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Introduction

Relativietie quantum theory has a trouble, its simplest mani-
festatlon belng the inatantaneous spreading of the free par-
ticle packet. Let the particle be localized somehow in a bounded
region hg at a moment t = O. Immedlately after the moment the
partiele can be found in a region y; , separated from @
by an erbitrery distance R , BBE 8.2, /I_Bl. This means that
it is poseible to tranemlt a slgnel from \é to \é with the super-
luminary velocity. So one deels here with the problem of compatibi-
1lity of the basle postulates of quantum theory and specilal relati-
vity.

The mcausal probability to Pind the particle at Vj at
t<R/ turns out to be very small if (R - ct) exceeds the par-
ticle Compton wave=-length A = h/me, eee f9,5L Therefore, tha
acauselity is particularly prominent in the cases of low maes (or-
messless) particles such as the photon or the neutrino. As to the
photon, one mests probleme with its localization, see a.g. /IO'II/;
so the photon packet epreading problem 1s 111 defined., In splie of
this the veloclty of the photon propagation has been investigated
eince 1930 by uelng a more realistic approach than in /1'9/. For
instance, an excited atom loecelized 1n M& was conaldered a8 a
photon source. Another (unexcited) atom localized in \Q
served as a photon detector. For the relevant papers, oee /12/. The
list of references of thie review can be supplementéd by the papers
/13_21/. The result of these investigatlons can be formulated as
follows : if the prcblem 1s properly stated and accurately calcula-
ted, then the velocity of the signal transmiaslon by means of the
photon doas not exceed the velocity € .

Let us stresa that the problem arises only if particle obser-
vables are involved. The quantum flelds and observables constructed
in thelr terms (e.g., electric¢ and magnetic filelds, momentum and
energy denpitles of the field, current denslty ) behave caugally in
local theories, ses,e.g.,/22'12'23/. However, this does not secure
the caussl behaviour of the observables constructed from the positi-
ve energy parts of the fields, i.e. observables pertlment to the

particle interpretation of quantum fields.

Hare I investigate the propagation of = fermion, using neutrino
ge an example. Several possible statementa of the problem ere gi-
ven In Sect. I in the order of incfeasing 7enerality. It 1p shown in
Sect., 2 why the simplest varlants used in '1-5 / and /6/ cannot be
exploited in the fermlon cape. The reason la that the free Dirac’s



fermicn cannct be strictly localized in a bounded region. An
approximate or "effective" locemlization of the fermion is possible
but only within the precision not exceéding the fermion Compton
wave=length A .

Sect, 3 presents my approach. As 1n the photon case, it is
grounded on the possibility of effective localizing the nonfree
fermion within a region with dimenpion much less than A .
For instance, the electron or neutrino eoriginating from _ﬁ
radivactive nucleus are emitted from the nucleus volume ,its dimen-
gion being much smaller than Ae or A, + To describe the
processes of neuirino creation in % and detection in ys ,
I use the Heisenberg picture of gquantum field theory with the
four-fermion weak interaction, The result of the calculation turns
out to be causal : reutrino propagation velocity does not exceead
¢ within the precision of the neutrino localization by its source
and deteector.

T. Forms of the Relativigtie Causality Criterion

The simplest formulation is packet spreading. Let @2
deseribe one free particle, localized at + = O in g volume \4 BO
that the probability of finding it outside Vi is zero. Then

KBIRED AR NI B 819 = (i) B, | ) 3
Bl =expl-int) 4 B =1 (D

is the probability of finding the particle st the nmoment 4> 0

b

in a state ‘Pz » localized in a region \(9 at a distance R
from Vs_ H is the particle Hamiltonian, P, is the projec-
tor on the one-particle gtate P, . According to special refa-

tivity, the probability {I) must vanish at t < R/e. Different
variants of the formulation were used in /I-7/.

Iet us generslize it.
a) One may replace E, in (I) vy another particle observable
p. which is in e sense localized in ¥ - If the particle
is described by a quantum field, then X; may be the operator of
the nunber of particles in » €.2. s8e /24/ , Then,
(q}ﬁ)[Xﬁ‘ P (1)) ~ would be the average number of particles
in V, at the moment +t which also must venish at t < R/e .

b) Real particle interacts with other partlecles, the intersc-
tien beling describved usually by a local quantum field theory.



