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Abstract

When continuous parameters in a QFT are varied adiabatically, quantum states typically

undergo mixing—a phenomenon characterized by the Berry phase. We initiate a systematic

analysis of the Berry phase in QFT using standard quantum mechanics methods. We show

that a non-trivial Berry phase appears in many familiar QFTs. We study a variety of

examples including free electromagnetism with a theta angle, and certain supersymmetric

QFTs in two and four spacetime dimensions. We also argue that a large class of QFTs

with rich Berry properties is provided by CFTs with non-trivial conformal manifolds. Using

the operator-state correspondence we demonstrate in this case that the Berry connection

is equivalent to the connection on the conformal manifold derived previously in conformal

perturbation theory. In the special case of chiral primary states in 2d N = (2, 2) and 4d

N = 2 SCFTs the Berry phase is governed by the tt∗ equations. We present a technically

useful rederivation of these equations using quantum mechanics methods.
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1. Introduction

When the Hamiltonian of a quantum system depends on continuous parameters, a natural

connection can be defined on the parameter space. This is called Pancharatnam-Berry

connection [1, 2] and it encodes the geometric phase that quantum states pick up under

adiabatic variations of the parameters. It has played an important role in several physical

systems in condensed matter and atomic physics, see [3, 4] for a review.

In this paper we present new results about the Berry phase in quantum field theory

(QFT). As in any other quantum system, when we adiabatically vary the parameters of the

Lagrangian, quantum states in the Hilbert space will generically pick up a non-trivial Berry

phase. We show that a non-trivial Berry phase can be encountered even in simple weakly

coupled quantum field theories. At strong coupling it is typically very hard to compute the

Berry phase analytically. However, as we demonstrate, in supersymmetric QFTs in various

dimensions exact results about the Berry phase of special (BPS) states can be derived, which

hold for all values of the coupling.

In QFT the validity of the adiabatic theorem and the precise computation of the Berry

phase may be subtle in situations with continuous spectra. We will deal with such issues

by placing the theory on a spatial compact manifold, e.g. the torus, the sphere etc. Certain

manifolds may be more convenient than others for the study of the Berry phase of specific

states. In many of the examples that we study in this paper this approach allows us to draw

conclusions about the QFT in flat space. In some cases we can obtain a sensible decom-

pactification limit, where the results are insensitive to the specific details of the compact

manifold. In the case of conformal field theories, the relation to the theory in flat space is

achieved by a conformal transformation and the operator-state correspondence.

A simple example of a weakly coupled quantum field theory that exhibits a non-trivial

Berry phase is four-dimensional pure electromagnetism in the presence of a theta angle. The

Hilbert space of this theory is a freely generated Fock space of photons. Even though the

theory is free and the eigenvalues of the Hamiltonian do not depend on the coupling constant

e and theta angle θ, the actual eigenstates do depend on these parameters. As a result, we

show that the states of the theory exhibit non-trivial Berry phase under adiabatic variations

of e and θ. In terms of the complexified gauge coupling τ = θ
2π

+ i4π
e2 we find that a state

with n+ (n−) photons of positive (negative) helicity has an associated Berry curvature given

by

F
(n+,n−)
ττ =

1
8

(n+ − n−)
1

(Imτ)2
. (1.1)
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In particular, this formula implies that if a photon propagates in a medium with a slow

variation of the effective e, θ couplings, its polarization vector will undergo a spatial rotation.

Such effects might be visible in suitable setups of topological insulators.

This result generalizes very naturally to the low energy U(1)r theory that characterizes

the Coulomb branch of four-dimensional N = 2 theories. In that case we argue that the

low energy photons have a non-abelian U(r) Berry curvature that is proportional to the

curvature of the Seiberg-Witten metric on the Coulomb branch [5].

In sections 5, 6, 7 we present several new computations of the Berry connection for certain

states in supersymmetric quantum field theories. In continuous families of supersymmetric

theories, the deformations of the Hamiltonian are often Q-exact and related to F -terms. This

leads to drastic simplifications in the computation of the Berry curvature of supersymmetric

ground states and, more generally, of BPS or “chiral” states. We work out the case of massive

N = 1 theories in four dimensions and show that the Berry curvature of supersymmetric

ground states takes a particularly simple form. In our second example we consider the case

of chiral primary states in the NS sector of 2d N = (2, 2) SCFTs on R × S1. We show

that the Berry phase of these states is governed by the tt∗ equations, reproducing the classic

results of [6] and [7]. The new derivation demonstrates how the tt∗ equations arise from

a straightforward manipulation of the Berry curvature formula bypassing the use of the

superconformal Ward identities needed in conformal perturbation theory [7]. Similarly, by

analyzing 4d N = 2 SCFTs on R × S3 we prove that the Berry curvature of N = 2 chiral

primary states is governed by the 4d analogue of the tt∗ equations derived in [8].

An important consequence of our analysis is that the Berry curvature can be computed

exactly in various 4d N = 2 SCFTs. For example, the results of [9,10], where the exact three-

point functions of chiral primary operators were determined for SU(2) N = 2 superconformal

QCD, can now be interpreted as providing the exact Berry curvature of the chiral primary

states of the theory.

The above results in 2d N = (2, 2) and 4d N = 2 SCFTs are examples of a more

general relation between the Berry connection for states of a CFT on R × Sd−1 and the

connection on the space of operators that is naturally defined in conformal perturbation

theory [11, 12]. In section 8 we present a general formal argument based on the operator-

state correspondence that exhibits the equivalence of the two connections in any CFT with

a non-trivial conformal manifold and for any set of states/operators. In particular, we arrive

at a very natural physical interpretation for the curvature of the Zamolodchikov metric: it

characterizes the Berry phase of the marginal operators as the marginal parameters undergo
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an adiabatic cyclic variation.

Previous works which considered the Berry phase in systems with supersymmetry include

[13, 14] and references therein.

2. Review of Berry phase

In this section we provide a lightning review of basic properties of the Berry phase in

quantum mechanics that will be useful in this paper. Extended reviews of the subject can

be found, for example, in [3, 4].

Consider a Hamiltonian that depends on a set of continuous parameters λi, where i =

1, .., k. We think of the parameter space as a k-dimensional manifold M. For now we

assume that these parameters are real numbers. In supersymmetric theories it is more

natural to combine them into complex combinations and the parameter space may be a

complex manifold.

Let us further assume that there is a fixed Hilbert space H where the Hamiltonian H(λi)

acts in a prescribed λ-dependent manner. We assume that this Hilbert space exists at least

for local patches on the manifold M. For every choice of the parameters λi, there is a basis

of eigenvectors of the Hamiltonian, which will be denoted as |n(λ)〉. By definition,

H(λ)|n(λ)〉 = En(λ)|n(λ)〉 . (2.1)

For starters, let us consider the case of a non-degenerate spectrum over a region of the

parameter space, thus excluding the possibility of level-crossing. The case of degenerate

spectra will be discussed in the next subsection. In the absence of degenerate spectra the

eigenvectors of the Hamiltonian are uniquely fixed up to a phase at any given value of the

parameters. The physics of this phase can exhibit interesting effects.

2.1. Abelian Berry connection

Definition. We select the eigenvectors |n(λ)〉 over a region of the parameter space with an

arbitrary λ-dependent choice of phase. Following Berry [2] we define the object1

A
(n)
i = 〈n(λ)| ∂

∂λi

|n(λ)〉 . (2.2)

1Typically the Berry connection is defined as a real object with an overall i factor in (2.2). To conform

with standard definitions of the connection in conformal perturbation theory later on, we will not include

the factor of i in the present definitions.
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This should be understood in geometric terms as a connection encoding how to compare the

phase of the state |n〉 at nearby points of the parameter space M. Notice that, since we

assumed no level crossings, we can unambiguously keep track of the state |n〉 as we move on

the parameter space. Moreover, under a change of the choice of phase of the eigenvectors,

|n′(λ)〉 = eiφ(n)(λ)|n(λ)〉, the object (2.2) transforms as a U(1) gauge field

A
(n)′

i = 〈n(λ)|e−iφ(n)(λ) ∂

∂λi

(
eiφ(n) |n(λ)〉

)
= A

(n)
i + i∂iφ

(n) . (2.3)

We have a U(1) gauge field for each state |n〉.

Berry curvature. The field strength of this gauge field (equivalently, the curvature of the

above connection) has components

F
(n)
ij ≡ ∂iA

(n)
j − ∂jA

(n)
i . (2.4)

After a few standard manipulations (see appendix A) we find that the curvature can be

expressed as a spectral sum

F
(n)
ij =

∑

m6=n

〈n|∂iH|m〉〈m|∂jH|n〉 − (i ↔ j)
(Em − En)2

. (2.5)

The intermediate states |m〉 are assumed orthonormal. As expected, the formula for the

curvature is invariant under a change in the choice of phases of the wavefunction.

Mathematical structure. The parameter space M and the complex line Hn (representing

the Hilbert space at energy En) over each point of M defines a vector bundle over the

parameter space. A further restriction on normalized states in Hn defines a principal U(1)

fiber bundle with M as the base space. These bundles are equipped with a natural connection

[15], which coincides with the connection computed by (2.2). A choice of eigenvectors |n(λ)〉
corresponds to a family of sections in this bundle.

Physical origin of the Berry connection. The Berry connection is of course related

to the adiabatic theorem of quantum mechanics. If we start with the system in one of

the energy eigenstates |n(λ)〉 and change the parameters of the Hamiltonian very slowly,

the system evolves by remaining in the instantaneous eigenstate |n(λ(t))〉. Apart from the

trivial “dynamical phase”, which is e−iEnt, the Schroedinger evolution of the state also picks

up an additional “geometric phase”. Berry discovered that in cyclic variations this phase is a

characteristic quantity of the system that depends only on the path taken on the parameter

space. It is given by integrating the connection (2.2) along the path. In this sense, the

dynamics of quantum mechanics selects a particular connection.
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2.2. Non-abelian generalization

If there is a subspace of degenerate states (and the degeneracies are not accidental, but

rather persist over an open set on the parameter space), then the Berry connection may

be non-abelian [16]. If N is the degeneracy of an energy subspace En, then the connection

is generally in the adjoint representation of U(N). Let us select an arbitrary basis for the

degenerate states of energy En as |n, a(λ)〉, where a = 1, ..., N . Then, the formulae for the

connection and curvature become

(A(n)
i )ab = 〈n, b|∂i|n, a〉 , (2.6)

with curvature

(F(n)
ij ) b

a = ∂i(A
(n)
j ) b

a − ∂j(A
(n)
i ) b

a − [A(n)
i ,A

(n)
j ] b

a . (2.7)

The indices a, b are raised and lowered with the 2-point function

g(n)ab = 〈n, a|n, b〉 . (2.8)

The non-abelian generalization of eq. (2.5) reads

(
F(n)

µν

)

ab
=
∑

m6=n

∑

c,d

1
(En −Em)2

〈n, b|∂µH|m, c〉gcd
(n)〈m, d|∂νH|n, a〉 − (µ ↔ ν) . (2.9)

In this formula, whose derivation is summarized in appendix A for the benefit of the reader,

the spectral sum is performed over a general intermediate complete basis of states (not

necessarily orthonormal) with overlap g(n)ab.

2.3. Systems with time-reversal or CPT invariance

If a quantum system is invariant under an anti-unitary symmetry Θ, for example time-

reversal or CPT, then the Berry phase is constrained. The anti-linear operator Θ obeys

Θ†Θ = 1 and

[H(λ),Θ] = 0 ∀λ . (2.10)

For a non-degenerate energy eigenstate it is easy to prove that the anti-unitary symmetry

implies a vanishing Berry phase. One general implication of this result is the following.

Relativistic QFTs are invariant under CPT. If in addition the ground state is unique, then

the Berry phase associated to it should be zero. Notice that this result holds even for a QFT

defined on a manifold of the form R × T , provided that CPT remains true and that the

ground state is unique.
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In the non-abelian case, the anti-unitary symmetry implies that the Berry connection

reduces from U(N) down to SO(N), in the case that Θ2 = 1, and down to Sp(N) if Θ2 = −1.

We present a proof of these statements in appendix B.

2.4. Berry phase in QFT

Quantum field theories are typically quantum systems that depend on a number of con-

tinuous parameters, such as masses and other couplings. We want to understand how to

compute the Berry phase of various states in QFT associated with the adiabatic change of

such parameters. Since a QFT is a quantum system with an infinite number of degrees

of freedom, one may face infrared (IR) and/or ultraviolet (UV) problems in applying the

previous formulae. One of the possible IR subtleties that can arise if a QFT is defined in

infinite flat space is the appearance of a continuous spectrum. In that case extra care needs

to be taken with the normalization of the states as well as the applicability of the adiabatic

theorem. Typically, these subtleties can be avoided by formulating the QFT on a spatial

compact manifold T . The QFT on the hypercylinder R× T is essentially quantum mechan-

ics with a complicated infinite tower of states. Different compact manifolds T can lead to

different Hamiltonians, and some choices of T may be more preferable for a specific set of

questions compared to others. In the following sections we will see examples where it is more

convenient to compactify a QFT on a spatial torus. In other situations (most notably CFTs)

the natural IR regularization occurs on a round sphere. On the other hand, issues related

to UV divergences can be dealt with using standard methods of renormalization.

