice that without grooming,

the signal efficiency obtained with our dichroic method (the dashed black curve on the left

plot of figure 12) only reaches its plateau for cuts on τ21 larger than 1 already at parton

level. This can likely be attributed to initial-state radiation in the jet at angles larger than

the decay angle of the W boson. These effects are strongly reduced by SoftDrop grooming

(see also the discussion in section 5).

In the end, a more complete study would include variations of the SD parameters and

of the cuts on the mass. A brief investigation of the SD parameters shows that our choice

of β = 2 and ζcut = 0.05 seems a decent default, at least for the process and kinematic

domain under study. However, in view of the good signal efficiency reached when computing

both the jet mass and τ21 with SoftDrop, it might also be interesting to investigate our

dichroic combination where we also use SoftDrop for the tagger instead of the mMDT. An

extensive analytic study foreseen in a follow-up paper [42] would allow for a systematic

study of these effects. Such an analytic understanding could also be of use in the context

of building decorrelated taggers [10].

16It can also be shown that grooming largely reduces the impact of initial-state radiation as well

(see also [12]).
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Figure 12. Signal efficiency plotted as a function of the cut τcut on τ21 for all the combinations

considered in figures 9 and 10. Solid curves correspond to hadron-level results while dashed curves

are obtained at parton level. The left plot is obtained starting from the full jet, while for the right

plot, a SoftDrop grooming has been applied.

4.3 Brief comparison with other tools

To complete our Monte Carlo studies, in figure 13 we compare the performance of τdichroic
21,groomed

with various other tools: mMDT tagging alone, SoftDrop grooming alone (β = 2 as

above), and also the Ym variant [29] of Y-splitter [43], combined either with SoftDrop

(pre-)grooming or with trimming [44], as described in detail in ref. [29] (see also ref. [28]).

Whereas in the analogous figure 11, all curves involved the same signal efficiency, here this

is no longer the case. Accordingly efficiencies are reported versus pt in table 1.

Let us start by examining the pure mMDT result: as known already from [2] it provides

mild tagging, it has small non-perturbative corrections and only modest dependence on

pt. SoftDrop (β = 2), when used alone, has slightly lower significance and larger non-

perturbative corrections.17 These two tools have the highest signal efficiencies, of about

63% and 76% respectively at 2 TeV.

Next we examine combinations that involve Ym-splitter. Recall that this tool undoes

the last clustering of a generalised-kt(p = 1
2) clustering of the jet constituents, determines

y = min(p2
t1, p

2
t2)∆R2

12/m
2 on the two resulting prongs, and then imposes a cut y > ycut.

This cut is similar in its effect to zcut in mMDT. When used in conjunction with SD

(pre-)grooming, the highest-mass emission that passes the SD cut is also the one that is

unclustered by Ym-splitter and so it is required to pass the ycut condition. As a result,

the constraint in the Lund plane turns out, at the leading-log level, to be identical to

17The performance of SD can be somewhat improved for a specific m/pt value by taking a negative value

for β and adjusting zcut such that one effectively removes branchings with z < 0.1 at that m/pt scale (see

section 7 of ref. [3]).
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Figure 13. Signal significance and non-perturbative effects for background, for jet pt cuts ranging

from 500 GeV to 3 TeV in steps of 500 GeV, as in figure 11(right). The 3 TeV point is always

labelled with a larger symbol. The plots compare τdichroic21,groomed (βτ = 2) with a range of other tools,

including Ym-splitter (left) and βτ = 1 dichroic subjettiness ratios (right). Where the βτ value is

not explicitly labelled, it is equal to 2. Note that the default signal-efficiency working point for the

dichroic subjettiness ratios is 0.4 here rather than the 0.5 chosen in figure 11. The signal efficiencies

for other cases are given in table 1.

jet pt cut [GeV]

method 500 1000 1500 2000 2500 3000

mMDT 0.63 0.62 0.62 0.63 0.64 0.65

SoftDrop 0.74 0.74 0.75 0.76 0.77 0.79

Ym-splitter+trimming 0.49 0.41 0.36 0.33 0.31 0.30

SoftDrop+Ym-splitter 0.56 0.55 0.55 0.55 0.57 0.58

mMDT + τdichroic
21,groomed < 1 0.60 0.57 0.58 0.58 0.59 0.61

all other variants 0.4 0.4 0.4 0.4 0.4 0.4

Table 1. Signal efficiencies for the various tools shown in figure 13.

