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Abstract

A search is presented for supersymmetry in all-hadronic events with missing trans-
verse momentum based on tagging of top quarks. The data sample corresponds to
an integrated luminosity of 2.3 fb−1 of proton-proton collisions at a center-of-mass
energy of 13 TeV, collected with the CMS detector at the LHC. Search regions are de-
fined using the properties of reconstructed jets, the presence of bottom and top quark
candidates, and an imbalance in transverse momentum. With no statistically signifi-
cant excess of events observed beyond the expected contributions from the standard
model, we set exclusion limits at 95% confidence level on the masses of new particles
in the context of simplified models of direct and gluino-mediated top squark produc-
tion. For direct top squark production with decays to a top quark and a neutralino,
top squark masses up to 740 GeV and neutralino masses up to 240 GeV are excluded.
Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded for
models of gluino pair production where each gluino decays to a top-antitop quark
pair and a neutralino.
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1 Introduction
The standard model (SM) of fundamental particles and their interactions has been extremely
successful in describing phenomena in the atomic and subatomic realms. The discovery of a
boson with properties consistent with the SM Higgs boson [1–3] at the CERN LHC [4] further
strengthened this model. Assuming that the Higgs boson is a fundamental spin-0 particle,
however, the low value of its measured mass, around 125 GeV [5], implies that there is a fine-
tuned cancellation of large quantum corrections to its mass, which is referred to as the hierarchy
problem and is currently unexplained [6–10]. Supersymmetry (SUSY) [11–20] is one of the
most compelling models of new physics as it provides an elegant mechanism to mitigate the
hierarchy problem by introducing a symmetry between fermions and bosons.

Supersymmetry proposes a superpartner for each SM particle with the same quantum num-
bers, except for spin, which differs by a half-integer. The SM particles and their correspond-
ing superpartners contribute to the loop corrections to the Higgs boson mass with opposite
sign [21], and are therefore capable of controlling these corrections. This behavior can persist
despite the breaking of SUSY, which is required to accommodate the lack of observation of
superpartners with exactly the same masses as their SM counterparts. To solve the hierarchy
problem in a “natural” way, Refs. [22–27] suggest models in which the higgsino mass parame-
ter is of the order of 100 GeV and the masses of the top squark t̃, the bottom squark b̃, and the
gluino g̃ are near the TeV scale, while the masses of the other sparticles can be beyond the reach
of the LHC. The mass of the top squark is particularly constrained in “natural” SUSY models
as it is the most important factor in cancelling the top quark contribution to the Higgs boson
mass. In R-parity conserving models [28], superpartners are produced in pairs, and the lightest
SUSY particle (LSP) is stable. Models with a weakly interacting neutralino (χ̃0

1) as the LSP are
especially attractive because the χ̃0

1 can have properties consistent with dark matter [29].

Based on these considerations, we perform a search for top squarks, produced either directly
or through gluino decays, with each top squark decaying into a stable χ̃0

1 and SM particles. Pre-
vious searches at the LHC in proton-proton collisions at

√
s = 8 TeV have found no evidence

for physics beyond the SM, and lower limits have been placed on the top squark mass within
the framework of simplified models of the SUSY particle spectrum (SMS) [30–34]. The particle
spectra in such models are typically restricted to states that are required for natural SUSY sce-
narios. Lower limits on the top squark mass, mt̃, extend up to 775 GeV [35–45], and those on the
gluino mass, mg̃, extend up to 1400 GeV [46–57]. Recent searches in proton-proton collisions at√

s = 13 TeV have further extended these lower limits, reaching up to 800 GeV [58–60] for the
top squark mass, and up to 1760 GeV for the gluino mass [61–65].

The search presented in this paper is performed on data corresponding to an integrated lumi-
nosity of 2.3 fb−1 in proton-proton collisions collected at a center-of-mass energy of 13 TeV with
the CMS detector at the LHC. The search strategy closely follows the one reported in Ref. [41]
with several improvements. We select events containing no identified leptons, large missing
transverse momentum, at least four jets, and at least one jet identified as originating from the
hadronization of a b quark (“b jet”). The analysis relies on a highly efficient algorithm to tag
groups of jets consistent with top quark decay. This top quark tagging algorithm is improved
relative to the one described in Ref. [41], to enhance the sensitivity for selecting top quarks with
large Lorentz boosts that cause the merging of jets among the top decay products. The anal-
ysis categorizes each event according to the number of identified top quark candidates, both
to discriminate signal from background and to distinguish among signal hypotheses such as
direct top squark production and gluino-mediated top squark production, which contain dif-
ferent multiplicities of top quarks in the final state. In addition, the kinematic properties of top
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quark candidates are used as input to the computation of the “stransverse” mass (MT2) vari-
able [66, 67], which is used to estimate the mass of pair-produced particles in the presence of
invisible particles. Exclusive search regions are defined using several event properties, includ-
ing the number of identified b jets, the number of top quark candidates, the missing transverse
momentum ~pmiss

T , and MT2.

One of the major sources of SM background originates from either top-antitop quark pair (tt)
or W+jets events in which leptonic W boson decay produces a charged lepton that is not re-
constructed or identified, and a high momentum neutrino, generating true missing transverse
momentum. Events in which a Z boson, produced in association with jets, decays to neutrinos
(Z → νν) also provide a significant contribution to the SM background. The SM backgrounds
are estimated using control samples in the data that are disjoint from the signal regions but
have similar kinematic properties and composition.

This paper is structured as follows. Event reconstruction and simulation are described in Sec-
tion 2. Section 3 presents details of the optimization of the analysis, including signal models,
the top quark tagging algorithm, and event categorization. The strategy used to estimate the
SM background is detailed in Section 4. The results and their interpretation in the context of
SUSY are discussed in Section 5, followed by a summary in Section 6.

2 Detector, event reconstruction, and simulation
2.1 Detector and event reconstruction

The CMS detector is built around a superconducting solenoid of 6 m internal diameter, provid-
ing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a
lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL). The tracking detectors cover |η| < 2.5. The ECAL and HCAL, each com-
posed of a barrel and two endcap sections, extend over a pseudorapidity range |η| < 3.0.
Forward calorimeters on each side of the interaction point encompass 3.0 < |η| < 5.2. Muons
are identified and measured within |η| < 2.4 by gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. The first level of the CMS trigger system, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to se-
lect the most interesting events in a fixed time interval of less than 4 µs. The high-level trigger
processor farm further decreases the event rate from around 100 kHz to less than 1 kHz before
data storage. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [68].

The recorded events are reconstructed using the particle-flow (PF) algorithm [69, 70]. Using
the information from the tracker, calorimeters, and muon system, this algorithm reconstructs
PF candidates that are classified as charged hadrons, neutral hadrons, photons, muons, or elec-
trons. The ~pmiss

T is defined as the negative of the vector sum of the transverse momentum pT
of all PF candidates in the event, and its magnitude is denoted by Emiss

T . PF candidates in an
event are clustered into jets using the anti-kT clustering algorithm [71] with size parameter 0.4
(AK4 jets). However, charged particles from additional pp collisions from the same or adjacent
beam crossing as the primary hard-scattering process (“pileup”) are excluded if they do not
originate from the interaction vertex with the largest ∑ p2

T, calculated from all its associated
tracks. The momentum of neutral particles from pileup interactions, and from the underlying
event, is subtracted using the FASTJET technique, which is based on the calculation of the η-
dependent transverse momentum density, evaluated event by event [72, 73]. The energy and
momentum of each jet are corrected using factors derived from simulation, and, for jets in data,
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an additional residual energy-momentum correction is applied to account for differences in the
jet energy-momentum scales [74] between simulations and data. Only jets with pT > 30 GeV
and |η| < 2.4 or |η| < 5, depending on the use case, are considered in this search. The scalar
sum of the jet pT for all jets within |η| < 2.4 is denoted by HT in the following.

A jet is considered to be a b jet (“b-tagged”) if it passes the medium operating point require-
ments of the combined secondary vertex algorithm [75, 76], has pT > 30 GeV, and is within
|η| < 2.4. The corresponding b quark identification efficiency is 70% on average per jet in tt
events. The probability of a jet originating from a light quark or gluon to be misidentified as a
b quark jet is 1.4%, averaged over jet pT in tt events [75].