Modulo the above potential subtleties, it is in principle conceptually straightforward to

compute the Berry phase of any state in QFT. The Hamiltonian, as a function of external

couplings, is derived in the canonical formalism and the Berry connection/curvature is evalu-

ated using the formulae (2.6), (2.9). Typically, this will lead to a rather involved computation

where analytic, closed form results will be out of reach. In weakly coupled theories one could

proceed with perturbative/path integral methods. There can be, however, special situations

where the symmetries of the underlying theory allow more powerful, even non-perturbative,

results. Supersymmetric QFTs provide such examples.

3. A warmup example: free electromagnetism

Berry phases can appear even in basic QFTs. To illustrate this point, in this section we

consider a U(1) gauge theory with coupling constant e. We also introduce the θ-angle and
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consider the Lagrangian

L = − 1
4e2

FµνF
µν +

θ

32π2
FµνF̃

µν , (3.1)

where F̃µν = 1
2
ǫµνρσF

ρσ. When θ is constant the θ-interaction is a total derivative that

does not affect the classical dynamics of the theory. However, θ can have important phys-

ical implications in the presence of magnetic monopoles, nontrivial cycles in the geometry,

boundaries or interfaces where gradients of θ(x) appear (see for example [17]). As we shall

see, it also leads to a nontrivial Berry phase.

In this section we are interested in the properties of photon states as we vary adiabatically

both couplings e and θ. Hence, the parameter space M in this context can be thought of as

the upper half plane parametrized by τ = θ
2π

+ i4π
e2 , modulo global identifications. Defining

F±,µν = Fµν ± 1
2
iǫµνρσF

ρσ , (3.2)

the Lagrangian (3.1) can be written more explicitly in terms of τ (and its complex conjugate)

as

L =
i

64π
τF 2

+ − i

64π
τF 2

− . (3.3)

We remind the reader that there is a natural metric on the parameter space M of the form

ds2 =
dτdτ

(Imτ)2
. (3.4)

The Hilbert space of electromagnetism consists of the vacuum as well as states with an

arbitrary number of free photons. In this case the spectrum of energy eigenstates does not

depend on the couplings e, θ. This does not mean, however, that the eigenvalue problem

is independent of τ . While the eigenvalues of the Hamiltonian do not depend on τ , the

eigenvectors do rotate inside the Hilbert space when we vary the couplings e, θ. For that

reason we get a nonzero Berry phase even for a free U(1) theory.

As we mentioned already in the previous section, if we define the theory on R
1,3, the

notion of individual photons becomes somewhat subtle because of the infinite volume. In

particular, the energy eigenstates correspond to momentum eigenstates that are only δ-

function normalizable. Computing the Berry phase for such states may require extra care.

Moreover, in the expression (2.5), we should exercise appropriate caution when dealing with

a continuous spectrum of intermediate states |m〉 and the exclusion rule Em 6= En. These

are obviously IR issues that can be dealt with if we define the theory on a compact manifold.

For example, we can define the theory on a spatial torus or a sphere. In this section we

choose the torus. We will find that the Berry phase picked up by quantum states is inde-

pendent of the volume of the torus. In addition, one can check that under a general (not
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necessarily adiabatic) time-dependent variation of the couplings the total time derivative

of the Hamiltonian does not induce mixing between photon states of different frequencies.

These observations imply that the computed phase will persist in the infinite volume limit,

and that there are no subtleties in the adiabatic limit as the volume of the torus becomes

larger and larger.

3.1. Berry phase of photon states

We can compute the Berry phase by a straightforward application of the formula (2.5).

The variations of the Hamiltonian that follow from the Lagrangian (3.1) are (see appendix

C for further details)

∂e2H =
1
e4

∫
d3x ( ~E2 − ~B2) , ∂θH =

1
8π2

∫
d3x ~E · ~B , (3.5)

where ~E and ~B are the electric and magnetic fields. Equivalently, in complexified notation

∂τH = − i

64π
F 2

+ , ∂τH =
i

64π
F 2

− . (3.6)

In this example the Hilbert space is a freely generated Fock space. Consequently, the

Berry phase for a multi-photon state is simply the sum of the Berry phases of the individual

photons. As a result, it is sufficient to compute the Berry phase of a single photon, which is

labeled by its Kaluza-Klein momentum ~p and its helicity ǫ = ±. The quantity we want to

compute is

F
(~p,~p′,ǫ,ǫ′)
ττ =

∑

Em 6=Ep

〈~p, ǫ|∂τH|m〉〈m|∂τH|~p ′, ǫ′〉 − (τ ↔ τ)
(Ep −Em)2

. (3.7)

First, we expand the fields in creation and annihilation operators for (on-shell) photons.

In particular, the variations of the Hamiltonian (3.6) are quadratic in the creation/annihilation

operators. Then, the intermediate states |m〉 that can contribute in the sum above are only

the states that possess one or three photons. After the necessary algebra and the explicit

evaluation of the sum over states, which is further described in appendix C, one is led to the

result

F
(~p,~p′,ǫ,ǫ′)
ττ =

ǫ

8
1

(Imτ)2
δǫ,ǫ′δ~p,~p′ . (3.8)

This expression is independent of the momentum ~p, but depends on ǫ = ±1, which continues

to label the helicity of the photon. Only states with ~p = ~p′ and ǫ = ǫ′ produce a non-

vanishing curvature component. Interestingly, the τ -dependent factor is proportional to the

Riemann tensor of the parameter space that follows from the metric (3.4). We will soon
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see that this relation with the Riemann curvature of the parameter space is true in other

examples too.

For a general multi-photon state |n+, n−〉 that contains n+ (n−) photons of positive (neg-

ative) helicity of arbitrary momentum, the Berry curvature follows immediately as

F
(n+,n−)
ττ =

1
8

(n+ − n−)
1

(Imτ)2
. (3.9)

3.2. A global effect2

As an interesting example consider a closed loop in parameter space which runs from

θ = 0 to θ = 2π at a fixed value of e = e0. Using the formulae we derived in the previous

subsections we find that a state with n+ (n−) photons of positive (negative) helicity will pick

up a phase eiφ, where

φ =
∫

D
dτdτ F

(n+,n−)
ττ . (3.10)

D is the domain 0 ≤ θ ≤ 2π and g ≤ g0 (or Imτ ≥ Imτ0). In (3.10) we used the Stokes

theorem to convert the θ-integral over the connection into an integral over the curvature in

the interior of the loop.3 Using (3.9) we find

φ =
1

16π
e2

0(n+ − n−) . (3.11)

This relation predicts that a photon state with net helicity will exhibit an overall geometric

phase shift (3.11) as light travels through a material where θ varies slowly from 0 to 2π at

fixed e = e0. As we describe in the next subsection 3.3 for a linearly polarized photon this

will have the effect of a rotation of the polarization plane. Slow variation of θ (and e in

general) refers to the conditions required by the adiabatic theorem
∣∣∣∣∣〈m|dH

dt
|k〉
∣∣∣∣∣ ≪ |Ek − Em|

∆Tkm
, (3.12)

where ∆Tkm is the characteristic time of transition between the states k,m.

We note in passing that the global loop on the parameter space that we consider here is

the one that would lead to the relabeling of dyon states via the Witten effect [18], though

of course our considerations apply only to photon states.

2We would like to thank D.Tong for discussions on this topic.
3A more careful analysis shows that there is no δ-function-like contribution to the curvature from the

point Imτ = ∞.
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3.3. Rotation of the polarization plane

In the previous section we found that under adiabatic cyclic variations of e, θ photons

pick up a phase depending on their helicity. In this subsection we consider an interpretation

of this effect in a basis of linearly polarized photons.

For concreteness consider a linearly polarized photon with momentum pz along the posi-

tive z-axis. The polarization of the photon is characterized by a unit vector on the xy plane.

With an appropriate choice of conventions, a photon with linear polarization along the x-axis

is described as a superposition of circularly polarized photons

|pz, x̂〉 =
1√
2

[|pz,+〉 + |pz,−〉] . (3.13)

A cyclic variation in parameter space will lead to a phase eiφ for the circularly polarized

photons (see eq. (3.11)) that transforms this state into

|pz, x̂〉 −→ |pz, φ̂〉 =
1√
2

[
eiφ|pz,+〉 + e−iφ|pz,−〉

]
. (3.14)

This is a state of linear polarization along an axis φ̂, which is rotated clockwise on the

xy plane relative to the x-axis. Notice that if we flip the sign of the momentum pz and

consider the same path in parameter space, then the polarization vector will be rotated

counter-clockwise on the xy plane.

3.4. Potential realization of the U(1) Berry phase

We point out in passing a notable appearance of θ in the context of magneto-electric

properties of solids, where θ affects the so-called magneto-electric polarizability coefficients

(see e.g. [19, 20])

αij =
∂Mj

∂Ei

∣∣∣∣∣
~B=0

=
∂Pj

∂Bi

∣∣∣∣∣
~E=0

. (3.15)

The trace part of αij is proportional to θe2/~. Interestingly, θ arises here as an integral in

momentum space

θ = − 1
2π

∫
d3k εijkTr

[
Ai
∂Ak

∂kj

− 2
3

AiAjAk

]
(3.16)

of a Chern-Simons integrand expressed in terms of another Berry connection, the connection

(Aj)µν = 〈uµ| ∂
∂kj

|uν〉 of the cell Bloch states |uµ〉 in the occupied bands µ. The trace is

accordingly performed over the occupied bands. In T -invariant materials the angle θ takes

only two possible values, θ = 0, π. Topological insulators are characterized by θ = π. When
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time-reversal is broken, θ can be varied continuously. Its value depends on the band structure

of the material according to (3.16). We refer the reader to refs. [21, 22] for a discussion of

setups with varying θ.

4. 4d N = 2 QFTs on the Coulomb branch4

N = 2 QFTs are generically endowed with continuous spaces of vacua (moduli spaces),

which are parametrized by the vacuum expectation value (vev) of appropriate operators.

For example, N = 2 supersymmetric gauge theories typically possess a Coulomb branch

of vacua parametrized by the vev of gauge-invariant combinations of the adjoint complex

scalar field(s) in the N = 2 vector multiplet(s). The low-energy effective field theory of these

vacua is determined non-perturbatively up to second order in derivatives by Seiberg-Witten

theory [5].

In this section we are concerned with the Berry phase associated to the variation of these

vevs on the moduli space. We focus on vacua in the Coulomb branch.

4.1. Coulomb branch as the parameter space of effective field theory

The scalar vevs that parametrize the position on the Coulomb branch control the effective

couplings of the low energy theory. Hence, from the point of view of the low energy theory,

these vevs can be thought of as parameters in an effective Hamiltonian, which will lead to a

Berry phase when varied adiabatically.

In order to make this computation precise, it is necessary to deal with a few important

subtleties. An honest moduli space of vacua, where the scalars have well defined vevs, arises

only in the limit where the volume of space is infinite. This creates a tension with the IR

issues that arise in the computation of the Berry phase due to infinite volume (related to the

normalization of states etc.), as we pointed out above. The strategy that requires placing

the theory in finite volume, e.g. on a torus T
3, will not work automatically in this case.

Our attitude in the following subsections will be the following. The theory will be placed

on finite, but large volume, where states characterized by fixed scalar vevs are almost ground

states whose corresponding wavefunctions spread out slowly by a rate suppressed by the large

volume. We will compute the Berry phase to leading order in an approximation where the

wavefunction spreading is ignored.

4This section was developed after discussions with C.Vafa, who prompted us to investigate the Berry

phase on the Coulomb branch of N = 2 theories.
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4.2. Pure N = 2 SU(2) gauge theory

The N = 2 SYM theory with SU(2) gauge group is characterized by a 1-dimensional

Coulomb branch parametrized by u = 〈TrΦ2〉. The Coulomb branch has two singularities

u = ±Λ, where extra massless states appear [5]. Away from these singularities the IR theory

is an N = 2 U(1) gauge theory, which consists of a massless scalar a, the gauge field Aµ

and a set of corresponding fermions. The IR theory is characterized by an effective gauge

coupling and theta angle combined in the complex coupling τ = θ
2π

+ i4π
g2 . The effective

coupling is determined by the low energy prepotential F(a) as

τ(a) =
∂2F
∂a2

. (4.1)

In the approximation discussed in the previous subsection, we can think of the coordinate

on the Coulomb branch a as an “effective parameter” of the IR theory. We imagine that we

vary a adiabatically and we are interested in the resulting Berry phase for various states. It

is easy to see that the Berry curvature for an IR photon of positive helicity is characterized

by a 2-form on the Coulomb branch with components

Faa =
∂τ

∂a

∂τ

∂a
Fττ =

1
8
∂τ

∂a

∂τ

∂a

1
(Imτ)2

, (4.2)

where Fττ above was evaluated using (3.8). Now, remember that the metric on the Coulomb

branch is

gaa = Im
∂2F
∂a2

= Imτ , (4.3)

and notice that
∂τ

∂a
=

∂

∂a
(τ − τ ) = 2i

∂

∂a
Imτ = 2i∂agaa . (4.4)

As a result, the above formula for the Berry curvature can be written as

Faa =
1
2
gaagaa∂agaa∂agaa , (4.5)

where we recognize the expression on the right hand side as the Riemann curvature on the

Coulomb branch.