that obtained with τdichroic
21,groomed and the condition τcut = 1, with a Sudakov suppression

vetoing all emission down to a mass scale ρ in the SD-groomed jet, and a small prefactor

∼ αs ln(1/ycut). This is reflected in figure 13, where one sees that the τdichroic
21,groomed < 1

curve (black open diamonds) is remarkably similar to the SD+Ym-splitter curve (red open

squares). Where the τdichroic
21,groomed variable has an advantage is that one can now further

adjust the choice τcut, whereas with SD+Ym-splitter that freedom is not available.
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Of the various Ym combination considered in ref. [29], the one that gave the best

signal-to-background discrimination was Ym with trimming, shown as red solid squares in

figure 13. Overall it performs less well than the mMDT plus τdichroic
21,groomed combination with

εS fixed to 0.4, even though is has a broadly similar signal efficiency.

Another point to discuss concerns the choice of βτ in the N -subjettiness definition,

eq. (2.2). Many experimental uses of N -subjettiness ratios have concentrated on the choice

βτ = 1, while throughout this article we have used βτ = 2. A discussion of the βτ = 1 case

is given in appendix A, including comparisons of dichroic and normal variants. Dichroic

always perform best also for βτ = 1, and so in the brief summary that we give here we will

only show dichroic results.

An argument often given for the choice of βτ = 1 is that it is less sensitive to non-

perturbative effects. Figure 13 (right) shows groomed (filled symbols, solid lines) and

ungroomed (open symbols, dashed lines) results for βτ = 1 (squares and triangles) and

βτ = 2 (circles). For the βτ = 1 case, we have considered either exclusive-kt axes with the

standard E-scheme four-vector recombination (triangles), or the exclusive-kt axes with the

winner-takes-all (WTA) recombination scheme (squares) [17–19]. In both the SD-groomed

and ungroomed cases, the non-perturbative corrections are somewhat smaller for βτ = 1

(except in the WTA groomed case). In the ungroomed case, βτ = 1 also leads to better

signal-discrimination. However once SD-grooming is included the signal discrimination is

best for the βτ = 2 case. If one is concerned about the slightly larger non-perturbative

effects for the SD-groomed βτ = 2 case, then one can slightly increase the τcut choice: in

figure 11(right) where τcut was chosen so as to obtain a higher signal efficiency of εS = 0.5

the τdichroic
21,groomed(βτ = 2) performance is very similar to the τdichroic

21,groomed(βτ = 1,εS = 0.4)

performance in figure 13(right). Therefore, it is the SD-groomed, βτ = 2, dichroic ratio

that appears to give the best overall performance.

There are a number of other variables that one might also consider, notably energy-

correlation functions (ECFs) [22–24]. In particular we expect that dichroic ratios may be

of use also for the most recent set of ECFs discussed in ref. [24], a number of which are

designed to have similarities to N -subjettiness. Their study is, however, beyond the scope

of this work.

5 Brief analytic calculations

In this section, we consider brief analytic calculations relating to the observables we have

presented so far. Our main goal here is to illustrate that the discussion from section 3

— where we used Lund diagrams to motivate dichroic subjettiness ratios — does indeed

capture the qualitative picture observed in Monte-Carlo simulations. To that aim, it is

sufficient to use leading-logarithmic accuracy, where we control double logarithms, i.e.

αns lnjρ lnkτcut ln`zcut lnmζcut with j+ k+ `+m = 2n, assuming ρ, τcut, zcut, ζcut � 1. Note

that, recently, several jet substructure methods have been understood at higher accuracy,

see e.g. [21, 45], and we intend to provide a more precise calculation in future work [42].
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Figure 14. Lund diagrams associated with various analytic calculations. Left: the basic building

block Tα, eq. (5.1), used to write all Sudakov exponents. Centre: representation of the full jet

Sudakov Rfull(ρ, τcut, z), eq. (5.3a), including secondary emissions. Right: representation of the

full jet Sudakov RSD(ρ, τcut, z), eq. (5.3c), including secondary emissions. For both the centre and

right plots, the dot indicated by z corresponds to the emission dominating the jet mass and we will

integrate over allowed values of its momentum fraction z.

