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Measurement of the W boson polarisation in t t̄
events from pp collisions at

√
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This paper presents a measurement of the polarisation of W bosons from tt̄ decays, recon-
structed in events with one high-pT lepton and at least four jets. Data from pp collisions
at the LHC were collected at

√
s = 8 TeV and correspond to an integrated luminosity of

20.2 fb−1. The angle θ∗ between the b-quark from the top quark decay and a direct W bo-
son decay product in the W boson rest frame is sensitive to the W boson polarisation. Two
different W decay products are used as polarisation analysers: the charged lepton and the
down-type quark for the leptonically and hadronically decaying W boson, respectively. The
most precise measurement of the W boson polarisation via the distribution of cos θ∗ is ob-
tained using the leptonic analyser and events in which at least two of the jets are tagged as
b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are
F0 = 0.709 ± 0.019, FL = 0.299 ± 0.015 and FR = −0.008 ± 0.014, and are the most
precisely measured W boson polarisation fractions to date. Limits on anomalous couplings
of the Wtb vertex are set.
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1 Introduction

The top quark, discovered in 1995 by the CDF and D0 collaborations [1, 2] is the heaviest known ele-
mentary particle. It decays almost exclusively into a W boson and a b-quark. The properties of the top
decay vertex Wtb are determined by the structure of the weak interaction. In the Standard Model (SM)
this interaction has a (V − A) structure, where V and A refer to the vector and axial vector components
of the weak coupling. The W boson, which is produced as a real particle in the decay of top quarks,
possesses a polarisation which can be left-handed, right-handed or longitudinal. The corresponding frac-
tions, referred to as helicity fractions, are determined by the Wtb vertex structure and the masses of the
particles involved. Calculations at next-to-next-to-leading order (NNLO) in QCD predict the fractions to
be FL = 0.311 ± 0.005, FR = 0.0017 ± 0.0001, F0 = 0.687 ± 0.005 [3].

By measuring the polarisation of the W boson with high precision, the SM prediction can be tested, and
new physics processes which modify the structure of the Wtb vertex can be probed. The structure of
the Wtb vertex can be expressed in a general form using left- and right-handed vector (VL/R) and tensor
(gL/R) couplings:

LWtb = −
g
√

2
b̄ γµ (VLPL + VRPR) t W−µ −

g
√

2
b̄

iσµνqν
mW

(gLPL + gRPR) t W−µ + h.c. (1)

Here, PL/R refer to the left- and right-handed chirality projection operators, mW to the W boson mass,
and g to the weak coupling constant. At tree level, all of the vector and tensor couplings vanish in the
SM, except VL, which corresponds to the CKM matrix element Vtb and has a value of approximately
one. Dimension-six operators, introduced in effective field theories, can lead to anomalous couplings,
represented by non-vanishing values of VR, gL and gR [4–6].

The W boson helicity fractions can be accessed via angular distributions of polarisation analysers. Such
analysers are W boson decay products whose angular distribution is sensitive to the W polarisation and
determined by the Wtb vertex structure. In case of a leptonic decay of the W boson (W → `ν), the
charged lepton serves as an ideal analyser: its reconstruction efficiency is very high and the sensitivity
of its angular distribution to the W boson polarisation is maximal due to its weak isospin component
T3 = − 1

2 . If the W boson decays hadronically (W → qq̄′), the down-type quark is used, as it carries the
same weak isospin as the charged lepton. This provides it with the same analysing power as the charged
lepton, which is only degraded by the lower reconstruction efficiency and resolution of jets compared to
charged leptons. The reconstruction of the down-type quark is in particular difficult as the two decay
products of a hadronically decaying W boson are experimentally hard to separate. In the W boson rest
frame, the differential cross-section of the analyser follows the distribution

1
σ

dσ
d cos θ∗

=
3
4

(
1 − cos2 θ∗

)
F0 +

3
8

(
1 − cos θ∗

)2 FL +
3
8

(
1 + cos θ∗

)2 FR , (2)

which directly relates the W boson helicity fractions Fi to the angle θ∗ between the analyser and the
reversed direction of flight of the b-quark from the top quark decay in the W boson rest frame. Previous
measurements of the W boson helicity fractions from the ATLAS, CDF, CMS and D0 collaborations show
agreement with the SM within the uncertainties [7–11].

In this paper, the W boson helicity fractions are measured in top quark pair (tt̄) events. Data corresponding
to an integrated luminosity of 20.2 fb−1of proton–proton (pp) collisions, produced at the LHC with a
centre-of-mass energy of

√
s = 8 TeV, and recorded with the ATLAS [12] detector, are analysed. The final
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state of the tt̄ events is characterised by the decay of the W bosons. This analysis considers the lepton+jets
channel in which one of the W bosons decays leptonically and the other decays hadronically. Both
W boson decay modes are utilised for the measurement of cos θ∗. The signal selection and reconstruction
includes direct decays of the W boson into an electron or muon as well as W boson decays into a τ-lepton
which subsequently decays leptonically.

2 The ATLAS detector

The ATLAS experiment at the LHC is a multi-purpose particle detector with a forward-backward symmet-
ric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking detector
surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and
hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity
range |η| < 2.5. It consists of silicon pixel, silicon microstrip, and transition-radiation tracking detect-
ors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic energy measurements with
high granularity. A hadron (steel/scintillator-tile) calorimeter covers the central pseudorapidity range
(|η| < 1.7). The end-cap and forward regions are instrumented with LAr calorimeters for electromagnetic
and hadronic energy measurements up to |η| = 4.9. The muon spectrometer surrounds the calorimeters
and is based on three large air-core toroid superconducting magnets with eight coils each. Its bending
power ranges from 2.0 to 7.5 T m. It includes a system of precision tracking chambers and fast detectors
for triggering. A three-level trigger system is used to select events. The first-level trigger is implemented
in hardware and uses a subset of the detector information to reduce the accepted rate to at most 75 kHz.
This is followed by the high-level trigger, two software-based trigger levels that together reduce the ac-
cepted event rate to 400 Hz on average depending on the data-taking conditions.