Then, the probability of finding particle in \6 gt t > 0 may not
vanish even if there was no pErticle initially(_let%denote the inltiasl
no-particle state). Por instance, the particle cen appear in Vb
as a virtial one (togethev with other particle ). The probability
must be considered as the "background" one, e.5. see /I2’23/. Let the
state ‘i% differ from q% enly by the pressnce of one rdditional par-
ticle in K at t = ¢ . The difference

X&) ={Bie) | Jy | @,0t) > - B} X, | 1)) )
would be ronvanishing entirely due to the presence of the initial
particle in \é y other causes of the particle appearance in !%

being excluded in (2) . The difference must vanish if t « H/cx)-
Cne may rewrite (2) as

AXl) =B Xt 19> -, | X))
Xa(f)=eiﬂtx_gg

Here X;&) is the Heisenberg operator corresponding to &5 .
Its calculation may happen to be gimpler than selving the Schroedin-
ger equation in order to find ) .

={HE &)

¢) The localization of the initial particle in \é is the re-

sult of a prepzration process. Tts idemlized description can be
included in theoretical formulation of the discussed problem. For
instance, an excited atom can be considered ag a source of locali-

zed photon state, the photon being the signzl carrier. 4 theoretically
simpler source ie an external current localized in ¥ - The exter-
nal current is a prescribed function of time which does not change
when emitting photone. In sect.3, I shall use en externsl source p of
the fermion which carries the algnael.Wow

2%y =L P XN B0} - LB | %) | @) (1)

is the change of the observahle XE which is due to the switching on of
i

the external source. Here Xs(t) is the Heisenberg operator (coin-

ciding with X, at t = 0 ) when the source has been sewitched on,

K, (8} 1is the "background" Heisenberg operator when the source
has not been switched on,

x)In order to compare (4%@)1X% lq%[T) with the background, one
cught not use just the difference: cne may consider ites ratio
instead., But it is the difference which ig gimpler to calculate.
For inatance ,(‘%ﬁ‘) l)(a lfﬂ.(ﬂ) and {FL0H)] Xy [ 000N may contain

divergencies which are absent in their difference.
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d) The appearance of the signal carrier in \5 can be detected

by observing the change of the state of other particles in Vb ,
the chanme being the coneequence of their loecal interaction with
the signel carrier. In particular neutral particles can be detected
by means of charged ones. So one can replace Kb in (2)~{4) by ot-
her obaervableu}; which are congtructed in the same manner as )b
but from the operators of other particles. Of course, }3 mugt be
localized in V5 in & sense. The venighing of

Ag(ﬁ"'{ép‘ [ YB’UJ' \é{’)J @c) h (5)
at t < R/c is the example of the generszl form of the causality
criterion: no change in \é {(as compared to the background )
can be t1i1l the moment R/c.

2. Permion Localizahility

2.I. The description of localization of the signal sourcs
and detector needs a notion of coordinates. The special relativity
theory uses coordinates ? e messured by rods and watches, i.e.
the Minkowski coordinates, MC. The derivatives in the Klein-~
Gordon or Dirac equations are over Jjust the MC. The coordinates are
used also as parsmeters, numerating the field degrees of freedom
ALy, W(ij etc. The locality of interaction of the fields is
defined by using MC.

Other coordinates are mlso discussed in relastivistic quantum
theory, namely particle position operators and their eigenvalues,
e,g., 3ee the review 25 « Their properties {hermiticity,transfor-
mation properties,etc.) are usually discudsed in the framework
of the theory of one free particle (an exemple of the exception is
/25/y, However, the msin problem in this topic is the re-
lavance of the position cperators to the ocutcomer of real measuring
devices. The relevance is obrcure hecause the particle interacting
with the measuring device is not free.

In the problem of esignal transmission the choice of a coordi-
nate 1ls dictated by the following reason. One deals with the apecial
reletivity requirement "silgnal veloclty must not exceed ¢ ™, The

velocity must be defined in terms of MC and juat the coordinatee
muet be used.

the paper

2.2, The packet spreading problems, which are discussed in
need the initisl state @% which is strictly localized within
a btounded region, However, positive-energy states of the free

f1-5/
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Dirac fermion are described by the spinors % (X} which cannot van-—
ish outeide a bounded region |/ ,see Appendix A.In other words, there
exigts no free spinor S such ‘thatP-‘(}):Eﬂ !%s{;),l would
vanish outside V .