In practice, we will express everything in terms of the following fundamental block (cf.

figure 14(left)):

Tα(ρ, zcut;CR) =

∫ 1

0

dθ2

θ2

∫ 1

0

dz

z

αs(zθptR)CR
π

Θ(zθ2>ρ)Θ(z<zcutθ
α)Θ(ρ<zcut), (5.1)

where angles are normalised to the jet radius R and we use the 1-loop running-coupling

prescription, αs(zθptR) = αs/(1 + 2αsβ0 log zθ) with αs ≡ αs(ptR) and β0 = (11CA −
4nfTR)/(12π). Explicit expressions for Tα are given in appendix B and are mostly taken

from ref. [12]. Note that Tα(ρ, zcut;CR) = 0 for zcut < ρ.

For the QCD background, we find, for τcut < 1:

ρfull, τ
full
21 :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

ρ

dz

z

αs(
√
zρptR)CR

π
exp
[
−Rfull(ρ, τcut, z)

]
, (5.2a)

ρmMDT, τ
tagged
21 :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
exp
[
−RmMDT(ρ, τcut, z)

]
, (5.2b)

ρSD, τ
full
21,groomed :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

zSD(ρ)

dz

z

αs(
√
zρptR)CR

π
exp
[
−RSD(ρ, τcut, z)

]
, (5.2c)

ρmMDT, τ
dichroic
21 :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
exp
[
−Rfull(ρ, τcut, z)

]
, (5.2d)

ρmMDT, τ
dichroic
21,groomed :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
exp
[
−RSD(ρ, τcut, z)

]
, (5.2e)

where zSD(ρ) = max
(
(ρβζ2

cut)
1/(2+β), ρ

)
and (cf. figure 14(middle,right))

Rfull(ρ, τ, z) = T0(τρ, bi;CR) + T0(
√
zρτ,
√
zρbg;CA), (5.3a)

RmMDT(ρ, τ, z) = Rfull(ρ, τ, z)− T0(τρ, zcut;CR) + T0(
√
zρτ, zcut

√
ρ/z;CR), (5.3b)

RSD(ρ, τ, z) = Rfull(ρ, τ, z)−Tβ(τρ, ζcut;CR)+Tβ(
√
zρτ, ζcut(ρ/z)(β+1)/2;CR). (5.3c)
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Note that the full and mMDT jet mass Sudakov introduced respectively in eq. (2.5) and

eq. (2.7) (and used below) can be written as

Rfull(ρ) = Rfull(ρ, 1, “any z”) , (5.4a)

RmMDT(ρ) = RmMDT(ρ, 1, “any z”) . (5.4b)

In the above expressions, z corresponds to the momentum fraction of the emission domi-

nating the jet mass (emission “a” in figures 4 and 5). Compared to the simple R′ factor

that we had in section 2.2, we keep the z integration explicit since the secondary emissions,

the CA terms, depend explicitly on z. In all cases, the integration over z runs over the

region kinematically allowed by the tagger defining the jet mass. The Sudakov exponent

in these expressions is then essentially given by the jet on which we compute τ2.

While we only target leading-logarithmic accuracy, our results also include the single-

logarithmic contributions coming from hard collinear splittings, which are often phe-

nomenologically important. They appear as the bi factors in eqs. (5.2) and (5.3), where

we have introduced bi = exp(Bi) with Bq = −3/4 and Bg = −(11CA − 4nfTR)/(12CA).

These contributions can effectively be taken into account by limiting all z integrations to

bi for primary emissions and bg for secondary emissions.

Finally, as expected, if one takes the limit β →∞ of the SD results, one recovers the

full results. Also, the limit β → 0 of (5.2c), reduces to (5.2b).