3 Data and simulated samples

The data set consists of pp collisions, recorded at the LHC with
√

s = 8 TeV, and corresponds to an integ-
rated luminosity of 20.2 fb−1. Single-lepton triggers with a threshold of 24 GeV of transverse momentum
(energy) for isolated muons (electrons) and 36 (60) GeV for muons (electrons) without an isolation cri-
terion are used to select tt̄ candidate events. The lower trigger thresholds include isolation requirements
on the candidate lepton, resulting in inefficiencies at high pT that are recovered by the triggers with higher
pT thresholds.

Samples obtained from Monte Carlo (MC) simulations are used to characterise the detector response
and reconstruction efficiency of tt̄ events, estimate systematic uncertainties and predict the background
contributions from various processes. The response of the full ATLAS detector is simulated [13] using
Geant 4 [14]. For the estimation of some systematic uncertainties, generated samples are passed through a
faster simulation with parameterised showers in the calorimeters [15], while still using the full simulation
of the tracking systems. Simulated events include the effect of multiple pp collisions from the same

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.
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and nearby bunch-crossings (in-time and out-of-time pile-up) and are reweighted to match the number of
collisions observed in data. All simulated samples are normalised using the most precise cross-section
calculations available.

Signal tt̄ events are generated using the next-to-leading-order (NLO) QCD MC event generator Powheg-
Box [16–19] using the CT10 parton distribution function (PDF) set [20]. Powheg-Box is interfaced to
Pythia 6.425 [21] (referred to as the Powheg+Pythia sample), which is used to model the showering and
hadronisation, with the CTEQ6L1 PDF set [22] and a set of tuned parameters called the Perugia2011C
tune [23] for the modelling of the underlying event. The model parameter hdamp is set to mt and controls
matrix element to parton shower matching in Powheg-Box and effectively regulates the amount of high-pT
radiation.

The tt̄ cross-section is σ(tt̄) = 253+13
−15 pb. This value is the result of a NNLO QCD calculation that

includes resummation of next-to-next-to-leading logarithmic soft gluon terms with top++2.0 [24–30].

A sample generated with Powheg-Box interfaced with Herwig 6.520 [31] using Jimmy 4.31 [32] to sim-
ulate the underlying event (referred to as the Powheg+Herwig sample) is compared to a Powheg+Pythia
sample to assess the impact of the different parton shower models. For both the Powheg+Herwig sample
and this alternate Powheg+Pythia sample, the hdamp parameter is set to infinity.

To estimate the uncertainty due to the choice of MC event generator, an alternate tt̄ MC sample is produced
with MC@NLO [33, 34] with the CT10 PDF set interfaced to Herwig 6.520 using the AUET2 tune [35]
and the CT10 PDF set for showering and hadronisation. In addition, samples generated with Powheg-
Box interfaced to Pythiawith variations in the amount of QCD initial- and final-state radiation (ISR/FSR)
are used to estimate the effect of such uncertainty. The factorisation and renormalisation scales and the
hdamp parameter in Powheg-Box as well as the transverse momentum scale of the space-like parton-
shower evolution in Pythia are varied within the constraints obtained from an ATLAS measurement of tt̄
production in association with jets [36].

Single-top-quark-processes for the t-channel, s-channel and Wt associated production are also simulated
with Powheg-Box [37, 38] using the CT10 PDF set. The samples are interfaced to Pythia 6.425 with
the CTEQ6L1 PDF set and the Perugia2011C underlying event tune. Overlaps between the tt̄ and Wt
final states are removed [39]. The single-top-quark samples are normalised using the approximate NNLO
theoretical cross-sections [40–42] calculated with the MSTW2008 NNLO PDF set [43, 44]. All tt̄ and
single-top samples are generated assuming a top quark mass of 172.5 GeV, compatible with the ATLAS
measurement of mt = 172.84 ± 0.70 GeV [45].

Events with a W or Z boson produced in association with jets are generated using the leading-order (LO)
event generator Alpgen 2.14 [46] with up to five additional partons and the CTEQ6L1 PDF set, inter-
faced to Pythia 6.425 for the parton showering and hadronisation. Separate samples for W/Z+light-jets,
W/Zbb̄+jets, W/Zcc̄+jets and Wc+jets were generated. A parton–jet matching scheme (“MLM match-
ing”) [47] is employed to avoid double-counting of jets generated from the matrix element and the parton
shower. Overlap between the W/ZQQ̄ (Q = b, c) events generated at the matrix element level and those
generated by the parton shower evolution of the W/Z+light-jets sample are removed with an angular
separation algorithm. If the angular distance ∆R between the heavy-quark pair is larger than 0.4, the
matrix element prediction is used instead of the parton shower prediction. Event yields from the Z+jets
background are normalised using their inclusive NNLO theoretical cross-sections [48]. The predictions
of normalisation and flavour composition of the W+jets background are affected by large uncertainties.
Hence, a data-driven technique is used to determine both the inclusive normalisation and the heavy-flavour
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fractions of this process. The approach followed exploits the fact that the W± boson production is charge-
asymmetric at a pp collider. The W boson charge asymmetry depends on the flavour composition of the
sample. Thus, correction factors estimated from data are used to rescale the fractions of Wbb̄/cc̄+jets,
Wc+jets and W+light-jets events in the MC simulation: Kbb = Kcc = 1.50 ± 0.11 (stat. + syst.), Kc = 1.07
± 0.27 (stat. + syst.) and Klight = 0.80 ± 0.04 (stat. + syst.) [49].

