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Abstract

This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at
√

sNN =
2.76 TeV and

√
sNN = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected

to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nu-

clear collisions at collider energies. Jets are reconstructed from charged particles using the anti-kT

jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range

|ηjet| < 0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The

measurement of the jet mass in central Pb–Pb collisions is compared to the jet mass as measured

in p–Pb reference collisions, to vacuum event generators, and to models including jet quenching.

It is observed that the jet mass in central Pb–Pb collisions is consistent within uncertainties with

p–Pb reference measurements. Furthermore, the measured jet mass in Pb–Pb collisions is not repro-

duced by the quenching models considered in this letter and is found to be consistent with PYTHIA

expectations within systematic uncertainties.
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1 Introduction

This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at
√

sNN = 2.76 TeV

and
√

sNN = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive

to jet quenching in the hot Quantum Chromodynamics (QCD) matter, the Quark-Gluon-Plasma (QGP),

created in ultra-relativistic nuclear collisions. Scattering processes with large momentum transfer, Q2,

between the quarks and the gluons (partons) constituents of colliding nucleons occur early in the collision

(at a time < 1fm/c). Outgoing partons carry a net color charge and evolve from high to low virtuality

producing parton showers, which eventually hadronize into collimated sprays of particles, called jets.

Interactions of the outgoing partons with the hot and dense QGP created in heavy-ion collisions may

modify the angular and momentum distributions of hadronic jet fragments relative to jets fragmenting

in vacuum. This process, known as jet quenching, can be used to probe the properties of the hot QCD

medium [1–4].

Jet quenching has been investigated at the Relativistic Heavy Ion Collider (RHIC) [5–9] and at the Large

Hadron Collider (LHC) [10–20] via measurements of high-pT hadrons and fully reconstructed jets in

nucleus–nucleus (AA) collisions and pp (vacuum) collisions. These measurements have shown a sup-

pression of hadron and jet yields in AA collisions and modest modifications of the longitudinal fragment

distribution and the radial profile of jets relative to jets produced in pp collisions within the typical jet

cone of 0.3−0.4 at the LHC. The jet mass is sensitive to the initial virtuality of the parton at the origin

of the shower [21]. Energy-momentum exchange with the hot QCD medium may temporarily increase

the virtuality of the propagating partons, leading to a larger gluon radiation probability [22–25]. This

would result in a broadening of the jet profile and an increase of the jet mass, if a significant amount

of the radiated gluons are captured within the jet cone used for reconstruction. However, the virtuality

increase is temporary and it is expected that the leading parton traversing hot QCD matter experiences

substantial virtuality (or mass) depletion along with energy loss [21].

The jet mass of inclusive jets and of jets in dijet events has been previously measured in high-energy pp

collisions at
√

s = 7 TeV at the LHC [26, 27]. Perturbative QCD predictions using higher-order matrix-

elements for parton production combined with a Monte Carlo (MC) parton shower were found to be

in good agreement with the data. The commonly used leading-order event generators with full shower

evolution, PYTHIA [28, 29] and HERWIG [30], reproduce the jet mass distribution in pp collisions

reasonably well in the pT region 200–600 GeV/c previously studied, however they consistently under-

and over-predict the data, respectively, by a slight amount.

In this letter, measurements of the charged-jet mass are reported. Charged jets are jets clustered using

only charged particles, reconstructed in the ALICE tracking system, opposed to full jets, reconstructed

with both charged and neutral particles. The four momentum of the jet is defined as the sum of constituent

four momenta. The jet mass is calculated from the jet four-momentum,

M =
√

E2 − p2
T − p2

z, (1)

where E is the jet energy, pT the transverse and pz the longitudinal momentum of the jet.

The measurement is performed in Pb–Pb and p–Pb collisions and in three intervals of jet transverse

momentum. Data-driven jet-by-jet background subtraction schemes are used to correct the jet mass for

the contribution of the Pb–Pb underlying event. In contrast, the p–Pb background is included in the

response matrix and corrected for in the unfolding, as discussed in detail in Sec. 3.1 and 3.2. The data

are compared at detector level to a simulated reference without jet quenching effects. Furthermore,

the measurement is corrected to particle level via a two-dimensional unfolding technique, accounting

for the remaining effect of background fluctuations and detector effects. The fully corrected jet mass

distribution in central Pb–Pb collisions is compared to models and to the jet mass distribution measured

in p–Pb collisions.
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2 Data sample

The Pb–Pb collision data were recorded during the 2011 LHC Pb–Pb run at
√

sNN = 2.76 TeV. This anal-

ysis used minimum-bias (MB) events, selected online by requiring a signal in the forward V0 detectors,

two arrays of scintillator tiles covering the full azimuth within 2.8<η < 5.1 (V0A) and −3.7<η <−1.7
(V0C). An online centrality trigger selected the 10% most-central Pb–Pb collisions using the centrality

determination as described in [31], with 100% efficiency for the 0–8% centrality interval, and 60% effi-

ciency for the 8–10% interval. The number of Pb–Pb events used in this analysis, after the event selection

described below, is 17 million in the 0–10% centrality interval.