Hence, we find that the Berry curvature of a photon of positive helicity is proportional

to the Riemann tensor on the Coulomb branch

Faa =
1
2
Ra

aaa . (4.6)

Obviously a negative helicity photon has the opposite Berry phase.
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In this section we computed the Berry phase of IR photons on the Coulomb branch of

N = 2 theories. The IR spectrum of the theory also contains massless fermions and scalars,

belonging to the same N = 2 vector multiplet. Supersymmetry requires that the Berry

phase of all states in the same supermultiplet should be related. It would be interesting to

directly compute the Berry phase of the low energy scalars and fermions.

4.3. Generalization to higher rank Coulomb branch

Next, let us consider a 4d N = 2 theory with a Coulomb branch of rank r. The scalar

fields are ai, with i = 1, ..., r. The IR U(1)r couplings are characterized by the matrix

τij =
∂2F
∂ai∂aj

, (4.7)

which parametrizes the theta angles and gauge couplings of the IR photons

L = − 1
4g2

ij

F i
µνF

j,µν +
θij

32π2
F i

µνF̃
j,µν , (4.8)

or in complex notation

L =
i

64π
τijF

i
+F

j
+ − i

64π
τ ijF

i
−F

j
− . (4.9)

The matrix τij is a symmetric r× r matrix with positive imaginary part. The metric on the

Coulomb branch is

gij = Imτij . (4.10)

An IR photon in this theory will be labeled as |~p, ǫ; i〉, where the last label refers to each

U(1) gauge group individually. Following the same steps as before, we find that photons in

the infrared are characterized by a non-abelian Berry phase, whose curvature is5

(Fkl)
i
j =

1
2
Ri

jkl
. (4.11)

Once again this is proportional to the Riemann tensor on the Coulomb branch. We conclude

that the curvature of the Seiberg-Witten metric characterizes the Berry phase that a low-

frequency photon receives under an adiabatic loop in the Coulomb branch.

5Here k, l denote the tangent directions along the moduli space, while i, j are the indices of the photons

whose (non-abelian) Berry phase we are computing.
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5. Massive N = 1 theories on R × T
3

Our next focus is the Berry formula for supersymmetric ground states in 4d N = 1

massive theories. The deformations of interest preserve the N = 1 supersymmetry and are

induced on the level of a Lagrangian by F -terms of the form

δL = λi Q2 · ϕi + λ̄i Q̄2 · ϕi , (5.1)

where Qα, Q̄α̇ are the four real supercharges of the theory, Q2 etc. denote the nested action

of the supercharges, and ϕi are chiral primary operators. The deformation is classically

marginal or relevant when the UV scaling dimension of the operators ϕi is less than or equal

to 3.

A particularly important example to keep in mind is N = 1 SYM theory with gauge group

SU(N). In this case we may consider deformations by the super-Yang-Mills interaction

δL =
1

32π
Im

[
τ
∫
d2ϑTr (W αWα)

]
, (5.2)

where τ = θ
2π

+ 4π
g2

Y M

is as before the complexified Yang-Mills coupling and Wα the chiral

superfield whose bottom component is the gaugino χα. The chiral primary operator ϕ that

implements (5.1) is the gaugino composite operator

ϕ = Tr [χαχα] . (5.3)

As is well known, the N = 1 SYM theory is asymptotically free and the interaction (5.2)

is quantum mechanically relevant. Under renormalization group flow the theory develops a

dynamically generated strong coupling scale

Λ = µ e
− 8π2

3Ng2
Y M

(µ) , (5.4)

where µ is a reference energy scale. Hence, the deformations (5.2) of the theory can be

viewed as deformations of the strong coupling scale Λ, or on R × T
3 deformations of the

dimensionless quantity RΛ, where R is the radius of T3.

On R × T
3 the Hamiltonian H is

H = P0 = i∂t . (5.5)

The states whose Berry phase we are interested in computing in this section are ground states

(namely zero energy eigenstates) of this Hamiltonian. The relative (i.e. bosonic−fermionic)

number of these states is counted by the Witten index [23].
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In the example of N = 1 SYM theory, recall that on R
4 the theory exhibits N discrete

vacua labeled by the value of the chiral condensate

〈ϕ〉 = Λ3 e
2πin

N , n = 0, 1, 2, . . . , N − 1 . (5.6)

Consequently, for this theory we are interested in the Berry phase associated with the vacua

(5.6) under adiabatic changes of Λ.

Returning to the general situation, let us denote the ground states as |I〉 and proceed

as follows. To keep the notation short, the integrals
∮

will denote integrals on T
3. H0 will

denote the Hilbert subspace of the ground states.

For the holomorphic-holomorphic components of the curvature we have

(Fkl)IJ =
∑

n,m6∈H0

1

E2
n

〈J |
(
Q2 ·

∮
ϕk

)
|m〉gmn〈n|Q2 ·

∮
ϕl |I〉 − (k ↔ l) . (5.7)

Here, but also in the following sections, it will be convenient to define the auxiliary quantity
(
F̃kl

)

IJ
= 〈J |

(
Q2 ·

∮
ϕk

)
(H − x)−2

(
Q2 ·

∮
ϕl

)
|I〉 − (k ↔ l)

=
∑

n,m6∈H0

1

(En − x)2
〈J |

(
Q2 ·

∮
ϕk

)
|m〉gmn〈n|Q2 ·

∮
ϕl |I〉 − (k ↔ l)

+
∑

n,m∈H0

1

(En − x)2
〈J |

(
Q2 ·

∮
ϕk

)
|m〉gmn〈n|Q2 ·

∮
ϕl |I〉 − (k ↔ l) , (5.8)

where x is an auxiliary free real parameter. Since the chiral supercharges Q annihilate the

bra and ket ground states the last line does not contribute and we conclude that

(Fkl)IJ = lim
x→0

(
F̃kl

)

IJ̄
. (5.9)

Now, we notice that since

[Qα, Pµ] = 0 , (5.10)

the following commutation relation holds

(H − x)−2Q2 = Q2(H − x)−2 . (5.11)

Consequently, we can move Q2 on the right integral in (5.8) (see first line) across (H − x)−2

towards the left. On the left it annihilates everything yielding

(Fkl)IJ = 0 . (5.12)

In a similar fashion we can show that

(Fk̄l̄)IJ = 0 . (5.13)
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The remaining mixed components of the curvature, (Fkl̄)IJ , are more interesting. Re-

peating the above steps we first define

(Fkl̄)IJ = lim
x→0

(
F̃kl̄

)

IJ
. (5.14)

Then, obvious manipulations with the supercharges yield

(
F̃kl̄

)

IJ
= 〈J |

(
Q2 ·

∮
ϕk

)
(H − x)−2

(
Q̄2 ·

∮
ϕ̄l̄

)
|I〉 − (k ↔ l̄)

= 〈J |
[
Q̄2 ·

(
Q2 ·

∮
ϕk

)]
(H − x)2

∮
ϕ̄l̄|I〉 − (k ↔ l̄)

= κ〈J |
∮

∇2ϕk (H − x)2
∮
ϕ̄l̄|I〉 − (k ↔ l̄) , (5.15)

where we used

Q̄2 ·Q2 = κ∇2 . (5.16)

κ is a numerical constant whose precise value depends on the normalization conventions for

the supercharges. In what follows we will set this constant to 1. Assuming we can ignore

terms with total space derivatives
∮
∂i∂iϕk = 0 , i = 1, 2, 3 (5.17)

inside the correlation functions, we finally obtain

(
F̃kl̄

)

IJ
= −〈J |

∮
ϕk H

2(H − x)−2
∮
ϕ̄l̄|I〉 − (k ↔ l̄) . (5.18)

After the limit x → 0 we find

(Fkl̄)IJ = −
∑

n,m6∈H0

〈J |
∮
ϕk|m〉gmn〈n|

∮
ϕ̄l̄|I〉 − (k ↔ l̄)

= −
{

〈J |
[∮

ϕk,
∮
ϕ̄l̄

]
|I〉 −

∑

M,N∈H0

[
〈J |

∮
ϕk|M〉gMN〈N |

∮
ϕ̄l̄|I〉 − (k ↔ l̄)

] }
.

(5.19)

The first term on the r.h.s. of this equation is a contact term, while the sum in the second

term is expressed in terms of the transition amplitudes gMN = 〈M |N〉 and the vevs of the

(anti)chiral primaries

CkMN = 〈N |
∮
ϕk|M〉 , C∗

l̄MN = 〈N |
∮
ϕl̄|M〉 . (5.20)

As a consequence, the Berry curvature assumes the very simple form

(Fkl̄)IJ = −
[
Ck, C̄l̄

]

IJ̄
− 〈J |

[∮
ϕk,

∮
ϕ̄l̄

]
|I〉 , (5.21)
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where
[
Ck, C̄l̄

]

IJ̄
= CP

kIgP Q̄C
∗Q̄

l̄J̄
−gP J̄C

P
kV g

V ŪC∗N̄
Ū l̄
gIN̄ . This equation exhibits the same struc-

ture as the tt∗ equations [6, 8]. It would be interesting to evaluate explicitly both terms on

the r.h.s. of equation (5.21), and understand the corresponding physics in more detail in

specific examples, such as the N = 1 SYM theory. We hope to return to this problem in a

different publication.

6. Berry phase in 2d N = (2, 2) SCFTs

In this section (and the next) we slightly change gears and proceed with an explicit eval-

uation of the Berry curvature formula (2.9) in (super)conformal field theories. This provides

another general example of QFTs that exhibit rich Berry-like properties. We consider the

CFT in radial quantization (equivalently, the CFT is formulated on R×Sd−1) and implement

the operator-state correspondence. This allows us to establish a natural relation between

the quantum mechanics Berry phase and previous results on operator mixing in conformal

perturbation theory. We will discuss the general features of this relation for arbitrary CFTs

in section 8.

We begin with the evaluation of the Berry phase of chiral primary states in the NSNS

sector of 2d N = (2, 2) SCFTs. The Berry curvature in the RR sector was first computed

by Cecotti and Vafa many years ago in [6]. A related formula was derived for the NS sector

within conformal perturbation theory in Ref. [7] by evaluating the 4-point function formula

(8.4). We will now show that the quantum mechanics perspective (2.9) leads to the same

result.

The chiral states, whose Berry phase we want to compute, are characterized by the

conditions6

Q±|I〉 = 0 , S−|I〉 = 0 . (6.1)

The precise definitions of the supercharges in the N = (2, 2) superconformal algebra and

their (anti)commutation relations are summarized in appendix (D.2). The chiral bra states,

which are denoted here as 〈Ī|, obey

〈Ī|Q± = 0 , 〈Ī|S+ = 0 . (6.2)

We want to consider infinitesimal deformations of the Hamiltonian by exactly marginal

F -term deformations with vanishing U(1)R charge and vanishing energy. This requirement

6Here we focus for definiteness on the left-moving sector. The same relations are also obeyed on the

right-moving sector.
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implies the general form of Hamiltonian deformations

δH =
δλi

2π

∮
Q−Q̄− · ϕi +

δλ̄ī

2π

∮
Q+Q̄+ · ϕ̄ī . (6.3)

The coordinates (λi, λ̄ī) provide a local parametrization of the superconformal manifold of

the 2d SCFT. The action of the supercharges Q±, Q̄± on the operators ϕi, ϕ̄ī denotes the

appropriate nested (anti-)commutator. The operators ϕi are rotated versions (see eq. (D.4) in

appendix D) of chiral primary operators with equal left/right scaling dimension hL = hR = 1.

Similarly, ϕ̄ī are rotated versions of anti-chiral primary operators with hL = hR = 1.

With these specifications we can proceed to determine the quantity of interest

(Fµν)IJ̄ =
∑

n 6∈HI

∑

a,b̄∈Hn

1

(EI − En)2
〈J̄ |∂µH|n, a〉gb̄a

(n)〈n, b̄|∂νH|I〉 − (µ ↔ ν) . (6.4)

The indices µ, ν, which parametrize different directions in the parameter space (λi, λ̄ī), can

be either holomorphic or anti-holomorphic. We discuss each of the possible cases separately.

When both µ and ν are holomorphic we obtain (after using (6.3))

(Fkl)IJ̄ =
1

(2π)2

∑

n 6∈HI

∑

a,b̄∈Hn

1

(EI −En)2
〈J̄ |

∮
Q−Q̄−·ϕk|n, a〉gb̄a

(n)〈n, b̄|
∮

Q−Q̄−·ϕl|I〉−(k ↔ l) .

(6.5)

Similar to the previous section, it is convenient to introduce an auxiliary parameter x and

define the quantity

(
F̃kl

)

IJ̄
=

1

(2π)2
〈J̄ |

(∮
Q−Q̄− · ϕk

)(
H − 1

2
R− x

)−2 (∮
Q−Q̄− · ϕl

)
|I〉 − (k ↔ l) . (6.6)

(Fkl)IJ̄ can be easily recovered from
(
F̃kl

)

IJ̄
by taking the limit x → 0

(Fkl)IJ̄ = lim
x→0

(
F̃kl

)

IJ̄
. (6.7)

Employing the commutation relation
[
H − 1

2
R,Q−

]
= 0 (6.8)

and the fact that Q− annihilates both external states we deduce immediately that
(
F̃kl

)

IJ̄
=

0. These observations allow us to obtain trivially the identities

(Fkl)IJ̄ = 0 , (Fk̄l̄)IJ̄ = 0 . (6.9)

The second identity follows in exactly the same fashion as the first.
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The case of mixed components is more interesting:

(Fkl̄)IJ̄ =
1

(2π)2

∑

n 6∈HI

∑

a,b̄∈Hn

1

(EI −En)2
〈J̄ |

∮
Q−Q̄−·ϕk|n, a〉gb̄a

(n)〈n, b̄|
∮

Q+Q̄+·ϕ̄l̄|I〉−(k ↔ l̄) .

