EuCARD-2

Enhanced European Coordination for Accelerator Research & Development

Presentation

Latest developments and challenges in developing Coated Conductor magnets for accelerators within EuCARD-2

Goldacker, W (KIT) et al

11 September 2016

The EuCARD-2 Enhanced European Coordination for Accelerator Research & Development project is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

This work is part of EuCARD-2 Work Package 10: Future Magnets (MAG).

The electronic version of this EuCARD-2 Publication is available via the EuCARD-2 web site http://eucard2.web.cern.ch/ or on the CERN Document Server at the following URL: http://cds.cern.ch/ or on the CERN Document Server at the following URL: http://cds.cern.ch/ or on the CERN Document Server at the following URL: http://cds.cern.ch/ or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=CERN-ACC-SLIDES-2016-0021

- CERN-ACC-SLIDES-2016-0021 -

High-temperature superconductors towards applications

at SUPRA group, Institute for Technical Physics Karlsruhe Institute of Technology

<u>A. Kario</u>, A. Kudymow, A. Kling, A. Jung, F. Grilli, S. Otten, B. Ringsdorf, B. Runtsch, R. Nast, S. Strauss, U. Walschburger, J. Willms, A. Godfrin,

R. Gyuraki, H. Wu, S. I. Schlachter, W. Goldacker

M. Vojenciak, SAV Institute of Electrical Engineering D. van der Laan, Advanced Conductor Technologies EuCARD² Project, WP10 Partners (listed in part 5)

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

Outline:

- 1. Institute for Technical Physics Introduction
- 2. HTS coated conductor materials
- 3. Examples of coated conductor applications at SUPRA
- 4. Engineering of Coated Conductor towards low AC loss
- 5. Roebel Coated Conductor cable in EuCARD² – future magnets program

Karlsruhe Institute of Technology

- Campus North:

Institute for Technical Physics:

Institute directors: Prof. Mathias Noe Prof. Bernhard Holzapfel

- Fusion magnet technology (Dr. Walter Fietz)
- Vacuum technology (Dr. Christian Day)
- Superconducting materials and energy applications (Dr. Wilfried Goldacker)
- High field magnets and special magnet systems (Dr. Theo Schneider)
- Cryogenics (Dr. Holger Neumann)
- Tritium technology (Dr. Beate Bornschein)

Department: Superconductor developments and energy applications

Head: W. Goldacker (S. I. Schlachter)

High-temperature superconductors towards applications (part of SUPRA):

Outline:

1. Institute for Technical Physics – Introduction

2. HTS – coated conductor materials

- 3. Examples of coated conductor applications at SUPRA
- 4. Engineering of Coated Conductor towards low AC loss
- 5. Roebel Coated Conductor cable in EuCARD² – future magnets program

Superconducting materials for applications:

P. Lee. The expanded ASC "Plots" page. 2014. URL: http://fs.magnet.fsu.edu/ ~lee/plot/plot.htm.

Coated conductor architecture:

- Template metallic substrate coated with a multifunctional oxide barrier
 - Biaxial texturing within $< 3^{\circ}$ is needed to overcome the grain boundary problem

C. Senatore, Plenary talk: "30 years of HTS Status and perspectives", ASC 2016, Denver

Top view

30 – 100 µm substrate: Hastelloy C-276 or stainless steel

Coated conductor preparation routes:

1. Substrate preparation

RABITS – Rolling-Assisted, Biaxial Textured Substrates

(NiW substrate is textured)

IBAD – Ion Beam Assisted Deposition

(polycrystalline Hastelloy, biaxial textured MgO)

2. *RE*BCO preparation

Physical routes:

PLD – Pulsed Laser Deposition

RCE Reactive Co-Evaporation

Chemical routes:

MOD Metal-Organic Deposition

MOCVD Metal-Organic Chemical Vapour Deposition

Superconductor

Outline:

- 1. Institute for Technical Physics Introduction
- 2. HTS coated conductor materials
- 3. Examples of coated conductor applications at SUPRA
- 4. Engineering of Coated Conductor towards low AC loss
- 5. Roebel Coated Conductor cable in EuCARD² – future magnets program