Diboson samples (WW, ZZ, WZ) are generated using the Sherpa 1.4.1 [50] event generator with the CT10
PDF set, with massive b- and c-quarks and with up to three additional partons in the LO matrix elements.
The yields of these backgrounds are normalised using their NLO QCD theoretical cross-sections [51].

Multijet events can contain jets misidentified as leptons or non-prompt leptons from hadron decays and
hence satisfy the selection criteria of the lepton+jets topology. This source of background events is re-
ferred to as fake-lepton background and is estimated using a data-driven approach (“matrix method”)
which is based on the measurement of lepton selection efficiencies using different identification and isol-
ation criteria [52].

4 Event selection and t t̄ reconstruction

Object reconstruction

The final state contains electrons, muons, jets with some of them originating from b-quarks, as well as
missing transverse momentum.

Electrons are reconstructed from energy depositions in the electromagnetic calorimeter matching tracks
in the inner detector. The transverse component of the energy deposition has to exceed 25 GeV and the
pseudorapidity of the energy cluster, ηcluster, has to fullfil |ηcluster| < 2.47, excluding the transition region
between the barrel and end-cap sections of the electromagnetic calorimeter at 1.37 < |ηcluster| < 1.52.
Electrons are further required to have a longitudinal impact parameter with respect to the hard-scattering
vertex of less than 2 mm.

To reduce the background from non-prompt electrons (i.e. electrons produced within jets), electron can-
didates are also required to be isolated. Two η-dependent isolation criteria are applied. The first one
considers the energy deposited in the calorimeter cells within a cone of size ∆R = 0.2 around the electron
direction. The second one sums the transverse momenta (pT) of all tracks with pT > 400 MeV within a
cone of size ∆R = 0.3 around the electron track. For each quantity, the transverse energy or momentum of
the electron are subtracted. The isolation requirement is applied in such a way as to retain 90% of signal
electrons, independent of their pT value. This constant efficiency is verified in a data sample of Z → ee
decays [53].

For the reconstruction of muons, information from the muon spectrometer and the inner detector is com-
bined. The combined muon track must satisfy pT > 25 GeV and |η| < 2.5. The longitudinal impact
parameter with respect to the hard-scattering vertex (defined in next section) is required to be less than
2 mm. Furthermore, muons are required to satisfy a pT-dependent track-based isolation requirement. The
scalar sum of the track pT in a cone of variable size ∆R < 10 GeV/pµT around the muon (excluding the
muon track itself) has to be less than 5 % of the muon pT.
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Jets are reconstructed from topological clusters [12] built from energy depositions in the calorimeters
using the anti-kt algorithm [54, 55] with a radius parameter of 0.4. Before being processed by the jet-
finding algorithm, the topological cluster energies are corrected using a local calibration scheme [56,
57] to account for inactive detector material, out-of-cluster leakage and the noncompensating calorimeter
response. After energy calibration [58], the jets are required to have pT > 25 GeV and |η| < 2.5. To
suppress jets from pile-up, the jet vertex fraction2 is required to be above 0.5 for all jets with pT < 50 GeV
and |η| < 2.4. As all electron candidates are also reconstructed as jets, the closest jet within a cone of size
∆R = 0.2 around an electron candidate is discarded to avoid double-counting of electrons as jets. After
this removal procedure, electrons within ∆R = 0.4 of any remaining jet are removed.

Jets are identified as originating from the hadronisation of a b-quark (b-tagged) via a multivariate al-
gorithm [59]. It makes use of the lifetime and mass of b-hadrons and accounts for displaced tracks and
topological properties of the jets. A working point with 70 % efficiency to tag a b-quark jet (b-jet) is used.
The rejection factor for light-quark and gluon jets (light jets) is around 130 and about 5 for charm jets,
as determined for b-tagged jets with pT > 20 GeV and |η| < 2.5 in simulated tt̄ events. The simulated
b-tagging efficiency is corrected to that measured in data using calibrations from statistically independent
event samples of tt̄ pairs decaying into a bb̄`+`−ν`ν̄` final state [60].

The reconstruction of the transverse momentum of the neutrino from the leptonically decaying W boson is
based on the negative vector sum of all energy deposits and momenta of reconstructed and calibrated ob-
jects in the transverse plane (missing transverse momentum with magnitude Emiss

T ) as well as unassociated
energy depositions [61].

Event selection

Events are selected from data taken in stable beam conditions with all relevant detector components
being functional. At least one primary collison vertex is required with at least five associated tracks with
pT > 400 MeV. If more than one primary vertex is reconstructed, the one with the largest scalar sum
of transverse momenta is selected as the hard-scattering vertex. If the event contains at least one jet
with pT > 20 GeV that is identified as out-of-time activity from a previous pp collision or as calorimeter
noise [62], the event is rejected.

In order to select events from tt̄ decays in the lepton+jets channel, exactly one reconstructed electron or
muon with pT > 25 GeV and at least four jets, of which at least one is b-tagged, are required. A match
(∆R < 0.15) between the offline reconstructed electron or muon and the lepton reconstructed by the high-
level trigger is required. The selected events are separated into two orthogonal b-tag regions: one region
with exactly one b-tag and a second region with two or more b-tags. Thus, the data sample is split into
four channels depending on the lepton flavour and the b-jet multiplicity: “e+jets, 1 b-tag”, “e+jets, ≥2
b-tags”, “µ+jets, 1 b-tag” and “µ+jets, ≥2 b-tags”.

For events with one b-tag, Emiss
T is required to be greater than 20 GeV and the sum of Emiss

T and transverse
mass of the leptonically decaying W boson, mT(W), is required to be greater than 60 GeV in order to
suppress multijet background. In the case of two b-tags, no further requirement on the Emiss

T and transverse
mass of the W boson is applied.