So far, we have not yet discussed the case where ρ is computed from the mMDT-tagged

jet and τ21 from the full jet. This is more involved due to the two separate kinematic

configurations involved (see figure 4(b-c)). In the end, we find (assuming ρ < zcut)

ρmMDT, τ
full
21 :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

=

∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
exp

[
−Rfull(ρ, τcut, z)

]
+ Θ

(
zcut >

ρ

τcut

)∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
exp

[
−RmMDT(ρ)

]
×

×
∫ zcut

ρ/τcut

dρc
ρc

∫ zcut

ρc

dzc
zc

αs(
√
zcρcptR)CR

π
exp

[
−Rout,full(ρc, τcut, zc)

]
, (5.5)

and a similar expression with “full” replaced by “SD” for the case where τ21 is calculated

on the SD jet. In the above expression, we have used ρc = zcθ
2
c and

Rout,full(ρc, τ, zc) = T0(ρcτ, zcut;CR) + T0(
√
ρczcτ,

√
ρczcbg;CA) , (5.6a)

Rout,SD(ρc, τ, zc) = Rout,full(ρc, τ, zc)

− Tβ(ρcτ, ζcut;CR) + Tβ(
√
ρczcτ, ζcut(ρc/zc)

(β+1)/2;CR). (5.6b)

The configurations contributing to the last two lines of eq. (5.5) come from jets with

at least one emission in region C (discarded by mMDT) with ρc ≡ zcθ
2
c > ρ/τcut. They

result in an extra contribution to the mass distribution, which would then be larger than

what we obtain with our dichroic combination (eq. (5.2d) or, equivalently, the first line

of eq. (5.5)). When using the dichroic combination, these configurations would all have
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τ21 ≥ 1 (up to τ21 = zcut/ρ). In particular, for a cut τ21 < τcut with τcut > 1, the dichroic

combination leads to:

ρmMDT, τ
dichroic
21 :

ρ

σ

dσ

dρ

∣∣∣∣
<τcut

τcut>1
=

∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π
e−RmMDT(ρ) (5.7)(

e−Rout,full(ρτcut) +

∫ zcut

ρτcut

dρc
ρc

∫ zcut

ρc

dzc
zc

αs(
√
zcρcptR)CR

π
e−Rout,full(ρc,ρτcut/ρc,zc)

)
with

Rout,full(ρτ) = T0(ρτ, zcut;CR) (5.8a)

Rout,SD(ρτ) = Rout,full(ρτ)− Tβ(ρτ, ζcut;CR). (5.8b)

This result splits into 2 contributions corresponding to the two terms in the round bracket

on the second line of (5.7): the first term comes from configurations where there is no

emission in region C with zθ2 > ρτcut, and it corresponds to values of τdichroic
21 < 1 (this is

manifest, because in eq. (5.7), given for τcut > 1, it has no dependence on τcut). For the

second contribution, the part corresponding to values of τdichroic
21 ≥ 1, there is an emission

“c” with zcθ
2
c > ρτcut. To guarantee τ21 < τcut, we then need to veto emissions (both

primary and secondary) with zθ2 > ρτcut.
18 Note that this second contribution itself

includes two sub-contributions: the case where emission “c” is the only emission in region

C with zθ2 > ρ, yielding a contribution to the τ21 distribution proportional to δ(τ21 − 1)

(recall that τ full
2 is set by the second hardest emission overall, which makes it equal to

τ tagged
1 ); and a second sub-contribution where, in addition to emission “c”, there is at least

one additional emission with ρτcut > zθ2 > ρ, yielding a continuum with τ21 > 1 in the τ21

distribution (see figure 7 as well as the right plot of figure 15 below). One can calculate

the δ(τ21 − 1) contribution to the τ21 distribution by taking the difference between (5.7)

and (5.2d) for τcut → 1 which gives∫ bi

zcut

dz

z

αs(
√
zρptR)CR

π

∫ zcut

ρ

dρc
ρc

∫ zcut

ρc

dzc
zc

αs(
√
zcρcptR)CR

π
e−Rfull(ρ)−RCA (ρc,zc,ρ), (5.9)

where Rfull(ρ) is the full jet mass Sudakov given in eq. (5.4a), and RCA(ρc, zc, ρ) =

T0(
√
zc/ρcρ,

√
ρczcbg;CA). Eq. (5.9) is equal to the τcut → 1 limit of the second term

in round brackets in eq. (5.7). In practice the δ-function contribution gets smeared out to

values of τ12 > 1 through the effect of multiple emissions.