COMBIT - communication blackout mitigation

Communication interruption due to attenuation and/or reflection of radio waves by plasma layer that is created during hypersonic or re-entry flight

Courtesy of A. Gülhan, DLR Cologne, Joint Research Proposal, Helmholtz Russia Joint Research Group

- Loss of communication with ground stations or satellites including GPS signals, data telemetry, and voice communication
- Examples:

Mission	Duration of blackout phase	
Gemini 2	~ 4 minutes	
Apollo	~ 3 minutes	
Mars Pathfinder	~ 30 seconds	
Space shuttle (before creation of Tracking and Data Relay Satellite System)	~ 30 minutes	

COMBIT - Angular field dependence of critical current:

COMBIT - HTS magnet and produced field:

Current

0.02

160

1MVA-Transformer Project KIT-ABB:

S. Hellmann, M. Noe

- Primary winding: 20 kV_{RMS} / 28.87[°]
 - A_{RMS} (warm, copper)
- Secondary winding: 1 kV $_{\rm RMS}$ /

577.35 A_{RMS} (2G HTS)

- B_{max} in iron-core = 1.5 T, 77 K, LN₂ (normal pressure)
- Solenoid, one layer winding (tweens back-to-back), 4 mm, SuNAM and SuperPower SCS4050, Cu-plated

SmartCoil – current limiter:

Soldered contacts

SmartCoil – current limiter:

Conductor tests:

- Superpower SCS12100 und SCS12050 (1 m piece in 2 short-cuted rings)
- STI (1 m piece in 2 short-cuted rings)
- SuNAM (1 m piece in 2 short-cuted rings)
- THEVA (1 m piece)

3S – "SupraStromSchiene" - superconducting current rail:

Outline:

- 1. Institute for Technical Physics Introduction
- 2. HTS coated conductor materials
- 3. Examples of coated conductor applications at SUPRA
- 4. Engineering of Coated Conductor towards low AC loss
- 5. Roebel Coated Conductor cable in EuCARD² – future magnets program

1. Applications with time varying magnetic fields:

Reduction of AC losses (filaments)

Analytic solution for single strip: E.H. Brandt (Phys. Rev. B vol.48 no.17, 1993)

- Most often need a stabilizer (copper) ٠
- 2. Challenge:
 - Filaments with small deterioration of critical current ٠
 - Low losses with high number of filaments
 - Application of coated conductors into cable structure

$$\begin{cases} \mathbf{Q} = \mathbf{W}^2 J_c B_0 g\left(\frac{\pi B_0}{\mu_0 J_c}\right) \\ g(x) = \frac{2}{x} \ln(\cosh(x)) - \tanh(x) \end{cases}$$

Engineering of low AC loss conductors:

1. SAE - Striated After Electroplating

2. SBE Striated Before Electroplating

AC loss of Ag cap coated conductor after oxidation:

- LN₂, calibration free method
- 12, 72 Hz, SuperOx

IFW Dresden, J. Scheiter

AC loss of coated conductor with 5 an 10 μm Cu stabilisation:

Transverse resistance and possible resistive current path across conductor:

Engineering of low AC loss cables – CORC:

	CORC (Coated Conductor on Round Core)
Tape transpo- sition	 Determined by core diameter Partial Each layer has a different transposition length
Critical current	 Increases with the number of layers
Je Enginee- ring current density	Depends on used core
Anisotropy	Averaged

AC loss with AC field and AC current conditions:

Reduction of the AC losses using striated tapes in CORC cable:

- Magnetisation losses
- Calorimetric method at 77 K
- I_{c CORC} 1043 A

- AC-AC losses 0.07 and 0.1 mT/A
 - Calorimetric method at 77 K
- $I_{c CORC}$ with 5 filaments 951 A (9% reduction)

- Laser striation of Ag-cap conductors with additional oxidation leads to reduction of AC loss.
- Laser striation of Cu-cap conductors is not straightforward and the 'ideal' level of resistance between filaments need to be found.
- CORC cable structure is the ideal architecture for striated conductor natural twist of filaments and AC loss reduction.