Collisions of proton and lead beams were provided by the LHC in the first months of 2013. The beam

energies were 4 TeV for the proton beam and 1.58 TeV per nucleon for the lead beam, resulting in col-

lisions at a center-of-mass energy of
√

sNN = 5.02 TeV. The nucleon–nucleon center-of-mass system

moves relative to the laboratory frame with rapidity 0.465 in the direction of the proton beam [32]. In the

following, η refers to the pseudorapidity in the laboratory frame. The V0 detectors were used for online

minimum bias event triggering and offline event selection. The minimum bias trigger required a signal

from a charged particle in both the V0A and the V0C. The total integrated luminosity of the minimum

bias event sample is 37 µb−1. In addition, events triggered by an online jet trigger using the electromag-

netic calorimeter (EMCal) [33,34] were used. The online jet patch covered an area of approximately 0.2
sr and required an integrated patch energy of at least 20 GeV. The transverse momentum distributions of

charged jets in the triggered sample was compared to the minimum bias one, showing that the trigger was

fully efficient for pT,ch jet & 60 GeV/c. The minimum bias and triggered sample were used for unfolded

pT,ch jet < 80 GeV/c and pT,ch jet ≥ 80 GeV/c, respectively. The triggered sample correspond to a total

integrated luminosity of 1.6 nb−1.

In addition to the online triggers in both collision systems, an offline selection was applied in which

the online trigger was validated and remaining background events from beam–gas and electromagnetic

interactions were rejected. To ensure a high tracking efficiency for all considered events, the primary

vertex was required to be within 10 cm from the center of the detector along the beam axis and within

1 cm in the transverse plane [35].

3 Jet reconstruction and background subtraction

Jet reconstruction for both the p–Pb and Pb–Pb analysis was performed with the kT [36] and anti-kT

[37] sequential recombination jet algorithms as implemented in the FastJet package [38]. The anti-kT

algorithm was used for the signal jets while clusters reconstructed with the kT algorithm were used to

estimate the background density of the events. Jets were reconstructed using charged tracks detected in

the Time Projection Chamber (TPC) [39] and the Inner Tracking System (ITS) [40] which cover the full

azimuthal angle and pseudorapidity |η |< 0.9. Jets were reconstructed using the E-scheme to recombine

the four-vectors of the constituents, assigning the charged-pion mass for each particle. A resolution

parameter, R, of 0.4 was used, and the jet area was calculated by the FastJet algorithm using essentially

zero momentum particles, called ghosts, with area 0.005 [41]. Jets were accepted if they were fully

contained in the tracking acceptance: full azimuth and |ηjet|< 0.5, to guarantee that the reconstructed jet

axes were at least R away from the edge of the detector acceptance.

Reconstructed tracks were accepted if their reconstructed transverse momenta exceeded 0.15 GeV/c,

with at least 70 space points found in the TPC and at least 80% of the geometrically accessible space-

points in the TPC. Tracks were required to have at least three hits in the ITS used in the fit to ensure good

track momentum resolution. To account for the azimuthally non-uniform response of the two innermost

layers of the ITS, the Silicon Pixel Detector (SPD), the primary-vertex position was added to the track

fit, for tracks without SPD points, in order to further improve the momentum determination of the track.

The track momentum resolution was about 1% at 1 GeV/c and about 3% at 50 GeV/c [35]. Jets which
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contained a track with pT larger than 100 GeV/c, for which the track momentum resolution exceeded

6.5%, were rejected. The tracking efficiency in central Pb–Pb collisions was 80% for tracks with pT

larger than 1 GeV/c and decreased to 56% at 0.15 GeV/c. In p–Pb collisions the tracking efficiency was

70% for tracks with pT = 0.15 GeV/c and increased to 85% for pT ≥ 1 GeV/c.

To suppress the contribution of jets consisting mainly of background particles (combinatorial jets), only

jets containing a “hard core” were accepted. A jet was selected only if it overlapped geometrically with a

jet reconstructed with only constituents with pT > 4 GeV/c. In the kinematic region considered, the hard

core selection had similar performance as the selection used in previous works, namely demanding the

jet leading track to have a transverse momentum of at least 5 GeV/c [17, 18]. PYTHIA pp simulations

showed that applying such a selection was 100% efficient on the jet population for charged-jet transverse

momentum pT,ch jet ≥ 25 GeV/c. The fluctuating background in Pb–Pb collisions affected the jet energy

scale increasing the full-efficiency threshold to psub
T,ch jet = 60 GeV/c (where psub

T,ch jet is the background-

subtracted pT,ch jet, defined below in Eq. 6). In minimum bias p–Pb collisions the fragmentation bias

vanished for pT,ch jet ≥ 30 GeV/c.

3.1 Jet-by-jet background subtraction in Pb–Pb collisions

Jet measurements in Pb–Pb collisions are severely affected by the underlying event. A reconstructed jet

contains particles unrelated to the hard parton shower. In this analysis the background was subtracted

jet-by-jet. For this purpose, mean background densities were determined by characterizing event-by-

event the contamination from soft particles unrelated to the hard jet signal. The background transverse

momentum density, ρ , was defined as

ρ = median

{

pT,i

Ai

}

, (2)

where i indicates the ith kT cluster in the event, pT,i is the transverse momentum of the cluster and Ai is

its area. The two kT clusters with highest transverse momentum were excluded from the calculation of

the median. The average ρ in the 10% most central Pb–Pb collisions was 116 GeV/c. Further details are

given in [17].