Muons are reconstructed by matching tracks in the muon detectors to compatible track seg-
ments in the silicon tracker [77] and are required to be within |η| < 2.4. Electron candidates
are reconstructed starting from clusters of energy deposited in the ECAL that are then matched
to a track in the silicon tracker [78]. Electron candidates are required to have |η| < 1.44 or
1.56 < |η| < 2.50 to avoid the transition region between the ECAL barrel and the endcap.
Muon and electron candidates are required to originate from within 2 mm of the primary ver-
tex in the transverse plane and within 5 mm along the z axis.

To obtain a sample of all-hadronic events, events with isolated electrons and muons are vetoed.
The isolation of electron and muon candidates is defined as the ∑ pT of all additional PF candi-
dates in a cone around the lepton candidate’s trajectory with a radius ∆R =

√
(∆η)2 + (∆φ)2.

The cone size depends on the lepton pT as follows:

∆R =


0.2, pT ≤ 50 GeV
10 GeV

pT
, 50 < pT < 200 GeV

0.05, pT ≥ 200 GeV.

(1)

The cone radius for higher-pT candidates is reduced because highly boosted objects, which may
include high-pT leptons in their decay, are contained in a cone of smaller radius than low-pT
objects. The isolation sum is corrected for contributions originating from pileup interactions
using an estimate of the pileup energy in the cone. A relative isolation is defined as the ratio of
the isolation sum to the candidate pT, and is required to be less than 0.1 (0.2) for electron (muon)
candidates. Events with isolated electrons (muons) that have pT > 10 GeV and |η| < 2.5 (2.4)
are rejected.

In order to further reduce the contribution from background events originating from leptonic
W boson decays that feature low-pT electrons, muons, or hadronically decaying taus (τh), an
additional veto on the presence of isolated tracks is used. These tracks are required to have
|η| < 2.5, pT > 5 (10)GeV, and relative track isolation less than 0.2 (0.1) when they are identi-
fied by the PF algorithm as electrons or muons (charged hadrons). The isolation sum used to
compute the relative track isolation is the ∑ pT of all additional charged PF candidates within a
fixed cone of ∆R = 0.3 around the track. To preserve signal efficiency, this veto is applied only
if the transverse mass (mT) of the isolated track-Emiss

T system, defined by

mT(track, Emiss
T ) =

√
2ptrack

T Emiss
T (1− cos ∆φ), (2)

with ptrack
T the pT of the track and ∆φ the azimuthal separation between the track and ~pmiss

T
vector, is consistent with a W boson decay. Specifically, we require mT < 100 GeV.
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2.2 Event simulation

Monte Carlo (MC) simulated event samples are used to study the properties of the SM back-
ground processes, as well as the signal models. The MADGRAPH 5 aMC@NLO v2.2.2 genera-
tor [79] is used in leading-order (LO) mode to simulate events originating from tt production,
W+jets with W→ `ν decays, Z+jets with Z→ νν decays, Drell–Yan (DY)+jets, γ+jets, quantum
chromodynamics (QCD) multijet, gluino pair production, and top squark pair production pro-
cesses. The generation of these processes is based on LO parton distribution functions (PDFs)
using NNPDF3.0 [80]. Single top quark events produced in the tW channel are generated with
the next-to-leading-order (NLO) POWHEG v1.0 [81–84] generator. Rare SM processes, such as
ttZ and ttW, are generated at NLO accuracy with the MADGRAPH 5 aMC@NLO v2.2.2 pro-
gram. Both the single top quark and rare SM processes are generated using NLO NNPDF3.0
PDFs. The parton showering and hadronization is simulated with PYTHIA v8.205 [85] using
underlying-event tune CUETP8M1 [86].

The CMS detector response is simulated using a GEANT4-based model [87] in the case of SM
background processes and a dedicated fast simulation package [88] for the case of signal pro-
cesses, where a large number of signal model scenarios are needed. The fast simulation is
tuned to provide results that are consistent with those obtained from the full GEANT4-based
simulation. Event reconstruction is performed in the same manner as for collision data.

The signal production cross sections are calculated using NLO plus next-to-leading-logarithm
(NLL) calculations [89]. The most precise available cross section calculations are used to nor-
malize the SM simulated samples, corresponding to NLO or next-to-NLO accuracy in most
cases [79, 90–96].

The simulation is corrected to account for discrepancies between data and simulation in the
lepton selection efficiency and the b tagging efficiency. The uncertainties corresponding to
these corrections are propagated to the predicted SM yields in the search regions. Differences
in the efficiencies for selecting isolated electrons and muons are measured in Z → `` events.
Correction factors and their uncertainties for the b tagging efficiency are derived using multijet-
and tt-enriched event samples and are parametrized by the jet kinematics [75].

3 Analysis strategy
The analysis is designed for maximum sensitivity to models in which top quarks are produced
in the SUSY decay chains discussed in Section 1. The data are first divided into regions based
upon the numbers of tagged top quarks (Nt) and b jets (Nb) found in each event. The search
regions are defined by further subdivision of each Nt, Nb bin in several Emiss

T and MT2 bins.

3.1 Benchmark signal models

For direct top squark pair production, we consider two decay scenarios within the SMS frame-
work. In the scenario denoted by “T2tt”, each t̃ decays via a top quark: t̃→ tχ̃0

1, in which χ̃0
1 is

the LSP. The second decay scenario considered here, denoted by “T2tb”, involves two t̃ decay
modes, t̃ → tχ̃0

1 (as in T2tt) and t̃ → bχ̃±1 , each with a 50% branching fraction. In the latter
case, the lightest chargino χ̃±1 decays with 100% branching fraction to a virtual W boson and a
χ̃0

1. A natural simplified SUSY spectrum is assumed in which the χ̃±1 is 5 GeV heavier than the
χ̃0

1 [24–26]. As a result of the mixed decay modes, the T2tb scenario consists of three different
final states containing either two b quarks and no top quarks (25%), one b quark and one top
quark (50%), or two top quarks (25%). Figure 1 shows the diagrams representing these two
simplified models.
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Figure 1: Diagrams representing the two simplified models of direct top squark pair production
and decay considered in this study: the T2tt model with top squark decay via a top quark (left),
and the T2tb model with the top squark decaying either via a top quark or via an intermediate
chargino (right).
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Figure 2: Diagrams representing the simplified models of gluino-mediated top squark produc-
tion considered in this study: the T1tttt model (left) where the gluino decays to top quarks and
the LSP via an off-shell top squark, and the T5ttcc model (right) where the gluino decays to an
on-shell top squark, which decays to a charm quark and the LSP.

Two scenarios are considered for gluino-mediated top squark production, as shown in Fig. 2.
In the main model, denoted by “T1tttt”, the gluino decays to top quarks via an off-shell top
squark: g̃→ ttχ̃0

1. This model is complementary to the direct top squark production because it
gives sensitivity to the scenario where the gluino is kinematically accessible but the top squark
is too heavy for direct production. The second scenario, denoted by “T5ttcc”, features on-shell
top squarks in the decay chain with a mass difference between top squark and LSP assumed
to be ∆m(̃t, χ̃0

1) = 20 GeV. For this model, the gluino decays to a top quark and a top squark,
g̃ → t̃t, and the top squark decays to a charm quark and the LSP, t̃ → cχ̃0

1. This model again
serves as a complement to the direct search by providing sensitivity to very light top squarks,
which would not decay to on-shell top quarks.

All scenarios described above share similar final states, containing two neutralinos and up to
four top quarks. Given that the χ̃0

1 is stable and only interacts weakly, it does not produce a
signal in the detector. Therefore, Emiss

T is one of the most important discriminators between
signal and SM background, especially for models with large mass differences between the top
squark or gluino and the χ̃0

1. Since top quarks decay almost exclusively to a b quark and a W
boson, each hadronically decaying top quark can result in up to three identified jets, depending
on the top quark pT and jet size. For certain signal scenarios, there may be additional bottom
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or light-flavor quarks, which increase the expected jet and b-tagged jet multiplicities.