Note that it is relatively straightforward to check that the limit τcut → 1 in eq. (5.5),

or the limit τcut → zcut/ρ in eq. (5.7) both tend to the mMDT jet mass distribution.

From the equations above, the τ21 distribution, for a given jet mass, can be obtained

by taking the derivative with respect to τcut and normalising by the jet mass distribution

without any cut on τ21. Background efficiencies can also be obtained straightforwardly by

integrating any of the above mass distributions over the allowed mass window.

18Note that the difference between the Sudakov suppression in the two contributions comes from secondary

emissions, i.e. we have Rout,full(ρc, ρτcut/ρc, zc) = Rout,full(ρτcut) + T0(
√
ρczcτcut,

√
ρczcbg;CA).

– 25 –



J
H
E
P
0
3
(
2
0
1
7
)
0
2
2

For signal jets, we assume that if the jet mass is not within some reasonable window

around the boson mass, then the jet is discarded. We then find the following signal efficiency

εS = fISR

∫ 1−zmin

zmin

dz psig(z) exp
[
−Rsig(ρ, τcut, z)

]
, (5.10)

with zmin = ρ, zSD(ρ) or zcut depending on whether the mass is computed on the full

jet, the SD-groomed jet or the mMDT-tagged jet, respectively. The τ21 distribution for

a given jet mass can be obtained by taking the derivative of εS with respect to τcut (and

normalising appropriately).

In eq. (5.10) the Sudakov exponent is given by

Rsig(ρ, τ, z) =
[
T0(
√
z(1− z)ρτ ;

√
(1− z)ρ/zbi;CR)

− T0(
√
zρ/(1− z);

√
(1− z)ρ/zbi;CR)

]
+
[
T0(
√
z(1− z)ρτ ;

√
zρ/(1− z)bi;CR)

− T0(
√

(1− z)ρ/z;
√
zρ/(1− z)bi;CR)

]
, (5.11)

valid for small τ . Here we target double-logarithmic accuracy, αns ln2n τ , though we also

include a set of finite-z and hard-splitting corrections that were found to be numerically

important in ref. [12] (cf. eq. (A.24)). These represent only a subset of next-to-leading

logarithmic terms. Note that for z � 1 (1− z � 1) the term on the fourth (second) line is

zero because of the last of the Θ-functions in eq. (5.1), while the term on the third (first)

line corresponds to the leaf in figure 3(right). For simplicity, in our numerical results we

will use psig(z) = 1 in eq. (5.10).19

Eq. (5.10) also includes a factor fISR that accounts for the effect of initial-state radiation

(ISR). Such effects are present both for signal and background jets and are generically

single-logarithmic. As such they are subleading compared to the double-logarithms that

we resum.

Nevertheless, if we consider signal jets and examine the limit of large pt with M , τcut,

etc. all fixed, then because of the absence of double logarithms of ρ, single-logarithmic ISR

effects (αs ln ρ)n can be numerically dominant [28]. Physically, they are associated with

the requirement that ISR should not substantially modify the mass of the signal jet. The

correction involves (αs ln ρ)n terms, only when the mass is determined on the full jet and

the factor fISR then takes the form

fISR = exp
[
− CR

2πβ0
R2 log

1

1− 2λ

]
, (5.12)

λ = β0αs(pt)

[
log

1

ρ
+O

(
log

M

δM
, log

1

τcut
, · · ·

)]
, (5.13)

19For the WW process under consideration, correlations between the incoming quarks and the final

quarks after the decay of the two W bosons have been calculated in [46] and could in principle be used to

compute psig(z). This would however be specific to the WW process considered here just as an example.