2 The jet vertex fraction is defined as the scalar sum of the transverse momenta of a jet’s tracks stemming from the primary
collision vertex divided by the scalar sum of the transverse momenta of all tracks in a jet.
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After this selection, the tt̄ candidate events are reconstructed using a kinematic likelihood fit as described
next.

Reconstruction of the t t̄ system

The measurement of the W boson polarisation in tt̄ events requires the reconstruction and identification
of all tt̄ decay products. For this, a kinematic likelihood fitter (KLFitter) [63] is utilised. It maps the
four model partons (two b-quarks and the qq̄′ pair from a W boson decay) to four reconstructed jets. The
numbers of jets used as input for KLFitter can be larger than four. The two jets with the largest output
of the b-tagging algorithm together with two (three) remaining jets with the highest pT were chosen as
KLFitter input as this selection leads to the highest reconstruction efficiency for events with four (at least
five) jets. For each of the 4! = 24 (5! = 120 for events with at least five jets) possible jet-to-parton
permutations, it maximises a likelihood, L , that incorporates Breit–Wigner distributions for the W boson
and top quark masses as well as transfer functions mapping the reconstructed jet and lepton energies to
parton level or true lepton level, respectively. The expression for the likelihood is given by

L = BW(mq1q2q3 |mt,Γt) · BW(mq1q2 |mW ,ΓW) · BW(mq4`ν|mt,Γt) · BW(m`ν|mW ,ΓW)

·W(Emeas
jet1
|Eq1) ·W(Emeas

jet2
|Eq2) ·W(Emeas

jet3
|Eq3) ·W(Emeas

jet4
|Eq4)

·W(Emeas
` |E`) ·W(Emiss,x|px

ν) ·W(Emiss,y|pyν). (3)

where the BW(mi j(k)|mt/WΓt/W) terms are the Breit-Wigner functions used to evaluate the mass of com-
posite reconstructed particles (W bosons and top quarks) and W(Emeas

i |E j) are the transfer functions, with
Emeas

i being the measured energy of object i and E j the “true” energy of the reconstructed parton j or
true lepton `. The transverse components px/y

ν of the neutrino momentum are mapped to the missing
transverse momentum Emiss,x/y via transfer functions W(Emiss,x/y|px/y

ν ). Individual transfer functions for
electrons, muons, b-jets, light jets (including c-jets) and missing transverse momentum are used. These
transfer functions are obtained from tt̄ events simulated with MC@NLO. The top quark decay products
are uniquely matched to reconstructed objects to obtain a continuous function describing the relative en-
ergy difference between parton and reconstructed level as a function of the parton-level energy. Individual
parameterisations are derived for different regions of |η|. The measurement of the W boson polarisation
in the lepton+jets channel is performed for both the top and the anti-top quarks in each event. The anti-
down-type quark from the top quark decay (down-type quark from the anti-top quark decay) is used as
the hadronic analyser and the charged lepton from the decay of the anti-top quark (charged anti-lepton
from the top quark decay) as the leptonic analyser.

Since the likelihood defined in Equation (3) is invariant under exchange of the W decay products, it
needs further extensions to incorporate information related to down-type quarks. This is achieved by
multiplying the likelihood by probability distributions of the b-tagging algorithm output as a function of
the transverse momentum of the jets. These probability distributions are obtained from MC@NLO for
b-quark jets as well as u/c- and d/s-quark jets. Since the W boson decays into a pair of charm and strange
quarks in 50 % of decays into hadrons, the higher values of the b-tagging algorithm output for the charm
quark allows for a separation of the two. This increases the fraction of events with correct matching
of the two jets originating from a W boson decay to the corresponding up- and down-quark type jet to
60 %, compared to 50 % for the case of no separation power. The extended likelihood is normalised with
respect to the sum of the extended likelihoods for all 120 (24) permutations and this quantity is called the
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Figure 1: (a) Logarithm of the likelihood value as output for reconstructed tt̄ events. (b) Event probability for the
selected (best) jet-to-parton permutation. Events from a tt̄ signal sample are split into events where the tt̄ pairs do not
decay via the lepton+jets channel (“tt̄ background”), events where not all tt̄ decay products have been reconstructed
(“tt̄ non-reco”), as well as correctly (“tt̄ right”) and incorrectly (“tt̄ wrong”) reconstructed tt̄ systems.

“event probability”. This up- versus down-type quark separation method was established in an ATLAS
measurement of the tt̄ spin correlation in the lepton+jets channel [64].

The permutation with the largest event probability is chosen. Figure 1(a) shows the distributions of the
logarithm of the likelihood value for the permutation with the highest event probability for simulated tt̄
events. Correctly reconstructed events (“tt̄ right”) peak at high values of the likelihood. Other contribu-
tions come from incorrect assignments of jets (i.e. choosing the wrong permutation, “tt̄ wrong”), non-
reconstructable events where for example a quark is out of the acceptance (“tt̄ non-reco”) and tt̄ events
which do not have a lepton+jets topology (such as dileptonic tt̄ events, “tt̄ background”). In Figure 1(b)
the corresponding distribution of the event probability is shown. The peak at 0.5 corresponds to events
where no separation between up- and down-type quarks is achieved, leading to two permutations with
similar event probabilities. High event probability indicates a correct down-type quark reconstruction.

To select the final data sample, the event probability is used to obtain the best jet-to-parton permutation
per event. Events are required to have a reconstruction likelihood of log L > −48 to reject poorly
reconstructed tt̄ events. The value of log L > −48 was selected to minimise the expected statistical
uncertainty. The fraction of semileptonic events that pass the selection and that are correctly reconstructed
is close to 30 %. The event yields after the final event selection are presented in Table 1.