3.2 Top quark reconstruction and identification

The procedure to reconstruct and identify the hadronically decaying top quarks (top quark
tagging or “t tagging”) presented here is similar to the one used in Ref. [41], where reconstruc-
tion of the hadronically decaying top quarks from resolved jets is performed as described in
Refs. [97–99]. The t tagging algorithm is improved in this work, to be more sensitive to boosted
scenarios in which decay products from the W boson or top quark are merged into a single jet.
Additionally, the algorithm is expanded to allow the reconstruction of multiple top quarks in
each event.

The top quark tagging algorithm takes as input all reconstructed AK4 jets that satisfy pT >
30 GeV and |η| < 5. These jets are clustered into three categories of top quark candidates:
trijet, dijet, and monojet. Trijet candidates are subject to the following conditions: (i) All jets lie
within a cone of radius 1.5 in (η, φ) space, centered at the direction defined by the vector sum
of the momentum of the three jets. The radius requirement implies a moderate Lorentz boost
of the top quark, as is expected for the vast majority of signal phase space (mt̃/g̃, mχ̃0

1
) targeted

in this search. (ii) To reduce combinatoric backgrounds, one of the ratios of dijet to trijet masses
must be consistent with the mW/mt ratio [98]. Assuming massless input jets and trijet mass
m3-jet = mt, the trijet system must satisfy one of the following three (overlapping) criteria:

(a) 0.2 < arctan
(

m13

m12

)
< 1.3 and Rmin <

m23

m3-jet
< Rmax,

(b) R2
min

[
1 +

(
m13

m12

)2
]
< 1−

(
m23

m3-jet

)2

< R2
max

[
1 +

(
m13

m12

)2
]

,

(c) R2
min

[
1 +

(
m12

m13

)2
]
< 1−

(
m23

m3-jet

)2

< R2
max

[
1 +

(
m12

m13

)2
]

.

(3)

Here, m12, m13, and m23 are the dijet masses, where the jet indices 1, 2, and 3 reflect a de-
creasing order in pT. The numerical constants have values Rmin = 0.85 (mW/mt) and Rmax =
1.25 (mW/mt), with mW = 80.4 GeV and mt = 173.4 GeV [100].

The second category of top quark candidates is clustered from just two jets and is designed to
tag top quark decays in which the W boson decay products are merged into a single jet (W jet).
The jet mass is used to determine if a jet represents a W jet with a required mass window of
70–110 GeV. Additionally, the dijet system is required to pass the requirement:

Rmin <
mW jet

mdijet
< Rmax, (4)

where mW jet is the mass of the candidate W jet and mdijet is the mass of the dijet system. Rmin
and Rmax are the same as for the trijet requirements. The final category of candidates, monojets,
are constructed from single jets which have a jet mass consistent with mt, i.e., in the range of
110–220 GeV.

After all possible top quark candidates are constructed, the final list of reconstructed top quark
objects is determined by making requirements on the total object mass and the number of b
jets. Any top quark candidate with more than one b jet is rejected because the probability of
having two genuine b jets, or having a second light-flavor jet tagged as a b jet, in a single top
quark candidate is negligible. All candidates with a mass outside the range 100–250 GeV are
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rejected. The list of candidates is pruned to remove candidates that share a jet with another
candidate, in favor of the candidate with the mass closer to the true top quark mass. However,
if there is only one b jet in the event, the top quark candidate with the best match to the true
top mass may be pruned if it contains the b jet to ensure that there are two objects for the MT2
calculation (described below).

By considering not only fully resolved (trijet) top quark decays, but also decays from boosted
top quarks, manifesting themselves as dijet or monojet topologies, this t tagger achieves a good
efficiency for tagging top quarks over a wide range of top quark pT values, from ∼30% at
200 GeV to close to 85% at 1 TeV. The tagging efficiency is determined using the T2tt signal
model with mt̃ = 850 GeV and mχ̃0

1
= 100 GeV since it has a wide top quark pT spectrum. A

preselection is applied by requiring the presence of at least four jets with pT > 30 GeV and
|η| < 2.4. The t-tagged object must be matched to a hadronically decaying generator-level top
quark within a cone of radius 0.4 in (η, φ) space. The t tagging efficiency as a function of top
quark pT is shown in Fig. 3, which also includes the expected pT distributions for the hadroni-
cally decaying top quark in tt events, as well as in various signal models. Since the top quark
pT spectrum for signal events depends strongly on mt̃/g̃ and ∆m(̃t/g̃, χ̃0

1), the good tagging ef-
ficiency across the top quark pT spectrum ensures high acceptance for a wide range of signal
models. The purity of the t tagger, computed as the percentage of t-tagged objects that can be
matched to a hadronically decaying generator-level top quark within a cone of radius 0.4 in
(η, φ) space, is 70–90% in tt events that satisfy Emiss

T > 200 GeV and contain at least four jets, at
least one of which is b-tagged. The probability that an event that does not contain hadronically
decaying top quarks will be found to contain one or more t-tagged objects is about 30–40% for
events passing the preselection used for the efficiency calculation. These processes, as well as
the tt process, are further reduced by using the “stransverse mass” variable, MT2, discussed
below, as a complement to the top quark tagging requirements. The top quark tagging effi-
ciency agrees well between data and the GEANT4-based simulation. However, a correction
factor of up to 5% is needed to account for discrepancies between the fast simulation and the
GEANT4-based simulation. It is derived using the same T2tt signal model mentioned above
and is parametrized as a function of top quark candidate pT.

The MT2 variable [66, 67] is an extension of the transverse mass variable that is sensitive to
the pair production of heavy particles, e.g., gluinos or top squarks, each of which decays to an
invisible particle. For direct top squark production, MT2 has a kinematic upper limit at the t̃
mass, whereas for tt production the kinematic upper limit is the top quark mass. For gluino
pair production, the interpretation of MT2 depends on the decay scenario. However, the values
of MT2 are consistently larger than for tt or other SM backgrounds due to the larger values of
Emiss

T and the high pT of the top quarks produced in gluino decays. The MT2 variable is defined
for two heavy particles, denoted with subscripts 1 and 2, decaying to some visible particles and
an invisible particle (χ̃0

1) as:

MT2 ≡ min
~qT,1+~qT,2=~p miss

T

{
max

[
m2

T(~pT,1; mp,1,~qT,1; mχ̃0
1
), m2

T(~pT,2; mp,2,~qT,2; mχ̃0
1
)
]}

, (5)

where ~pT,i and mp,i are the transverse momentum and mass of the visible daughters of each
heavy particle, and ~qT,i and mχ̃0

1
are the transverse momentum and mass of the invisible χ̃0

1

from each heavy particle decay. The transverse mass squared, m2
T, is defined as

m2
T(~pT; mp,~qT; mχ̃0

1
) ≡ m2

p + m2
χ̃0

1
+ 2 (|~pT||~qT| − ~pT ·~qT) . (6)

The MT2 variable is the minimum [66] of two transverse masses with the constraint that the sum
of the transverse momenta of both neutralinos is equal to the ~pmiss

T in the event, i.e.,~qT,1 +~qT,2 =
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Figure 3: The tagging efficiency of the top quark tagger as a function of the generator-level
hadronically decaying top quark pT (black points). The efficiency was computed using the
T2tt signal model with mt̃ = 850 GeV and mχ̃0

1
= 100 GeV, and it is similar for tt events. The

vertical bars depict the statistical uncertainty. The colored lines show the expected hadronically
decaying top quark pT distribution from tt (red solid line), the T2tt signal model with mt̃ =
500 GeV and mχ̃0

1
= 325 GeV (blue short-dashed line), the T2tt signal model with mt̃ = 750 GeV

and mχ̃0
1
= 50 GeV (green long-dashed line), the T1tttt signal model with mg̃ = 1200 GeV and

mχ̃0
1
= 800 GeV (purple long-dash-dotted line), and the T1tttt signal model with mg̃ = 1500 GeV

and mχ̃0
1
= 100 GeV (orange short-dash-dotted line). The last bin contains the overflow entries

and the top quark pT distributions are normalized to unit area.