The thecrem “Violation of Causality" by Hegerfeldt 8/ allows

nonlocalized initizl states, but the state allowed by the theorem
has the property of 1) decressing asix|—s = faster than
ENF('k'z”U,where K,> &m (then one can realize the condition (T)

from 78/ op (2I) from /7/). But this decreasing is forbidden for
fermionic states, as 1s shown in Appendix A,

2.3. The papers /1T define the probabllity of finding the sprea-—
ding particle in the volume Vusing the expression{{ &) N, (e}
which In the cese of the Dirac fermion Essumes the Fomm

(‘,V![L‘)}M,?}ﬁi')):{’d’,gﬂ}%5(}:,5”"'; MELCI']A‘Q;" l;)/rt}@})/.{) . (6)

This is the limit of the sum of probabilities to find the partic-
le in the states 4/'(x) localized in small volumes V; which form the
voluwe V : V=3, V. , The related measurement must reduce V‘S_/t}
in each measurement act to one of the states 9} s suppy‘/‘: V: /27’28{
There are reasons to guppose that nc such measurements exist in the
case of a fermion because there exist no physical means to localize
strictly the fermion within an arbitrary smail volume \/; . Thig is
true, e.g , for the measurement which reduces to free fermion sta-
tes. The paper /8 argues the Impossibility of such a fermion locali-
zation by means of a bounding potential,

There exists another expression for the probability of finding
the particle in a volume V:

-~ ]2 2

W5, 9 ypigal =1 (e 1ol -
It corresponds to the measurement which reduces i‘l/r(i',i) to the
states L‘VV which is locelized in V , the approximate localization
being now allowed. The state (,VV is determined by_ the concrete
measurement process. If one represent t'U as 5“ @ , then (7)
would depend on g)‘ phases while (6) does mnot depend .on them.
Expression (7} is allowed for fermiong, and it wes used in (I) and
shall be used in sects 3 below.

2,4. Ilet us comment the caueality oriterion used in /9’6'7/ .
It stetes that the probability of finding the particle at the moment £
within s sphere V of the radiug M must be less than the probabi-
11ty of finding the particle at t=0 within the sphere Yy which has



the same centre as V does but has the radius r = r + ¢t (or to

find 1t within & larger region containing ¥, /5/). Note, first, that,
the definitions (6) of the probabilities (criticized above) were used
in /9'5'7/. But it is more important %o stress that thie eriterion
differs - from the requirement "signal velocity cannot exceed ¢ "he-
cauge the measurements related with the eriterion do not determine
any signal velocity. a

#.5. There are empirical facts which give evidences for the
existence of much better fermion localization than that permissible
for the free fermion. For instance, one may conclude thet neutring
emerging from the process €7+ [z -),[“,qu . was localized gt
wome instant of time in the volume of the nucleus whose dimension
is much smaller then A .It ig possible also to detect neutrino in the
region with dimension << v+ Begs, using the known reactionm
Vells Arve™ . Note that the localization of a nucleus as a whole
also can be realized within the precision <<.hy (e.g., in the
erystal lettiece)., In these examples, the neutrino is not free; it
is created or abeorbed. The related localizetion measurement cammot
be described entirely by clesaical means because the deseription of
the creation or absorption needs quantum fisld theory, Using the theo-
¥y T shall describe the Pirst stage of the neutring localization in
which the neutrine transforms into heavier and easier detectable
particles. As to the meagurement of the latter, I use the usual pos-
tulates of the quantum measurement theory /27,28 .

3. Neutrino propagation velocity

The form d) of the causality eriterion is used. 8ignal carrier
is the neutrino. It is guppoged to be detected ueing
the process of the type V+LP->Ar+e” « The reiated aelementary
reaetion is V+Jﬁ-a;>+e' ’ where [} “ig one of the nucleus
neutrons x). It ig bounded, stahle and is localized effeactively in
the nucleus volume VL « The ocecurrence of the reaction is suppoeed
to be detected by the obeervation of the resuiting electron., A1l
particles v,n,p,e are described by quantized f£ields and the inter-
sction Hamiltonisn 1e teken in the Fermi four-fermion form /3I’32/:

x)
The small probability of the reaction is irrelevant to the supers

luminary velocity trouble considered, IP the probability of the
superluminery velocity does not vanish within the measurement sr-
rors (however small it be), then there arises the logical paradox

in the framework of the special relativity: the effect may abolish
ita cause /29'30’.



