

Two-particle correlations in p-Pb collisions at LHCb

Bartosz Małecki, on behalf of the LHCb Collaboration Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland

XXIII Cracow Epiphany Conference 9 – 12 January 2017 Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland

Outline

- Physics motivation
- p-Pb and Pb-p collisions at LHCb
- Data samples
- Analysis method
- Results
- Summary

Physics motivation

• Two particle-correlations:

angular correlations in $(\Delta \eta, \Delta \varphi)$ in pairs of prompt charged particles

- Long-range correlation on near-side (`ridge` at $\Delta \phi = 0$):
 - in Pb-Pb collisions (RHIC)
 - in Pb-Pb, p-Pb and p-p collisions at central rapidities $|\eta| < 2.5$ (ATLAS, CMS, ALICE)
- Theoretical explanation of the ridge still **under discussion** (e.g. gluon saturation, multiparton interactions, jet-medium interactions, collective effects)
- LHCb results in the forward direction (2.0 < η < 4.9) complementary to measurements from other experiments
 - for two different beam configurations (p-Pb, Pb-p)
 - in different bins of event activity
 - in three p_T ranges
- This measurement gives an **additional input** for understanding the underlying physics

LHCb and pPb data taking

- LHCb designed to study CP violation and rare B decays, but can also do heavy ion and fixed target physics
- p-Pb and Pb-p data collected at $\sqrt{s_{NN}} = 5$ TeV in 2013
- **asymmetric beams**: nucleon-nucleon center-of-mass system shifted by $\Delta y = 0.47$ in direction of the proton beam

• common rapidity range: $2.5 < |y_{CMS}| < 4.5$

* y_{CMS}: rapidity in nucleon-nucleon center-of-mass system, with forward direction (positive values) in direction of the proton beam

Data samples and activity classes

- Minimum bias samples from p-Pb and Pb-p collisions at $\sqrt{s_{NN}} = 5$ TeV (2013)
- 5 relative event activity classes

defined as **fractions of VELO hit multiplicity distribution** for minimum bias samples (separately for p-Pb and Pb-p)

• 5 common absolute activity classes

in high-multiplicity region 2200 < N $_{VELO}^{hit}$ < 3500 (comparison of p-Pb and Pb-p possible)

Analysis method

• Take only events with **1PV** and choose **charged**, **prompt** particles from kinematic region:

 $p > 2 \text{ GeV/c}, \quad p_T > 150 \text{ MeV/c}, \quad 2.0 < \eta < 4.9$

- Two-particle correlations are measured:
 - for different classes of event activity
 - in 3 p_T ranges [GeV/c]:

mixing with particles from 5 random events of the same activity and p_T

Ridge effect (p_T: 1.0-2.0 GeV/c)

(1) jet peak ($\Delta \phi = 0, \Delta \eta = 0$):

 truncated to make other effects visible

(2) away-side ridge ($\Delta \phi = \pi$):

 energy-momentum conservation balancing the jet peak

(3) near-side ridge ($\Delta \phi = 0$):

- appears in both p-Pb and
 Pb-p for high activity classes
- more prominent in Pb-p

Phys. Lett. B 762 (2016) 473-483

p_T: 1.0 – 2.0 GeV/c

Ridge evolution (relative activity)

 $Y(\Delta \Phi) \equiv \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta \Phi} = \frac{1}{\Delta \eta_b - \Delta \eta_a} \int_{\Delta \eta_a}^{\Delta \eta_b} \frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta d\Delta \Phi} d\Delta \eta$

• **exclude the jet** peak! (integrate in range of $\Delta\eta$: 2.0 – 2.9)

- comments:
 - correlation stronger with increasing event activity
 - away-side ridge getting smaller with rising p_T
 - near-side ridge strongest in p_T range: 1.0 2.0 GeV/c
 - the near-side ridge more prominent for Pb-p than p-Pb (larger event activity for Pb-p)