~pmiss
T . The invisible particle is assumed to be massless; therefore mχ̃0

1
equals zero in Eqs. (5) and

(6).

We construct the visible decay products of each heavy particle (1 and 2) from the list of t-
tagged objects. The baseline selection requirements ensure that every event has at least one
reconstructed t-tagged object. In the case where two t-tagged objects are identified, each is
used as one visible component in the MT2 calculation. If more than two t-tagged objects are
found, MT2 is calculated for all combinations and the lowest MT2 value is taken. In the case
where only one t-tagged object is identified, the visible component of the second system is
taken from the remaining jets not included in the t-tagged object, using a b-tagged jet as a seed
to partially reconstruct a top quark. The b-tagged jet is combined with the closest jet that yields
an invariant mass between 50 GeV and mt. The combined “dijet” is used as the second visible
system. In case no jet combination satisfies that invariant mass requirement, the b-tagged jet is
used as the only remnant of the second visible system.

3.3 Event selection and categorization

Events in the search regions are collected with a trigger that applies a lower threshold of
350 GeV on HT in coincidence with a threshold of 100 GeV on Emiss

T . This trigger is fully ef-
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ficient at selecting events satisfying the requirements HT > 500 GeV and Emiss
T > 175 GeV, both

at the full event reconstruction level.

All events must pass filters designed to remove detector- and beam-related noise. All jets con-
sidered in this analysis are required to have pT > 30 GeV, and must pass a set of jet identifica-
tion criteria as described in Ref. [101]. The minimum number of such jets with |η| < 2.4 in an
event must be Nj ≥ 4, with the leading two jets required to have pT > 50 GeV. Events must sat-
isfy Emiss

T > 200 GeV and HT > 500 GeV, where the thresholds are chosen to exceed the trigger
efficiency turn-on and to allow a low 175 < Emiss

T < 200 GeV sideband for background studies.
A requirement on the angle between Emiss

T and the first three leading jets, ∆φ(Emiss
T , j1,2,3) > 0.5,

0.5, 0.3, is applied to reduce the number of events from QCD multijet processes. High-Emiss
T

QCD multijet events are usually the result of an undermeasurement of the pT of one of the
leading jets, which results in Emiss

T being aligned with that jet and ∆φ(Emiss
T , j1,2,3) being small.

The undermeasurement can occur because of detector effects or, in the case of semileptonic b
or c quark decays, because a neutrino carries away unmeasured energy. Finally, requirements
that Nt ≥ 1, Nb ≥ 1, and MT2 > 200 GeV are applied.

We define nonoverlapping search regions in terms of Nt, Nb, Emiss
T , and MT2. Figure 4 displays

the background composition following the preselection as a function of each of these four vari-
ables. Note that the t-tagged object definition does not require the presence of b-tagged jets, nor
are b-tagged jets inside t-tagged objects rejected from the b-tagged jet counting. Thus there is
not a one-to-one correspondence between the numbers of t-tagged objects and b-tagged jets in
an event. Two different analysis optimizations are used to get the best sensitivity for direct top
squark production models (T2tt and T2tb) versus gluino-mediated production models (T1tttt
and T5ttcc). For direct top squark production models, the multiplicities of b-tagged jets and
t-tagged objects are binned as Nb = 1, Nb ≥ 2 and Nt = 1, Nt ≥ 2. Due to the possibility of
having more than two top quarks in the decay chain, the gluino-mediated production models
are interpreted using bins with Nb = 1, Nb = 2, Nb ≥ 3 and Nt = 1, Nt = 2, Nt ≥ 3. To improve
background suppression, in particular of the tt contribution, each (Nb, Nt) bin is further subdi-
vided by placing requirements on the Emiss

T and MT2 variables, as shown in Figs. 5 and 6. These
figures also list the search region bin numbers used throughout the paper. The subdivision of
any given (Nb, Nt) bin according to the Emiss

T and MT2 variables is the same for both the direct
top squark and the gluino-mediated production optimizations.

4 Background estimation
About 70% of the expected SM background (integrated over all search bins) comes from tt,
W+jets, and single top quark events with leptonic W boson decays. If the W boson decays
to a τ lepton that decays hadronically, this τ lepton is reconstructed as a jet and passes the
lepton vetoes. If, on the other hand, the W boson decays to an electron or muon, events can
survive the lepton vetoes when the electron or muon is “lost”, i.e., is not isolated, not identi-
fied/reconstructed, or out of the acceptance region. The remaining SM background contribu-
tions, in order of decreasing importance, originate from the Z → νν +jets, QCD multijet, and
ttZ processes.

4.1 Estimation of the lost-lepton background

The contribution to the background from events with lost leptons (LL) is determined from
a data control sample (CS) that consists mainly of tt events. This CS is collected using the
search trigger and is defined to match the preselection, but the muon veto is replaced by the
requirement that there be exactly one well-identified and isolated muon with pT > 10 GeV and
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Figure 4: Comparison of the distributions in data (black points), simulated SM backgrounds
(filled stacked histograms) and several signal models in Nt (top left), Nb (top right), MT2 (bot-
tom left), and Emiss

T (bottom right), after the preselection requirements have been applied. The
T2tt signal model with mt̃ = 500 (750)GeV and mχ̃0

1
= 325 (50)GeV is shown with a red

short-dashed (long-dashed) line, and the T1tttt signal model with mg̃ = 1200 (1500)GeV and
mχ̃0

1
= 800 (100)GeV with a dark green short-dash-dotted (long-dash-dotted) line. The distri-

butions for the signal events have been normalized to the same area as the total background
distribution, and the last bin contains the overflow events.
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Figure 5: Search region definitions for bin numbers 0–41 of the gluino-mediated production
optimization, as defined in the text. The highest Emiss

T and MT2 bins are open-ended, e.g., bin
10 requires Emiss

T > 450 GeV and MT2 > 400 GeV. In addition to the search bins shown in this
figure, there are three bins (42–44) with Nt ≥ 3, one for each Nb bin, that contain no further
binning in Emiss

T or MT2 beyond baseline selection requirements.
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Figure 6: Search region definitions for bin numbers 0–36 for the direct top squark production
optimization, as defined in the text. The highest Emiss

T and MT2 bins are open-ended, e.g., bin
10 requires Emiss

T > 450 GeV and MT2 > 400 GeV.
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|η| < 2.4, and the isolated track veto is removed. To reduce possible signal contamination in
this CS, only events with mT less than 100 GeV are considered, with mT reconstructed from the
muon pT and Emiss

T as described for tracks in Eq. (2). For tt, W+jets, and single top quark events
with one W → µν decay, Emiss

T originates from the produced neutrino. This means that the mT
distribution represents the transverse W mass and falls off sharply above 80 GeV; however, this
is not the case for signal events.

The predicted number of events with lost leptons, NLL, originating from the tt, W+jets, and
single top quark processes contributing to each search region bin is calculated as

NLL = ∑
CS
(Fiso + FID + Facc)Fdilepton

εisotrack

ε
µ
mT

, (7)

where ∑CS is the sum over the events measured directly in the corresponding bin of the single
muon CS defined above. The factors Fiso, FID, and Facc convert the number of events in the CS
to the number of LL events due to isolation, reconstruction and identification, or acceptance
criteria (typical values are, respectively, around 0.1, 0.1, and 0.3). These scale factors are de-
termined from isolation and reconstruction efficiencies, as well as the acceptance, which are
obtained for each search region bin using simulated tt events. The contribution to the signal
region from dilepton tt events where both leptons are lost is corrected with the term Fdilepton

(0.99 for muons and 0.97 for electrons). The CS is normalized by the factor ε
µ
mT (around 0.9) to

compensate for the efficiency of the mT < 100 GeV requirement. Finally, the isolated track veto
efficiency factor, εisotrack, is applied to get the final number of predicted LL background events.
The isolated track veto efficiency, i.e., the fraction of events surviving the isolated track veto, is
around 60%.