To take into account the influence of background particles on the reconstructed jet mass, a quantity

mδ ,kcluster
T

was evaluated for each kT cluster following the procedure outlined in [42]

mδ ,kcluster
T

=∑
j

(
√

m2
j + p2

T,jc
2 − pT,jc), (3)

where the sum runs over all particles inside the kT cluster, mj is the mass and pT,j the transverse momen-

tum of each constituent. The background mass density is defined by

ρm = median

{

mδ ,i

Ai

}

, (4)

where the subscript i indicates again the ith kT cluster in the event and Ai is the area of the kT cluster.

As in the calculation of ρ , the two leading kT clusters were excluded from the median calculation. For

central Pb–Pb collisions, 〈ρm〉 was found to be about 3.6 GeV/c2.

The background densities, ρ and ρm, were used in combination with two background subtraction tech-

niques for jet shapes which will be described in the following:

i The area-based subtraction method corrects jet-shape observables for background or pile up effects

on an event-by-event and jet-by-jet basis [42]. The method is valid for any jet algorithm and

infrared- and collinear- safe jet shapes. The background is characterized by ρ and ρm. Ghosts are
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added in the η-ϕ plane to the event, each of them mimicking a background component in a region

of area Ag. The shape sensitivity to pileup is determined by considering its derivatives with respect

to the transverse momentum and mass of the ghosts and extrapolated by a Taylor series to zero

pileup or background. A complete description of the method can be found in [42].

ii The constituent subtraction method is a particle-level approach which removes or corrects jet con-

stituents. The particle-by-particle subtraction allows to correct both the 4-momentum of the jet

and its substructure. Massless ghosts are added to the event such that they cover the η-ϕ plane.

Each jet will therefore contain the real particles and ghosts. A distance measure is defined for each

pair of a real particle i and a ghost k:

∆Ri,k = pT,i ·
√

(yi − y
g
k)

2 +(ϕi −ϕg
k )

2, (5)

where y is the rapidity and ϕ the azimuthal angle. An iterative background removal procedure starts

from the particle-ghost pair with smallest distance. At each step the transverse momentum and

mass of each particle and ghost are modified. The background densities ρ and ρm are used to assign

momentum and mass to each ghost: p
g
T = Agρ and m

g

δ
= Agρm where Ag is the area of each ghost.

If the transverse momentum of particle i is larger than the transverse momentum of the ghost, the

ghost is discarded and the transverse momentum of the ghost is subtracted from the real particle.

If the transverse momentum of the ghost is larger than particle i, the real particle is discarded and

the transverse momentum of the ghost is corrected. The same procedure is applied to the mass of

the particles and ghosts. All pairs are considered and the iterative procedure is terminated when

the end of the list of pairs is reached. The four-momentum of the jet is recalculated with the same

recombination scheme as used for the jet finding procedure. A complete description of the method

can be found in [43].

The area-based subtraction method was used as the nominal method for the Pb–Pb analysis to correct

the reconstructed jet mass for the influence of background since it is expected to induce zero bias. On

the other hand, since track-by-track it is not possible to determine whether a soft particle is background

or an effect of the interaction with the medium, the constituent method could potentially remove non-

background particles.

The reconstructed transverse momentum of anti-kT jets, praw
T,ch jet, is corrected according to [44],

psub
T,ch jet = praw

T,ch jet −ρ ·A, (6)

where A is the area of the jet and ρ is the pT-density of the considered event, as defined in Eq. 2.

3.2 Background in p–Pb collisions

In p–Pb collisions the average ρ and ρm were about 1.26 GeV/c and 0.08 GeV/c2, respectively. To ac-

count for the regions of the detector without event activity, an additional correction [45] was applied and

the hard signal jets were excluded from the background estimate by excluding overlap of the kT clus-

ters with anti-kT jets with pT,ch jet > 5 GeV/c. While the overall background contribution is significantly

smaller than in Pb–Pb collisions, it was observed that the width of the mass fluctuations caused by the

p–Pb background was increased when subtracting the background on a jet-by-jet basis with respect to

including it in the response. Therefore, to minimize this effect present in sparse events and to mitigate

the different sensitivities of the considered subtraction methods to fluctuations, in p–Pb collisions the

background was not subtracted jet-by-jet (on an event-by-event basis), but corrected for on average in

the unfolding, as explained in greater detail in Sec. 4. The systematic uncertainty on this choice was

assessed by subtracting the background in data with the constituent method and correcting only for the

detector effects in the response (see Sec. 6).
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4 Jet scale and resolution

For the Pb–Pb analysis, the jet energy and mass response were studied by embedding simulated pp

events at detector level, namely including the effects of the detector response, into real Pb–Pb events.

The detector response was determined from a PYTHIA 6 simulation (tune A with initial state radia-

tion parameter PARP(67) = 2.5 to fit the D0 di-jet data [46]) followed by a detailed particle transport

using GEANT 3 [47] in a detector configuration corresponding to the conditions during Pb–Pb data tak-

ing. Prior to embedding the reconstructed tracks from the simulation into Pb–Pb events, an additional

pT-dependent tracking inefficiency of 2–4% was applied in order to account for the larger tracking in-

efficiency due to the high occupancy for large particle densities [18]. The combination of Pb–Pb and

PYTHIA events will be referred to as ‘hybrid events’.