Galg Qv §.0¢, « .09 GOy ] (8)
(one may have in mind the V-A variant).
As an observable Y5 of the form d), I teke the operator of the
number of electrones in a state l//” which is a2pproximately locelized
in snd near a volume V, , V,C ¥, . see Appendix B,

LA A A e[S PR AL Gy %)
S, 4 oGy = o AL ATt (10)

A/“ [;):Jdnjjgr O, af‘ (/-3:!'} é‘.)(f’(l‘/.)-i) =
=fdx 5, M, (%54 lg).

Here Al“ is the part of the eleectron-positron field ([)d which
annihilates electrons, [T 1s the operator projecting onto this
part, see Appendix B,

The average of /4;14_3 in a state P is equal to the number of
etectrona in P + lrrespective of the presence of other particles
in 9 . As there can be only one electron in the state (/)'B , the
average 1s simultaneously the probability of finding the one- elect-
ron state w? in F (for more details see /3> , Bect, 4),

The source of the neutrino (localized in \{; ) is described by
the preacribed Crassmann function ?(X) « It is introduced in the
Dirac equation for the neutrinc field

(igpde s m M= g
by analogy with inserting an external current f into the equa-
tion for electromegnetic potential A 0 ]q’ :j" +..

Tels is equivalent to the addition of the term 7y, + 4 p
to the intersction Hamiltonian (8). The function 7('}}1&) is localized
in the volume \_fs and 1z ewitching on at the moment + = O, being
zero hefore.

Unlike the neutrino source reaction &4 Efz.auflﬂu the exter-
nal gource can create antineutrinoa together with neutrinos
(and also anmihilate them). However, only the neutrinos. aps detected
by the process V+n—op+re  ,and therefore, the signal transfer
from V{ to |, i5 realized by the meutrino only.

(11

3.X. Now the problem consists in the calculation of the change
of the number of electrons, approximately localized in % which is
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due to the switching on of the neutrine scurce in

ANl = P TASTOAL L) - A6 Agee) L2 (12)

where P ia the state "one neutron and no other particles®; 44_39(1‘/
is the Heisenberg operator (coj_ncj_dj_ng at t=0 With the Schroedinger
ore ,43 » see (9)) in the case when the total Hemiltonian 4 contains
hesides the free part He the interaction

Hr=l3]‘f’2l{/,*q/,? -

(13)
and ﬂz[t) ias the "backeground™ Helsenberg operator of the case
k=0, Aﬁ( t=0)= A.?) . The “hackgroung" in (I2) originates,
e.g., from electrons which can appear in Vb 2t t> 0 due to the pro-
ceas n—-!_\-re"ﬂ/ » the proceess being the virtual one becsuge n is a
stable bounded neutron,

To calculate (I2) one has to fird the Heipenberg operators

HVel? f;,ﬂa'ﬂd ¥ (Xt}  becsuse
Al =] S, Y G0y 3, M (37 Cope (5,2) (14)

see (9) and (II), Wote that [ may be omitted in (I4)} because ﬂlf-’bzlf/‘%
see App. A and B, -

"To find the Heisenberg operator ‘;Ue (;, l‘} "means expressing it
in terms of all Schroedinger operators ¢ Oy, HV.,{_II’%[;)‘ W {¥)
or, equivelently, in terms of the Schroedinger creation-destruction
operators {because the former can be expanded in terms of the latter,
see (20) below ), This expression allows one to caleculaete (I2) since
vwe know how to calculate averagen of the c¢reastion- destruction ope—
rators in the state P, see below,

3.2.80 we need equations for the Heimenberr operators nnd their so-
lutions. The equations cen be obtained by using W :_L[t{/] H]:

ifpdp 0oy =) = Sl 04, [y Gty ] (15)
(=i +me Ve = - Uz [‘PM Q4 ] @‘ﬁ? , (16)
[“E}f.%u +m, + L{ﬁ)) %? = @/JI 9%9 [q_f,_,? 0%?], (17)