The main systematic uncertainty for the LL background prediction is derived from a closure
test, which assesses whether the method can correctly predict the background yield in simu-
lated event samples. The test is performed by comparing the LL background in the search re-
gions, as predicted by applying the LL background determination procedure to the simulated
muon CS, to the expectation obtained directly from tt, single top quark, and W+jets simulation.
The result of the closure test for the 45 search bins optimized for gluino-mediated production
is shown in the top plot of Fig. 7. The closure test uncertainty (up to 26%, depending on the
search bin) is dominated by statistical fluctuations and included as a systematic uncertainty
in the LL background prediction. The closure uncertainties for the 37 search bins optimized
for direct top squark production are of similar size. The following other sources of systematic
uncertainty are also included: lepton isolation efficiency (effect on prediction is between 2 and
7%), lepton reconstruction and identification efficiency (3 to 8%), lepton acceptance from un-
certainty in the PDFs (about 10%), control sample purity (2%), corrections due to the presence
of dilepton events (around 1%), efficiency of the mT selection (less than 1%), and isolated-track
veto (3 to 11%).

4.2 Estimation of the hadronically decaying τ lepton background

Events from tt, W+jets, and single top quark processes in which a τ lepton decays hadronically
are one of the largest components of the SM background contributing to the search regions.
When a W boson decays to a neutrino and a τh, the presence of neutrinos in the final state
results in~pmiss

T , and the event passes the lepton veto because the hadronically decaying τ lepton
is reconstructed as a jet. A veto on isolated tracks is used in the preselection to reduce the τh
background with a minimal impact on signal efficiency.

The estimate of the remaining τh background is based on a CS of µ+jets events selected from
data using a trigger with requirements on both muon pT and HT, and a requirement of exactly
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one muon with pT > 20 GeV and |η| < 2.4. An upper threshold on the transverse mass of the W
boson, mT < 100 GeV, is required to select events containing a W→ µν decay and to suppress
signal events contaminating the µ+jets sample. Since both µ+jets and τh+jets production arise
from the same underlying process, the hadronic component of the events is expected to be
the same, aside from the response of the detector to a muon or τh. The muon pT is smeared
by response template distributions derived for a hadronically decaying τ lepton to correct the
leptonic part of the event. The response templates are derived using tt, W+jets, and single top
quark simulated samples by comparing the true τ lepton pT with the reconstructed τh jet pT.
The kinematic variables of the event are recalculated with this τh jet, and the search selections
are applied to predict the τh background.

The probability to mistag a τh jet as a b jet is significant (about 0.1) and affects the Nb distri-
bution of τh background events. The dependence of the mistag rate on the τh jet pT is larger
for tt events than for W+jets events, because the b quark from the top quark decay can overlap
with the τh jet. This mistag rate is taken into account in the µ+jets CS by randomly selecting a
simulated τh jet and counting it as a b jet with the probability obtained from MC simulation in
W+jets events for the corresponding τh jet pT.

The τh background prediction is calculated as follows:

Nτh = ∑
CS

(
∑

template bins
Presp

τh

1
ε

µ
trigger ε

µ
reco ε

µ
iso ε

µ
acc ε

µ
mT

B(W→ τh)

B(W→ µ)
εisotrack Fτ→µ Fdilepton

)
, (8)

where the first summation is over the events in the µ+jets CS, the second is over the bins of the
τh response template, and Presp

τh is the probability of the τh response from each bin. The various
correction factors applied to convert µ+jets events into τh+jets events to construct the final τh
sample are:

• the branching fraction ratio B(W→ τh)/B(W→ µ) = 0.65;

• the muon reconstruction and identification efficiency ε
µ
reco (0.94–0.98) and the muon

isolation efficiency ε
µ
iso (0.5–0.95 depending on the muon pT and the ∑ pT of PF can-

didates within an annulus with outer radius of ∆R = 0.4 and inner radius equal to
the isolation cone);

• the muon acceptance ε
µ
acc (typically around 0.8–0.9);

• the mT selection efficiency εmT (> 0.9);

• the correction to account for the contamination in the CS from muons from τ decays,
Fτ→µ (around 0.8 depending on Nj and Emiss

T );

• the isolated track veto efficiency for τh, εisotrack (around 0.7), as determined from
simulated tt, W+jets and single top quark events by matching isolated tracks to τh
jets;

• the τh contribution that overlaps with the LL background prediction due to contam-
ination of dileptonic events in the CS, Fdilepton, to avoid double counting (0.98);

• and a correction for the µ trigger efficiency, ε
µ
trigger (0.95).

The muon reconstruction, identification, and isolation efficiency are the same as used for the
LL background determination.

A closure test is performed comparing the τh background in the search regions as predicted by
applying the τh background determination procedure to the simulated muon CS to the expec-
tation obtained directly from simulation. The result of the closure test for the 45 search bins
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optimized for gluino-mediated production is shown in the lower plot of Fig. 7. The closure
uncertainty for each search bin (between 2% and 28%) is dominated by statistical fluctuations
and is included as a systematic uncertainty in the τh background prediction. The closure un-
certainties for the 37 search bins optimized for direct top squark production are of similar size.
In addition, systematic uncertainties are evaluated for each of the ingredients in the prediction,
which arise from uncertainties in the following sources: the τh response template (2%), the
muon reconstruction and isolation efficiency (1%), the acceptance due to uncertainties in the
PDFs (up to 5%), the b mistag rate of the τh jet (up to 15%), εmT due to uncertainties in the Emiss

T
scale (< 1%), the efficiency of the isolated track veto (4–6.5%), contamination from lost leptons
(2.4%), and the trigger efficiency (1%).

4.3 Estimation of the Z → νν background

The Z → νν background is derived using simulated events that have been corrected for ob-
served differences between data and simulation, in a Z → µµ control region, for both shape
and normalization. The central value of the Z→ νν background prediction for each search bin
B can be written as

N̂B = Rnorm ∑
events∈B

SDY(Nj)wMC, (9)

where N̂B is the predicted number of Z → νν background events in search bin B. The sum
runs over all simulated Z → νν events that fall in search bin B, and wMC is a standard event
weight including the assumed Z → νν cross section, the integrated luminosity, the b tagging
efficiency scale factors, and the measured trigger efficiency. Each simulated event is addition-
ally weighted using two scale factors, Rnorm and SDY(Nj), that correct the normalization of the
simulation and the shape of the simulated Nj distribution, respectively. Both scale factors are
calculated in a dimuon CS including events with two muons, with 81 < mµµ < 101 GeV, and
no muon or isolated track vetoes. In this region the two muons are treated as if they were
neutrinos.

The first scale factor, Rnorm, is derived using a tight dimuon CS in data. This control region
has the same selection as the search region preselection, apart from the muon requirement and
without any requirements on b-tagged jets. This region is selected for its kinematic similarity
to the signal region, but lacks the statistical precision required for shape comparison. The
scale factor is computed by comparing the expected event yield in the tight region in the DY
simulation with the observed event yield in data after subtraction of the other SM processes.

The second scale factor, SDY, depends on the number of jets Nj in the event and is designed
to correct the mismodeling of the jet multiplicity distribution in simulation. The scale factor is
derived in a loose dimuon control region in which the signal region requirements on Emiss

T , Nt,
and MT2 are removed, and the HT requirement is relaxed to HT > 200 GeV. The SDY scale factor
is derived for each (Nj) bin as the ratio between the data, with non-DY backgrounds subtracted,
and the DY simulation. Due to tt contributions similar to the DY processes for larger jet and
b-tagged jet multiplicities, the tt MC events are similarly reweighted using a CS selected to
have an electron and a muon with 81 < meµ < 101 GeV before subtraction from the dimuon
data. The Nb and Emiss

T distributions in the loose CS after applying the SDY(Nj) scale factor are
shown in Fig. 8. The Nb distribution agrees well between data and simulation, whereas the
Emiss

T distribution has some disagreement between 300 and 600 GeV. The disagreement is taken
into account with a shape uncertainty equal to the magnitude of the disagreement and has a
negligible effect on the final results.