Outline:

- 1. Institute for Technical Physics Introduction
- 2. HTS coated conductor materials
- 3. Examples of coated conductor applications at SUPRA
- 4. Engineering of Coated Conductor towards low AC loss
- 5. Roebel Coated Conductor cable in EuCARD²
 - future magnets program

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

HTS magnet insert development and co-authors:

• C. Senatore, C. Barth, M. Bonura

• Y. Yang

• A. Stenvall

TAMPERE UNIVERSITY OF TECHNOLOGY

A. Kario, A. Kling,
 S. Otten, W. Goldacker

 M. Dhallé, B. van Nugteren, P. Gao, S. Wessel

> UNIVERSITEIT TWENTE.

• Y. Yang

- G. A. Kirby, J. van Nugteren, H. Bajas, V.Benda, A. Ballarino, M.Bajko L. Bottura, K. Broekens, M. Canale, A. Chiuchiolo, J. Fleiter, L.Gentini, N.Peray, J.C. Perez,
 - G. de Rijk, A. Rijllart, L. Rossi,
 - J. Murtomaeki, J. Mazet, F-O.Pincot

• C. Lorin, M. Durante, P. Fazilleau

Future magnets program of EuCARD²:

- 1. Develop a 10 kA-class cable in HTS suitable for accelerator magnets
 - Large current to reduce magnet protection issues
 - Cable properties suitable for accelerator
 - Uniformity of properties over long lengths
- 2. Design, manufacture and test a first accelerator quality, small prototype, dipole magnet:
 - Bore diameter 40 mm, outside diameter 99 mm
 - Length > 400 mm
 - Field 5 T, good homogeneity (< 10⁻⁴) stand-alone
 - Field > 15 T in a high field magnet (Fresca2) outside EuCARD²

Target performance for *RE*123 tape at 4.2 K in perpendicular magnetic field:

- $J_{eng} = 450 \text{ A/mm}^2 \text{ at } 15 \text{ T}$
- $J_{eng} = 400 \text{ A/mm}^2 600 \text{ A/mm}^2 \text{ at } 20 \text{ T}$

Manufacturer	Substrate thickness / Cu thickness		
AMSC	75 μm/ 100 μm		
BHTS	100 μm / 100μm		
FUJIKURA	75 μm / 75 μm		
SUNAM	60 μm / 40 μm		
SUPEROX	60 μm/ 20 μm		
SUPERPOWER	50 μm / 40 μm		

Punching technology - fast reel-to-reel:

Coated conductor tape

- 2 movable punches and dies
- Advantage: flexibility in punching geometry
- Disadvantage: Multiple steps per transposition needed

Long length tapes for Roebel cable have been delivered:

- 12 mm wide Bruker tape
- 10-20 m long pieces
- Homogeneous I_c (+/-10%) along the length

KER

B

• 20 micrometre (per side) Cu stabilisation

٠

EuCARD² first Bruker Roebel cable – 5 m long:

Grant Agreement No: 312453

European Coordination for Accelerator Research and Development Seventh Framework Programme, Capacities Specific Programme, Research Infrastructures, Combination of Collaborative Project and Coordination and Support Action

MILESTONE REPORT

PROTOTYPE CABLE LENGTHS AND REPORT

DELIVERABLE: D10.2

Document identifier:	EuCARD2-Del-D10-2-Final	
Due date of milestone:	End of Month 24 (April 2015)	
Report release date:	30/04/2015	
Work package:	WP10: Future Magnets	
Lead beneficiary:	CERN	
Document status:	Final	

Bruker tape ID	Tape length [m]	Number of strands	I _c strand [A] (average, 77K)
254 D	14.1	2	51.5
255 D	18	3	52.6
270D-1	13	2	61.1
270D-2	22.1	4	56.9
281D	23.2	4	62.8

- 15 strands cable
- 226 mm

transposition length

• 5.5 mm strand width

Cross-section of the first Bruker Roebel cable:

- Sum of all strands at 77 K, self-field 861 A
- Roebel I_c predicted (with self-field, 77 K) 749 A (13 % self-field reduction)
- Roebel I_c predicted (with self-field, 77 K) –
 603 A (30 % self-field reduction)

Cross-section

Cu-plated tape after punching – at Bruker:

Critical current per unit width

• Tape thickness after copper plating.