The same jet reconstruction procedure as in data, see Sec. 3, was applied to the hybrid events, resulting

in a sample of hybrid jets. The hybrid jets were matched to the probe jets, which were obtained by

reconstructing jets from only the PYTHIA events at the detector level. Not all constituents of an embed-

ded probe jet will necessarily be found in a hybrid jet. In order to relate the hybrid to the probe jet, a

matching condition was used. This required that the constituents of the hybrid jet that comes from the

PYTHIA event must carry at least 50% of the transverse momentum of the PYTHIA jet. In the case that

a hybrid jet was paired to two or more probe jets, it was matched to the probe jet with highest pT and

the other probe jets were considered lost, reducing the jet-finding efficiency. The efficiency in the 10%

most central events for charged jets increased from 40% at psub
T,ch jet = 10 GeV/c to 100% for psub

T,ch jet > 40

GeV/c.

Region-to-region fluctuations of the jet mass and pT-scale were characterized by using the hybrid events

and calculating δ pT and δM, defined as the difference between the transverse momentum or mass of

the background-subtracted hybrid jet and the probe jet [48]. On a jet-by-jet basis a linear correlation

between δ pT and δM was observed.

The jet mass distributions of hybrid jets matched to probe jets within a certain jet pT-interval, showed

on average a larger jet mass with respect to the corresponding spectrum of the probes. This offset was

due to background fluctuations and limited purity and efficiency within a reconstructed jet pT-interval,

resulting in jet migration between pTintervals.

Detector effects on the jet energy and mass were investigated by matching detector level jets and particle

level jets from a Pythia simulation and comparing their properties (including Pb–Pb background). The

jets were matched based on distance, in a way that guarantees a one-to-one match. The constituents of

the detector level jets are all assigned the pion mass, as is done for the data analysis, while the the particle

mass is used for the particle level jet reconstruction. A comparison between the jet mass response due to

background fluctuations and the full response, which also contains detector effects, is shown in Fig. 1.

While background fluctuations induce a positive shift of the reconstructed jet mass, detector effects,

which are dominated by the finite tracking efficiency and the mass assumption of the jet constituents,

reduce the reconstructed jet mass. This was further characterized by extracting the mean and the most

probable value from the distribution in Fig. 1, giving a measure of the relative jet mass shift. The relative

mass shift is shown in Fig. 2 for the area-based subtraction method (left) and the constituent subtraction

method (right). In the kinematic range of interest, the mass shift does not exhibit a strong dependence on

jet momentum. The performance of the constituent subtraction method is slightly better than for the area-

based method since the constituent subtraction corrects partially for the local background fluctuations

while the area-based method only corrects for the average background.

Since embedding a full PYTHIA event, including the underlying event, into the sparse p–Pb event would

significantly distort the p–Pb background estimate, the above procedure, devised with Pb–Pb collisions in

mind, was modified for p–Pb collisions. To minimize the distortion, we instead embedded single tracks,

whose 4-vectors correspond to jets reconstructed from a PYTHIA simulation (tune Perugia2011 [49])
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Fig. 1: Mass response using the area-based background subtraction method in the 10% most central

Pb–Pb collisions for background fluctuations only (black histogram), compared to the full response

including detector effects (red histogram), for anti-kT jets with resolution parameter R = 0.4. Msub

refers to the background-subtracted reconstructed jet mass while Mprobe is the jet mass of the embed-

ded probe. From top left to bottom right, each panel represent a pT,ch jet region, 40–60, 60–80, 80–100,

100–120 GeV/c.
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ing detector effects, using anti-kT PYTHIA jets with R = 0.4 embedded into central Pb–Pb collisions.

Left: area-based subtraction method. Right: constituent subtraction method.
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at detector level, into p–Pb events. After running FastJet on the measured events including embedded

PYTHIA tracks, each resulting jet was matched with the particle level PYTHIA jet associated to the

embedded track.

Figure 3 shows the jet mass resolution for Pb–Pb and p–Pb collisions as a function of the jet mass at

particle level for probe jets with 60 < pT,ch jet < 80 GeV/c. A strong dependence on Mprobe is observed.

The resolution for jets with a small mass is poor while for larger jet masses it improves to 25%. Jets with

small mass are very collimated and typically have a small number of constituents. The influence of the

tracking inefficiency and the contamination of tracks from the background on these jets are large. For

large enough pT,ch jet (> 40 GeV/c), jets with a small jet mass are rare and therefore the poor resolution

for very collimated jets with small number of constituents is not a limiting factor in this analysis, which

was restricted to jets with pT,ch jet > 60 GeV/c for Pb–Pb and p–Pb collisions. For example, only about

16% of the jets have a mass smaller than 6 GeV/c2 within the 60–80 GeV/c pT,ch jet interval in PYTHIA.

The jet mass scale and resolution in p–Pb collisions are dominated by tracking inefficiency, the mass

assumption for the constituents, and, less strongly, by track momentum resolution. The jet mass res-

olution in p–Pb collisions at small jet mass is by a factor 2 better than in Pb–Pb collisions due to the

much smaller contribution of the underlying event. At large jet mass the resolution is similar for the two

collision systems, 25% for Pb–Pb and 20% for p–Pb, and mainly driven by detector effects.

5 Uncorrected jet mass distributions and corrections

5.1 Comparison of jet mass in Pb–Pb to PYTHIA at detector level

It is common use to compare uncorrected Pb–Pb results with embedded pp or PYTHIA events, including

in the latter detector and background effects. We perform this comparison and then proceed with the full

correction in order to compare with p–Pb corrected results and particle-level event generators.