The systematic uncertainties for the Z→ νν background prediction are divided into two broad
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Figure 7: (Top) The lost-lepton background in the 45 search regions optimized for gluino-
mediated production as determined directly from tt, single top quark, and W+jets simulation
(points) and as predicted by applying the lost-lepton background determination procedure to
the simulated muon control sample (histograms). The lower panel shows the same results
after dividing by the predicted value. (Bottom) The corresponding simulated results for the
background from hadronically decaying τ leptons. For both plots, vertical lines indicate search
regions with different Nt, Nb, and MT2 values. Within each (Nt, Nb, MT2) region, the bins indi-
cate the different Emiss

T selections, as defined in Fig. 5. Only statistical uncertainties are shown.
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Figure 8: Determination of the Z → νν background: The Nb (left) and Emiss
T (right) distribu-

tions in data and simulation in the loose Z → µµ control region, after applying the SDY(Nj)
scale factor to the simulation. The lower panels show the ratio between data and simulation.
Only statistical uncertainties are shown. The values in parentheses in the legend indicate the
integrated yield for each given process.

categories: uncertainties associated with the use of MC simulation and uncertainties specifi-
cally associated with the background prediction method. The first category includes systematic
uncertainties in the PDFs and renormalization/factorization scale choices, jet and Emiss

T energy
scale uncertainties, b tagging efficiency scale factor uncertainties, and trigger efficiency uncer-
tainties. The second category includes uncertainties from the method used to determine Rnorm
and the SDY(Nj) scale factors, and uncertainties based on the residual shape disagreement be-
tween data and DY+jets simulation in the loose dimuon CS. The uncertainty in Rnorm, derived
from the statistical uncertainties on data and MC in the tight CS, results in a 19% uncertainty
in the predicted Z→ νν event yield for each search bin. The uncertainties associated with SDY
are the dominant uncertainties and are related to residual shape uncertainties (after applying
the SDY scale factor) in the search region variables Emiss

T , MT2, Nb, and Nt. These uncertainties
are evaluated in the loose CS with the additional requirement that Nt ≥ 1 so that MT2 is well
defined. The resulting shift of the central value of the search bin predictions is used as the sys-
tematic uncertainty from the residual shape disagreements. Depending on the search bin, this
uncertainty ranges between 10 and 82%. The statistical uncertainties in the ratios between data
and simulation, as well as in SDY, are also included as a 15–75% systematic uncertainty in the
prediction.

4.4 Estimation of the QCD multijet background

The procedure to predict the QCD multijet background consists of selecting a signal-depleted
data CS, rich in QCD multijet events, from which significant contributions of other SM back-
grounds, such as tt, W+jets, and Z+jets, are subtracted. Following that, a translation factor,
partly determined from data and partly from simulation, is used to convert the number of
events measured in the data CS into a prediction for each search region bin.

The CS is defined by applying the full set of preselection requirements described in Section 3.3,



4.5 Backgrounds from ttZ and other SM rare processes 17

except that the ∆φ(Emiss
T , j1,2,3) requirements are inverted, requiring that the Emiss

T be aligned
with one of the leading three jets. The estimated number of QCD multijet events in the inverted-
∆φ CS is computed by subtracting the contributions from LL, hadronically decaying τ leptons,
and Z+jets processes from the number of data events observed in that region. The same meth-
ods as described in the previous sections are used to estimate the contributions from LL and
τh processes, but applied to this QCD multijet-enriched CS. Simulation is used to estimate the
contribution from Z→ νν events, since it is expected to be small.

The translation factor between the QCD multijet-enriched CS and the search region bins may
depend on some of the kinematic observables used to define the search bins. However, since the
translation factor is a ratio, any such dependence is expected to be mild. Because of the small
size of the data CS in the high-Emiss

T regions, the value of the translation factor is constrained
to a data measurement in a sideband of the preselection region, defined by the requirement
175 < Emiss

T < 200 GeV and without an Nb requirement, where the amount of data is sufficiently
large to make an accurate measurement. Any possible kinematic dependence on Emiss

T or MT2 is
accounted for by using a linear approximation derived from simulation. The slope in Emiss

T and
MT2 is taken from simulation and the offset is fixed by the data measurement in the low-Emiss

T
sideband. The translation factor, TQCD, scales the number of QCD multijet events measured in
the QCD multijet-enriched CS into a QCD multijet background prediction for a given search
region bin. The translation factor ranges from 0.01 to 0.14 depending on Emiss

T and MT2.

The main systematic uncertainty in the QCD multijet prediction is obtained from a closure
test in which the expectation for the signal region event yields, as obtained directly from the
QCD multijet simulation, is compared to the prediction obtained by applying the QCD multijet
background prediction procedure to simulated event samples. The result for the 45 search bins
optimized for gluino-mediated production is shown in Fig. 9, and any observed nonclosure
from the relaxed Emiss

T and Nb requirements is taken into account as the systematic uncertainty.
If there is insufficient simulation to populate a bin in the closure prediction, the uncertainty
from the next lowest Emiss

T bin is used. This uncertainty ranges from 5% to 500% depending on
the search bin. The closure uncertainties for the 37 search bins optimized for direct top squark
production are of similar size. The high closure uncertainties for some search bins are due
to statistical limitations of the simulation, but have a small effect on the final results because
the QCD multijet yields are very low in these search bins compared to other backgrounds. In
addition, another major source of systematic uncertainty in the QCD multijet prediction is the
uncertainty in the TQCD factors.

4.5 Backgrounds from ttZ and other SM rare processes

Similar to the Z → νν background, ttZ is an irreducible background when Z bosons decay to
neutrinos and both top quarks decay hadronically. The ttZ cross section at 13 TeV is only 783 fb
(computed at NLO using MADGRAPH 5 aMC@NLO) and the predicted yield of ttZ events in
the search bins is less than 10% of the total background. Given the presence of genuine Emiss

T
and b jets in ttZ events, and given the small cross section associated with this process, we
rely on simulation to predict its contribution to each search region bin. The ttZ simulation is
validated using a trilepton control sample in data, and the 30% statistical uncertainty in this
data measurement is propagated to the ttZ prediction.

The contribution of the ttW process to the signal region is covered by the LL and τh background
estimation methods. The signal region yields for the diboson and multiboson processes are
fully determined by simulation and are combined into a single rare background prediction.
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Figure 9: The QCD multijet background in the 45 search regions optimized for gluino-mediated
production as determined directly from simulation (points) and as predicted by applying the
QCD multijet background determination procedure to simulated event samples in the inverted-
∆φ control region (histograms). The lower panel shows the same results after dividing by the
predicted value. Only statistical uncertainties are shown. The labeling of the search regions is
the same as in Fig. 7.

5 Results and interpretation
The predicted number of SM background events and the number of events observed in data
for each of the search regions defined in Section 3.3 are summarized in Fig. 10 and Tables 1 and
2 for the binning optimized for direct top squark production, and in Fig. 11 and Tables 1 and 3
for the binning optimized for gluino-mediated production models. Typically, the most signif-
icant background across the search regions comes from SM tt or W boson production, where
the W boson decay contains genuine Emiss

T from a neutrino. Generally, the next largest contri-
bution comes from Z → νν production in association with jets (including heavy-flavor jets) in
which the neutrino pair gives rise to large Emiss

T and the top quark conditions are satisfied by
an accidental combination of the jets. For search regions with very high Emiss

T requirements,
the Z → νν background can become dominant. The QCD multijet contribution and the con-
tribution from other rare SM processes are subdominant across all bins. The largest rare SM
process contribution (though still small) comes from ttZ with the Z boson decaying into a pair
of neutrinos. No statistically significant deviation between the observed data events and the
SM background prediction is found.

The statistical interpretation of the results in terms of exclusion limits for the signal models
considered is based on a binned likelihood fit to the observed data, taking into account the
predicted background and expected signal yields with their uncertainties in each bin. The
extraction of exclusion limits is based on a modified frequentist approach [102–105] using a
profile likelihood ratio as the test statistic. Signal models for which the 95% confidence level
(CL) upper limit on the production cross section falls below the theoretical cross section (based
on NLO+NLL calculations [89]) are considered to be excluded by the analysis.