The equation for %‘? is similar to {I7) ; [{ (X} is the
effective potential which bings nucleons in the nucleus. The equati-
ons for the "background" Heimenberg operators ( SU wmithout the sub-

9



script } differ only by omiseion of the term in the equzti-
2 q

on for % .
Tet us rewrite the equatiorns in the fellowing irntegral form,
.8, see /38,357

Yop (1) = pr Gt - f;td:raf‘fi‘i Solx=g)pty)+
«8), 4y Jd’y ["7)[93»'7 8%, t9)] Oeyty) -

(13°)

YhGit)= 47Ge) + g [l [ Sl )09, () 104, 4. o

The equations for LfJM and 'n? are similer to (I6%), let
ue call them equation (I7*) and (I8'), respectively, The following
netationr 5{: Gz . x=(%1¢) ) y:(‘;,t} was used: Qﬂj are solu-
tiong of the corresponding Dirac equations in the case = 0 and
G = 0 ("free solutions"), They can be represented as

@Hivt)= fdw [0SO, o)y ) (19)

see, e.g., (8.67) in 731, It £ollows from (I2) thet Wfti?,f} coinci-
dee at t = G with the Schroedinger operator ?y(x} . Therefore,
the Heisenberg operator (,(/(}, t) at t = 0 zlac coincides with !{J(f) :
the integrals in the r.h.s. of (I5*), (I6')} vanish at £t = 0 . In
the following I use another known representation of ?'/-7‘ as the
expansion over (Schrcedinger) creation-destruction operators, &.g.

L e FTED,,
Wlt)=[us [wiy e p ’r)af,- Ve PTG 2;: J- ce0)

Here EF=|/}3-2+M‘- « Aneslogous expansions for !,V,,f and %’L must
contain spinors and UV which are the solutions of the time-
independent Dirac equetions with the nucleon potential. So the ex-
pangion must contain also the sum over bounded stiates.

One can represent the Heisenberg operators Q()T,t} in terms
of L,l)f[i', t) using the perturbation mpproach described in/36’37/.
Similtanecusly, the Heisenberg operators will be repregented in terms
¢f the Schroedinger cnes L[/(f) or a,bt, see (I19), (20),

Let us expand

po=37, 9" x=(x1) (21)

insert the expaneion in (I5’) - (IB8*) and collect together terms ha-

10



ving the same power of ¢ . We obtain
R S EY O 28 - e
%(;) - %f: %M ; %(;) _ %f _ %m, (233
15,000 Loyt ] <y
By = S I# 0w op.

(24)

(25)

! (o
Note that %U differs from 9[/{,,) » see (25), because }I/;a)differs,

. V.
from 171/‘,("j , e (22):

ur ‘. S el
Yot =[ay S Oey)[Plia) @ yitty)) 0 21y - (26)
7+3. Now one can calculate AAM, , see (I2), (I4), in the

first nonvanishing approximation, Using % = YF, a) o, .002)
+ A
and analogous expansion for (’% , one obtai'ga y/ ﬁ%? ae %?

4 N, @) =fd:'x Sd*« .Z,,/J '{/f*(i")-
L s 9 o G11) = 42 (1) gy, ) W)= )
= A 3 24 (> (: e -
Jd fd¥ Y MDI%H%Z" %(»H%@) ¢

i 5
AN A PRI P

+ gl{%’b}* %(l}- ']V (D)f (g)) +c o +
1. are e :
- gz( ?%{m %f?l _ tj/“’* u;) { 5P> wa_ o

The term of the' order ‘ge disappears in (27) because )Zl/ew .
see (23). In all the terms of (27) one may replace %M" 9(}"'=% by
the positive-energy part H%f » see the note after (I4), The .
part gives zero when acting on @ ; nl,”f“P:U and {4 I{n%f) =0
(recall that @ ig no-clectron state). Therefore, the torms w~
end alac the next to the last term in (27) disappesr. So using
(25} and (26) and noting that (@[S [¢D=0ir S contains an odd
number of fermion operators, one obtains