In this section, the jet mass distributions measured in central Pb–Pb collisions are compared to hybrid

detector-level PYTHIA jets. The background was subtracted from the jet transverse momentum and

mass using the area-based and constituent subtraction methods. A comparison of the jet distributions

(normalized per jet) is shown in Fig. 4. It can be observed that the Pb–Pb and PYTHIA distributions

are similar, which supports the validity of using embedded PYTHIA for the corrections as discussed in

Sec. 5.2. The constituent method gives systematically lower jet mass than the area-based method, due to
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the different effect of background fluctuations for the two subtraction algorithms, see Sec. 4. The lower

panels of Fig. 4 show the ratio between Pb–Pb and PYTHIA embedded jets. The ratio as a function of jet

mass shows that the measured distributions are very similar to the embedded PYTHIA jets, or possibly a

small shift to lower mass, which is however more pronounced for the constituent background subtraction
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method. The hint of a shift is more pronounced in the mean jet mass, which is slightly smaller in Pb–Pb

collisions than embedded PYTHIA events, as shown in Fig. 5. Also when comparing the corrected

results with PYTHIA at particle level later in this letter, the data show a hint of a shift towards smaller

masses with respect to PYTHIA when considering only statistical uncertainties.

5.2 Correction of jet mass to particle level

For the correction of the jet mass measurement to particle level, a two-dimensional Bayesian unfolding

technique [50] from RooUnfold [51] was used. A four-dimensional response matrix was constructed with

the following axes: particle-level pT,ch jet, detector-level pT,ch jet, particle-level Mch jet and detector-level

Mch jet. For the Pb–Pb analysis, detector-level jets were obtained by embedding detector-level PYTHIA

jets into Pb–Pb events, running the jet finder and applying the background subtraction as explained in

Sec. 3. A projection of the response on the detector level mass is shown in Fig. 4. As discussed in Sec.

4, the embedded detector-level jets were matched to the detector-level jets without Pb–Pb background.

The latter were matched to particle-level jets in such a way to obtain a unique matching between each

detector-level embedded jet and the corresponding particle-level jet.

For the p–Pb analysis, detector-level jets were obtained from embedding detector-level jet four-momentum

vectors into p–Pb events (see Sec. 4). The reconstructed embedded jets were matched with the particle-

level four-momentum vectors corresponding to the detector level embedded four momenta. The four-

dimensional matrix contains the smearing in jet pT and mass due to background and detector effects.

The four-dimensional response matrix was used to unfold the jet pT and mass simultaneously, taking

advantage of the observed strong correlation between the jet transverse momentum and mass fluctuations

caused by the residual region-to-region background fluctuations, which reduces off-diagonal elements in

the response matrix. The relationship between the transverse momentum and mass of the jet at particle

level in the response, called the prior, is obtained from PYTHIA simulations (tune A for Pb–Pb and

Perugia 2011 for p–Pb). A variation of this assumption was considered in the systematic uncertainties

(Sec. 6).

The unfolding procedure was validated using a MC closure test by applying the correction procedure

to PYTHIA embedded jets. For the signal and the response matrix, statistically independent data sets

were used. The background subtracted and unfolded and true distributions agree with each other to a

precision of 5% for pT,ch jet > 40 GeV/c. The refolded distribution, obtained by convoluting the unfolded

solution with the response matrix, is in agreement with the measured distribution within the statistical

uncertainty.

6 Systematic uncertainties

The systematic uncertainties for the jet mass measurement were determined by varying parameters and

algorithmic choices of the measurement, corrections for detector response and background fluctuations.

The main systematic uncertainties originate from the regularization of the unfolding algorithm, the back-

ground subtraction method and the uncertainty on the detector response. For the Pb–Pb analysis, also

the choice of the prior, the relation between mass and pT at the particle level, used in the unfolding has

an important effect. In this section the method to estimate the systematic uncertainty for each source and

their magnitude in central Pb–Pb collisions and p–Pb collisions will be discussed.

The unfolding procedure converges after a certain number of iterations. Only relatively small variations

in the results are expected when the convergence is reached. The sensitivity to the number of iterations

chosen as default was estimated by varying their number over a wide range, where the convergence of the

result is verified. The nominal number of iterations used for the Pb–Pb measurement is 6 and the number

of iterations was varied from 3 to 10. For p–Pb collisions the default is 3 and the number was varied

between 1 and 5. Changing the number of iterations shifts the full jet mass distribution to higher or lower
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jet mass, resulting in an anti-correlated shape uncertainty. The relative uncertainty is largest in the tails

of the jet mass distribution where it amounts to 20% in Pb–Pb collisions and 5–20% in p–Pb collisions

for different pT ranges. In the peak region of the jet mass distributions the uncertainty does not exceed

5% (2%) in Pb–Pb (p–Pb) collisions. The size of the uncertainty in the number of iterations is correlated

with the statistical uncertainty and the uncertainty on the data points is correlated point-to-point.

The prior used for the Bayesian unfolding was taken from PYTHIA simulations. The mean jet mass as

a function of uncorrected but background-subtracted jet pT is 1–4% smaller in Pb–Pb collisions than in

PYTHIA simulations as shown in Fig. 5. The second central moments of the distributions are statisti-

cally compatible indicating that the shape of the distribution is unchanged. Therefore it is reasonable to

apply a shift of at maximum 4% on the jet mass in the prior to estimate a systematic uncertainty to the

measurement due to the prior choice. This results in a systematic uncertainty of 10% around the jet mass

peak, which increases gradually to 50% in the tails. For the p–Pb analysis, a smearing of the mass at

particle level in the response matrix was performed. The new particle level mass is extracted randomly

from a Gaussian centered at the original mass with a σ of 2%, roughly corresponding to the maximum

spread observed in the ratio of the jet mass distribution in the response at detector level and in the data.