The uncertainties in the signal modeling are determined per search region bin and include the
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Figure 10: Observed event yields in data (black points) and predicted SM background (filled
solid area) for the 37 search bins optimized for direct top squark production. The red and
dark green lines indicate various signal models: the T2tt model with mt̃ = 500 GeV and mχ̃0

1
=

325 GeV (red short-dashed line), the T2tt model with mt̃ = 750 GeV and mχ̃0
1
= 50 GeV (red long-

dashed line), and the T2tb model with mt̃ = 700 GeV and mχ̃0
1
= 100 GeV (dark green dashed-

dotted line). The lower panel shows the ratio of data over total background prediction in each
search bin. For both panels, the error bars show the statistical uncertainty associated with the
observed data counts, and the grey (blue) hatched bands indicate the statistical (systematic)
uncertainties in the total predicted background.
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Figure 11: Observed event yields in data (black points) and predicted SM background (filled
solid area) for the 45 search bins optimized for gluino models. The red and dark green lines
indicate various signal models: the T1tttt model with mg̃ = 1200 GeV and mχ̃0

1
= 800 GeV (dark

green short-dashed line), the T1tttt model with mg̃ = 1500 GeV and mχ̃0
1
= 100 GeV (dark green

long-dashed line), and the T5ttcc model with mg̃ = 1200 GeV and mχ̃0
1
= 800 GeV (red dashed-

dotted line). The lower panel shows the ratio of data over total background prediction in each
search bin. For both panels, the error bars show the statistical uncertainty associated with the
observed data counts, and the grey (blue) hatched bands indicate the statistical (systematic)
uncertainties in the total predicted background.
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Table 1: Observed yields from the data compared to the total background predictions for the
search bins that are common between the direct top squark and gluino-mediated production
optimizations. The quoted uncertainties on the predicted background yields are statistical and
systematic, respectively.

Bin number Nt Nb MT2 [GeV] Emiss
T [GeV] Data Predicted background

0 1 1 200 – 300 200 – 275 68 54 +4
−4

+6
−6

1 1 1 200 – 300 275 – 350 15 15 +2
−2

+3
−3

2 1 1 200 – 300 350 – 450 2 4.9 +1.6
−1.2

+2.4
−0.9

3 1 1 200 – 300 >450 3 1.2 +1.1
−0.2

+0.4
−0.4

4 1 1 300 – 400 200 – 275 13 9.8 +1.8
−1.5

+3.1
−1.0

5 1 1 300 – 400 275 – 350 16 13 +2
−2

+2
−1

6 1 1 300 – 400 350 – 450 8 5.0 +1.7
−1.1

+0.9
−0.9

7 1 1 300 – 400 >450 4 1.3 +1.1
−0.1

+0.5
−0.5

8 1 1 >400 200 – 350 2 2.9 +1.3
−0.8

+1.1
−0.4

9 1 1 >400 350 – 450 3 6 +2
−2

+1
−1

10 1 1 >400 >450 3 7 +2
−1

+3
−3

following sources: simulation sample size (up to 50% for top squark pair production models
and up to 10% for gluino-mediated production models), luminosity determination (2.7%), lep-
ton and isolated track veto (up to 4%), b tagging efficiency corrections used to scale simulation
to data (up to 36%), trigger efficiency (< 1%), renormalization and factorization scale varia-
tions (up to 3%), initial-state radiation (up to 30%), jet energy scale corrections (up to 25%),
and the modeling of the fast simulation compared with the full simulation for top quark re-
construction and mistagging (up to 7%). All these uncertainties, apart from those arising from
the simulation sample size, are treated as fully correlated between the search bins when com-
puting exclusion limits. Potential contamination of signal events in the single-lepton control
regions is taken into account for each signal model considered in the interpretation. The poten-
tial contamination in the dilepton and inverted-∆φ region is negligible. The uncertainties from
the background predictions are also taken into account using a similar method as used for the
signal modeling, but evaluated separately for each physics process.

Figure 12 shows 95% CL exclusion limits obtained for simplified models in the pure T2tt sce-
nario, and in the mixed T2tb scenario assuming a 50% branching fraction for each of the two
decay modes (̃t → tχ̃0

1/̃t → bχ̃±1 ). In the latter case, the χ̃±1 and χ̃0
1 are assumed to be nearly

degenerate in mass, with a 5 GeV difference between their masses. As a result of this analysis,
top squark masses up to 740 GeV and LSP masses up to 240 GeV are excluded in the T2tt sce-
nario. In the T2tb scenario, top squark masses up to 610 GeV and LSP masses up to 190 GeV are
excluded. These results are comparable to those from the top squark searches at 8 TeV based on
an order of magnitude larger data sets. The improvements of the top quark tagging algorithm,
in particular the addition of merged jet scenarios to recover efficiency for boosted top quarks,
extends the reach of the analysis to higher top squark masses than would have been possible
with the approach used in Ref. [41]. No interpretation is provided for the T2tt and T2tb sig-
nal models for which both |mt̃ −mχ̃0

1
−mt| ≤ 25 GeV and mt̃ ≤ 275 GeV because of significant

differences between the fast simulation and the GEANT4-based simulation for these low-Emiss
T



22 5 Results and interpretation

Table 2: Observed yields from the data compared to the total background predictions for the
search bins that are specific to the direct top squark production optimization. The quoted un-
certainties on the predicted background yields are statistical and systematic, respectively.

Bin number Nt Nb MT2 [GeV] Emiss
T [GeV] Data Predicted background

11 1 ≥ 2 200 – 300 200 – 275 43 44 +4
−4

+5
−5

12 1 ≥ 2 200 – 300 275 – 350 10 15 +3
−2

+2
−2

13 1 ≥ 2 200 – 300 350 – 450 5 3.6 +1.5
−0.9

+0.7
−0.6

14 1 ≥ 2 200 – 300 >450 1 1.4 +1.5
−0.7

+0.2
−0.2

15 1 ≥ 2 300 – 400 200 – 275 7 7.6 +1.7
−1.4

+2.0
−0.9

16 1 ≥ 2 300 – 400 275 – 350 10 4.8 +1.7
−1.1

+0.6
−0.5

17 1 ≥ 2 300 – 400 350 – 450 3 2.8 +1.6
−0.9

+0.4
−0.4

18 1 ≥ 2 300 – 400 >450 2 0.5 +1.3
−0.1

+0.2
−0.2

19 1 ≥ 2 >400 200 – 450 2 2.0 +1.4
−0.7

+0.6
−0.4

20 1 ≥ 2 >400 >45 1 0.99 +1.77
−0.06

+0.65
−0.65

21 ≥ 2 1 200 – 300 200 – 275 18 20 +2
−2

+3
−3

22 ≥ 2 1 200 – 300 275 – 350 3 5 +1
−1

+1
−1

23 ≥ 2 1 200 – 300 >350 1 1.1 +0.9
−0.5

+0.2
−0.2

24 ≥ 2 1 300 – 400 200 – 275 10 7.1 +1.8
−1.5

+1.1
−0.7

25 ≥ 2 1 300 – 400 275 – 350 6 4.0 +1.5
−1.1

+0.5
−0.5

26 ≥ 2 1 300 – 400 >350 2 2.7 +1.2
−0.8

+0.4
−0.4

27 ≥ 2 1 >400 200 – 250 2 0.5 +1.1
−0.1

+0.9
−0.2

28 ≥ 2 1 >400 >350 3 1.9 +1.1
−0.5

+0.9
−0.8

29 ≥ 2 ≥ 2 200 – 300 200 – 275 6 16 +3
−3

+2
−2

30 ≥ 2 ≥ 2 200 – 300 275 – 350 1 3.3 +1.3
−1.1

+0.5
−0.5

31 ≥ 2 ≥ 2 200 – 300 >350 0 1.3 +0.9
−0.4

+0.1
−0.1

32 ≥ 2 ≥ 2 300 – 400 200 – 275 10 7.1 +1.8
−1.5

+0.8
−0.7

33 ≥ 2 ≥ 2 300 – 400 275 – 350 2 1.7 +1.3
−0.7

+0.2
−0.2

34 ≥ 2 ≥ 2 300 – 400 >350 1 0.8 +1.0
−0.3

+0.2
−0.2

35 ≥ 2 ≥ 2 >400 200 – 350 1 0.27 +1.00
−0.16

+0.05
−0.05

36 ≥ 2 ≥ 2 >400 >350 1 0.41 +1.27
−0.06

+0.19
−0.17
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Table 3: Observed yields from the data compared to the total background predictions for the
search bins that are specific to the gluino-mediated production optimization. The quoted un-
certainties on the predicted background yields are statistical and systematic, respectively.

