

Design and test performance of the ATLAS Feature Extractor trigger boards for the Phase-I Upgrade

Weiming Qian On behalf of the ATLAS Collaboration

Outline

- Introduction
- > ATLAS Level-1 calorimeter trigger architecture for Phase-I
- > Trigger board design
 - Electron Feature Extractor (eFEX)
 - Jet Feature Extractor (jFEX)
- Prototype modules and test performance
- Summary

Introduction

- Phase-I upgrade
 - LHC luminosity will double ($\sim 2.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$)
 - Total Level-1 trigger rate remains \leq 100kHz
 - · Retain sensitivity to electroweak processes
 - $\cdot\,$ Stay within Level-1 trigger latency envelop of 2.5 μs
 - Forward compatibility with Phase-II upgrade
- Strategy
 - Use higher granularity from calorimeter
 - Include shower shape information
 - Improve pileup suppression with event-wide information
 - Identify large-radius jets

L1Calo at Phase I

AT AS

eFEX Algorithms

> Cluster and identify e/γ and τ

eFEX Trigger Performance

- > EM trigger rate reduced by a factor of ~3, or
- The threshold lowered by ~7GeV
 - Compared at reference points of 20KHz

jFEX Trigger Performance

- > Cluster and identify jets/fat τ and calculate Sum E_T and missing E_T
 - Gaussian weighting filter, larger window, higher granularity
- Enables pile-up suppression using event energy density
- > Sharper turn-on for jet trigger and better missing E_T trigger
- Similar rate reduction as eFEX

eFEX partitioning

- > 24 eFEX modules in total covering $|\eta| \le 2.5$
- Each eFEX module
 - Core area of up to $1.7(\eta) \times 0.8(\phi)$
 - Environment area of 1.8x1.0 (EM) and 2.4x1.2 (HAD)

Core area of algorithms

Environment area of algorithms

Extra area in LAr + Tile carried within fibres, but not used by algorithms

Extra area in Tile carried within fibres, but not used by algorithms

AT AS

> 7 jFEX modules in total

jFEX partitioning

FEX Module Concept

- > ATCA form factor
 - Power estimate ~ 400W per module
- ➢ eFEX
 - 144 optical input, 36 optical output
 - 450 differential pairs on-board @10G+
 - 94 fan-out buffers @10G+
 - 17 MiniPODs
 - 4 Xilinx Virtex-7 FPGAs (XC7VX550T) algorithm
 - 1 Xilinx Virtex-7 FPGA (XC7VX330T) control + readout
- ≻ jFEX
 - 216 optical input, 32 optical output
 - 540 differential pairs on-board @10G+
 - 24 MiniPODs
 - 4 Xilinx Ultra scale FPGAs (XCVU190) algorithm + readout
 - 1 Mezzanine control

Challenges

jFEX prototype

Currently being manufactured (24 layer PCB – Megtron 6)

jFEX power/thermal simulation

- Simulation optimised power plane design
- Thickness of high current planes: 105µm

- Power simulation: Max $\Delta V \sim 12 mV$
- Thermal simulation: Max $\Delta T \sim 6.4^{\circ}$

eFEX prototype

- > 1st eFEX prototype, Feb 2016
- ➢ 22 layer PCB
 - I-Tera

TWEPP 2016, Karlsruhe

eFEX SI simulation

TWEPP 2016, Karlsruhe

eFEX link speed tests

- > Validate TDR baseline link speed and test link speed limit
 - Two types of data sources
 - 3 different speeds (6.4G/11.2G/12.8G)

LAr LATOME AMC+ LDPB as data source @CERN (Altera Arria 10 FPGA)

FEX Test Module as data source @RAL (Xilinx Virtex-7 FPGA)

eFEX link speed test results

- > 97% eFEX high-speed links are very good
 - BER<10⁻¹⁴ @ 6.4Gb/s (TDR baseline)
 - BER<10⁻¹⁴ @ 11.2Gb/s (Chosen as new baseline)
 - Simplified system architecture (especially for jFEX)
 - · Increased dynamic range of input calorimeter data
 - · Simplified link data protocol
 - Improved trigger performance

eFEX high-speed link debugging

- > 9 bad input channels on 1st eFEX prototype
 - 3 from the one fan-out buffer chip
 - BER ~ 5×10^{-1}
 - Bad fan-out buffer chip
 - 2 from another fan-out buffer chip
 - BER ~10⁻⁴
 - · Solved with replacing a miniPOD
 - 4 from yet another fan-out buffer chip
 - BER ~ 10^{-11}
 - Non-optimum PCB routing with 3 long PTH vias
 - Can be optimised in next PCB iteration

PCB routing topology between this buffer input and miniPOD

eFEX power issue and simulation

- Xilinx XPE underestimated its Virtex-7 MGT power consumption by a factor of 2
 - Only half of MGTs can be activated simultaneously on eFEX
 - DC voltage drop would exceed limit (60mV) at full load
 - Need more copper in power distribution

Some open issues

- Cooling
 - ~400W/module
 - Temperature over 90° (Cs) observed
 - \cdot Xilinx commercial FPGA rated 0° ~ 85° (Cs)
 - FPGA life expectancy decreases as temperature rises
 - \cdot But no quantitative number available
- Optical Fibre
 - Very sensitive
 - Limited mating cycles
 - Cleaning MTP connectors in situ not easy
 - Vibration in strong air flow inside ATCA shelf
 - $\cdot\,$ Protection and long term reliability
 - Dynamic reconfiguration for bad channel

Summary

- The prototypes of ATLAS Feature Extractor trigger boards are well underway
 - eFEX: 2 delivered (1 tested), 2 more to come soon
 - jFEX: 1st module expected in Oct 2016
- > The test results of eFEX 1st prototype are extremely good
 - The LAr/L1Calo link speed is re-baselined at 11.2Gb/s
 - Algorithm firmware are being developed
- > Challenges to overcome with power, cooling and fibres

Backup

jFEX PCB stackup

jFEX on-board data-sharing test

Far-end PMA Loop-back (path 3) as inter-FPGA data sharing

Ext clock (jitter cleaner eval board SiLab)

Samtec BullEye connector to GTY

Xilinx Eval Board VCU110 (Ultrascale XCVU190)

25.5 Gbps - IBERT 2-D Eye scan @10^-11

eFEX PCB design

eFEX Demo board

- Purpose
 - QA test on PCB
 - PCB simulation correlation
 - Mechanical test
- > One critical error identified in PCB process

TDR/TDT tests on Demo PCB

Outer layer impedance too low (~70 Ω) due to over-plating