- The average critical current per unit width degraded by 6% after punching and copper plating.
- No local defects were found.

First 2 m long Roebel cable made with punch-and -coat technique:

- Roebel cable: 226 TL,
 15 strands
- Punch + Coat
- 2 m long

New design of the Roebel cable:

Unequal shift of tapes leads to problems in coil winding:

Transposition length (Tp) (mm)	Strand width (W _I) and bridge width (W _c) (mm)
226 (old)	5.5
300 (new)	5.85

New punching tool and cable geometry:

- New geometry now possible in punching tool
 - 5.85 mm strand width
 - 300 mm transposition length
- Baseline for next EuCARD² cables

174 µm

Cross-section of first punched cable with new geometry (15 strands).

5,85±0,05

240 µm

Mechanical test of the cos-theta coil end geometry:

• CERN and CEA -3D form print

No degradation of I_c with all used molds:

Roebel cables in CEA torsion mold (T = 77 K, self-field)

- No degradation observed
- Small I_c increase (reversible in cable 2)

		Twist pitch [mm]	Bending radius [mm]
	Mold 3	535	-
	Mold 2	389	-
aight	Mold 1	389	22
old no. 3			
old no. 2			
old no. 1			29122.
old removed			

Roebel cable bending – cable suitability for a coil:

Reduced critical current

- Measurements at LN₂, s.f.
- *RE*BCO inside / compressive bending
- I_c of the Roebel cables:
 - SuperPower: 1427 A

Bruker: 658 A

<u>SuperPower</u>

• 20 µm Cu, 50 µm Hastelloy

<u>Bruker</u>

• 20 μm Cu+, 100 μm SS

Transverse stress for advanced impregnations:

 $I_{c}(\sigma)$ summary

P. Gao et al., "Effect of tape layout and impregnation method on transverse pressure dependence of critical current in REBCO Roebel cables", presented at ASC2016, Denver

Cable type I & II: "KIT-type"

- Araldite CY5538 & Aradur HY5571
- Silica filler powder

Cable III

First cold test of subsize Feather M-0.4 coil:

Time of day [hr]

- Tests on Feather M0.x coils serve to advance production and testing instrumentation.
- Feather M-0.4 performance 100% of prediction from CC performance.

First winding and impregnation of Feather-M2 coil:

CERN

HTS Roebel cables for the EuCARD² "Future Magnets"

Coated Conductor:

- Tapes for different supplies being tested (tape J_e, punching).
- Punch-and-coat process developed with Bruker.

Roebel coated conductor cable:

- First 5 m long cables were made and delivered for coil winding.
- Punch and coat technology used for first 2 m long cable.
- Cable design adopted to magnet design.

Roebel cable for the coil winding:

- It is possible to wind the cables into small radius coils without I_c degradation and test those at 77 K.
- Cos-theta end design tested-no I_c cable degradation.
- First successful test of Feather M0.4.

Karlsruhe Institute of Technology

Special applications

Summary:

- Electrical engineering applications:
 - fault current limiter
 - transformer
 - superconducting current rails

- Low AC loss coated conductors with filaments Modulated resistance between filaments
- Roebel cable R&D
- Low AC loss CORC cable with filaments
- First HTS accelerator type coil demonstrator using HTS Roebel cable

Optimized system in KIT TRUMPF TruMicro 5025:

\triangleright	IR Wavelength	1030 nm
	Maximum Energy	25 W
	Pulse duration	< 10 ps
۶	Max. Pulse energy	125 µJ
\triangleright	Pulse frequency	400 kHz

Parameters for the scribing process

\triangleright	Energy	5 W (Ag, 10x),	12.5 W (Cu, 50x)	Status
	Repetition rate	400 kHz (Scanner),	100 kHz (Table)	54 cm long samples
	Pulse energy	25 μJ (Ag, 10x),	62.5 µJ (Cu, 50x)	S4 cm long samples
≻	Speed	90 m/min (Scanner),	22.5 m/min (Table)	Future:
	Spot diameter	18 μm (Ag),	30 µm (Cu)	RTR long lengths