Figure 2 shows the likelihood and the event probability as well as the reconstructed cos θ∗ distribution
after the final event selection. Good agreement between data and prediction is achieved.
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Figure 2: Measured and predicted distributions of (a) likelihood and (b) event probability from the kinematic fit
and reconstructed cos θ∗ distribution using (c) the leptonic and (d) the hadronic analysers with ≥2 b-tags. The
displayed uncertainties represent the Monte Carlo statistical uncertainty as well as the background normalisation
uncertainties.
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e + jets µ + jets
Sample 1 b-tag ≥ 2 b-tags 1 b-tag ≥ 2 b-tags
tt̄ 36 500 ± 2 300 36 000 ± 2 300 43 600 ± 2 800 42 600 ± 2 700
Single top 2 000 ± 340 974 ± 170 2 328 ± 400 1 102 ± 190
W+light-jets 600 ± 30 24 ± 1 761 ± 38 45 ± 2
W + c 1 210 ± 300 54 ± 13 1 440 ± 360 51 ± 13
W + bb/cc 2 730 ± 190 538 ± 38 3 520 ± 250 780 ± 55
Z+jets 1 200 ± 580 330 ± 160 610 ± 290 158 ± 76
Diboson 220 ± 100 33 ± 16 210 ± 100 37 ± 18
Fake lepton 2 270 ± 680 450 ± 130 1 750 ± 520 323 ± 97
Total expected 46 700 ± 2 600 38 400 ± 2 300 54 200 ± 2 900 45 100 ± 2 800
Data 45 246 40 045 53 747 46 048

Table 1: Expected and observed event yields in the four channels (“e+jets, 1 b-tag”, “e+jets, ≥2 b-tags”, “µ+jets,
1 b-tag” and “µ+jets, ≥2 b-tags”) after the final event selection including the cut on the reconstruction likelihood.
Uncertainties in the normalisation of each sample include systematic uncertainties for the data-driven backgrounds
(W+jets and fake leptons) and theory uncertainties for the tt̄ signal and the other background sources.

5 Measurement of the W boson helicity fractions

The W boson helicity fractions Fi are defined as the fraction of produced tt̄ events Ni in a given polarisa-
tion state divided by all produced tt̄ events:

Fi =
Ni

N0 + NL + NR
for i= 0, L, R. (4)

The selection efficiency εsel
i is different for each polarisation state and determines the number of selected

events ni:
ni = εsel

i Ni for i= 0, L, R. (5)

Dedicated tt̄ signal templates for a specific Fi are created by reweighting the simulated SM tt̄ events.
These are produced by fitting the cos θ∗ distribution for the full phase space and calculating per-event
weights for each helicity fraction using the functional forms in Equation (2).

In addition to these signal templates, templates are derived for each source j of background events. These
are independent of the helicity fractions Fi. Five different background templates are included: three
W+jets templates (W+light-jets, Wc+jets and Wcc̄/bb̄+jets), a fake-lepton template, and one template
for all remaining backgrounds, including contributions from electroweak processes (single top, diboson
and Z+jets). The total number of expected events nexp in each channel is then given by

nexp = n0 + nL + nR + nW+light + nW+c + nW+bb/cc + nfake + nrem. bkg.. (6)

The signal and background templates are used to perform a likelihood fit with the number of background
events nbkg, j and the efficiency corrected signal events Ni as free parameters:

L =

Nbins∏
k=1

Poisson(ndata,k, nexp,k)
Nbkg∏
j=1

1
√

2πσbkg, j
exp

−(nbkg, j − n̂bkg, j)2

2σ2
bkg, j

 . (7)
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Here, ndata,k represents the number of events in each bin k. The expected number of background events
n̂bkg, j of each background source j and their normalisation uncertainties σbkg, j are used to constrain the
fit. The fit parameters scaling the background contributions are treated as correlated across all channels
except for the fake-lepton background, which is uncorrelated across lepton flavours and b-tag regions.
The size of the background normalisation uncertainties σbkg, j is described in Chapter 6.

Combined fits, using the two lepton flavours and 1 b-tag or/and ≥2 b-tags multiplicity bins (two- or four-
channel combination), are performed for the cos θ∗ distributions of the leptonic and the hadronic analyser
independently. The combination leading to the lowest total uncertainty is used to quote the result. The
uncertainties in the helicity fractions obtained from the fit include both the statistical uncertainty of the
data and the systematic uncertainty of the background normalisations. For the leptonic analyser, the most
sensitive results are obtained for the two-channel combination (electron + muon) in the ≥2 b-tags region.
Adding further channels increases the total systematic uncertainty, in particular due to uncertainties in
the b-tagging, which do not compensate with the decrease in the statistical uncertainty. For the hadronic
analyser, the four-channel combination (including both the 1 b-tag and ≥2 b-tags regions) improves the
sensitivity compared to the two-channel combination. For each source of systematic uncertainty, modified
pseudo-data templates are created and evaluated via ensemble testing. The differences between the mean
helicity fractions measured using the nominal templates and those varied to reflect systematic errors
are quoted as systematic uncertainty. Systematic uncertainties from different sources, described in the
following section, are treated as uncorrelated.

6 Systematic uncertainties

Systematic uncertainties from several sources can affect the normalisation of the signal and background
and/or the shape of the cos θ∗ distribution. Correlations of a given systematic uncertainty are maintained
across processes and channels, unless otherwise stated. The impact of uncertainties from the various
sources is determined using a frequentist method based on the generation of pseudo-experiments.