(6.10)

Again, we express this quantity as the limit

(Fkl̄)IJ̄ = lim
x→0

(
F̃kl̄

)

IJ̄
, (6.11)

with
(
F̃kl̄

)

IJ̄
=

1

(2π)2
〈J̄ |

(∮
Q−Q̄− · ϕk

)(
H − 1

2
R− x

)−2 (∮
Q+Q̄+ · ϕ̄l̄

)
|I〉 − (k ↔ l̄) .

(6.12)

Then we can use the commutation
[
H − 1

2
R,Q+

]
= 0 (6.13)

(and its right-moving version) to move the supercharges Q+, Q̄+ over (H− 1
2
R−x)−2 to the

left. On the left both of these supercharges annihilate the bra 〈J̄ | and since they commutate

with the chiral primary operator ϕk we deduce trivially the expression

(
F̃kl̄

)

IJ̄
=

1

(2π)2
〈J̄ |

(∮
{Q−,Q+}{Q̄−, Q̄+} · ϕk

)(
H − 1

2
R− x

)−2 ∮
ϕ̄l̄ |I〉 − (k ↔ l̄) .

(6.14)

Implementing the first identity of eq. (D.10b) we further obtain

(
F̃kl̄

)

IJ̄
=

4

(2π)2
〈J̄ |

[(
L0 − 1

2
J0

)(
L̄0 − 1

2
J̄0

)
,
∮
ϕk

] (
H − 1

2
R− x

)−2 ∮
ϕ̄l̄ |I〉 − (k ↔ l̄) ,

(6.15)

where L0,J0 etc. are modes of Virasoro and U(1)R generators (see appendix D.2 for further

details on the notation). Notice, however, that since the chiral insertion φk is spinless with

equal left/right U(1)R charges one can easily deduce from the identity
(

L0 − 1

2
J0

)(
L̄0 − 1

2
J̄0

)
=

1

4

(
H2

+ − H2
−

)
, (6.16)

H+ = H − 1

2
R , H− = L0 − L̄0 − 1

2
(J0 − J̄0) , (6.17)

that

(
F̃kl̄

)

IJ̄
=

1

(2π)2
〈J̄ |

[(
H − 1

2
R
)2

,
∮
ϕk

] (
H − 1

2
R − x

)−2 ∮
ϕ̄l̄ |I〉 − (k ↔ l̄)

= − 1

(2π)2
〈J̄ |

∮
ϕk

(
H − 1

2
R
)2 (

H − 1

2
R− x

)−2 ∮
ϕ̄l̄ |I〉 − (k ↔ l̄) . (6.18)
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As a result, by taking the limit x → 0 we find

(Fkl̄)IJ̄ = − 1

(2π)2

∑

n,m6∈Hchiral

〈J̄ |
∮
ϕk|n〉gm̄n〈m̄|

∮
ϕ̄l̄|I〉 − (k ↔ l̄) (6.19)

= − 1

(2π)2

{
〈J̄ |

[∮
ϕk,

∮
ϕ̄l̄

]
|I〉

−
∑

M,P ∈Hchiral

[
〈J̄ |

∮
ϕk|M〉gP̄M〈P̄ |

∮
ϕ̄l̄|I〉 − 〈J̄ |

∮
ϕ̄l̄|M〉gP̄M〈P̄ |

∮
ϕk|I〉

]}
.

Hchiral refers to the Hilbert subspace of chiral primary states. Clearly, only a finite number

of chiral primary states contributes to the last two terms of the above expression, those that

saturate the U(1)R charge conservation equations RM = RP , RM +2 = RJ and RM −2 = RJ

respectively.

The last line in (6.19) is immediately recognizable

− 1

(2π)2

∑

M,P ∈Hchiral

[
〈J̄ |

∮
ϕk|M〉gP̄M〈P̄ |

∮
ϕ̄l̄|I〉 − 〈J̄ |

∮
ϕ̄l̄|M〉gP̄M〈P̄ |

∮
ϕk|I〉

]

= CP
kIgP Q̄C

∗Q̄

l̄J̄
− gP J̄C

P
kV g

V ŪC∗N̄
Ū l̄ gIN̄ =

[
Ck, C̄l̄

]

IJ̄
, (6.20)

where CM
KL are the OPE coefficients for chiral primaries

ϕK |L〉 = CM
KL |M〉 . (6.21)

The remaining term on the r.h.s. of (6.19), proportional to

R =
1

(2π)2
〈J̄ |

[∮
ϕk,

∮
ϕ̄l̄

]
|I〉 , (6.22)

is a contact term. Naively it would appear to vanish, but a careful treatment of the short

distance singularities that occur when the integrated operators collide shows that the actual

contribution is non-vanishing. In appendix E we show that

R = −
(

1 − 3

c
(q + q̄)

)
gIJ̄gkl̄ . (6.23)

Collecting all the contributions we obtain the final result

(Fkl̄)IJ̄ = −
[
Ck, C̄l̄

]

IJ̄
+
(

1 − 3

c
(q + q̄)

)
gIJ̄gkl̄ , (6.24)

which is the same result for the curvature of the conformal manifold connection as the one

obtained in superconformal perturbation theory (using eq. (8.4)) in [7].

This result is a satisfying re-derivation of the tt∗ equations in 2d N = (2, 2) superconfor-

mal manifolds from standard notions in quantum mechanics. Compared to the derivation in
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superconformal perturbation theory [7], where one needs to make a judicious use of supercon-

formal Ward identities (see section 4.3 in [7]), in the above quantum mechanical derivation

we arrived at the key formula (6.19) in a much more straightforward, technically convenient,

manner. In the next section, we show that the same is true in four-dimensional SCFTs.

7. Berry phase in 4d N = 2 SCFTs

Our second example in superconformal field theory is the computation of the Berry phase

of chiral primary states in 4d N = 2 SCFTs. Like in the 2d theories that we studied in the

previous section, the Berry curvature turns out to be related to the curvature that charac-

terizes operator mixing in conformal perturbation theory. The latter is in turn completely

determined by the two- and three-point functions of chiral primary operators [8]. Thanks to

recent developments, these correlation functions are now computable in several 4d N = 2

SCFTs [9,10,24–29]. Therefore, these results can now be interpreted as an exact determina-

tion of the Berry curvature for the chiral primary states of these theories.

Our conventions for the 4d N = 2 superconformal algebra follow closely those in [30,31].

They are summarized in appendix D.3. In these conventions the chiral ket states |I〉 satisfy

by default the relations

Q−α
i |I〉 = 0 , S−iα̇|I〉 = 0 , S+i

α |I〉 = 0 . (7.1)

The index i = 1, 2 is an SU(2)R index and the indices α, α̇ = ± are standard spinor indices.

For the chiral bra states 〈Ī| we have similarly

〈Ī|Q+i
α = 0 , 〈Ī|S−iα̇ = 0 , 〈Ī|S+i

α = 0 . (7.2)

The superconformal algebra generators are defined in equations (D.12).

In the same conventions the infinitesimal deformations of the Hamiltonian by exactly

marginal N = 2 F -term deformations involve interactions that have vanishing energy and

U(1)R charge. They have the general form

δH =
δλk

(2π)2

(
S−
)4 ·

∮
ϕk +

δλ̄l̄

(2π)2

(
S+
)4 ·

∮
ϕ̄l̄ . (7.3)

In this expression the action of the supercharges S± on the operators ϕk, ϕ̄l̄ is again via

the appropriate nested anti-commutators. The operators ϕk, ϕ̄l̄ are rotated versions (see

eq. (D.4) in appendix D) of the standard chiral/anti-chiral primary operators with scaling
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dimension ∆ = 2. The parameters (λi, λ̄ī) parametrize local patches of the 4d N = 2

superconformal manifold.

We proceed to determine the curvature

(Fµν)IJ̄ =
∑

n 6∈HI

∑

a,b̄∈Hn

1

(EI − En)2
〈J̄ |∂µH|n, a〉gb̄a

(n)〈n, b̄|∂νH|I〉 − (µ ↔ ν) . (7.4)

When both indices µ, ν are holomorphic we can write

(Fkl)IJ̄ = lim
x→0

(
F̃kl

)

IJ̄
, (7.5)

where

(
F̃kl

)

IJ̄
=

1

(2π)4
〈J̄|

(
S−
)4 ·

∮
ϕk

(
H − 1

2
R− x

)−2 (
S−
)4 ·

∮
ϕl|I〉 − (k ↔ l) . (7.6)

Then, one can use the identity (see appendix D)
[
H − 1

2
R,S±

]
= 0 (7.7)

for S− to move it across
(
H − 1

2
R− x

)−2
from the left to the right or vice versa. At the

new position S− annihilates everything and one arrives trivially at the conclusion that

(Fkl)IJ̄ = 0 . (7.8)

Similarly, one shows that (Fk̄l̄)IJ̄ = 0. This part works in complete analogy to the 2d

N = (2, 2) case described in the previous section.

Important qualitative differences with the 2d computation arise in the case of the mixed

components

(Fkl̄)IJ̄ =
1

(2π)4

∑

n 6∈HI

∑

a,b̄∈Hn

1

(EI −En)2
〈J̄ |

(
S−
)4·
∮
ϕk|n, a〉gb̄a

(n)〈n, b̄|
(
S+
)4·
∮
ϕ̄l̄|I〉−(k ↔ l̄) .

(7.9)

As before, these components can be recast as

(Fkl̄)IJ̄ = lim
x→0

(
F̃kl̄

)

IJ̄
, (7.10)

with

(
F̃kl̄

)

IJ̄
=

1

(2π)4
〈J̄ |

(
S−
)4 ·

∮
ϕk

(
H − 1

2
R− x

)−2 (
S+
)4 ·

∮
ϕ̄l|I〉 − (k ↔ l̄) . (7.11)
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Repeating the previous steps we can use (7.7) to move all four S+’s from the right to the left

across the operator insertion
(
H − 1

2
R − x

)−2
. On the left the S+’s annihilate the external

bra and commute with the chiral primary ϕk.7 Hence, we obtain

(
F̃kl̄

)

IJ̄
=

1

(2π)4
〈J̄ |
[ (

S−
)4
,
(
S+
)4
]

·
∮
ϕk

(
H − 1

2
R − x

)−2 ∮
ϕ̄l|I〉 − (k ↔ l̄) . (7.12)

The commutator of the supercharges can be determined using the superconformal algebra

relations [(
S−
)4
,
(
S+
)4
]

= −
(
H − 1

2
R
)4

+ 4
(
H − 1

2
R
)2

. (7.13)

Inserting this expression into (7.12) we find

(
F̃kl̄

)

IJ̄
=

1

(2π)4
〈J̄ |

∮
ϕk

((
H − 1

2
R
)4

− 4
(
H − 1

2
R
)2
)(

H − 1

2
R− x

)−2 ∮
ϕ̄l|I〉−(k ↔ l̄) .

(7.14)

It is instructive to compare this formula with its 2d N = (2, 2) analog (6.18). Notice

that the 4d formula (7.14) includes a term that involves the operator (H− 1
2

R)4

(H− 1
2

R−x)2 , which does

not have an analog in the 2d formula (6.18).

At this point we can use the fact that
(
H − 1

2
R
)n

(
H − 1

2
R− x

)2 |I〉 = 0 , n ∈ Z+ (7.15)

and the commutation relations
[
H − 1

2
R,ϕk

]
= (∂τ − 2)ϕk , (7.16a)

[
H − 1

2
R, ϕ̄l̄

]
= (∂τ + 2) ϕ̄l̄ (7.16b)

to obtain the following expression, which is one of the main results of this section,

(
F̃kl̄

)

IJ̄
=

1

(2π)4

[
〈J̄ |

∮
ϕk

(∂τ + 2)4

(∂τ + 2 − x)2

∮
ϕ̄l|I〉 − 〈J̄ |

∮
ϕ̄l̄

(∂τ − 2)4

(∂τ − 2 − x)2

∮
ϕk|I〉

−4〈J̄ |
∮
ϕk

(∂τ + 2)2

(∂τ + 2 − x)2

∮
ϕ̄l|I〉 + 4〈J̄|

∮
ϕ̄l̄

(∂τ − 2)2

(∂τ − 2 − x)2

∮
ϕk|I〉

]
.(7.17)

7The validity of this commutation at every spacetime point follows from the fact that the S+’s are

related to the supercharges Q̄ by a similarity transformation, see eq. (D.12d). We would not have been able

to perform the same manipulation with S− and φ̄l̄ by moving the S−’s to the right, since the S− supercharges

are obtain by similarity from the superconformal partners S̄. The latter do not commute with the anti-chiral

fields at all spacetime points.
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In the limit x → 0 there are obvious cancellations between the denominators and the

numerators in this expression. On the r.h.s. of the second line some caution is needed as we

take the limit. Since there is no contribution from intermediate chiral primary states at any

x 6= 0, such states need to be subtracted by hand at the x = 0 expression (precisely as in

eq. (6.19) in the 2d N = (2, 2) case). The subtracted contribution of chiral primary states

is proportional to the familiar [Ck, C̄l̄]IJ̄ term (as a direct 4d analogue of eq. (6.20)). As a

result,

(Fkl̄)IJ̄ = lim
x→0

(
F̃kl̄

)

IJ̄
= −

[
Ck, C̄l̄

]

IJ̄
+ (Rkl̄)IJ̄ , (7.18)

where the remainder (Rkl̄)IJ̄ is the contact term

(Rkl̄)IJ̄ =
1

(2π)4

{
〈J̄ |

∮
ϕk

[
(∂τ + 2)2 − 4

] ∮
ϕ̄l|I〉 − 〈J̄ |

∮
ϕ̄l̄

[
(∂τ − 2)2 − 4

] ∮
ϕk|I〉

}
.