We therefore use the “splitting function” of an unpolarised W boson. This simplification does not affect

significantly any of the results presented here.
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Figure 15. Same as figure as 8 and 7 now obtained from our analytic calculation instead of Monte-

Carlo simulations. In the right-hand plot, for clarity, the δ-function that appears at τdichroic21,groomed = 1

(dijets) has been represented with finite width and scaled down by a factor of 5.

where a non-global contribution (formally of the same logarithmic order) is ignored for

simplicity. In the above formula, δM is size of the mass window in which signal jets are

accepted, and a full treatment of all single-logarithmic corrections would need to account

also for logarithms of δM/M . A more complete treatment of fISR would be relevant for

precise phenomenological applications. The finite O (αs) component associated with high-

pt emissions could be obtained e.g. using POWHEG [47–49], aMC@NLO [50] or at NNLO

using MATRIX [51] or MCFM [52–54].

We can now compare our analytic predictions with the Monte-Carlo results from the

previous section. We use αs(MZ) = 0.1383, as in the Pythia 8 simulations presented in

the previous section, and freeze the coupling for scales below µfr = µ̃frptR, which we set

to 1 GeV. We start with the QCD mass distributions, shown on the left plot of figure 15,

to be compared to the Monte-Carlo results presented in figure 8. Globally, we see that

our analytic calculation captures correctly the main patterns discussed earlier. We note

however that the analytic distributions, especially those involving the full jet mass, are less

peaked than the Monte-Carlo ones. This is likely due to subleading logarithmic corrections,

like multiple-emission corrections which would effectively increase the Sudakov exponent.

The τ21 distributions for both QCD jets and signal (W ) jets are shown in the right

plot of figure 15, to be compared with figure 7. The ordering between the different curves

is well captured by our analytic expressions. Differences related to the over-simplicity of

our leading-logarithmic approximation are larger than what was seen for the mass distri-

bution. First, our analytic calculations are non-zero when τ21 → 1. This region is however

not under control within our strongly-ordered approximation. Similarly, the kink observed

for τ21 ∼ 0.5 is not physical. It comes from the onset of the secondary-emission contribu-

tion which starts, in our formulas, at τ21 = bg. The analytic calculation for our dichroic
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Figure 16. Same as figure as 9 now obtained from our analytic calculation instead of Monte-Carlo

simulations.

combination is given by the black curves in the right plot of figure 15. The dijet case clearly

has a contribution proportional to δ(τ21 − 1) (cf. eq. (5.9)) (scaled down by a factor of 5

for clarity), which is not observed in the Monte-Carlo results. In practice, additional emis-

sions at smaller zθ2 would also contribute to τ21, and they would transform the δ(τ21 − 1)

contribution into a Sudakov peak at τ21 & 1, which is visible on the Monte-Carlo simu-

lations. We are currently working on a better analytic calculation, lifting the assumption

that emissions are strongly ordered in zθ2 [42].

Finally, let us turn to the ROC curves, plotted in figure 16. We again see that they

reproduce the main qualitative features observed in section 4. There are however quantita-

tive differences between our analytic results and the Monte-Carlo simulations. For exam-

ple, our calculation over-estimates the signal efficiencies. A more quantitative description

would require a more precise analytic treatment including subleading corrections, beyond

the strong-ordering approximation, and fixed-order corrections for signal efficiencies.

6 Conclusion

In this paper we have examined the interplay between boosted-object tagging algorithms,

mMDT or SoftDrop, and radiation constraints, notably as imposed through N -subjettiness

cuts. The analysis points to a new N -subjettiness ratio, τdichroic
21 = τ full

2 /τ tagged
1 , where the

numerator is evaluated on the full jet, while the denominator is evaluated on the set

of constituents left after the tagging stage. The name “dichroic” comes from the fact

that the large-angle colour flow, present in backgrounds but not signals, gets directed

exclusively to the numerator and not the denominator. It is this feature that leads to

an enhanced significance in distinguishing (colour-singlet) signals from (colour-triplet or

octet) backgrounds, notably compared to current widely used N -subjettiness ratios.
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As well as considering signal-significance, it is important to keep non-perturbative

effects under control: a method that is overly reliant on non-perturbative physics for its

discrimination power is one for which signal-efficiency and background-rejection estimates

may be highly model-dependent, and correspondingly uncertain. It is also likely to be

subject to large detector effects. We have found that the combination of τdichroic
21 with

a light grooming step based on SoftDrop (β = 2), τdichroic
21,groomed = τSD

2 /τ tagged
1 is effective

in maintaining good signal-to-background significance while substantially limiting non-

perturbative effects.