Uncertainties associated with reconstructed objects

Uncertainties associated with the lepton selection arise from the trigger, reconstruction, identification
and isolation efficiencies, as well as the lepton momentum scale and resolution. They are estimated
from Z → `+`−(` = e, µ), J/ψ → `+`− and W → eν processes in data and in simulated samples
using tag-and-probe techniques described in Refs. [65–69]. Since small differences are observed between
data and simulation, correction factors and their related uncertainties are considered to account for these
differences. The effect of these uncertainties is propagated through the analysis and represent a minor
source of uncertainty in this measurement.

Uncertainties associated with the jet selection arise from the jet energy scale, jet energy resolution, jet
vertex fraction requirement and jet reconstruction efficiency. The jet energy scale and its uncertainty are
derived combining information from test-beam data, LHC collision data, and simulation [58]. The jet
energy scale uncertainty is split into 22 uncorrelated sources that have different jet pT and η dependencies
and are treated independently in this analysis. The uncertainty related to the jet energy resolution is es-
timated by smearing the energy of jets in simulation by the difference between the jet energy resolutions
for data and simulation [70]. The efficiency for each jet to satisfy the jet vertex fraction requirement is
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measured in Z → `+`− + 1-jet events in data and simulation [71]. The corresponding uncertainty is evalu-
ated in the analysis by changing the nominal jet vertex fraction cut value and repeating the analysis using
the modified cut value. The jet reconstruction efficiency is found to be about 0.2% lower in simulation
than in data for jets below 30 GeV and consistent with data for higher jet pT . All jet-related kinematic
variables (including the missing transverse momentum) are recomputed by removing randomly 0.2% of
the jets with pT below 30 GeV and the event selection is repeated.

Since the b-tagging efficiencies and misidentification rates are not modelled satisfactorily in MC simula-
tion, all jets are assigned a specific pT- and η-dependent scale factor to account for this difference. The
uncertainties in these scale factors are propagated to the measured value.

An additional uncertainty is assigned due to the extrapolation of the b-tagging efficiency measurement to
the high-pT region. Twelve uncertainties are considered for the light-jet tagging, all depending on jet pT
and η. These systematic uncertainties are taken as uncorrelated.

The uncertainties from the energy scale and resolution corrections for leptons and jets are propagated
into the Emiss

T calculation. Additional uncertainties are added to account for contributions from energy
deposits not associated with any jet and due to soft-jets (7 GeV < pT < 20 GeV), and are treated as fully
correlated with each other. The uncertainty in the description of extra energy deposited due to pile-up
interactions is treated as a separate Emiss

T scale uncertainty. This uncertainty has a negligible effect on the
measured W boson helicity fractions.

Uncertainties in signal modelling

The uncertainties in the signal modelling affect the kinematic properties of simulated tt̄ events and thus
the acceptance and the shape of the reconstructed cos θ∗ distribution.

To assess the impact of the different parton shower and hadronisation models, the Powheg+Herwig
sample is compared to a Powheg+Pythia sample and the symmetrised difference is taken as a systematic
uncertainty. Similarly, an uncertainty due to the matrix element (ME) MC event generator choice for the
hard process is estimated by comparing events produced by Powheg-Box and MC@NLO, both interfaced
to Herwig for showering and hadronisation. The uncertainties due to QCD initial- and final-state radiation
(ISR/FSR) modelling are estimated using two Powheg+Pythia samples with varied parameters producing
more and less radiation. The larger of the changes due to the two variations is taken and symmetrised.

The uncertainty in the tt̄ signal due to the PDF choice is estimated following the PDF4LHC recommenda-
tions [72]. It takes into account the differences between three PDF sets: CT10 NLO, MSTW2008 68 % CL NLO
and NNPDF 2.3 NLO [73]. The final PDF uncertainty is an envelope of an intra-PDF uncertainty, which
evaluates the changes due to the variation of different PDF parameters within a single PDF error set, and
an inter-PDF uncertainty, which evaluates differences between different PDF sets. Each PDF set has a
prescription to evaluate an overall uncertainty using its error sets: symmetric Hessian in the case of CT10,
asymmetric Hessian for MSTW and sample standard deviation in the NNPDF case. Half the width of the
envelope of the three estimates is taken as the PDF systematic uncertainty.

The effect of the uncertainty in the top quark mass is estimated using MC samples with different input top
masses for the signal process. The dependence of the obtained helicity fractions on the top quark mass
is fitted with a linear function. The uncertainties in the helicity fractions are obtained from the slopes
multiplied by the uncertainty in the top quark mass of 172.84 ± 0.70 GeV [45] measured by ATLAS at
√

s = 8 TeV.
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Uncertainties in background modelling

The different flavour samples of the W+jets background are scaled by data-driven calibration factors [49]
as explained in Section 3. All sources of uncertainty on the correction factors other than normalisation
(e.g. associated with the objects identification, reconstruction and calibration, etc.) are propagated to the
W+jets estimation. Their normalisation uncertainty (5 % for W+light-jets, 25 % for W+c-jets and 7 % for
W+bb/cc) is taken into account in the likelihood fit as explained in Section 5.

A relative uncertainty of 30 %, estimated using various control regions in the matrix method calcula-
tion [52], is used for the fake-lepton contribution.

For single top quark production, a normalisation uncertainty of 17 % is assumed, which takes into account
the weighted average of the theoretical uncertainties in s-, t- and Wt-channel production (+5 %/−4 %) as
well as additional uncertainties due to variations in the amount of initial- and final-state radiation and the
extrapolation to high jet multiplicity. The uncertainty in the single-top background shape is assessed by
comparing Wt-channel Monte Carlo samples generated using alternative methods to take into account Wt
and tt̄ diagrams interference: diagram removal and diagram subtraction [39].

An overall normalisation uncertainty of 48 % is applied to Z+jets and diboson contributions. It takes into
account a 5 % uncertainty in the theoretical (N)NLO cross-section as well as the uncertainty associated
with the extrapolation to high jet multiplicity (24 % per jet).