(7.19)

Computation of the contact term

All insertions on the r.h.s. of (7.19) are evaluated at the same time τ1 = τ2 = 0 and

when operators come together potential singularities can arise. In order to regularize the

expression on the r.h.s. we separate the integrated operators in time, setting τ1 = −ε < 0

and τ2 = 0, and write

(Rkl̄)IJ̄ =
1

(2π)4

{
〈J̄ |

∮
ϕk(τ1)

[
(∂τ2 + 2)2 − 4

] ∮
ϕ̄l(τ2)|I〉

−〈J̄ |
∮
ϕ̄l̄(τ1)

[
(∂τ2 − 2)2 − 4

] ∮
ϕk(τ2)|I〉

}
. (7.20)

At the end of the computation we take the limit ε → 0. Here we have denoted explicitly

the Euclidean time dependence of the (anti)chiral primary field insertions leaving their S3

dependence implicit.

Since the correlators 〈J̄ | ∮ φk(τ1)
∮
ϕ̄l̄(τ2)|I〉 depend only on the difference τ1 − τ2 we can

turn some of the derivatives ∂τ2 to −∂τ1 . Then, after a few simple algebraic manipulations

eq. (7.20) becomes

(Rkl̄)IJ̄ = − 1

(2π)4

{
e4τ1∂τ1∂τ2

[
e−4τ1〈J̄ |

∮
ϕk(τ1)

∮
ϕ̄l̄(τ2)|I〉

]

−e4τ2∂τ2∂τ1

[
e−4τ2〈J̄ |

∮
ϕ̄l̄(τ1)

∮
ϕk(τ2)|I〉

]}
. (7.21)
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Before proceeding with the direct computation of this expression, it is instructive to make

the following observation. Equation (7.21) can be transformed back to the plane using

|x| = eτ1 , |y| = eτ2 . (7.22)

Under this transformation the limit ε → 0+ translates to the limit |x| → 1− with |y| = 1.

Since scalar (anti)chiral primaries ϕ with scaling dimension ∆ = 2 transform as

ϕ(τ1, ~x) = |x|2ϕ(x) , (7.23)

we find

(Rkl̄)IJ̄ = − 1

(2π)4

{
|x|4

∮ ∮
(x · ∂x)(y · ∂y)

[
|y|2
|x|2 〈J̄ |ϕk(x)ϕ̄l̄(y)|I〉

]

−|y|4
∮ ∮

(x · ∂x)(y · ∂y)

[
|x|2
|y|2 〈J̄ |ϕ̄l̄(x)ϕk(y)|I〉

]}

|x|→1−,|y|=1

. (7.24)

This form of the contact term is very similar to the form obtained in conformal perturba-

tion theory in [8] after the use of suitable superconformal Ward identities on the integrated

4-point function formula (8.4) (see eq. (C.1) in [8])

(Rkl̄)IJ̄ = − 1

(2π)4
lim

|y|=1,|x|→1−

∮ ∮
|x|2|y|2(x · ∂x)(y · ∂y)

[
|y|2
|x|2 〈J̄ |ϕk(x)ϕ̄l̄(y)|I〉 − |x|2

|y|2 〈J̄ |ϕ̄l̄(x)ϕk(y)|I〉
]
. (7.25)

The comparison of the expressions (7.24) and (7.25) is very illuminating. The only

difference lies on the powers of |x| and |y| outside the integrals; |x|4 and |y|4 in the quantum

mechanics formula (7.24) and the symmetric |x|2|y|2 in the CFT formula (7.25). Since

the original expression from quantum mechanics (7.19) is evaluated at equal zero times

τ1 = τ2 = 0, i.e. |x| = |y| = 1, there is no a priori explicit choice for these powers when

we write the regularized expression (7.21) or (7.24). Further explicit evaluation of (7.25),

however, shows that the choice of the external powers is important as we take the limit

ε → 0+. The choice (7.24) leads to unreasonable divergences and a non-vanishing Berry

phase for the vacuum state. The choice (7.25) on the other hand, leads to finite results and

a vanishing Berry phase for the vacuum state. The lesson from this little comparison is that

when we write expressions like (7.24) in quantum mechanics and regulate them, we should

be careful about external cutoff-dependent factors. In general such factors should be chosen

so that the resulting expression satisfies specific physically motivated properties, e.g. that

the Berry phase of a single vacuum in a CPT-invariant theory vanishes.
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With this lesson in mind we can go back to eq. (7.21) and recast it with the following

slight modification of external factors as

(Rkl̄)IJ̄ = − 1

(2π)4

{
e2(τ1+τ2)∂τ1∂τ2

[
e−4τ1〈J̄ |

∮
ϕk(τ1)

∮
ϕ̄l̄(τ2)|I〉

]

−e2(τ1+τ2)∂τ2∂τ1

[
e−4τ2〈J̄ |

∮
ϕ̄l̄(τ1)

∮
ϕk(τ2)|I〉

]}

τ1=−ε→0−,τ2=0

. (7.26)

In analogy to the computation in two dimensions in appendix E we can also proceed here

with a direct computation of this expression on R × S3. Since there are contributions only

from regions where the chiral and anti-chiral insertions collide we can evaluate using the

OPE between chiral and anti-chiral operators. On the plane, R4, the OPE between a chiral

and an antichiral operator with scaling dimension ∆ = 2 takes the form

ϕ(x1)ϕ̄(x2) =
∑

O∆,ℓ

C
O∆,ℓ

ϕϕ̄

1

|x1 − x2|4−∆

(x1 − x2)µ1 · · · (x1 − x2)µℓ

|x1 − x2|ℓ (O∆,ℓ)µ1...µℓ
(x2) . (7.27)

In R × S3 coordinates xµ = (τ, ψ, θ, φ)8 this OPE takes the form

ϕ(τ1, ψ, θ, φ) ϕ̄(τ2, 0, 0, 0) (7.28)

=
∑

O∆,ℓ

C
O∆,ℓ

ϕϕ̄

2
∆
2

−2e
∆
2

(τ1−τ2)

(cosh(τ1 − τ2) − cosψ)2− ∆
2

+ ℓ
2

(x1 − x2)µ1 · · · (x1 − x2)µℓ (O∆,ℓ)µ1···µℓ
(τ2, 0, 0, 0) .

Inserting this OPE in (7.26) one recovers exactly all the steps of the CFT computation

in [8]. The only surviving contributions originate from the conformal blocks of the identity

operator, the ∆ = 2, ℓ = 0 operator in the supermultiplet that contains the stress-energy

tensor, and the ∆ = 3, ℓ = 1 operator of the U(1)R current. The final result is

(Rkl̄)IJ̄ = gkl̄gIJ̄

(
1 +

R

4c

)
, (7.29)

where R is the U(1)R charge of the external states |I〉, 〈J̄ |, and c the central charge of the

N = 2 SCFT.

tt∗ equations

Assembling both contributions in (7.18) we recover the 4d N = 2 tt∗ equations in Ref. [8]

(Fkl̄)IJ̄ = −
[
Ck, C̄l̄

]

IJ̄
+ gkl̄gIJ̄

(
1 +

R

4c

)
. (7.30)

8(ψ, θ, φ) are the standard S3 spherical coordinates in terms of which the unit S3 metric element takes

the form dΩ2
3 = dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)
.
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The above derivation of the tt∗ equations appears once again to be considerably simpler

compared to its conformal perturbation theory counterpart [8]. This is very encouraging,

because while similar results in theories with less symmetry, such as 4d N = 1 SCFTs, are

seemingly out of reach in conformal perturbation theory, in the Berry approach of this paper

we can easily derive formulae like (7.18), (7.19) even in cases with minimal supersymmetry

[32]. This gives us hope that the geometry of the conformal manifold can be analyzed

systematically beyond the cases that are currently understood.

8. A general relation: Berry versus conformal perturbation theory

In the previous sections we emphasized the role of the traditional Berry phase, as origi-

nally formulated in quantum mechanics, in the context of higher-dimensional quantum field

theories. Moreover, in sections 6, 7 we exhibited the exact equivalence between the Berry

curvature of chiral primary states and the curvature of chiral primary operators on conformal

manifolds derived independently in conformal perturbation theory. We discussed explicitly

the cases of 2d N = (2, 2) and 4d N = 2 SCFTs, and re-derived the well-known tt∗ equations.

In this section we would like to argue that the above equivalence between the Berry

connection in quantum mechanics and the connection of conformal perturbation theory holds

in general and applies to generic states and operators in any CFT with a non-trivial conformal

manifold. For this purpose, it is useful to begin with a brief review of some of the geometric

structures that appear naturally on the conformal manifold of a general (d+ 1)-dimensional

CFT from the point of view of conformal perturbation theory. In what follows, we make

no assumptions of extra symmetries beyond the standard symmetries related to conformal

invariance, e.g. we do not assume supersymmetry.

Let us begin with the main ingredients of the general setup. We consider a (d + 1)-

dimensional CFT on R
d,1 with a non-trivial manifold M of exactly marginal deformations

parametrized locally by a set of dimensionless couplings λµ. The manifold M is the conformal

manifold of the CFT. On the level of an action9 S, an infinitesimal deformation across M
takes the form

δS = δλµ
∫
dd+1x Oµ(x) , (8.1)

where Oµ is an operator with exact scaling dimension ∆ = d + 1. It will be convenient to

work in the Wick rotated Euclidean version of the CFT.
9In what follows we do not assume a specific Lagrangian formulation of the CFT. An action is invoked here

for illustrational purposes to express the operators that define the tangent space of the conformal manifold.
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The set of local operators of the CFT (at any scaling dimension) defines a formal infinite-

dimensional vector bundle of local operators

Boperator −→ M (8.2)

over the conformal manifold M. At each point {λµ} of the base conformal manifold M the

fiber is the vector space of local operators O(x) in the CFT defined at {λµ}. The generic

section of this bundle describes a λ-dependent basis of local operators of the CFT. As one

traces a curve on the conformal manifold, operators of the same scaling dimension mix. This

mixing, which is an inherent property of the quantum dynamics of the CFT, is encoded

naturally in a non-trivial connection on the vector bundle Boperator. Once the notion of a

connection is available the comparison of two operators at nearby points of the conformal

manifold becomes feasible and standard geometric notions, like that of a covariant derivative

∇µ and parallel transport, immediately apply.

A natural definition of such a connection in conformal perturbation theory, which follows

directly from the dynamics of the CFT, has been discussed in many works in the past (see

for example [11] for an early discussion, [12] for an extensive discussion in two-dimensional

CFTs, as well as [33]). The curvature of this connection (denoted Aµ)

(Fµν)IJ = [∇µ,∇ν ]IJ , ∇µ = ∂µ + Aµ (8.3)

can be expressed in CFT in terms of the integrated 4-point function

(Fµν)IJ =
∫

|x|≤1
dd+1x

∫

|y|≤1
dd+1y 〈OJ(∞)O[µ(x)Oν](y)OI(0)〉 . (8.4)

In this formula the exactly marginal operators Oµ, Oν are integrated in a unit ball on the

(d + 1)-dimensional plane, and the arbitrary external operators OI , OJ are inserted at the

origin and infinity respectively.

As usual in QFT, the collision of two operators in a correlation function leads to potential

ultraviolet (UV) divergences that need to be regularized. In general, different regularization

schemes lead to different notions of connection on the conformal manifold. In [12] several

possibilities were discussed in detail. One of them requires the introduction of small cutoff

balls around the operator insertions so that two operators can never collide in the regulated

expression. At the end of the computation, the cutoff size is sent to zero and divergent terms

are removed by hand. This is the prescription that is implicitly used in (8.4).

At this point, it should be clear that the objects defined in eqs. (8.3), (8.4) are conceptu-

ally close to the notions of Berry phase and Berry connection in quantum mechanics, as they
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were outlined in the previous sections. In both cases, one discusses how physical quantities

vary under the adiabatic changes of parameters in the theory. By invoking the operator-state

correspondence in CFT it is possible to make this relation much more explicit, generalizing

the results of the previous two subsections.