The overall behaviour of our dichroic τ21 variable, with grooming, was illustrated in

figure 7: the τ21 distribution for signal jets is left largely unmodified by the change to a

dichroic variant (black dashed curve versus any of the other dashed curves), whereas the

distribution for background jets is shifted to substantially higher values of τ21 (black solid

curve versus any of the other solid curves), increasing the ability to distinguish signal and

background.

Figures 11 and 13 provide a summary of the signal-significance (vertical axis) and

non-perturbative corrections (horizontal axis) for a range of boosted-object identification

methods. The points along the lines correspond to different signal-efficiency working points

(figure 11(left)) or pt cuts (the other plots). One sees that τdichroic
21,groomed with βτ = 2, in black,

provides the best signal significance of any of the methods and that, for a given signal

significance, it tends to limit the size of non-perturbative effects relative to other methods.

In addition to the Lund-plane based arguments given in section 3 and the Monte

Carlo studies of section 4, we have also outlined the analytic leading-logarithmic structure

of different combinations of taggers and τ21 ratios. As well as bringing insight into the

behaviour of different taggers, such calculations provide a basis for the future design of

“decorrelated” [10] combinations of taggers and dichroic radiation constraints, providing

background rejection that is independent of the tagged jet mass and thus straightforward

to use in the context of data-driven background estimates.
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A Dichroic subjettiness ratios for βτ = 1

In section 3, we have argued in favour of the dichroic subjettiness ratios using N -subjettiness

with βτ = 2. In this appendix, we briefly discuss the case βτ = 1, for which the dichroic

variant can also be considered. Note that for βτ = 1, we have defined the N -subjettiness

axes through an exclusive-kt declustering. This can be done either using the standard E-

scheme four-vector recombination or the winner-takes-all (WTA) recombination scheme.

For simplicity, we will focus on E-scheme results here. A brief comparison between the two

axis choices is shown in figure 13(right).
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Figure 17. ROC curves providing a comparison between different N -subjettiness ratios for βτ = 1

(dashed lines) and βτ = 2 (solid lines). The same 4 variants as in figures 9 and 10 are included.

The left (right) column corresponds to full (SD-groomed) jets. The top (bottom) row corresponds

to parton-level (hadron-level) events.

Figure 17 shows ROC curves similar to those presented in figures 9 and 10, this time

including results for βτ = 1 as dashed lines.

We can make several observations based on these plots. First, as for βτ = 2, we see that

the dichroic ratio also outperforms the other combination for βτ = 1. The performance

gain is however smaller, especially with SD grooming.

In terms of the sensitivity to non-perturbative effects, we see that N -subjettiness ratios

with βτ = 1 are rather stable even without any SD grooming step. This small sensitivity

to non-perturbative effects might have been anticipated since the corresponding kt cut is
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less affected by soft-and-large-angle emissions than for βτ = 2. A consequence of this

observation is that grooming is less critical when using a cut on N -subjettiness ratios

with βτ = 1, and without SD grooming the dichroic combination shows a more sizeable

performance gain compared to the other approaches, cf. the bottom-left plot of figure 17.

Finally, we can argue that βτ = 2 gives somewhat better performance than βτ = 1. To

be fair, the comparison should be made between τdichroic
21,groomed for βτ = 2 (the solid black line

on the bottom-right plot of figure 17) and τdichroic
21 for βτ = 1 (the dashed black line on the

bottom-left plot) which both show good signal significance and limited non-perturbative

corrections. This comparison shows a somewhat larger background rejection in the βτ = 2

case for typical signal efficiencies in the 0.2−0.6 range, as also seen in figure 13.

B Explicit expressions for the analytic results

For completeness, we give the result of the building block used for all the analytic calcula-

tions in section 5, see eq. (5.1).