The resulting uncertainty ranges from 4% to 6%, with the largest value reached in the first pT range.

For the jet-by-jet background subtraction in Pb–Pb collisions, the result from the area-based method was

compared to the constituent subtraction. The response matrix for the methods is different since the jet

mass scale differs as was shown in Fig. 2. The response matrix in both cases was obtained using the

embedding technique presented in Sec. 4. The systematic uncertainty due to the background subtraction

method varies between 5% at the center of the distribution and 30% in the tails.

As mentioned in Sec. 3.2, in p–Pb events the background subtraction introduces additional fluctuations

due to the region-to-region fluctuations of the background, which leads to a broadening of the jet mass

distribution after subtraction. It was therefore decided not to perform the subtraction event-by-event and

jet-by-jet, and instead include the background in the response matrix and correct for in it the unfolding.

As an extreme variation for the systematic uncertainty, the background was subtracted event-by-event in

the data with the constituent method, which is less sensitive to fluctuations than the area method, and

corrected only for detector effects using the PYTHIA response. The jet mass distributions corrected with

the two assumptions differ by 5% in the peak region and the difference increases gradually up to 40% in

the low-mass tail. These variations were taken as systematic uncertainties.

The uncertainty in the detector response was dominated by the uncertainty in the tracking efficiency,

which was estimated by varying track quality cuts and found to be 3–4%. The tracking efficiency in

the detector simulation was varied accordingly, providing an alternative response matrix with which to

repeat the unfolding. Observed differences with respect to the nominal result vary from 10% to 40% and

5% to 30% in Pb–Pb and p–Pb, respectively, with the largest uncertainty in the tails of the distributions.

All systematic uncertainties were added in quadrature for each Mch jet bin. The uncertainties affect the

shape of the jet mass distribution and the normalization applied causes long-range anti-correlations.

Source Pb–Pb p–Pb

pT,ch jet (GeV/c) 60–80 80–100 100–120 60–80 80–100 100–120

Prior 1.0% 3.0% 5.0% 0 0 0

Background 3.0% 3.0% 5.0% 1.0% 0.5% 1.0%

Tracking efficiency 5.0% 5.0% 5.0% 3.0% 3.0% 3.0%

Unfolding (iterations, range) 1.0% 3.0% 4.0% 0.5% 1.0% 4.0%

Total 6.0% 8.0% 9.0% 3.5% 3.5% 4.5%

Table 1: Systematic uncertainty in mean jet mass from different sources in the 10% most central Pb–Pb

collisions (left) and minimum-bias p–Pb collisions (right).

11



First measurement of jet mass in Pb–Pb and p–Pb collisions ALICE Collaboration

The uncertainty on the mean jet mass as a function of pT,ch jet was evaluated on the unfolded distri-

bution using the variations mentioned above and shown in Table 1. The total systematic uncertainty

in the mean jet mass increases from 6% for jets with 60 < pT,ch jet < 80 GeV/c to 9.0% for jets with

100 < pT,ch jet < 120 GeV/c in Pb–Pb central collisions. The systematic uncertainty in p–Pb collisions

is about two times smaller than in central Pb–Pb collisions due to the much smaller underlying event

contribution.

7 Results and discussion

7.1 Jet mass measurements in Pb–Pb and p–Pb collisions

The fully unfolded jet mass distributions including all systematic uncertainties, measured in p–Pb colli-

sions at
√

sNN = 5.02 TeV in three ranges of pT,ch jet between 60 and 120 GeV/c are shown in Fig. 6

and compared with PYTHIA Perugia 2011 and HERWIG EE5C [30, 52]. Minimum-bias triggered

events were used for pT,ch jet < 80 GeV/c, while the online jet triggered event sample was used for

pT,ch jet ≥ 80 GeV/c. The agreement of data and PYTHIA is within 10–20% for most of the Mch jet

range. The deviations increase for the low and high mass tail and can exceed 30–50% for the inter-

mediate pT,ch jet range. The agreement with HERWIG is slightly worse, mostly in the low mass tail of

the distribution and in the highest pT,ch jet interval. Considering the good agreement with simulations

and that the jet nuclear modification factors RpPb and QpPb measurements show no cold nuclear matter

effects [45, 53–55], the p–Pb measurement (and PYTHIA) can be used as a reference for the assessment

of the hot nuclear matter effects in Pb–Pb collisions.

Figure 7 shows the comparison of the jet mass distribution, normalized per jet, in central Pb–Pb collisions

at
√

sNN = 2.76 TeV and the p–Pb collision measurement. It can be observed that the jet mass distribution

in Pb–Pb collisions is shifted to smaller values with respect to the measurement in p–Pb collisions for

pT,ch jet < 100 GeV/c.