The operator-state correspondence arises naturally in radial quantization. Equivalently,

with a standard conformal transformation the (Wick-rotated) flat space theory transforms to

the theory on the hyper-cylinder Rτ × Sd. In this context, we have a natural formulation of

the CFT as a one-dimensional quantum mechanics theory in terms of a Hamiltonian H whose

spectrum measures the scaling dimension of different states. The original dependence of the

CFT on the couplings λµ translates to a λ-dependent Hamiltonian. Hence, by considering

adiabatic changes of the couplings {λµ} one is led to the Berry phase of states and the

corresponding Berry-Simon connection on the vector bundle of Hilbert spaces of states

Bstates −→ M (8.5)

over the conformal manifold M. The correspondence between states and operators, imple-

mented by local operators acting at the origin of the plane (or equivalently by operators

acting at τ = −∞ on the cylinder)10

|O〉I = OI(0)|0〉 , (8.6)

guarantees a map between connections and holonomies on Bstates and Boperators. Under this

map the Berry connection maps to a corresponding connection in conformal perturbation

theory. We will claim that this connection is naturally the one leading to the curvature (8.4).

With these specifications, Berry’s prescription provides a connection with components

(Aµ)IJ = 〈J |∂µ|I〉 . (8.7)

As we recalled in section 2, and appendix A, the curvature of this connection can be expressed

quite generally as a spectral sum of the form

(Fµν)IJ =
∑

n 6∈HI

∑

a,b,∈Hn

1

(∆I − ∆n)2
〈J |∂µH|n, a〉gab

(n)〈n, b|∂νH|I〉 − (µ ↔ ν) , (8.8)

where ∆n is the scaling dimension, i.e. energy, of a state |n〉 in the Hilbert subspace Hn.

10As we did in sections 6, 7, it is in fact convenient to use a closely related basis of states obtained from

(8.6) by a similarity transformation. The details of this transformation are summarized in appendix D. We

denote the state obtained in this way from |O〉I as |I〉.
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We have seen in previous sections in explicit evaluations of the r.h.s. of equation (8.8)

applied to CFTs, that this formula is typically divergent and, like (8.4), it requires a regu-

larization prescription.

We can now ask the central question of this section: does the operator-state correspon-

dence imply a precise relation between the quantity defined in (8.8) and the CFT 4-point

function formula (8.4)? To answer this question, it is first convenient to observe that the

Berry curvature is independent of terms in ∂µH that commute with the Hamiltonian.

To see this, let us write the Hamiltonian derivatives ∂µH in the form

∂µH = Hµ + Rµ , (8.9)

with Hµ arbitrary but Rµ having the property

[H,Rµ] = 0 . (8.10)

Then, for ∆n 6= 0 (namely, |n〉 different from the ground state |0〉)

〈J |Rµ|n〉 =
1

∆n
〈J |RµH|n〉 =

1

∆n
〈J |HRµ|n〉 =

∆J

∆n
〈J |Rµ|n〉 . (8.11)

Assuming ∆J 6= ∆n, as is the case with all terms in (8.8), we deduce 〈J |Rµ|n〉 = 0 and

therefore

(Fµν)IJ =
∑

n 6∈HI

∑

a,b∈Hn

1

(∆I − ∆n)2
〈J |Hµ|n, a〉gab

(n)〈n, b|Hν |I〉 − (µ ↔ ν) (8.12)

is independent of Rµ.

If the external states are the vacuum |0〉, the states |n〉 over which we sum in (8.8) cannot

be ground states, hence (8.11) applies as it is. If the external states are not the vacuum, and

the vacuum contributes to the sum (8.8), then we can still deduce 〈J |Rµ|0〉 = 0 by writing

〈J |Rµ|n〉 = 1
∆J

〈J |HRµ|n〉 = 〈J |RµH|n〉 = 0, which leads to the desired result.

In our case, the Hamiltonian deformations ∂µH are operators at τ = 0 integrated over

the sphere Sd

∂µH =
∫

Sd
ddz

√
gSd Oµ(0, z) ≡

∮
Oµ(0) , (8.13)

where Oµ(t, z) represents the exactly marginal interaction Oµ on R×Sd. To keep the notation

brief we indicate the integral over the d-dimensional round sphere as
∮

and keep only the

time dependence explicit (in (8.13) τ = 0). Then, by a simple integration by parts, and

using the fact that [H,O] = ∂τ O, we observe that we can write
∮

Oµ(0) = [H, Cµ] + Dµ , (8.14)
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where

Cµ = −
∫ ∞

0
dτ
∮

Oµ(τ) , Dµ =
∮

Oµ(∞) . (8.15)

Since Oµ represents an exactly marginal deformation, it commutes with the Hamiltonian

when inserted at τ = ∞ (or equivalently at the asymptotic infinity in flat space). Hence,

exact marginality implies

[H,Dµ] = 0 . (8.16)

As a result, by combining (8.14)-(8.16) with the above lemma we learn that we can recast

the Berry curvature (8.8) into the form

(Fµν)IJ =
∑

n 6∈HI

∑

a,b∈Hn

1

(∆I − ∆n)2
〈J |[H, Cµ]|n, a〉gab

(n)〈n, b|[H, Cn]|I〉 − (µ ↔ ν) , (8.17)

which implies trivially

(Fµν)IJ = −
∑

n 6∈HI

∑

a,b∈Hn

〈J |Cµ|n, a〉gab
(n)〈n, b|Cν |I〉 − (µ ↔ ν) . (8.18)

Adding and subtracting the sum over states with scaling dimension ∆I in the Hilbert sub-

space HI of the external states we further obtain

(Fµν)IJ = −
∫ ∞

0
dτ
∫ ∞

0
dτ ′〈J |

[∮
Oµ(τ),

∮
Oν(τ ′)

]
|I〉

+
∑

M,N∈HI

〈J |Cµ|M〉gMN〈N |Cν |I〉 − (µ ↔ ν) . (8.19)

Interestingly, the second line on the r.h.s. of eq. (8.19) does not contribute. Indeed, the

second line, which is
∫ ∞

0
dτ
∫ ∞

0
dτ ′

∑

M,N∈HI

〈J |∂µH|M〉gMN〈N |∂νH|I〉 − (µ ↔ ν) (8.20)

can be evaluated using the identity

〈J |∂µH|M〉 = ∂µ∆ gJM (8.21)

to obtain ∫ ∞

0
dτ
∫ ∞

0
dτ ′∂µ∆ ∂ν∆ gIJ − (µ ↔ ν) (8.22)

which vanishes by anti-symmetry. The identity (8.21) can be proved easily by taking the

µ-derivative of 〈J |H|M〉 = ∆gJM (∆ being the scaling dimension in the Hilbert subspace

HJ). Notice that each of the factors 〈J |∂µH|M〉 vanishes identically if the deformation does

not change the scaling dimension ∆. This is what happened with the chiral primary external

states in the examples analyzed in the previous sections 6, 7.
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Consequently, the final form of eq. (8.19) is

(Fµν)IJ = −
∫ ∞

0
dτ
∫ ∞

0
dτ ′〈J |

[∮
Oµ(τ),

∮
Oν(τ ′)

]
|I〉 . (8.23)

A time reversal transformation, τ → −τ , together with a conformal transformation of this

equation back to the plane yields the 4-point function expression in (8.4). This establishes

the general formal equivalence of the expressions (8.8), (8.4).

9. Discussion

In this paper we discussed general aspects of the Berry phase in QFT. We showed that

a non-trivial Berry phase emerges already in very simple quantum field theories, such as

free electromagnetism with a theta angle. In this case, as we adiabatically vary the EM

couplings e and θ, the polarization vector of a linearly polarized photon rotates in the plane

orthogonal to its momentum. Therefore, this effect is potentially measurable in materials

where the effective electromagnetic couplings can be manipulated. We hope to analyze this

possibility in greater detail in a future publication.

It would be interesting to extend the results presented in this paper to further computable

cases and to study their physical implications. An obvious possibility is to study the Berry

phase of BPS states in more general supersymmetric theories. For example, in the context

of 4d N = 1 theories, it is natural to conjecture, extending the results of section 4.3, that

the Riemann tensor on the moduli space of vacua characterizes the Berry phase of massless

scalars as we move on the moduli space. Another especially interesting case is the Berry

phase of chiral primary states in 4d N = 1 SCFTs, which we plan to address in future

work [32]. Extensions to massive N = 2 theories are also worth investigating further.

Motivated by the observation that the Berry phase of low-energy states in the Coulomb

branch of N = 2 theories is determined by the Riemann tensor, it appears natural to

conjecture that a similar result should hold for supersymmetric compactifications in string

theory. The Riemann tensor on these moduli spaces can be related to a certain combination

of low energy 2 → 2 scattering amplitudes [34], where two of the states are the particles

whose Berry phase we want to compute and the other two are the moduli along which we

are computing the Berry curvature tensor. It might be interesting to explore whether the

Berry phase of massive string states and D-branes could be related to the low energy limit

of an S-matrix of moduli scattered off the massive states.

In some of the computations in this paper, we introduced a compact spatial manifold

to deal with infrared divergences, and showed that the results survive in the decompactifi-
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cation limit. It would be extremely interesting to study the Berry phase for quantum field

theories defined on more general compact manifolds, where it could potentially provide new

interesting observables.

Finally, in this paper we considered the Berry phase only in local patches of the parameter

space. It would be interesting to investigate global aspects over the parameter space (see [35]

for a discussion of global properties of the Berry phase).
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A. Spectral formula for non-abelian Berry curvature in quantum mechanics

In this appendix we summarize, for the benefit of the reader, a quick derivation of the

spectral QM formula for the non-abelian Berry curvature (8.8). This is one of the main

formulae used in the main text.

Recall that the general non-abelian Berry (or Wilczek-Zee) connection has components
(
A(n)

µ

)

ab
= 〈n, b|∂µ|n, a〉 , (A.1)

where we use labels a, b, . . . = 1, . . . , Nn to label the degeneracy for the states in the degen-

erate sector Hn. The corresponding curvature is
(
F(n)

µν

) b

a
= ∂µ

(
A(n)

ν

) b

a
− ∂ν

(
A(n)

µ

) b

a
−
[
A(n)

µ ,A(n)
ν

] b

a
. (A.2)

Lowering the upper index b with the metric (matrix of 2-point functions) g(n)ab = 〈n, a|n, b〉
in the eigenspace with eigenvalue En we get

(
F(n)

µν

)

ab
= ∂µ

(
A(n)

ν

)

ab
− ∂ν

(
A(n)

µ

)

ab
−
[
A(n)

µ ,A(n)
ν

]

ab
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+
(
A(n)

ν

)

ad
∂µg

dc
(n)g(n)cb −

(
A(n)

µ

)

ad
∂νg

dc
(n)g(n)cb . (A.3)

Hence, in a more explicit form for the first three terms of the r.h.s. of this equation
(
F(n)

µν

)

ab
= 〈∂µ(n, b)|∂ν(n, a)〉 − 〈∂ν(n, b)|∂µ(n, a)〉

−
∑

c,d

〈(n, c)|∂µ(n, a)〉gcd
(n)〈(n, b)|∂ν(n, d)〉 +

∑

c,d

〈(n, c)|∂ν(n, a)〉gcd
(n)〈(n, b)|∂µ(n, d)〉

+
(
A(n)

ν

)

ad
∂µg

dc
(n)g(n)cb −

(
A(n)

µ

)

ad
∂νg

dc
(n)g(n)cb . (A.4)

Inserting the identity

1 =
∑

m,c,d

|m, c〉gcd
(m)〈m, d| (A.5)

in the first line of (A.4) we obtain
(
F(n)

µν

)

ab
=
∑

m,c,d

(
〈∂µ(n, b)|m, c〉gcd

(m)〈m, d|∂ν(n, a)〉 − 〈∂ν(n, b)|m, c〉gcd
(m)〈m, d|∂µ(n, a)〉

)

−
∑

c,d

(
〈(n, c)|∂µ(n, a)〉gcd

(n)〈(n, b)|∂ν(n, d)〉 − 〈(n, c)|∂ν(n, a)〉gcd
(n)〈(n, b)|∂µ(n, d)〉

)

+
(
A(n)

ν

)

ad
∂µg

dc
(n)g(n)cb −

(
A(n)

µ

)

ad
∂νg

dc
(n)g(n)cb . (A.6)

A simple computation shows that for m 6= n

〈m, c|∂µ(n, a)〉 =
〈m, c|∂µH|n, a〉

En − Em

. (A.7)

Then, inserting (A.7) into (A.6) we obtain
(
F(n)

µν

)

ab
=

[ ∑

m6=n,c,d

1

(En − Em)2
〈n, b|∂µH|m, c〉gcd

(m)〈m, d|∂νH|n, a〉

+
∑

c,d

〈∂µ(n, b)|n, c〉gcd
(n)〈n, d|∂ν(n, a)〉

+
∑

c,d

〈n, d|∂ν(n, a)〉gcd
(n)〈n, b|∂µ(n, c)〉

]
− (µ ↔ ν)

+
(
A(n)

ν

)

ad
∂µg

dc
(n)g(n)cb −

(
A(n)

µ

)

ad
∂νg

dc
(n)g(n)cb

=
∑

m6=n,c,d

1

(En −Em)2
〈n, b|∂µH|m, c〉gcd

(m)〈m, d|∂νH|n, a〉 − (µ ↔ ν)

+
(
A(n)

ν

)

ad
gcd

(n)∂µg(n)bc −
(
A(n)

µ

)

ad
gcd

(n)∂νg(n)bc

+
(
A(n)

ν

)

ad
∂µg

dc
(n)g(n)cb −

(
A(n)

µ

)

ad
∂νg

dc
(n)g(n)cb . (A.8)

The last two lines in (A.8) obviously cancel out.