A%(t‘):(@)[ﬂ*[{[ﬁ‘ﬂ): IR P, (28

11



= [
R=fd* ¢20)fd’y S, (e-g) [PHy v )10 (49 S tg-21p12)-
The vector R@f\al{/f tllfdp in (28) contains components of two
types + I) one proton 1n all possible states, no other particles
{ (}H‘ creates the proton, qp,, annihilates the initial neutron);
2) one proton plus one antineutron in all possible atetss plus the

initial neutron ( lf'{,’t creates an antineutron). All components 1) are
orthogonal to all components 2} and

AN(2) = AN+ a M () = IR I+ IR, Uf?, (30)
l R.q)“2=zfr. | faf])‘ l,'ugr(x\_gfa",ofd} Se (x 'f} &P_@}e :'Ef,y‘.
Quatgle™ ™ 0 [* i (4% S ty-2) p)|”

(31)

Here U.Pr[g,) is the proton epinor of the energy E}, 3 U, ! ) is the
initial neutron spinor of the energy £, <m, . The quantity AM(t]:
=[|R, P]* 1s the inclueive probability to find the electron of
the process V+n-» P-t-&' in the state [})2 : one deoes not observe the
proton end therefore, the summing ¥,- must be performed over all pro-
ton states; AA/#)= 1l R,-Pli* 1is the inclusive probability of finding
the electron of the process Y+n— n+P+F+Bh(or V> ;1'+Pﬂ9‘ bhecau-
se the initial neutreon is not affected)., This process takes place

in the finite time interval (0, t ) and neutrino and electron states
are not plane waves, Therefore, the energy-momentum conservaetion does
not forbid the process absolutely.lne can avold the discuasion of the
contributior\AN assuming that our detecting measurement allows one

to separate the prohabilit,‘)( A:VJ to find the electron without the
accompanying antineutron

3.4. Let us discusa the obtained result for AAj(t)=||R Pl In the

r.b.a of (3I) one has the product of the fumection g(g)__ﬂyzg/;!gg ty-2] ?[y

and the function u,,(yluu,,[ﬂjexp( - E, y,, The function® S, (y-2) in

known to vanish if the interval (y - 2 )° is space- 11ke, 3%
e 7139/, Therefore, 9!3) vanighes outeide the future light cone

of V_; « The latter is defined as the set of points g:('g]‘JI g,) auch

x) Note that & similar situation oecurs in the case of the photon
exchange between the external current (the photon source) and

the etom (the photon detector),seethe footnote in seet 3 of the
suthor paper

12



that y, > 0 and all intervals (y - 2)° ere time-like with respect
to the points 2=(7 4) , 2€ I, see f1g. I.

Pig, I.

The forward 1light cone of Y
is shaded; the support of

W, [5‘1&) is dotted,

The function Lhﬂj) is localized in the four-dimensional region
ge v, . 16{‘,.‘:-() - The product of (')[g} and u,,(g)r does not
vanish only wher supp Uy lg) can intersect with supp 9(3) L oi.e.
at t > t =R /¢, R, being the distance between Vo and U, ;
Ry, = min |-} Je i ; EE vV, . see fig. I. So 44’; vanishes at
t < R, /e, If tialy) 1= not exactly zere outside V, then aAl(r)
would not be exactly zerc mt t< R,/c but it is evident that this
would not contradict the causality. One gete the causal result within
the precisicn of the neutron loecelization. The precision is related
in no way with the Compton wave-length of the signal carrier, the

neutrino.
Recall that the electron of the process V+ N2 p+e™  ig detected
ir the region Vz approximately. Note thet the V.a dimension ia of

no importance for the obtained result (actually the \é dimension is
much greater that the V, dimension).

3.5. The sbove calculation has been performed in the Heisenbery
picture. In sect, 3 of / 38/ I nave calculated the inelusive quantity
aimilar to AA_/[ in the usual iunteraction picture. This was done for
the case of external current —» photon-—;detecting atom. The calcule-
tion turned out to be much more cumberseme then in the Heisenbergz pilc-
ture. It was demonstrsted how in the final result there arised the
strictly causal photon D function instead of the Feynman preopagation
function De which naturalily appears in the intersction picture and
does not vanish outside the light cone (see equation (13} ir /38/).