Figure 8 shows the ratio between the jet mass distribution in the 10% most central Pb–Pb collisions and

p–Pb collisions. The systematic uncertainties are propagated into the ratio as uncorrelated. The center-

of-mass energy at which the Pb–Pb and p–Pb collisions were taken is different,
√

sNN = 2.76 TeV for

Pb–Pb and
√

sNN = 5.02 TeV for p–Pb collisions. This is expected to introduce a small difference in the

jet mass distributions due to a different shape in the underlying jet pT-spectrum and a different quark-

to-gluon ratio. Therefore, the figure shows also the same ratio from particle level simulated PYTHIA

pp collisions (tune Perugia 2011) at the two energies. Considering statistical uncertainties only in the

ratio, a shift to lower jet masses in Pb–Pb is observed for pT,ch jet < 100 GeV/c, consistent with the

PYTHIA embedded results in Sec. 5.1. Including the systematic uncertainties in our measurements, the

decreasing trend of the ratio as a function of Mch jet is compatible between data and PYTHIA and no

significant reduction in jet mass in Pb–Pb collisions is observed.

The comparison of the jet mass in Pb–Pb collisions relative to p–Pb collisions is further established by

presenting the mean jet mass as a function of pT,ch jet in Fig. 9. The difference in the mean jet mass for

the two collision energies considered is between 0.2 and 0.5 GeV/c2 in the PYTHIA simulation. This

difference in the mean jet mass is indicated by a filled box attached to the p–Pb data points in Fig. 9. For

the lowest pT,ch jet range in Pb–Pb collisions the mean jet mass exhibits a reduction with respect to p–Pb

measurements, limited to about one standard deviation. For higher pT,ch jet the mean jet mass in the two

systems is compatible within systematic uncertainties.

7.2 Model comparison and discussion

The jet mass measurements for central Pb–Pb collisions for three pT,ch jet intervals compared to several

event generators are shown in Fig. 10. PYTHIA represents the expectation without jet quenching while

JEWEL [56, 57] and Q-PYTHIA [58] (with PQM geometry [59]) are two models with medium-induced
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energy loss. In JEWEL each scattering of the leading parton with constituents from the medium is

computed giving a microscopic description of the transport coefficient, q̂. By default, JEWEL does

not keep track of the momenta of the recoiling scattering centers (“recoil off”). This leads to a net

loss of energy and momentum out of the di-jet system, and is expected to mostly affect low-pT-particle

production. For the jet mass measurement, low-momentum fragments are important, so JEWEL was

also run in the mode in which it keeps track of the scattering centers (“recoil on”). In that mode, more
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soft particles are generated, some of which have very large angles with the jet and will contribute to

the background estimate in the event. The JEWEL authors implemented a background subtraction in

full jets by introducing “fake” neutral constituents used for the 4-momentum subtraction. Since the

pp charged jet mass distribution is reproduced by shifting the full jet mass distribution towards lower

masses, the JEWEL background-subtracted charged jet mass is obtained by shifting the background-

subtracted full jet mass. Q-PYTHIA modifies the splitting functions in the PYTHIA event generator,

resulting in medium-induced gluon radiation following the multiple soft scattering approximation. Both

jet quenching models reproduce the suppression observed in inclusive high-pT particle and jet production

[57, 58].

The jet mass is strongly overestimated by Q-PYTHIA due to the strong broadening of the jet profile close

to the jet axis. Also JEWEL with “recoil on” significantly overestimates the jet mass. JEWEL “recoil off”

underestimates the jet mass due to the large amount of out-of-cone radiation, which does not hadronize

in this mode of the generator. The vacuum expectation from PYTHIA, while slightly overestimating

the jet mass for lower pT,ch jet when considering statistical uncertainties only, is compatible with the

Pb–Pb measurement within systematic uncertainties. The Pb–Pb mean jet mass as a function of pT,ch jet

is compared to the event generators in Fig. 11. The linear increase of the mean jet mass with jet pT is

expected from NLO pQCD calculations [60].

Previous jet shape and jet fragmentation function measurements clearly favor JEWEL with “recoil

on” over Q-PYTHIA [19, 20, 61–64]. Despite the difference in the fragment distributions between Q-

PYTHIA and JEWEL with “recoil on”, Fig. 10 shows that both models predict a similar large increase

of the jet mass, which is excluded by the measurement. JEWEL “recoil off”, which does not describe

the previous measurements well because it does not include all soft radiation, gives a better description

of the jet mass than JEWEL “recoil on”. The difference between the jet mass distributions in JEWEL

with “recoil on” an “recoil off” indicates that the jet mass is sensitive to the soft fragments at large angle

which are produced by hadronisation of recoil partons in the JEWEL model.

7.3 Summary

The first jet mass measurement in heavy-ion collisions for charged jets (60 < pT,ch jet < 120 GeV/c) was

reported and compared to p–Pb reference measurements and models with and without quenching. The

presented results are the first attempt to access the virtuality evolution of the hard partons in heavy-ion
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collisions. By constraining both energy and virtuality experimentally, differential jet mass measurements

could provide further non-trivial tests for models of in-medium shower evolution.

The ratio of the jet mass distribution in central Pb–Pb collisions and minimum-bias p–Pb collisions is

compared to that in PYTHIA Perugia 2011 simulations at the two center-of-mass energies. The data ratio

is compatible with the PYTHIA expectation at the two center-of-mass energies within systematic uncer-

tainties. A hint of a difference within statistical uncertainties only in the ratio and in the mean jet mass in

the lowest pT,ch jet range is of interest to motivate further work on reducing the systematic uncertainties

in order to increase the precision in jet mass measurements as well as pursuing more differential studies,

for example with respect to hard fragmenting jets.