All normalisation uncertainties are included in the fit of the W boson helicity fractions via priors for the
background yields. While the W+jets and fake-lepton uncertainties are included directly, the uncertainty
in the total remaining background from other sources is combined to 16 % (17 %) in the ≥2 b-tags regions
(1 b-tag + ≥2 b-tags regions) by adding the uncertainties in the theoretical cross-sections of the single
top quark, diboson and Z+jets contributions in quadrature. The uncertainty in the shape of the W+jets
background is considered by jet flavour decomposition. Further background shape uncertainties were
evaluated and found to be negligible.

Other uncertainties

The uncertainty associated with the limited number of MC events in the signal and background templates
is evaluated by performing pseudo-experiments on MC events.

The impact of the 1.9 % luminosity uncertainty [74] is found to be negligible since the background nor-
malisations are constrained in the fit.

7 Results

The measured W boson helicity fractions obtained using the leptonic analyser in semileptonic tt̄ events
with ≥2 b-tags are presented in Table 2. By construction, the individual fractions sum up to one. The
F0 value is anti-correlated with both FL and FR (ρF0,FL = −0.55, ρF0,FR = −0.75), and FL and FR are
positively correlated (ρFL,FR = +0.16). The quoted values correspond to the total correlation coefficient,
considering statistical and systematic uncertainties. These results are the most precise W boson helicity
fractions measured so far and are consistent with the SM predictions given at NNLO accuracy [3]. The
inclusion of single b-tag regions does not improve the sensitivity, due to larger systematic uncertainties.
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Leptonic analyser (≥2 b-tags)

F0 = 0.709 ± 0.012 (stat.+bkg. norm.) +0.015
−0.014 (syst.)

FL = 0.299 ± 0.008 (stat.+bkg. norm.) +0.013
−0.012 (syst.)

FR = −0.008 ± 0.006 (stat.+bkg. norm.) ±0.012 (syst.)

Table 2: Measured W boson helicity fractions obtained from the leptonic analyser including the statistical uncer-
tainty from the fit and the background normalisation as well as the systematic uncertainty.

The W boson helicity fractions obtained using the hadronic analyser of semileptonic tt̄ events with 1 b-
tag and ≥ 2b-tags are given in Table 3. In this case, the lower separation between the three W boson
helicity fraction signal templates results in lower correlations but larger systematic uncertainties. The
results obtained with the two analysers agree well. The combination of leptonic and hadronic analysers
has been tested and, despite the improvement in the statistical uncertainty, it does not improve the total
uncertainty.

Hadronic analyser (1 b-tag + ≥2 b-tags)

F0 = 0.659 ± 0.010 (stat.+bkg. norm.) +0.052
−0.054 (syst.)

FL = 0.281 ± 0.021 (stat.+bkg. norm.) +0.063
−0.067 (syst.)

FR = 0.061 ± 0.022 (stat.+bkg. norm.) +0.101
−0.108 (syst.)

Table 3: Measured W boson helicity fractions for the hadronic analyser including the statistical uncertainty from
the fit and the background normalisation as well as the systematic uncertainty.

Figure 3 shows, separately for the e+jets and µ+jets channels, the distributions of cos θ∗ from the leptonic
analyser. The distributions for the hadronic analyser are presented in Figure 4. The uncertainty band in the
data-to-best-fit ratio represents the statistical and background normalisation uncertainty. The deviations
observed in the ratio are covered by the systematic uncertainties. The peak at cos θ∗ ≈ −0.7 as seen in the
single b-tag channels in Figure 4 is caused by misreconstructed events. A missing second b-tag increases
the probability of swapping the b-quark jet from the top quark decay with the up-type quark jet from the
W decay.

The contributions of the various systematic uncertainties are quoted in Table 4. In the case of the leptonic
analyser, the dominant contributions come from the jet energy scale and resolution and the statistical error
in the MC templates. For the hadronic analyser, the systematic uncertainties are larger. Including the 1 b-
tag region aids in reducing the error. One of the main contributions is the b-tagging uncertainty, affecting
both the event selection and b-tag categorisation, as well as the up- vs down-type quark separation. Other
major contributions come from the jet energy resolution and the modelling of tt̄ events (initial- and final-
state radiation, parton showering and hadronisation, and Monte Carlo event generator choice for the
matrix elements).

Within the effective field theory framework [4–6], the Wtb decay vertex can be parameterised in terms of
anomalous couplings as shown in Equation (1). Limits on these anomalous left- and right-handed vector
and tensor couplings are set using the EFTfitter tool [75]. The anomalous couplings are assumed to be real,
corresponding to the CP-conserving case. As the W helicity fractions only allow the ratios of couplings
to be constrained, the value of VL is fixed to the Standard Model prediction of one. The correlations of
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Figure 3: Post-fit distribution of cos θ∗ for the leptonic analyser with ≥2 b-tags, in which a two-channel combination
is performed (electron and muon). The uncertainty band represents the total uncertainty in the fit result.
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Figure 4: Post-fit distribution of cos θ∗ for the hadronic analyser, in which the combination of four channels is
performed (electron and muon, with exactly 1 b-tag and ≥2 b-tags). The uncertainty band represents the total
uncertainty in the fit result.

systematic uncertainties are taken into account. Figure 5 shows the limits on gL and gR couplings while
VL and VR are fixed to their SM values, as well as VR and gR limits, where the other couplings are fixed to
their SM values. The intervals are obtained using the leptonic analyser since it provides the most sensitive
results. Table 5 shows the 95 % confidence level (CL) intervals for each anomalous coupling while fixing
all others to their SM value. These limits correspond to the set of smallest intervals containing 95 % of
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Uncertainty Leptonic, ≥2 b-tags Hadronic, 1 + ≥2 b-tags
F0 FL FR F0 FL FR