As a result, we obtain the final formula
(
F(n)

µν

)

ab
=

∑

m6=n,c,d

1

(En −Em)2
〈n, b|∂µH|m, c〉gcd

(m)〈m, c|∂νH|n, a〉 − (µ ↔ ν) . (A.9)

Typically this result is quoted in a set of orthonormal intermediate states where gcd
(m) = δcd

with common emphasis on the abelian case.
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B. Berry phase in systems with anti-unitary symmetries

Suppose that the system is invariant under an anti-unitary symmetry Θ. By this we

mean that there is a fixed anti-linear operator obeying Θ†Θ = 1 and

[H(λ),Θ] = 0 ∀λ . (B.1)

In the case where Θ is time reversal or CPT, it additionally obeys Θ2 = ±1. We will analyze

the consequences of this symmetry on the Berry phase by starting with the abelian case and

then proceeding with the non-abelian one.

Abelian case. Here we consider an energy eigenstate |n〉 that is nondegenerate. The non-

degeneracy implies that on this state we must have Θ2 = 1.11 With a suitable choice of the

phase of the state we can ensure that over an open neighborhood of the parameter space we

have

Θ|n(λ)〉 = |n(λ)〉 . (B.2)

Notice that this immediately implies

Θ∂i|n(λ)〉 = ∂i|n(λ)〉 . (B.3)

With these specifications we observe that

Ai = 〈n|∂i|n〉 = 〈n|Θ†Θ∂i|n〉 = 〈n|Θ†∂i|n〉 = 〈∂in|Θ|n〉 = 〈∂in|n〉 = A∗
i . (B.4)

At the same time, from the fact that Ai corresponds to an anti-Hermitian connection we

have the very basic property

0 = ∂i(〈n|n〉) = 〈∂in|n〉 + 〈n|∂i|n〉 = A∗
i + Ai . (B.5)

Combining the last two equations we find Ai = 0.

This shows that if an energy eigenstate is non-degenerate in a system with Θ-invariance,

then the Berry phase for this state must be equal to zero. A general implication of this

result, which was emphasized in the main text, is the following. Relativistic QFTs are CPT-

invariant. If there is also a unique ground state, then the Berry phase associated to it should

be zero. This results holds even for a QFT defined on a manifold of the form R×T , provided

that CPT-invariance remains true and that the ground state is unique.

11Given that there are no degeneracies we must have Θ|n〉 = eiφ|n〉. Then, we have Θ2|n〉 = Θ(eiφ|n〉) =

e−iφΘ|n〉 = |n〉. So Θ2 = 1 when acting on a non-degenerate state.
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Non-abelian case. More generally, suppose we have a subspace of degenerate states |n, a〉
a = 1, ...N , where the operator Θ acts accordingly. We will consider two possibilities: i)

Θ2 = 1, or ii) Θ2 = −1 on this subspace.

i) Θ2 = 1: A simple linear algebra argument shows that we can select an orthonormal

basis of states on this subspace obeying

Θ|n, a〉(λ) = |n, a〉(λ) , 〈n, a|n, b〉 = δab . (B.6)

Writing (2.6) in this basis we find

(A
(n)
i )ab = 〈n, b|∂i|n, a〉 = 〈n, b|Θ†Θ∂i|n, a〉 = 〈n, b|Θ†∂i|n, a〉

= (∂i〈n, a|)Θ|n, b〉 = (∂i〈n, a|)|n, b〉 = (〈n, b|∂i|n, a〉)∗ = (A
(n)
i )∗

ab , (B.7)

which means that the connection matrix A(n) is not only anti-Hermitian, but, moreover, that

there is a basis in a local neighborhood where the matrix elements are real. This implies

that the vector bundle has reduced holonomy from U(N) down to O(N).

ii) Θ2 = −1: A first observation in this case is that the subspace must have an even

dimension N = 2k. Again, a simple linear algebra argument shows that we can select a basis

of states consisting of k states |i〉, as well as their images under Θ defined as |̃i〉 ≡ Θ|i〉,
i = 1, , , .k. The N = 2k states |i〉, |̃i〉 provide an orthonormal basis, and they have simple

transformation under Θ, namely

Θ|i〉 = |̃i〉 , Θ|̃i〉 = −|i〉 . (B.8)

In this basis the Berry connection takes the form

(A(n)
µ )ij = 〈j|∂µ|i〉 = (Θ∂µ|i〉,Θ|j〉) = (∂µ |̃i〉, |j̃〉) = −(|̃i〉, ∂µ|j̃〉) = −(A(n)

µ )̃
j ĩ
, (B.9)

(A(n)
µ )̃

ji
= 〈i|∂µ|j̃〉 = 〈i|Θ∂µ|j〉 = (ΘΘ∂µ|j〉,Θ|i〉) = −(∂µ|j〉, |̃i〉) = 〈j|∂µ |̃i〉 = (A(n)

µ )̃
ij
,

(B.10)

and similarly we can show that (A(n)
µ )

j̃i
= (A(n)

µ )
ĩj

. So if we think of the connection matrix

as a (2k) × (2k) matrix consisting of 4 k × k blocks, we find that the matrix has the form

A B

C −AT


 , (B.11)

where B,C are symmetric. This is the condition for an Sp(N) connection.
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C. Derivation of photon Berry phase in electromagnetism

In this appendix we consider the theory of electromagnetism with a theta-term interac-

tion. The Lagrangian is

L = − 1

4e2
FµνF

µν +
θ

32π2
FµνF̃

µν , (C.1)

or in terms of the electric and magnetic fields (Ei = −F 0i, Bi = εijkFij respectively)

L =
1

2e2

(
~E2 − ~B2

)
− θ

8π2
~E · ~B . (C.2)

The canonical momentum ~π conjugate to the vector potential ~A has components

πi =
∂L
∂∂tAi

=
1

e2
Ei − θ

8π2
Bi (C.3)

and the momentum π0 = ∂L
∂∂tA0

vanishes as a first class constraint. The Hamiltonian takes

the form

H =
1

2

∫
d3x



e2

(
~π +

θ

8π2
~B

)2

+
1

e2
~B2 + ~π · ~∇A0



 . (C.4)

Consequently, its derivatives with respect to the couplings e2, θ are

∂e2H =
1

e4

∫
d3x

(
~E2 − ~B2

)
, ∂θH =

1

8π2

∫
d3x ~E · ~B . (C.5)

We assume that the three space directions are compactified on a T
3 with, say, common

size R and volume V = R3. When θ is constant in the absence of physical boundaries

the θ-interaction in (C.1) is a total derivative that does not affect the equations of motion.

Nevertheless, as we see explicitly in (C.5) the variation of H with respect to θ can be non-zero

and eventually will contribute non-trivially to the Berry phase computation. Since

∂θH ∝
∫
d3x ~E · ~B =

1

2

∫
d3x εijk

[
∂j (∂tAiAk) − ∂t (∂jAiAk)

]
, (C.6)

it is the second term on the r.h.s., which is a total derivative in time, that is expected to

contribute. This fits nicely with the fact that, eventually, we consider effects associated to

the adiabatic change of θ in time.

With these specifications we proceed to evaluate the Berry curvature of photon states

using the general equation (2.5).

In standard fashion we quantize the theory in the Coulomb gauge, where A0 = 0, ~∇· ~A = 0.

In this gauge the vector gauge potential can be expanded in creation and annihilation modes

with two possible helicities

~A(t, ~x) =
∑

~k

∑

ǫ=±

√
e2

2ωkV

(
~eǫ(~k)a~k,ǫe

−iωkt+i~k·~x + ~̄eǫ(~k)a†
~k,ǫ
eiωkt−i~k·~x

)
. (C.7)
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In units where c = 1, ωk = |~k| denotes the frequency of the modes. The spatial momenta are

quantized on T
3 as ki = 2πni

R
, for ni ∈ Z, and i = 1, 2, 3. ǫ = ± are the two helicities of the

photon modes and ~eǫ(~k) the polarization vectors.12 The creation and annihilation modes a,

a† obey canonical commutation relations.

The corresponding expansion of the electric and magnetic fields is

~E = i
∑

~k

∑

ǫ=±

√
e2ωk

2V

(
~eǫ(~k)a~k,ǫe

−iωkt+i~k~x − ~̄eǫ(~k)a†
~k,ǫ
eiωkt−i~k~x

)
, (C.8)

where we used the fact that in Coulomb gauge ~k · ~eǫ(~k) = 0, and

~B = i
∑

~k

∑

ǫ=±

√
e2

2ωkV

(
(~k × ~eǫ(~k))a~k,ǫe

−iωkt+i~k~x − (~k × ~̄eǫ(~k))a†
~k,ǫ
eiωkt−i~k~x

)
. (C.9)

Evaluating the Hamiltonian derivatives at t = 0, we find after some straightforward algebra

∂e2H = − 1

2e3

∑

~k

∑

ǫ=±

ωk

(
a~k,ǫa−~k,ǫ + a†

~k,ǫ
a†

−~k,ǫ

)
, (C.10)

∂θH =
ie2

16π2

∑

~k

∑

ǫ=±

ωk

(
ǫ
(
a~k,ǫa−~k,ǫ − a†

~k,ǫ
a†

−~k,ǫ

)
+
(
a~k,ǫa

†
~k,ǫ

− a†
~k,ǫ
a~k,ǫ

))
. (C.11)

When we evaluate the Berry curvature F (n)
e2θ in a state |n〉 we encounter terms of the form

〈n|∂e2H|m〉〈m|∂θH|n〉. Clearly, terms in δθH of the form a†a or aa† do not contribute since

〈m|a†a|n〉 = 〈m|aa†|n〉 = 0 (C.12)

for |n〉 6= |m〉. As a result, we can drop the second term on the r.h.s. of equation (C.11).

In fact, this second term originates from the first term on the r.h.s. of the expression (C.6),

which is an integrated total derivative in space. This term was not expected to contribute

and indeed we see that it does not.

Before proceeding further it is useful to make the following observation.

Parenthesis: general simplifications in Berry curvature if the energy eigenvalues are not

changed.

Assume that the deformations of a Hamiltonian do not alter the eigenvalues (but, poten-

tially alter the eigenvectors). Then, the spectral sum (2.5) for the Berry curvature simplifies.

12Possible global issues in defining the polarization vectors for arbitrary ~k will not play a role in the

following.
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This occurs when the deformations of the Hamiltonian, H ′, are implemented by similarity

transformations H ′ = V −1HV , where V is some invertible, but not necessarly unitary op-

erator. Writing V = exp[O], where O is not necessarily anti-Hermitian, we find that the

infinitesimal deformation of the Hamiltonian is

δH = [H,O] . (C.13)

When we compute the components of the Berry curvature in two directions with the

above property (C.13) (say, directions 1,2), we find

(F12)nn′ =
∑

Em 6=En=En′

〈n|[H,O1]|m〉〈m|[H,O2]|n′〉
(En − Em)2

− (1 ↔ 2) . (C.14)

Since 〈n|[H,O1]|m〉 = (En − Em)〈n|O1|m〉 eq. (C.14) simplifies to

(F12)nn′ =
∑

Em 6=En

〈n|O1|m〉〈m|O2|n′〉 − (1 ↔ 2) . (C.15)

Adding and subtracting a contribution from states |m〉 with Em = En, and using the com-

pleteness relation
∑

m |m〉〈m| = 1, we obtain

(F12)nn′ = 〈n|[O1, O2]|n′〉 . (C.16)

�

The case of electromagnetism that we consider in this appendix falls directly within the

premise of the above parenthesis. Indeed, it is not hard to show that

∂e2H = [H,Oe2] , ∂θH = [H,Oθ] , (C.17)

where

Oe2 =
1

4e2

∑

~k

∑

ǫ=±

(
a~k,ǫa−~k,ǫ + a†

~k,ǫ
a†

−~k,ǫ

)
, (C.18)

and (after dropping the a†a, aa† terms that do not contribute)

Oθ = − ie2

32π2

∑

~k

∑

ǫ=±

ǫ
(
a~k,ǫa−~k,ǫ − a†

~k,ǫ
a†

−~k,ǫ

)
. (C.19)

Then, applying the formula (C.16) to the photon external states |n〉, |n′〉 we obtain13

(Fe2θ)nn′ = 〈n|[Oe2, Oθ]|n′〉 , (C.20)

13To obtain this result we drop a term with alternating signs
∑

~k

∑

ǫ=±

ǫ〈n|n′〉. This guarantees that the

ground state has vanishing Berry phase, which is a property anticipated to hold in CPT invariant theories.
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which can be manipulated further by using the canonical commutation relations of the cre-

ation and annihilation operators. After a few steps we arrive at the formula

(Fe2θ)nn′ = − i

32π2

∑

~k

〈n|(N~k,+ −N~k,−)|n′〉 . (C.21)

N~k,ǫ is the number operator at 3-momentum ~k and helicity ǫ. The r.h.s. of (C.21) is non-

vanishing only when the external states are identical |n′〉 = |n〉. We express this fact with a

symbolic δ-function δn,n′. If n+, n− are respectively the total number of photons with + or

− helicity in the state |n〉 we finally obtain

(Fe2θ)nn′ = − i

32π2
(n+ − n−)δnn′ . (C.22)

In terms of the complex coupling τ = θ
2π

+ 4πi
e2

(Fτ τ̄ )nn′ =
1

8
(n+ − n−)

1

(Imτ)2
δnn′ . (C.23)

D. Details and conventions of operator-state correspondence

We follow closely the conventions of Ref. [31], where one can find a detailed exposition of

the facts listed here. In this brief appendix we focus, for the benefit of the reader, on specific

aspects that play a key role in the main text.