The fully-corrected results are consistent with the observation based on detector level comparison with

PYTHIA embedded jets. The measured jet mass in Pb–Pb collisions is not reproduced by the quenching

models considered in this letter and is found to be consistent with PYTHIA vacuum expectations within

systematic uncertainties. These results are qualitatively consistent with previous measurements of jet

shapes at the LHC [20, 62], which show only relatively small changes of the particle distributions in jets

in Pb–Pb collisions compared to pp collisions. The JEWEL model with “recoil on”, which describes
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the existing measurements of fragment distributions in jets [19, 20] reasonably well [61, 63], predicts a

significant increase of the jet mass, contrary to what is observed in the measurement.

The observed suppression of jet yields in the presence of a dense medium, RAA < 1 [65], is interpreted

as due to radiated partons lost or scattered out of the jet cone. Therefore, one reconstructs a subset of the

entire parton shower within a jet with resolution parameter 0.4. In the extreme case that only the leading

parton were to escape the medium, and then shower in vacuum, one would reconstruct the mass of the

leading parton at the point of exit. Since also the virtuality evolution of the parton shower is modified

in the presence of jet quenching, one would expect in such a scenario that the escaping (reconstructed)

jets exhibit a reduced jet mass with respect to the pp and p–Pb references [21]. The data show that the

jet mass is consistent within uncertainties in Pb–Pb and p–Pb collisions within a fixed pT,ch jet-interval,

implying that the soft radiation outside the jet cone does not significantly alter the relation between pT

and the mass of the parton.
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M. Šefčı́k39, J.E. Seger90, Y. Sekiguchi131, D. Sekihata46, I. Selyuzhenkov100, K. Senosi66, S. Senyukov3,135 ,34,

E. Serradilla64,10, P. Sett47, A. Sevcenco58, A. Shabanov52, A. Shabetai116, O. Shadura3, R. Shahoyan34,

A. Shangaraev114, A. Sharma91, A. Sharma93, M. Sharma93, M. Sharma93, N. Sharma91,129, A.I. Sheikh139,

K. Shigaki46, Q. Shou7, K. Shtejer25,9, Y. Sibiriak83, S. Siddhanta108, K.M. Sielewicz34, T. Siemiarczuk79,

D. Silvermyr33, C. Silvestre72, G. Simatovic133, G. Simonetti34, R. Singaraju139, R. Singh81, V. Singhal139,

T. Sinha103, B. Sitar37, M. Sitta31, T.B. Skaali20, M. Slupecki127, N. Smirnov143, R.J.M. Snellings53,

T.W. Snellman127, J. Song99, M. Song144, F. Soramel28, S. Sorensen129, F. Sozzi100, E. Spiriti73,

I. Sputowska120, B.K. Srivastava98, J. Stachel96, I. Stan58, P. Stankus88, E. Stenlund33, J.H. Stiller96,

D. Stocco116, P. Strmen37, A.A.P. Suaide123, T. Sugitate46, C. Suire51, M. Suleymanov15, M. Suljic24,
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M. Wang7, D. Watanabe132, Y. Watanabe131, M. Weber115, S.G. Weber100, D.F. Weiser96, J.P. Wessels61,

U. Westerhoff61, A.M. Whitehead92, J. Wiechula60, J. Wikne20, G. Wilk79, J. Wilkinson96, G.A. Willems61,

M.C.S. Williams107, B. Windelband96, W.E. Witt129, S. Yalcin70, P. Yang7, S. Yano46, Z. Yin7,

H. Yokoyama132,72, I.-K. Yoo34,99, J.H. Yoon50, V. Yurchenko3, V. Zaccolo113,84, A. Zaman15, C. Zampolli34,

H.J.C. Zanoli123, N. Zardoshti104, A. Zarochentsev138, P. Závada56, N. Zaviyalov102, H. Zbroszczyk140,

M. Zhalov89, H. Zhang21,7, X. Zhang7, Y. Zhang7, C. Zhang53, Z. Zhang7, C. Zhao20, N. Zhigareva54, D. Zhou7,

Y. Zhou84, Z. Zhou21, H. Zhu21,7, J. Zhu7,116, X. Zhu7, A. Zichichi26,12, A. Zimmermann96,

M.B. Zimmermann34,61, S. Zimmermann115, G. Zinovjev3, J. Zmeskal115

Affiliation notes
i Deceased

ii Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
iii Also at: Georgia State University, Atlanta, Georgia, United States
iv Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics,

Moscow, Russia
v Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India

Collaboration Institutes

1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
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40Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
41Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
42Gangneung-Wonju National University, Gangneung, South Korea
43Gauhati University, Department of Physics, Guwahati, India
44Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,

Germany
45Helsinki Institute of Physics (HIP), Helsinki, Finland
46Hiroshima University, Hiroshima, Japan
47Indian Institute of Technology Bombay (IIT), Mumbai, India
48Indian Institute of Technology Indore, Indore, India
49Indonesian Institute of Sciences, Jakarta, Indonesia
50Inha University, Incheon, South Korea
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88Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
89Petersburg Nuclear Physics Institute, Gatchina, Russia
90Physics Department, Creighton University, Omaha, Nebraska, United States
91Physics Department, Panjab University, Chandigarh, India
92Physics Department, University of Cape Town, Cape Town, South Africa
93Physics Department, University of Jammu, Jammu, India
94Physics Department, University of Rajasthan, Jaipur, India
95Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
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