Acknowledgement
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Appendix A

. An erbitrary state of the fermion is a superposition of pogitive-—
energy Dirac statesg
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GBI =[S Cip) Uy (5r)enp(iis ) M=423¢ . (AT
resg TP G pTICRPUPR ) =gz

4 Y, = . - - "
S (S Pt P ml ey () - Eptntpr) ,  Ep=lptemt ] s.0

Fourier transforms of %‘ (f} describe the same stste in the
momentum representation

5= 2 [d'p o (Blesp i) (2.

gé“(ﬁ) =zr=42 Crlp) ulpr) - (A.4)

Four functions Y, (x) or Fé., (,5) are not independent becsuse
they are determined by two arblirary functione C}-f-f;) only. One can
verify that ;ﬁﬂ (!3) satisfies the equation

Bz S M B M=o e et ) o o L sy

where [1 is the known posltive-energy projector. Equation (A.5) is
equivalent to (&Pfﬁm);ﬁ:[épﬂﬁ and will be used instead of dealing
with the explicit solutions U (pr] of equation (4.2),

Iet us show that the four function ﬂ(s?')cannot have bounded
supports so thet P(;):-E [({/fd(j){l cannot vanish outside a bounded
volume V . s ‘

Suppose the contrary. Then ¢ﬂ (ﬁj » see (A.3), are entire
(analytical everywhere) functiong of three complex components 4 ,

P; ' y of the momentum ,l_J , see the theorem ;[X.IE from /40/.
Then ( {7 J. 8lso must be entire because :/7? . But actually
(H’ﬁ ). are not entire if ¢/M are, because /] contains the functi-
on J‘p_z# which is not single-vetued (and conpequently analyti-
cal} everywhere. So our supposition that "UF {x} can heve bounded
supporte is not consistent with the equation ¢= 1775 + For another
proof see/‘“/.

The result can be improved by using the theorem IX.I3 from /40/.
I shall use its particular (omesided) variant;

"Let f{x)€[F{R7)  and let f(R)exp(E1XI)ELYRYat a1 b o .
Then ;(FJ » Fourier transform of f(% » is anelytie in the
tube region p (Imﬁ} <a] .

Note thet )f[,‘s) has one more property which I do not need.
Tc apply the theorem to our case, suppose that _ff'(i)d]a <&  then
%.(I)ELJ‘ for M =1,2,3,4. Suppose that]%,f\TH(Cﬂ?Xp[_q!EU
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outzide & volume V . Than all premises of the theorem are satisfied

for Yu , in particular %(i)exp((; IXIke/For all bvc a . So fbf“(/a}
must be snalytical in the tube

[Imp {=[{Tnp, )" + (Im gy )2 Inp )21 % g .

Let us show that the supposition a > m contradicts the equa-
tion Fﬁ: ﬂp' + Indeed, if the functiong v are analytical in the
tube [Im 5l<a , then the functions {1 ﬁ}ﬂ, cannot be analytical
there because due to l/jffml the functions /[Ju. are not
analytical in the region IIme[;m » in particular when m.fef_]"m/.\—l<q
(see pelow for the bproof of the etatement). The obtained contradic-
tion means that {Wu| cannot decrease outside V faster than
C"“exlhi-ﬂiﬁf):[}“exf[—m[frtjIJ_(I), where £ap « The emaller
is £ , the stronger is the restriction for %, « 1t 18 poesible
that the restriction ean be further improved by other means, 8.8,
cne would be able to show that llf)#[ cannot be smaller then

Cﬂ {%)°2 2xp {-m ix1) cutside \/ .
I atill have to prove that !7,.., is not analytical if[Imﬁ/;m‘
i.e. I should prove that |/‘pz-tm1 is not single-valued at[Im/'j]‘; m

The get of the brench peints of l//y‘--;-mz (the cut origing)

can ke found by using the equaticn P:l* P;‘+/)§fm=_:"9‘ Let P“ zﬁr*"ds:
and rewrite the equation ms

zxd«l:’"i*‘zzﬁf ; Ezf'xd =0 K=423 . (A.6)

To describe the set, I use P s ﬂ,‘ and f)j 88 running varisb-
les, Then, the firet equation in (A.6) shows that lG’]:[fmﬁf;m at
all f).( . The second one means that EJ_F if j‘.’) and & are vectors
in the same three-dimensional gpace. The function Vpifnﬁ‘ has no
branch points in the region lfmﬁlﬂ‘“ -The cuts from the branch points
must be directed to the infinite point : this gives the needed branch
ofV_pﬂ-ffn“ which 1s equal tOIWf both for positive end negative real
values of PJ, Pl + /73 « So the branch points and cute are outaide the
region [Im'ﬁ}cm o In particulsr, they are present atméﬂmﬂéa if a> m.