Phys. Lett. B 762 (2016) 473-483

Ridge evolution (common absolute activity)

- ridge evolution in **common absolute** activity classes (5 bins in $2200 < N_{VELO} < 3500$)
- in the p_T region with strongest near-side effect (1.0 2.0 GeV/c)

- correlation effect stronger with increasing event activity
- near-side ridge **compatible** for p-Pb and Pb-p collisions
- away-side effect also compatible for p-Pb and Pb-p collisions (apart from bin I)

Summary

- Two-particle angular correlations for p-Pb collisions at $\sqrt{s_{NN}} = 5$ TeV have been measured for the first time in the **forward region** (2.0 < η < 4.9)
- The near-side ridge effect has been observed in both p-Pb and Pb-p beam configurations (strongest in p_T range: 1.0 2.0 GeV/c)
- Both near-side and away-side ridge effects are getting stronger with increasing event activity
- In relative activity bins, the near-side ridge effect is stronger for Pb-p configuration
- The ridge effects are compatible for p-Pb and Pb-p collisions in common absolute activity classes
- Theoretical explanation of this phenomena still under discussion
- Planned analysis for other collision types (e.g. p-p, p-Ne) and other collision energies

BACKUP SLIDES

Data selection

• Event selection

- events with exactly 1 PV (only 2% events with more than 1 PV)
- PV must be in a luminous region (±3σ from the mean interaction point)
- events with too small ratio between the number of clusters in the EM calorimeter and in the VELO are rejected

reduction of beam-gas and secondary interactions with detector material

Track selection

- prompt particles (small IP with respect to PV -> for IP < 1.2mm less than 3.5% secondaries left)
- charged particles with hits in full LHCb tracking system (before and after the magnet)
- kinematic region: p > 2 GeV/c, $p_T > 150 \text{ MeV/c}$, $2.0 < \eta < 4.9$

• Corrections

- fake tracks suppressed by using a multivariate classifier
- other effects: acceptance and track reconstruction efficiency (the latter decreasing for high multiplicity events)
- per-track weights assigned for correction:

$$\omega(\eta,\varphi,p_{\scriptscriptstyle T},N_{\scriptscriptstyle VELO}) = (1-P_{\scriptscriptstyle fake}-P_{\scriptscriptstyle sec})\,/\,(\varepsilon_{\scriptscriptstyle acc}\,\,^*\varepsilon_{\scriptscriptstyle tr})$$

Activity classes

Relative	p + Pb		Pb+p	
activity class	range $\mathcal{N}_{\text{velo}}^{\text{hit}}$	$\langle N_{ch} \rangle_{\rm MC}$	range $\mathcal{N}_{_{\mathrm{VELO}}}^{\mathrm{hit}}$	$\langle N_{ch} \rangle_{\rm MC}$
50 - 100% very low	0 - 1200	18.9	0 - 1350	29.2
30 - 50% low	1200 - 1700	30.0	1350 - 2000	47.4
10 - 30% medium	1700 - 2400	42.8	2000 - 3000	70.9
0-10% high	$2400 - \max$	63.6	$3000 - \max$	106.7
0-3% very high	$3000 - \max$	73.7	$3800 - \max$	126.4

Common absolute	$\mathcal{N}_{\scriptscriptstyle \mathrm{VELO}}^{\mathrm{hit}}$ -range	p + Pb	Pb+p
activity bin	in $Pb+p$ scale	$\langle N_{ch} angle_{ m MC}$	$\langle N_{ch} \rangle_{\rm MC}$
Bin I	2200 - 2400	62.8 ± 6.6	64.4
Bin II	2400 - 2600	68.4 ± 7.1	67.0
Bin III	2600 - 2800	73.7 ± 7.6	76.4
Bin IV	2800 - 3000	79.2 ± 7.9	82.4
Bin V	3000 - 3500	86.7 ± 8.2	92.9