Bin number Nt Nb MT2 [GeV] Emiss
T [GeV] Data Predicted background

11 1 2 200 – 300 200 – 275 38 36 +4
−3

+4
−4

12 1 2 200 – 300 275 – 350 7 11 +2
−2

+2
−2

13 1 2 200 – 300 350 – 450 4 3.5 +1.5
−0.8

+0.8
−0.6

14 1 2 200 – 300 >450 1 1.3 +1.5
−0.6

+0.2
−0.2

15 1 2 300 – 400 200 – 275 7 6.4 +1.6
−1.3

+1.7
−0.8

16 1 2 300 – 400 275 – 350 10 3.6 +1.6
−0.9

+0.5
−0.5

17 1 2 300 – 400 350 – 450 3 2.6 +1.7
−0.9

+0.4
−0.4

18 1 2 300 – 400 >450 2 0.5 +1.2
−0.2

+0.2
−0.2

19 1 2 >400 200 – 450 2 1.0 +1.3
−0.2

+0.6
−0.3

20 1 2 >400 >450 1 0.91 +1.57
−0.05

+0.62
−0.62

21 1 ≥ 3 >200 200 – 300 5 12 +3
−2

+2
−2

22 1 ≥ 3 >200 300 – 400 3 2.2 +1.4
−0.7

+0.3
−0.3

23 1 ≥ 3 >200 >400 1 1.4 +1.6
−0.7

+0.3
−0.2

24 2 1 200 – 300 200 – 275 16 19 +2
−2

+3
−3

25 2 1 200 – 300 275 – 350 3 5.2 +1.4
−1.1

+1.0
−1.0

26 2 1 200 – 300 >350 1 0.5 +0.8
−0.2

+0.2
−0.2

27 2 1 300 – 400 200 – 275 10 7.0 +1.8
−1.5

+1.1
−0.8

28 2 1 300 – 400 275 – 350 6 4.0 +1.5
−1.1

+0.5
−0.5

29 2 1 300 – 400 >350 2 2.7 +1.2
−0.8

+0.4
−0.4

30 2 1 >400 200 – 350 2 0.5 +1.1
−0.1

+0.9
−0.2

31 2 1 >400 >350 3 1.9 +1.1
−0.5

+0.9
−0.8

32 2 2 200 – 300 200 – 275 6 14 +3
−3

+2
−2

33 2 2 200 – 300 275 – 350 1 3.1 +1.3
−1.0

+0.5
−0.5

34 2 2 200 – 300 >350 0 1.2 +0.9
−0.4

+0.1
−0.1

35 2 2 300 – 400 200 – 275 10 5.3 +1.6
−1.3

+0.9
−0.5

36 2 2 300 – 400 275 – 350 2 1.3 +1.3
−0.6

+0.2
−0.1

37 2 2 300 – 400 >350 1 0.7 +1.0
−0.4

+0.2
−0.1

38 2 2 >400 200 – 350 1 0.20 +0.87
−0.11

+0.04
−0.04

39 2 2 >400 >350 1 0.38 +1.31
−0.07

+0.16
−0.16

40 2 ≥ 3 >200 200 – 300 0 4.3 +1.6
−1.3

+0.5
−0.5

41 2 ≥ 3 >200 >300 0 0.29 +0.91
−0.09

+0.06
−0.05

42 ≥ 3 1 >200 >200 2 1.7 +1.2
−0.7

+0.3
−0.2

43 ≥ 3 2 >200 >200 0 0.3 +0.9
−0.2

+0.1
−0.1

44 ≥ 3 ≥ 3 >200 >200 0 0.23 +0.92
−0.21

+0.04
−0.04
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scenarios.

Figure 13 shows 95% CL exclusion limits obtained for simplified models in the T1tttt and T5ttcc
scenarios. Gluino masses up to 1550 GeV and LSP masses up to 900 GeV are excluded for the
T1tttt model, whereas gluino masses up to 1450 GeV and LSP masses up to 820 GeV are ex-
cluded for the T5ttcc model. These results significantly extend the mass reach compared to
analyses at 8 TeV, which excluded gluino masses up to about 1380 (1340) GeV and LSP masses
up to about 700 (650) GeV for the T1tttt (T5ttcc) model. The search bins with Nt ≥ 3 provide
additional sensitivity for T1tttt models with high gluino and LSP masses, since they allow sup-
pression of SM backgrounds while keeping a low Emiss

T threshold. The decrease in the mg̃ limit
for very small LSP masses for the T5ttcc model can be explained by Lorentz boosts. For LSP
masses near the mass of the charm quark, the LSP and charm quark share the momentum
available in the top squark decay about equally. This results in a softer Emiss

T spectrum, and,
therefore, a reduced efficiency, compared to models that have a heavier LSP.
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Figure 12: Exclusion limits at 95% CL for simplified models of top squark pair production
in the T2tt (left) and T2tb (right) scenario, assuming a 50% branching fraction for each of the
t̃→ tχ̃0

1/̃t→ bχ̃±1 modes and a 5 GeV mass difference between the χ̃±1 and χ̃0
1 (right). The solid

black curves represent the observed exclusion contour with respect to NLO+NLL cross section
calculations [89] and the corresponding ±1 standard deviation uncertainties. The dashed red
curves indicate the expected exclusion contour and the±1 standard deviation uncertainties in-
cluding experimental uncertainties. No interpretation is provided for signal models for which
|mt̃−mχ̃0

1
−mt| ≤ 25 GeV and mt̃ ≤ 275 GeV because of significant differences between the fast

simulation and the GEANT4-based simulation for these low-Emiss
T scenarios.

6 Summary
Results have been presented from a search for direct and gluino-mediated top squark produc-
tion in final states that include tagged top quark decays. The search uses all-hadronic events
with at least four jets and a large imbalance in transverse momentum (Emiss

T ), selected from
data corresponding to an integrated luminosity of 2.3 fb−1 collected in proton-proton collisions
at a center-of-mass energy of 13 TeV with the CMS detector. A set of search regions is defined
based on Emiss

T , MT2, the number of top quark tagged objects, and the number of b-tagged jets.
No statistically significant excess of events is observed above the expected standard model
background. Exclusion limits are set at 95% confidence level for simplified models of direct
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Figure 13: Exclusion limits at 95% CL for simplified models of top squarks produced via decays
of gluino pairs in the T1tttt (left) and T5ttcc (right) scenarios. The solid black curves represent
the observed exclusion contour with respect to NLO+NLL cross section calculations [89] and
the corresponding±1 standard deviation uncertainties. The dashed red curves indicate the ex-
pected exclusion contour and the ±1 standard deviation uncertainties including experimental
uncertainties.

top squark pair production and of gluino pair production, where the gluinos decay to final
states that include top quarks. For simplified models of pair production of top squarks, which
decay to a top quark and a neutralino (T2tt), top squark masses of up to 740 GeV and neu-
tralino masses up to 240 GeV are excluded at 95% confidence level. For models that assume
50% branching fractions for top squark decays to a top quark and a neutralino, or to a bottom
quark and a chargino that is nearly degenerate in mass with the neutralino (T2tb), top squark
masses of up to 610 GeV and neutralino masses up to 190 GeV are also excluded. For simplified
models of gluino pair production where each gluino decays to a top-antitop quark pair and
a neutralino (T1tttt), gluino masses of up to 1550 GeV, and neutralino masses up to 900 GeV
are excluded. Gluino masses of up to 1450 GeV, and neutralino masses up to 820 GeV are ex-
cluded for models in which the gluino decays to an on-shell top squark and a top quark, and
the top squarks decays to a charm quark and a neutralino (T5ttcc). These are among the most
restrictive currently available limits.
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J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,
T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
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J.-L. Agram12, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,
N. Chanon, C. Collard, E. Conte12, X. Coubez, J.-C. Fontaine12, D. Gelé, U. Goerlach, A.-C. Le
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MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University,
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Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,
U. Langenegger, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab,
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