D.1. Details of conformal algebras

The conformal algrebra on R
d−1,1 involves the generators of translations and special con-

formal transformations, Pµ, Kµ (µ, ν = 0, 1, . . . , d−1) respectively, the Lorentz generators for

SO(d−1, 1), Mµν = −Mνµ, and the generator of scale transformations D. The commutation

relations of these generators are well-known and will not be repeated here.

In the operator-state correspondence the CFT is Wick rotated to Euclidean signature

and quantized radially. Equivalently, with a conformal transformation it is mapped to the

hypercylinder Rτ × Sd. Under this map the origin on the plane transforms to τ = −∞ and

the radial infinity on the plane to τ = +∞.

A local quasi-primary field OI(x) maps to a state |O〉I by action of the operators at the

origin of Rd on the vacuum

|O〉I = OI(0)|0〉 . (D.1)

The resulting states are conformal primary states satisfying the relations

Ka|O〉I = 0 , D|O〉I = i∆I |O〉I . (D.2)
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∆I is the scaling dimension of the operator OI . Similarly, the conjugate fields ŌI(x) = OI(x)†

define the bra-states

Ī〈Ō| = 〈0|ŌI(0) . (D.3)

The states |O〉I are not normalizable (which explains why the Hermitian operator D has

imaginary eigenvalues on them, (D.2)).

Now comes the main point we want to emphasize. It is convenient to organize the unitary

positive energy representations of the theory by going to a new basis where all operators O
are transformed by the similarity transformation

O −→ e
π
4

(P0−K0)Oe− π
4

(P0−K0) . (D.4)

For example, the transformation of the dilatation operator D is the so-called conformal

Hamiltonian H , specifically

− e
π
4

(P0−K0)iDe− π
4

(P0−K0) = H . (D.5)

Accordingly, the bra and ket states transform to

|I〉 = e
π
4

(P0−K0)|O〉I , 〈Ī| = Ī〈Ō|eπ
4

(P0−K0) . (D.6)

These states are normalizable positive energy eigenstates of the Hamiltonian

H|I〉 = ∆I |I〉 (D.7)

(see [31, 36] for further details).

D.2. Superconformal algrebra of 2d N = (2, 2) theories

The global left-moving part of the N = (2, 2) superconformal algebra in the NSNS

sector includes the Virasoro generators L0, L±1, the U(1)R charge J0 and the supercharges

G−
±1/2, G+

±1/2. There is a similar right-moving copy of these generators. On R
2 (with complex

coordinates (z, z̄)) the momentum component P0 = −∂z −∂z̄ = L−1+L̄−1 and the component

of the special transformation generator K0 is likewise K0 = −z2∂z − z̄2∂z̄ = L1 + L̄1. The

dilatation operator is iD = −iz∂z − iz̄∂z̄ = i
(
L0 + L̄0

)
.

Applying the similarity transformation (D.4) to the above supercharges we obtain the

calligraphic generators L0,L±1,J0,Q±,S± with

Q+ = e
π
4

(L−1−L1)G+
−1/2e

− π
4

(L−1−L1) (D.8a)

Q− = e
π
4

(L−1−L1)G−
+1/2e

− π
4

(L−1−L1) (D.8b)

S− = e
π
4

(L−1−L1)G+
+1/2e

− π
4

(L−1−L1) (D.8c)

S+ = e
π
4

(L−1−L1)G−
−1/2e

− π
4

(L−1−L1) . (D.8d)
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Obviously, the similarity transformation can be performed separately on the left- and right-

movers. Hermitian conjugation operates as follows
(
Q+

)†
= Q− ,

(
S+
)†

= S− . (D.9)

Some of the (anti)-commutation relations of interest for the left-moving generators (similar

relations apply to the right-movers) are

[Lm,Ln] = (m− n)Lm+n , [Lm,J0] = 0 , m, n = ±1, 0 , (D.10a)

{Q−,Q+} = 2L0 − J0 , {S−,S+} = 2L0 + J0 , (D.10b)

{Q−,S−} = 2L1 , {Q+,S+} = 2L−1 , {Q−,S+} = 0 , {Q+,S−} = 0 ,(D.10c)

[L0,Q±] = ±1

2
Q± , [L0,S±] = ±1

2
S±, (D.10d)

[J0,Q±] = ±Q± , [J0,S±] = ∓S± . (D.10e)

The Hamiltonian operator and the total U(1)R charge are the sum of their left- and right-

moving counterparts

H = L0 + L̄0 , R = J0 + J̄0 . (D.11)

D.3. Superconformal algebra of 4d N = 2 theories

The superconformal algebra of 4d N = 2 theories includes the real supercharges Qi
α, Q̄iα̇

and their superconformal partners Sα
i , S̄iα̇. The indices i = 1, 2 are SU(2)R indices and the

indices (α, α̇ = ±) are standard spinor indices. These supercharges realize the SU(2, 2|2)

Lie superalgebra.

Applying the similarity transformation (D.4) to the above supercharges we obtain the

calligraphic generators [30, 31]

Q+i
α = e

π
4

(P0−K0)Qi
αe

− π
4

(P0−K0) =
1√
2

(
Qi

α + σ0 αα̇S̄
iα̇
)
, (D.12a)

Q−α
i = e

π
4

(P0−K0)Sα
i e

− π
4

(P0−K0) =
1√
2

(
Sα

i + Q̄iα̇σ̄
α̇α

0

)
, (D.12b)

−S−iα̇ = e
π
4

(P0−K0)S̄iα̇e− π
4

(P0−K0) =
1√
2

(
S̄iα̇ − σ̄ α̇α

0 Qi
α

)
, (D.12c)

S+
iα̇ = e

π
4

(P0−K0)Q̄iα̇e
− π

4
(P0−K0) =

1√
2

(
Q̄iα̇ − Sα

i σ0 αα̇

)
, (D.12d)

which play a key role in the main text. These operators obey (among other things) the

(anti)commutation relations

{Q+i
α ,Q−β

j } = 2δi
jδ

β
α H + 4δi

jM̃
β

α − 4δ β
α Ri

j , (D.13a)

{S−iα̇,S+
jβ̇

} = 2δi
jδ

α̇
β̇H − 4δi

j
˜̄M α̇

β̇ + 4δα̇
β̇R

i
j , (D.13b)
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[H,Q±] = ±1

2
Q± , [H,S±] = ±1

2
S± (D.14)

with Hermiticity properties
(
Q+i

α

)†
= Q−β

i σ0βα̇ ,
(
S+

iα̇

)†
= σ0αβ̇S−iβ̇ . (D.15)

We assume by convention that σ0 = σ̄0 = 1. The rotation generators M̃ β
α , ˜̄M α̇

β̇
are defined

as the transformation (D.4) of the generators

M β
α = − i

4
(σµσ̄ν) β

α Mµν , M̄ α̇
β̇ = − i

4
(σ̄µσν)α̇

β̇ Mµν . (D.16)

The N = 2 U(2)R-symmetry generators are

(
Ri

j

)
=

(
R3

R−

R+

−R3

)
− R

4

(
1

0

0

1

)
, (D.17)

where R±, R3 are SU(2)R generators and R is a U(1)R generator normalized so that chiral

primary operators obey the scaling dimension relation ∆ = R
2
. The U(1)R charges of the

supercharges are
[
R,Q±

]
= ∓Q± ,

[
R,S±

]
= ±S± . (D.18)

E. Technical results in 2d N = (2, 2) SCFTs

In this appendix we evaluate the contact term R defined in eq. (6.22). We perform

the computation on the cylinder where the integrated insertions are evaluated by default at

equal Euclidean time τ = 0. Since any potential contribution is expected to arise when the

operators ϕk and ϕ̄l̄ come close together, we can evaluate it by invoking the OPE of these

operators. Moreover, since the amplitude R depends only on the relative distance of the ϕ

insertions we can also recast it in the form

R =
1

2π

∫ π

−π
dθ 〈J̄ |

[
ϕk(0, θ)ϕ̄l̄(0, 0) − ϕ̄l̄(0, θ)ϕk(0, 0)

]
|I〉 . (E.1)

Now consider the general OPE of a scaling dimension
(

1
2
, 1

2

)
chiral primary field ϕ with

a
(

1
2
, 1

2

)
anti-chiral primary ϕ̄ on the cylinder. On the Euclidean plane with complex coor-

dinates (z, z̄) we have

ϕ(z1, z̄1)ϕ̄(z2, z̄2) =
∑

ρ

Dρ

φφ̄
Oρ(z2, z̄2)

z
1−hρ

12 z̄
1−h̄ρ

12

. (E.2)

The operator Oρ has left-right scaling dimensions (hρ, h̄ρ). When we transform from the

plane to the cylinder with the change of coordinates

z = e−iw = e−i(θ+iτ) (E.3)
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the (1
2
, 1

2
) (anti)chiral primaries transform as

ϕ(z, z̄) = e
i
2

(w−w̄)ϕ(w, w̄) . (E.4)

In addition,

Oρ(z, z̄) = ihρ−h̄ρeihρw−ih̄ρw̄Oρ(w, w̄) , (E.5)

z
hρ−1
12 z̄

h̄ρ−1
12 = e−i(hρ−1)w2+i(h̄ρ−1)w̄2

(
−1 + e−iw12

)hρ−1 (−1 + eiw̄12

)h̄ρ−1
. (E.6)

Inserting these formulae into (E.2) we obtain on the Euclidean cylinder the OPE

ϕ(w1, w̄1)ϕ̄(w2, w̄2) =

=
∑

ρ

ihρ−h̄ρDρ

φφ̄
e− i

2
w12+ i

2
w̄12

(
−1 + e−iw12

)hρ−1 (−1 + eiw̄12

)h̄ρ−1 Oρ(w2, w̄2) . (E.7)

As w12 → 0 the only terms that are singular in this OPE arise from the identity and (1, 0),

(0, 1) operators. Expanding the exponentials and keeping at most the linear terms in the

expansion (which is sufficient for our purposes) we obtain

ϕ(w1, w̄1)ϕ̄(w2, w̄2) =
∑

ρ

Dρ

φφ̄

1 − i
2
hρw12 + i

2
h̄ρw̄12

w
1−hρ

12 w̄
1−h̄ρ

12

Oρ(w2, w̄2)

≃ D1
φφ̄

1

|w12|2
+D

(1,0)

φφ̄

(
1

w̄12
− i

2

w12

w̄12

)
O(1,0)(w2, w̄2)

+D
(0,1)

φφ̄

(
1

w12
+
i

2

w̄12

w12

)
O(0,1)(w2, w̄2) + . . . . (E.8)

Following the discussion below equation (7.25) we insert (E.8) into the modified version

of (E.1)

R =
1

2π

∫ π

−π
dθ 〈J̄ |

[
eτ1−τ2ϕk(τ1, θ)ϕ̄l̄(τ2, 0) − eτ2−τ1ϕ̄l̄(τ1, θ)ϕk(τ2, 0)

]
|I〉 (E.9)

displacing in Euclidean time (or imaginary Minkowski time). We set

w1 = θ − i

2
ε , w2 =

i

2
ε ⇒ w12 = θ − iε (E.10)

for the first term on the r.h.s. of (E.9) and

w1 =
i

2
ε , w2 = θ − i

2
ε ⇒ w12 = −θ + iε (E.11)

for the second. We obtain

R = − 1

π
gIJ̄

∫ π

−π
dθ

[
D1

kl̄

ε

θ2 + ε2
+ qD

(1,0)

kl̄

−i
θ + iε

+ q̄D
(0,1)

kl̄

i

θ − iε

]

= −gIJ̄

[
D1

kl̄ − qD
(1,0)

kl̄
− q̄D

(0,1)

kl̄

]
. (E.12)
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Using

D1
kl̄ = gkl̄ , (E.13)

D
(1,0)

kl̄
=

3

c
gkl̄ , (E.14)

D
(0,1)

kl̄
=

3

c
gkl̄ (E.15)

we finally deduce that

R = −
(

1 − 3

c
(q + q̄)

)
gIJ̄gkl̄ . (E.16)

We also used the integrals

lim
ε→0

∫ π

−π
dθ

ε

θ2 + ε2
= π , (E.17)

lim
ε→0

∫ π

−π
dθ

1

θ ± iε
= ∓πi (E.18)

and in the second line of (E.12) the identities

〈J |O(1,0)(w = 0)|I〉 = iqgIJ̄ , 〈J |O(0,1)(w = 0)|I〉 = −iq̄gIJ̄ . (E.19)
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