We work with a one-loop running coupling (with 5 active flavours), appropriate at our

accuracy. We take αs(MZ) = 0.1383 to match with our Pythia simulations and freeze the

coupling below a scale µfr = µ̃frptR which we set to 1 GeV in practice. We then find

Tα(ρ, ρ0;CR)
L<Lfr=

CR
2παsβ2

0

[
W (1− λ0)

1 + α
+W (1− λ)− 2 + α

1 + α
W (1− λ̄)

]
(B.1)

L̄<Lfr<L=
CR

2παsβ2
0

[
W (1− λ0)

1 + α
+ (1− λ) log(1− λfr) (B.2)

− 2 + α

1 + α
W (1− λ̄) + λfr − λ

]
+
αs(µfr)CR

π
(L− Lfr)

2

L0<Lfr<L̄=
CR

2παsβ2
0

1

1 + α

[
W (1− λ0)− (1− λ0) log(1− λfr) + λ0 − λfr

]
+
αs(µfr)CR

π

[
(L−L̄)2+

1

1+α
(L̄−Lfr)(L̄+Lfr−2L0)

]
(B.3)

L0>Lfr=
αs(µfr)CR

π

1

2 + α
(L− L0)2, (B.4)

with W (x) = x log(x) and

L = log(1/ρ), λ = 2αsβ0L, (B.5)

L0 = log(1/ρ0), λ0 = 2αsβ0L0, (B.6)

Lfr = log(1/µ̃fr), λfr = 2αsβ0Lfr, (B.7)

L̄ =
L0 + (1 + α)L

2 + α
, λ̄ = 2αsβ0L̄. (B.8)

C Example code for dichroic subjettiness ratios

In this last appendix, we briefly indicate how dichroic subjettiness ratios can be im-

plemented using tools available in FastJet and fjcontrib. In particular, we make use

of the RecursiveTools contrib (for ModifiedMassDropTagger and SoftDrop) and of the

Nsubjettiness contrib.
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First, besides standard FastJet headers needed for jet clustering, one needs to include

the following headers:

#include <fastjet/contrib/ModifiedMassDropTagger.hh> // mMDT tagger

#include <fastjet/contrib/SoftDrop.hh> // optional SD grooming

#include <fastjet/contrib/Nsubjettiness.hh> // tau1 and tau2

Then, one should declare the basic objects needed for tagging, computing τ1 and τ2, and,

optionally, grooming:

// the tagger [here mMDT with a z cut]

// Note: by default, this automatically reclusters with Cambridge/Aachen

double zcut = 0.1;

fastjet::contrib::ModifiedMassDropTagger mmdt_tagger(zcut);

// (optional) groomer [here SoftDrop]

// Note: by default, this automatically reclusters with Cambridge/Aachen

double beta = 2.0;

double zetacut = 0.05;

fastjet::contrib::SoftDrop sd_pre_groomer(beta, zetacut);

// N-subjettiness with beta_tau=2 and gen-kt axes

// (for theoretical reasons it is preferred to use an unnormalised measure)

double beta_tau = 2.0;

fastjet::contrib::UnnormalizedMeasure measure(beta_tau);

fastjet::contrib::GenKT_Axes axes_gkt(1.0/beta_tau);

fastjet::contrib::Nsubjettiness tau1(1, axes_gkt, measure);

fastjet::contrib::Nsubjettiness tau2(2, axes_gkt, measure);

Note that all parameters here are given as examples and have not been optimised. Also,

when used with events contaminated by pileup, a proper pileup mitigation technique should

be implemented. This can for example be done by passing a fastjet::Subtractor to the

mMDT and SD via the set subtractor method, and using a GenericSubtractor [55] or

a ConstituentSubtractor [36] for the N -subjettiness variables. Alternatively one can use

methods that carry out event-wide pileup-suppression such as PUPPI [38] or SoftKiller [37].

Finally, for a given jet (jet in the example below), one can compute the dichroic

subjettiness ratio using

fastjet::PseudoJet jet; // given jet

fastjet::PseudoJet pre_groomed_jet = sd_pre_groomer(jet); // grooming

fastjet::PseudoJet tagged_jet = mmdt_tagger(pre_groomed_jet); // tagging

double tau1_tagged = tau1(tagged_jet); // τ tagged1

double tau2_groomed = tau2(pre_groomed_jet); // τ groomed2

double tagged_mass = tagged_jet.m(); // tagged mass

double tau21_dichroic = tau2_groomed/tau1_tagged; // τ dichroic21,groomed
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