So the following fact is proved: if fﬁ(?}a”x 1e finite, then
J(X) cannot decrease faster than Cexp (=2{1+£}¥I/\ Y outeide a
vounded region (in particular, at [¥%|—=o0 ). Here £ 1im positive
and can bte arbitrary emall, This fact determines the pozsible appro-
ximate or effective fermion Iocalization.
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Appendix B

By definition the projector {1 , see (A.5), is equal to the
sum of projectors onto two independent positive-energy solutions
of (A.2)

Moo (P)=3, Un BOIWET), 5, wr (e lipipis)=S, -

In the momentum representation the projection with the help of
ﬂ’,‘w(ﬁ) is reelized by summing over ¢ only, see {(A.5), without
integration over momentum. This mesns that /7 is diagonal in the
momentun representation )

Opv (P§) = T (P) S(f -7
(ML =45, M (5D B63) = 5, M tir bt - (5.2)

Therefore, in the coordinate representation one has
Mo (231 (20)7 [a’ /4% e P¥ M (pgle i
:(27.'_)'3fd_']}) e Llljtf“j) ”I“V {l}) = r]{uv (i_g') .

Eere, one can use (A,5) or {BE.I) far nﬂ,,(p") .

Using (B.I) one can verify that(f] %),m {x) (see (20) for l,Ué, ) is
equal to AP‘ {x} , see {II).

The spinor l’,Uz in (9) which is Localized in and near -V, can
be represented as ?)ﬁ(n:f,{?}v [};uv(i,ngvig) whereg’ ig)is superposi-
tion of positive-energy and negative-energy spinors such that.
SKPP&: Vz v v=1,8,3,4, It can be shown that

€B.3)

| L{)’% (i}’-{. censt eap {-—mf)) (B.4)
at 02> 4/m, whareﬂ is the distance between X and l_/ﬁ :

p= m{n[i—gl L he V» . Let us note that according to App. A fL}JMB[;)[
/
must satiefy simultaneously the inequality )

'lupj(i)|>g,u,:[_mu+g)/)) . v
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ipoxkoe M.WA. E4-91-284
NokanuzaunA PepmMMoHa M NPUYUHHOCTL '

PaccmaTpupaeTcA 3afiaua o CKOPOCTM PacnpoCTpaHeHuA diepmuoHa oT
WCTOYHMKE A0 AeTexTopa. (loka3aHa Henbmmenwmocm NpPOCTEALero noaxona
B BWAE 330434 O PacnnbiBaHWUKM NAKeTa cBOBOAHOW 4acTuuUbl (Xerepcbenbjn
W Ap.) BBWAY HEBOIMOMHOCTW Mokanu3auuv (hepMUOHE B KOHEYHOM oBbeme.
MpeanodeH Apyroi noaxofd, VCAONb3YOIIMA KBaHTOBO-NONEBOE ONWCaHwe
UCTOUHUKA 1 aeTexTopa ¢iepmuoHa. Y CTaHOBNEHO, YTo CKOPOCTh pacnpocTpa-
HEHWR hepMMUoHa He NPeBbILAeT CKOPOCTM CBETa B NPeAenax TOUHOCTU NoKa-
nU3auKK KCTOYHUKAE W JeTeKTopa.

PaBoTa BsinonneHa s JlaBopaTopum Teopetnueckon sk OVAN.

K

IMpenpuaT O6BeqUH HHOrO HHCTUTYTA ADEPHEIX HecienoBanHi. [Iy6Ha 1991

Shirokov M.I. ) E4-91-284
Fermion Localization and Causality

The velocity of a fermton {neutrino) propagation from its source to its
detector is investigated. It is shown that a simple approach to the problem in
terms of the guantum packet spreading {Hegerfeldt et al.}) is not applicable
because the fermion cannot be localized in a bounded space region. Another
approach is elaborated which uses relativistic quantum field description of the
fermion source and detector. it is demonstrated that the velocity of the fermion
propagation does not exceed the light velocity C within the precision of the
source and detector [ocalization.

The investigation has been performed -at the Laboratory of Theoretical
Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1991
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