Reconstructed objects

Electron
+0.0028 +0.0018 +0.0011 +0.0025 +0.0028 +0.0051
−0.0030 −0.0020 −0.0011 −0.0021 −0.0038 −0.0058

Muon
+0.0024 +0.0013 +0.0010 +0.0026 +0.0046 +0.0072
−0.0029 −0.0015 −0.0015 −0.0037 −0.0035 −0.0072

Jet energy scale
+0.0063 +0.0028 +0.0037 +0.0069 +0.012 +0.014
−0.0033 −0.0025 −0.0014 −0.0070 −0.008 −0.005

Jet energy resolution
+0.0062 +0.0048 +0.0072 +0.027 +0.033 +0.057
−0.0059 −0.0018 −0.0067 −0.031 −0.041 −0.071

Jet vertex fraction
+0.0036 +0.0019 +0.0017 +0.013 +0.0012 +0.011
−0.0017 −0.0013 −0.0006 −0.009 −0.0046 −0.005

Jet reconstruction efficiency
+0.0002 <0.0001 +0.0002 +0.0008 +0.0004 +0.0011
−0.0002 <0.0001 −0.0002 −0.0008 −0.0004 −0.0011

b-tagging
+0.0017 +0.0012 +0.0011 +0.029 +0.013 +0.034
−0.0021 −0.0013 −0.0012 −0.031 −0.014 −0.035

Sum reconstructed objects
+0.010 +0.0064 +0.0085 +0.043 +0.038 +0.069
−0.008 −0.0044 −0.0072 −0.045 −0.044 −0.080

Signal modelling

Showering and hadronisation ±0.0019 ±0.0019 ±0.0037 ±0.015 ±0.001 ±0.014

ME event generator ±0.0025 ±0.0032 ±0.0057 ±0.016 ±0.024 ±0.040

ISR/FSR ±0.0033 ±0.0058 ±0.0034 ±0.018 ±0.039 ±0.057

PDF ±0.0033 ±0.0042 ±0.0009 ±0.0010 ±0.0020 ±0.0020

Top quark mass ±0.0017 ±0.0050 ±0.0033 ±0.0033 ±0.0100 ±0.0068

Sum signal modelling ±0.0058 ±0.0094 ±0.0082 ±0.028 ±0.047 ±0.072

Method uncertainty

Template statistics ±0.0091 ±0.0056 ±0.0044 ±0.0076 ±0.016 ±0.016

Total systematic
+0.015 +0.013 +0.013 +0.052 +0.063 +0.100
−0.014 −0.012 −0.012 −0.054 −0.067 −0.110

Stat. + bkg. norm ±0.012 ±0.008 ±0.006 ±0.010 ±0.021 ±0.022

Table 4: Summary of systematic and statistical uncertainties for the measurements obtained using the leptonic (left)
and the hadronic (right) analysers. The numbers in the last row (Stat. + bkg. norm) correspond to the statistical
uncertainty of the fit, including the normalisation uncertainties in the background yields.
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Coupling 95 % CL interval
VR [−0.24, 0.31]
gL [−0.14, 0.11]
gR [−0.02, 0.06], [0.74, 0.78]

Table 5: Allowed ranges for the anomalous coulings VR, gL, and gR at 95 % CL. The limits are derived using
the measured W helicity fractions using the leptonic analyser for events with ≥2 b-tags (combination of the two
channels, electron and muon).

the marginalised posterior distribution for the corresponding parameter. Similar limits on the anomalous

(a) (b)

Figure 5: (a) Limits on the anomalous left- and right-handed tensor couplings of the Wtb decay vertex as obtained
from the measured W boson helicity fractions from the leptonic analyser. (b) Limits on the right-handed vector and
tensor coupling. As the couplings are assumed to be real, the real part corresponds to the magnitude. Unconsidered
couplings are fixed to their SM values.

couplings were derived by both the ATLAS and CMS experiments using the measured helicity fractions
of W bosons [10, 11]. Complementary limits can be set by other measurements: the allowed region of
gR ≈ 0.75 is excluded by measurements of the t-channel single top quark production [75–78] which
also constrains VL. The branching fraction of B̄ → Xsγ allow more stringent limits to be set on gL and
VR [79].

8 Conclusion

The longitudinal, left- and right-handed W boson helicity fractions are measured using the angle between
the charged lepton (down-type quark) and the reversed b-quark direction in the W boson rest frame for
leptonically (hadronically) decaying W bosons from tt̄ decays. A data set corresponding to 20.2 fb−1 of
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pp collisions at the LHC with a centre-of-mass energy of
√

s = 8 TeV, recorded by the ATLAS experi-
ment, is analysed. Events are required to include one isolated electron or muon and at least four jets, with
at least one of them tagged as a b-jet. Events are reconstructed using a kinematic likelihood fit based on
mass constraints for the top quarks and W bosons. It utilises the weight of the b-jet tagging algorithm to
further separate the up- and down-type quarks from the hadronically decaying W bosons. The fractions
for left-handed, right-handed and longitudinally polarised W bosons are found to be F0 = 0.709 ± 0.012
(stat.+bkg. norm.) ± 0.015 (syst.), FL = 0.299 ± 0.008 (stat.+bkg. norm.) ± 0.013 (syst.) and FR =

−0.008 ± 0.006 (stat.+bkg. norm.) ± 0.012 (syst.). These results constitute the most precise measure-
ment of the W helicity fractions in tt̄ events to date and are in good agreement with the Standard Model
predictions within uncertainties. Using these results, limits on anomalous couplings of the Wtb vertex are
set.
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